
University of Verona
Department of Computer Science

Graduate School of Natural Sciences and Engineering

Doctoral Program in Computer Science

Cycle XXXVI°

Software Optimization and Orchestration
for Heterogeneous and Distributed

Architectures

S.S.D. ING-INF/05

Coordinator:
Prof. Ferdinando Cicalese

Tutor:
Prof. Nicola Bombieri

Doctoral Student:
Dott. Francesco Lumpp

This work is licensed under a Creative Commons CC BY-NC-ND 4.0 Deed
Attribution-NonCommercial-NoDerivs 4.0 International.

To read a copy of the license, visit the web page:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

b Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

e NonCommercial — You may not use the material for commercial purposes.

d NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified
material.

Software Optimization and Orchestration for Heterogeneous and Distributed Architectures — Francesco Lumpp
PhD Thesis

Verona, April 17, 2024

Abstract
In the context of the Edge-Cloud computing continuum, containerization and

orchestration have become two key requirements in software development best prac-
tices. Containerization allows for better resource utilization, platform-independent
development, and secure software deployment. Orchestration automates the deploy-
ment, networking, scaling, and availability of containerized workloads and services.
However, there are still several open challenges. First, the optimization of software
tailored for edge computing, with the aim of enhancing software portability in real-
time distributed environments and containerized applications within the realms of
robotics and Industry 4.0/5.0 technologies. Second, the orchestration of real-time
containers within mixed-criticality systems. Third, the expansion of the Edge-Cloud
computing continuum through innovative runtime scheduling techniques geared to-
wards enhancing throughput and reducing response times. This thesis tackles these
challenges with a software methodology that targets various aspects of the Edge-
Cloud computing continuum. The aforementioned objectives are divided into five
categories that are subsequently analyzed, expanded, and optimized with techniques
that allow for improved performance, safety, and reliability. It also addresses the
growing demand for faster data processing and more responsive computing in the
contemporary technological landscapes of industrial automation. The methodology
is analyzed on a multitude of synthetic benchmarks and scenarios, but is also always
verified through real-case studies, such as the software implementing the mission of
a Robotnik RB-Kairos mobile robot interacting with an industrial agile production
chain. The experimental results demonstrate that these objectives were achieved.
First, the methodology allows for better performance on heterogeneous embedded
edge devices that make use of unified memory architectures in vision-based ap-
plications. In addition, the introduction of containers into industrial automation
and robotic contexts facilitates flexible software development. Furthermore, mixed-
criticality environments benefit from the introduction of orchestration and the real-
time plugin that allows for runtime monitoring of software. Finally, the verification
and migration of assertions guarantee the reliability and safety of modern robots.

Abstract (Italian)
Nel contesto dell’Edge-Cloud computing continuum, la containerizzazione e

l’orchestrazione sono diventati due pilastri delle migliori pratiche di sviluppo del
software. La containerizzazione consente un migliore utilizzo delle risorse, lo svi-
luppo di componenti software indipendenti, e la distribuzione sicura del software.
L’orchestrazione automatizza la distribuzione, la scalabilità e la disponibilità dei
carichi di lavoro e dei servizi containerizzati. Tuttavia, ci sono ancora diverse sfide
aperte. In primo luogo, l’ottimizzazione del software progettato per il calcolo Edge,
con l’obiettivo di migliorare la portabilità del software in ambienti distribuiti real-
time e nelle applicazioni containerizzate nei settori della robotica e delle tecnologie
dell’industria 4.0/5.0. In secondo luogo, l’orchestrazione dei container in real-time
all’interno di sistemi mixed criticality. Terzo, l’espansione dell’Edge-Cloud compu-
ting continuum attraverso tecniche di programmazione innovative, che sfruttino il
real-time, volte a migliorare il throughput e a migliorare i tempi di risposta. Questa
tesi affronta queste sfide con una metodologia che mira ad ottimizzare vari aspetti
dell’Edge-Cloud computing continuum. Gli obiettivi menzionati sono raggruppati in
cinque categorie che vengono successivamente analizzate, approfondite e ottimizza-
te con tecniche che consentono una migliore performance, sicurezza e affidabilità.
Inoltre, affronta la crescente domanda di elaborazioni di dati più veloci e di calco-
lo più reattivo nei contesti tecnologici industriali. La metodologia viene verificata
tramite una moltitudine di benchmark sintetici, ma viene anche sempre verificata
tramite casi di studio reali, per esempio, programmando la missione di un robot mo-
bile Robotnik RB-Kairos che interagisce con una catena di produzione industriale
agile. I risultati sperimentali ottenuti dimostrano come questi obiettivi siano stati
raggiunti. La metodologia migliora le prestazioni su dispositivi embedded eteroge-
nei che utilizzano memoria unificata nelle applicazioni basate su computer vision.
Inoltre, l’introduzione dei container nei contesti di automazione industriale e ro-
botica consentono uno sviluppo più flessibile del software. Per di più, gli ambienti
mixed-criticality traggono vantaggio dall’introduzione dell’orchestrazione real-time,
la quale consente inoltre il monitoraggio delle violazione temporali del software. In-
fine, le asserzioni garantiscono l’affidabilità e la sicurezza dei robot moderni tramite
verifica formale.

Acknowledgements
Devo iniziare ringraziando la mia famiglia: mia mamma, mio papá e mio fratello.

Marisa, Fabrizio e Andrea. Il loro amore e supporto incondizionato nel mio viaggio
nel mondo accademico hanno contribuito in modo sostanziale al mio successo. Mi
avete supportato con la vostra esperienza nei momenti più difficili, e avete festeggiato
con me nei momenti di successo. Grazie.

Voglio ringraziare anche la mia compagna, Martina. Mi ha instancabilmente sup-
portato, e sopportato, attraverso tutte le attività del dottorato. Un’impresa davvero
titanica. Grazie.

Vorrei inoltre esprimere la mia gratitudine al mio tutor accademico, il Prof.
Nicola Bombieri. Mi ha dato l’opportunità di perseguire il dottorato di ricerca in un
momento di incertezza, quando l’intero mondo stava attraversando una crisi senza
precedenti, la pandemia. Una persona avrebbe potuto guardare al futuro e vedere
solo incertezze. Tuttavia, il dottorato ha dato una direzione e scopo al mio tempo,
riempendolo di duro lavoro, esperienze e soddisfazioni, le quali non avrei mai potuto
avere non avessi perseguito questa carriera.

Vorrei includere nei ringraziamenti anche i miei collaboratori e gli altri studenti
del dottorato, che grazie alle loro conoscenze ed esperianza hanno reso possibile
questo lavoro di tesi. La loro collaborazione ha permesso la pubblicazione di molti
lavori scientifici a riviste e conferenze di primissimo livello.

Infine, vorrei esprimere un pensiero di gratitude anche verso tutti i miei amici,
i quali potrebbero non avermi supportato direttamente durante il mio percorso, ma
che sono sempre stati presenti.

Grazie a tutti.

Contents

List of Figures . III

List of Tables . VI

List of Listings . VII

List of Acronyms . IX

1 Introduction . 1
1.1 Thesis outline . 6

2 Background and Related Work . 7
2.1 Optimizing performance on heterogeneous devices at the edge 7
2.2 Containerization and orchestration on heterogeneous Edge-Cloud computing

architectures . 10
2.3 Re-configurability of software for Edge-Cloud computing continuum. 15
2.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 17
2.5 Assertion-based verification and workload migration in Kubernetes for

robotic systems . 20

3 Methodology . 21
3.1 Optimizing performance on heterogeneous devices at the edge 21

3.1.1 Improving the scheduling on DAG-based embedded vision applications 21
3.1.2 Improving performance on Edge computing embedded boards with

Unified Memory Architecture . 29
3.1.3 Improving performance for CPS on Edge computing embedded

boards with UMA . 35
3.2 Containerization and orchestration on heterogeneous Edge-Cloud computing

architectures . 41
3.2.1 Extending Docker and Kubernetes for ROS-compliant containerized

robotic applications . 41
3.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V

open hardware architectures . 48
3.3 Re-configurability of software for Edge-Cloud computing continuum. 51

3.3.1 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Network . 52

3.3.2 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Makespan . 54

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 58
3.5 Assertion-based verification and workload migration in Kubernetes for

robotic systems . 67

4 Experimental Results . 77
4.1 Optimizing performance on heterogeneous devices at the edge 77

4.1.1 Improving the scheduling on DAG-based embedded vision applications 77
4.1.2 Improving performance on Edge computing embedded boards with

Unified Memory Architecture . 83
4.1.3 Improving performance for CPS on Edge computing embedded

boards with UMA . 87
4.2 Containerization and orchestration on heterogeneous Edge-Cloud computing

architectures . 90
4.2.1 Extending Docker and Kubernetes for ROS-compliant containerized

robotic applications . 90
4.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V

open hardware architecture . 95
4.3 Re-configurability of software for Edge-Cloud computing continuum. 99

4.3.1 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Network . 99

4.3.2 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Makespan . 101

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 105
4.5 Assertion-based verification and workload migration in Kubernetes for

robotic systems . 112
4.5.1 Case Study 1: synthetic benchmark on a three-level cluster 113
4.5.2 Case Study 2: Autonomous mobile robot for a smart manufacturing

line . 114

5 Conclusions and Future Work . 119
5.1 Future work . 120

References . 121

List of Figures

1.1 Overview of the design flow. 2
1.2 The objectives of this PhD thesis. 3
1.3 Summary of this thesis methodology. 5

2.1 OpenVX sample application (graph diagram). 8
2.2 ROS publisher-subscriber communication approach. 11
2.3 ROS service communication approach. 12
2.4 ROS2 intra-process communication. 12
2.5 The Monte Cimone Server Blade hosts two SiFive Freedom U740 SoCs and

has a form factor of 4.44 cm (1 RackUnit) in height, 42.50 cm in width, and
40 cm in depth. Each RISC-V board has dimensions of 170 mm by 170mm. . . 14

3.1 Example of DAG-based application, execution time of tasks mapped on
CPU/GPU, and the corresponding HEFT ranking. 23

3.2 Task scheduling algorithms of the DAG of Fig. 3.1: native NVIDIA
VisionWorks (a), HEFT (b), and the proposed optimized HEFT (c). 24

3.3 Cluster generation step (APPLY(rank, cluster)) for the example in Fig. 3.1. 25
3.4 G-FL task scheduling of example of Figure 3.1 without pipeline (a), with

2-frame pipeline and input sensor at 45 FPS (b), and with 2-frame batched
pipeline (c). 28

3.5 Task scheduling of batched pipelined G-FL for the example of Figure 3.1,
in which all nodes, except node #zero, have been considered with the
Graphic Processing Unit (GPU) implementation one time unit faster then
the corresponding CPU implementation (a), and the result of rank-based
approaches like HEFT and XEFT (b). 29

3.6 CPU-iGPU communication models. 30
3.7 Overview of the proposed framework. 31
3.8 Second micro-benchmark results on an NVIDIA Jetson Xavier. Relationship

between LL_L1_throughput and kernel times of the iGPU. 34
3.9 Overview of the communication pattern for ZC. 35
3.10 CPU-iGPU standard copy with ROS topic paradigm. 36
3.11 CPU-iGPU standard copy with ROS wrapper service paradigm (RPC). 37
3.12 CPU-iGPU standard copy with ROS native zero copy and topic paradigm. . . 37
3.13 CPU-iGPU standard copy with the proposed ROS-ZC solution and topic

paradigm. 38
3.14 CPU-GPU Zero Copy with our ROS Zero Copy solution and topic paradigm. 38
3.15 CPU-GPU Standard Copy with ROS topic paradigm in multi-node

architecture. 39
3.16 CPU-GPU SC with ROS native Zero Copy, topic paradigm and multi-node

architecture. 39
3.17 CPU-GPU Zero Copy with our ROS Zero Copy solution, topic and 3 nodes

architecture. 40

3.18 Overview of the design flow. 42
3.19 Abstraction levels and hierarchy of ROS nodes. 43
3.21 An example graph before and after the first iteration of the clustering

algorithm in listing 3.20. 46
3.22 Result of the algorithm in listing 3.20 applied to the graph of figure 3.21,

with n = 2. 47
3.23 Final result of the clustering on the example graph of figure 3.21, showing

the vertical partitioning. 47
3.24 Example of constructing containers with inheritance when there are

overlapping dependencies, shown with a Venn diagram. C2 is also a
multi-stage build. 48

3.25 Kubernetes and KubeEdge architecture. 50
3.26 Software stack for KubeEdge on RISC-V. 51
3.27 K3S proposed extension for mapping of nodes based on ROS communication. 52
3.28 Example of Super Clustering. 53
3.29 Application example represented by a DAG and the corresponding makespan

achieved with native Kubernetes, (ideal) HEFT, and HEFT on Kubernetes
schedulers. Red boxes represent data transfer, blue boxes represent preemption. 55

3.30 Scheduling the example of Fig. 3.29 with HEFT4K. 57
3.31 Performance loss when the sum of the HEFT rank lost due to a node failure

is higher than 20%. 58
3.32 The RT-Kube overview. 59
3.34 The secondary RT-scheduler. 61
3.35 The mapping results with Eq. (3.18) for the criticality level B with the

coefficients adopted in the experimental results (a = 1
5
, b = 9

10
, a¨ = 5

3
, b¨ = � 9

2
,

c¨ = 17
6

). 63
3.36 Sequence diagram of the whole dynamic SW orchestration, starting from the

container-level monitoring units. 65
3.38 The RT-Kube architecture considered for the analysis and formalization of

the response time. 66
3.39 Verification architecture. 69
3.40 Assertion grammar. 70
3.41 Architecture of a monitor. 70
3.42 Orchestrator’s architecture. 72
3.43 Example of buffer migration. 74
3.44 False negative/positive example. 76

4.1 Experimental results with the Tree class of synthetic DAGs on the Jetson TX2. 80
4.2 Experimental results with the Linear class of synthetic DAGs on the Jetson

TX2. 80
4.3 Performance improvement with DAG pipelining for HEFT and XEFT

considering 4 CPU cores+GPU and 5 frames with the linear class of
benchmarks. 82

4.4 First benchmark results: Execution times on the Jetson TX2 and Xavier
with ZC, SC, and UM. 84

4.5 Second benchmark results on the NVIDIA Jetson TX2. 85
4.6 Third benchmark results. 85
4.7 The embedded platforms used for testing. The Nvidia Jetson Xavier (left)

and Nvidia Jetson TX2 (right). 87
4.8 native configuration. 92
4.9 native + orb configuration. 92
4.10 cont(native) configuration. 92
4.11 k3s-a(native) configuration. 93
4.12 k3s-b(native + orb) configuration. 93
4.13 k3s-c(native + orb) configuration. 93

II

4.14 ROS communication graph for the Kairos mobile robot with the highest
communicating nodes highlited. 100

4.15 Super clustering and mapping for the Kairos containers on the K3S
computing platform. 101

4.16 Speedup of HEFT4K vs. the standard Kubernetes on different DAG sizes. . . . 102
4.17 Speedup of HEFT4K vs DPE scheduler on different DAG sizes. 103
4.18 Heatmap comparing the performance of HEFT4K and HEFT on Kubernetes,

plotting the number of tasks in the DAG and the length of the critical path. . 104
4.19 Speedup of HEFT4K event-based remapping when rescheduling DAGs in

case of node shutdown, compared to the previous makespan obtained with
HEFT4K. 104

4.20 RB-Kairos compute architecture. 105
4.21 Real-Time monitoring on the Robotnik RB-Kairos. 112
4.22 Verification statistics of the first case study. 113
4.23 Overview of the programmable cluster nodes in the second case study. 114
4.24 CPU overhead for all the nodes correlated to the number of monitors during

the execution of the robot’s mission. 116

III

List of Tables

2.1 Comparison of representative heuristics and static scheduling methods
for heterogeneous platforms. (* application-level mapping)(** mapping
implicitly performed by the OS). 9

2.2 Summary of the scheduling features proposed in the state of the art.
*Optimizes the device’s task scheduling, but requires direct control of each
device’s scheduling. **Optimizes the device’s task scheduling, but does not
control it directly. 17

4.1 Experimental results with ORB-SLAM+DL on Jetson TX2. 78
4.2 Evaluation of benefits provided by the batch pipeline on the scheduling

algorithms with the different classes of benchmarks (Linear and Tree)
considering multiple configurations of CPU cores and batch sizes. 81

4.3 Overall comparison of the scheduling approaches without and with the
batched pipeline (p). 81

4.4 Average number of actual frame buffers exploited during the scheduling of
pipelined DAG instances for the synthetic graphs (2 cores - 5 cores). 83

4.5 First benchmark results: Maximum throughput of the GPU cache on the
Jetson TX2 and Xavier. 84

4.6 Profiling results of the SH-WFS application. 85
4.7 SH-WFS centroid extraction algorithm performance results. 86
4.8 Profiling results of the ORB-SLAM application. 86
4.9 ORB-SLAM performance results. 87
4.10 Time reference of cache benchmark and concurrent benchmark in NVIDIA

Jetson TX2 and Xavier with CUDA-SC and CUDA-ZC. 87
4.11 Results for the Cache Benchmark on the NVIDIA Jetson TX2. The reference

execution time for CUDA-SC is 833.0 ms and 8 509.1 ms for CUDA-ZC. 88
4.12 Results for the Concurrent Benchmark on the NVIDIA Jetson TX2. The

reference execution time for CUDA-SC is 1 053.0 ms and 1 316.1 ms for
CUDA-ZC. 89

4.13 Results for the Cache Benchmark on NVIDIA Jetson Xavier. The reference
execution time for CUDA-SC is 207.7 ms and 244.7 ms for CUDA-ZC. 89

4.14 Results for the Concurrent Benchmark on the NVIDIA Jetson Xavier.
The reference execution time for CUDA-SC is 381.2 ms and 256.9 ms for
CUDA-ZC. 90

4.15 ROS-node classification and abstraction levels. 91
4.16 Docker image sizes on disk before and after the proposed optimization. 92
4.17 Resource usage on the robot MCB with all proposed configurations. 94
4.18 ORB-SLAM supported frame rates. 94
4.19 STREAM benchmark results with native and KubeEdge configurations on

both RISC-V and ARM64. [higher is better,] lower is better. 96

4.20 Phoronix test suite results with native and KubeEdge configurations on
both RISC-V and ARM64. [higher is better,] lower is better. The results
include the relative standard deviation. 96

4.21 OSBench, IPC-Benchmark and stress-ng results with native and KubeEdge
configurations, on both RISC-V and ARM64. [higher is better,] lower is
better. The results include the relative standard deviation. 97

4.22 Overhead analysis for RISC-V system calls under KubeEdge. 98
4.23 Average memory usage for KubeEdge software stack. The results include the

relative standard deviation. 98
4.24 Scaling overhead of containers. 98
4.25 Results for running sysbench memory benchmark in different process, thread

and containerization configurations. 99
4.26 Parameters used for the automatic scheduling of the containers onto the k3s

computing cluster. 100
4.27 Resource usage with SuperClustering. 101
4.28 Range of values considered for the random generation of DAGs and cluster

configuration. 102
4.29 Comparison of RT-tasks running natively, containerized in a single and

multiple Docker containers. 106
4.30 RT containers distribution for the RT orchestration. 107
4.31 Comparison among Kubernetes standard orchestration, best orchestration,

and the proposed RT-Kube. 108
4.32 Experimental results for dynamic orchestration. 108
4.33 Experimental results with the RB-Kairos. 109
4.34 Cluster-level monitor reconcile response times for various combinations of

RT scheduling objects and containers. 110
4.35 Cluster-level monitor response time on the autonomous mobile robot case

study. 111
4.36 Resource usage overhead with and without monitors. 115

VI

List of Listings

3.20 Algorithm for cluster creation. 45
3.33 Example of RT CRD (lines 1-13) and the corresponding Kubernetes

configuration module for the container deployment configured with the
real-time parameters. 60

3.37 Example of monitoring object created by the container-level monitor of
RT-tasks. 64

List of Acronyms

ABV Assertion-Based Verification
AI Artificial Intelligence
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
CE Computing Elements
CGRA Coarse-Grained Reconfigurable Array
CNN Convolutional Neural Network
CPS Cyber-Physical System
CPU Central Processing Unit
CRD Custom Resource Definition
DAG Directed Acyclic Graph
DSP Digital Signal Processor
EDF Earliest Deadline First
FPGA Field-Programmable Gate Array
GPU Graphic Processing Unit
HEFT Heterogeneous Early Finish Time
HPC High Performance Computing
HW Hardware
IaaS Infastructure as a Service
iGPU Integrated Graphic Processing Unit
IoT Internet-of-Things
IPC Inter-Process Communication
ISA Instruction Set Architecture
LLC Last Level Cache
LTL Linear Temporal Logic
MCB Main Control Board
MCS Mixed Criticality System
MILP Mixed Integer Linear Programming
NAT Network Address Translation
NP Nondeterministic Polynomial Time
OS Operating System
QoS Quality of Service
ROS Robot Operating System
RPC Remote Procedure Call
RT Real-time
SC Standard Copy
SLAM Simultaneous Localization And Mapping
SoC System-on-Chip
STL Signal Temporal Logic
SUV System Under Verification
SW Software

UM Unified Memory
UMA Unified Memory Architecture
WCET Worst Case Execution Time
XO Exclusive Overlapping
ZC Zero Copy

X

1

Introduction

While the principles of Industry 4.0 are now reaching a certain level of maturity across
Europe, the technological transition continues to look towards the future. With the concept
of Industry 5.0, the vision of the industry goes beyond efficiency and productivity as the
only goals and strengthens the role and contribution of the industry to society [1]. With
the fifth industrial revolution, the well-being of the worker is placed at the center of the
production process, and new technologies are used to provide prosperity beyond employment
and growth, while respecting the limits of the planet. Research and innovation are put at
the service of the transition to a sustainable, human-centered, and resilient industry [2].

In this context, human-centered robotics and intelligent manufacturing play a fundamen-
tal role. Although robots originating in large-scale manufacturing plants work very efficiently
behind fences (i.e., they do not interact with human operators), they are now spreading to
more and more application areas due to their potential efficiency, the reduction of their costs,
and their always increasing level of autonomy. These robots are tasked with understanding
the world around them, planning their actions in it, and interacting with robots and humans
also working in the same environments [3].

Such a high level of autonomy is based on a combination of artificial intelligence, cognition
and human-robot interaction and has two immediate correlates, which form the motivations
of this thesis. First, programming robots’ missions and behaviors is increasingly complex
and goes well beyond traditional and restricted objectives (e.g., the control of pre-defined
movements, or static environments, or very low-level scene perception for simple tasks).
Programming modern robots requires the integration of a multitude of software components
from different domains like low-level control, dynamic planning, computer vision, monitor-
ing, and inference applications based on neural networks [4] (see top of Fig. 1.1). This high
degree of heterogeneity in software applications requires a high degree of optimization for
the computing hardware located on the robots, which are often made of embedded boards
with Unified Memory Architectures or heterogeneous hardware (e.g., GPU).

Second, because these robots operate at human scale (e.g., physical human-robot-
interaction in factories, warehouses, and at homes) and perform safety-critical missions (like
driving or surgery), the correctness requirements are stringent and include, beside functional
requirements (payload, workspace, accuracy, speed), also extra-functional constraints such as
real-time, reliability, safety, scalability, data privacy and integrity, and energy efficiency [5].
To address all these requirements, software for robotic applications has to be configured to
run on heterogeneous computing architectures, by which the different software components
have to be properly mapped and orchestrated across heterogeneous hierarchical Edge-Cloud
computing platforms [6, 7]. Furthermore, embedded platforms are often used to create the
edge component of the edge-cloud computing paradigm because they require low power to
perform close-to-the-data computations. In these environments there has been a growing
interest in open hardware architectures and RISC-V architectures play a dominant role in
this context [8, 9].

Recently, some open-source and several proprietary model-based platforms have been
proposed to ease the design of robotic systems (e.g., NVIDIA Isaac [10], Amazon AWS
Robomaker [11]). However, they do not address modularity, interoperability, and Software

2 1 Introduction

Neural network(s)
modeling and training

Requirements and
specifications

System and SW
design

Ve
rif

ic
at

io
n

of

fu
nc

tio
na

l
co

ns
tr

ai
nt

s
SW integration

Comp HW/SW
integration

System integr. & calibration

SW integration

Requirements and
specifications

Comp HW/SW
integration

Data flow
modeling

SW integration

Requirements
and specifications

Comp HW/SW
integration

Computing HW-
in-the-loop

Deployment
(Robotic HW-
in-the-loop)

SW-in-
the-loop

Ve
rif

ic
at

io
n

of

no
n-

fu
nc

tio
na

l
co

ns
tr

ai
nt

s

(a) State of the art Model-based Design flow of multi-domain SW

SW domain 2
e.g., deep
learning

SW domain n
e.g., computer

Vision

SW domain 1
e.g., control &

planning

AI,
cognition,

HRI

Increasing
complexity of

SW
development

System integr. & calibration

Heterog. HW/Network/Multi-domain SW integration

Neural network(s)
modeling and

training

Requirements and specifications

Data flow
modeling

Integration of
multi-domain SW

applications early in
the design flow

Multi-
domain

verification
of functional

and non-
functional
constraints

before
deployment

Increase of reuse,
modularity and

portability of SW
components

across multiple
environments

through
containerization

(b) Proposed toolchain

SW domain 2
e.g., deep
learning

SW domain n
e.g., computer

Vision

SW domain 1
e.g., control &

planning

AI,
cognition,

HRI

Increasing
complexity of

SW
development

Fig. 1.1: Overview of the design flow.

(SW) block reuse among different SW development environments. As a consequence, these
self-contained environments do not address the heterogeneity of the Hardware (HW)/SW
domains by considering extra-functional constraints. Taking into account functional and
extra-functional constraints in a seamless way is a key feature to design reliable robotic
applications from the specifications to the system deployment.

In robotic and industrial environments, the Robot Operating System (ROS) [12] has
become the de-facto standard for developing robotic applications. It has been proposed
as a flexible framework for developing robot software through a collection of Application
Programming Interface (API), libraries, and conventions that aim to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic platforms.
Compliance with ROS is nowadays a key aspect for application re-use and easy integration
of software blocks in complex systems.

Therefore, developing robotic applications for industrial scenarios requires addressing
specific extra-functional characteristics, including the deployment of safe and isolated soft-
ware applications, deployment automation, networking, scaling, reconfigurability, and avail-
ability of workloads and services.

In this context, containerization has emerged as a viable solution [13]. It offers advan-
tages such as improved resource utilization, platform-independent development, and secure
software deployment. However, as software for autonomous and intelligent robots becomes
more complex, traditional containerization approaches may no longer suffice as they lack the
means to scale to the more complex computing architectures. To address this complexity,
it becomes necessary to partition services and tasks into distinct containers. This approach
helps manage the increasing size of container images, adapt container mapping to different
cluster nodes, and enhance system resilience against node failures [14].

1 Introduction 3

Fig. 1.2: The objectives of this PhD thesis.

Within the context of multi-container deployments, a significant challenge is ensuring
continuous robot functionality even in the face of disruptions. As a result, many robotics
companies are exploring platforms like Kubernetes, which is the de-facto standard for con-
tainer orchestration, for automatic software deployment to address this issue [15,16].

However, there is also a growing need for software standards that support mixed-
criticality applications, which can be found in various domains such as industrial automa-
tion [17], automotive [18], and avionics [19]. A Mixed Criticality System (MCS) combines
software components (e.g., ROS nodes) with different levels of criticality within a shared
computing platform [20]. One of the primary research challenges in MCS is ensuring the
correct execution of high-criticality tasks while sharing computing resources with lower- or
non-critical tasks [21] in a user-transparent manner. Within this context, the introduction of
software components and layers through containerization can complicate meeting Real-time
(RT) requirements [22]. Although some research efforts have explored integrating real-time
properties into container-based virtualization [23–26], supporting mixed-criticality require-
ments remains an open challenge.

Another emerging challenge for MCS is integrating real-time containers with orches-
tration. Orchestration has demonstrated its effectiveness in automating the deployment,
networking, scaling, and availability of containerized workloads and services in cloud-native
applications [27]. Nevertheless, current state-of-the-art orchestrators do not yet support
mixed-criticality containers, limiting their adoption for robotic software.

This thesis addresses the issues related to the adoption of these paradigms to develop
robotic software on edge-cloud architectures for industrial applications by presenting a design
methodology to address the aforementioned challenges by automating the software synthesis,
optimization, containerization, and orchestration on the Edge-Cloud computing continuum.
The methodology sets objectives that can be categorized into three key areas, as illustrated
in Fig. 1.2. Firstly, the focus is on the optimization of software tailored for edge computing,
with the aim of enhancing software portability in real-time distributed environments and
containerized applications within the realms of robotics and Industry 4.0/5.0 technologies.
This optimization not only enables seamless functionality but also ensures a more efficient
deployment process, facilitating the integration of heterogeneous software systems.

4 1 Introduction

The research also delves into the orchestration of real-time containers within mixed-
criticality systems. This involves the coordination of containers, each with its specific level
of criticality, ensuring that they function without interference in real-time. This facilitates
the development of robust systems where real-time responsiveness is paramount, especially
in environments where safety, reliability, and precision are critical factors.

Finally, the expansion of the Edge-Cloud computing continuum through innovative run-
time scheduling techniques is geared towards enhancing throughput and reducing response
times. By implementing cutting-edge scheduling methods, the research aims to optimize the
flow of data and processes in the continuum, thus significantly improving the overall effi-
ciency of edge-cloud computing systems. These endeavors represent crucial advancements
in the field, addressing the growing demand for faster data processing and more responsive
computing in the contemporary technological landscapes of industrial automation.

These objectives have been realized through a series of incremental steps, each contribut-
ing significantly to the optimization and orchestration of software in heterogeneous and
distributed edge-cloud architectures. The initial step involved improving the software per-
formance on devices at the edge, in a device-level heterogeneity optimization. Subsequently,
the focus shifted to the challenge of porting containerization technologies from traditional
cloud environments to edge computing devices, requiring a careful analysis of the constraints
of cluster-level heterogeneity, which is not found in traditional cloud environments.

A critical requirement emerged in the form of software reconfiguration, an essential pre-
requisite for deploying applications in a distributed edge-cloud computing platform. Ad-
dressing this requirement is another step to ensure adaptability and efficiency in the domain
of edge-cloud computing.

The distinctive reality of robotic software brought forth unique challenges, notably
stringent real-time deadlines. Addressing these constraints became imperative, leading to
a thoughtful integration of these additional requirements into the orchestration process.
This tailored approach ensured the seamless functioning of robotic applications within the
orchestration framework.

The final crucial step entailed a paradigm shift: the adaptation of conventional static de-
ployment techniques found in standard orchestration software to the dynamic environments
prevalent in robotics and Industry 5.0 applications. This modification was vital to accommo-
date the rapidly changing scenarios, enabling the system to respond to the dynamic nature
of modern robotic and industrial environments.

We can summarize the proposed design methodology with the following key steps and
concepts:

1. Optimizing performance on heterogeneous devices at the edge for the first-level hetero-
geneity (Section 3.1):

• Improving the scheduling on Directed Acyclic Graph (DAG)-based embedded vision
applications: an implementation and analysis of the Heterogeneous Early Finish
Time (HEFT) heuristic on heterogeneous embedded devices. The new rank-based
static scheduling algorithm XEFT and static scheduling for pipelined execution of
DAG instances (Section 3.1.1).

• Improving performance on Edge computing embedded boards with Unified Memory
Architecture (UMA): a set of micro-benchmarks to characterize the Central Process-
ing Unit (CPU)-Integrated Graphic Processing Unit (iGPU) communication and a
zero-copy communication pattern to enhance performance by taking advantage of a
synchronized and overlapped execution of CPU and iGPU tasks (Section 3.1.2).

• Improving performance for Cyber-Physical System (CPS) on Edge computing em-
bedded boards with UMA: different techniques to efficiently implement CPU–iGPU
communication on UMA that comply with the ROS standard (Section 3.1.3).

2. Containerization and orchestration on heterogeneous Edge-Cloud computing architec-
tures (Section 3.2):

• Extending Docker and Kubernetes for ROS-compliant containerized robotic appli-
cations: a software methodology to develop robotic applications and classify ROS
nodes and cluster them into containers to reduce memory overhead and improve

1 Introduction 5

Heterogeneous
DAG Mapping

and UMA
optimizations on

the edge

agent

Super Cluster
DAGExternal server –

master

agent

Wi-Fi
Containerized, non-hw
dependent, robot SW

C0

Cn

…

Containerized, hw
dependent, robot SW

Cn+1

Cj

…

Containerized, non-hw
dependent, robot SW

Cj+1

Ck

…

RB-Kairos

VerificationVerificationVerification

3d simulator
-ROS-node-

AI app
-ROS node-

CNN-based
(inference)
-ROS node-

Computer Vision app
-ROS node-

Robotic SW application

Containerization +
Edge/Fog/Cloud mapping UMA

Unified space
CPU

space
GPU

space

Heterogeneous SoC
iGPUCPU

L1/L2/L3
Cache L2 cache

L1 cache

ETCD API server

SchedulerController
manager

RT
Monitoring

RT

Secondary
Scheduler

Ethernet

5°

1°

2°

3°

4°

Fig. 1.3: Summary of this thesis methodology.

quality of service. Also, a technique to reduce storage overhead of containers by ex-
ploiting the control flow graph of the ROS nodes and package inheritance (Section
3.2.1).

• Expanding the Edge-Cloud computing continuum to the RISC-V open hardware ar-
chitectures: porting and analysis of an orchestration platform to a RISC-V cluster
prototype (Section 3.2.2).

3. Re-configurability of software for Edge-Cloud computing continuum (Section 3.3):
• Improving Kubernetes schedule’s efficiency for ROS-based applications: Network: a

super clustering technique to efficiently map containers into Kubernetes Edge-Cloud
computing nodes to reduce the utilization of the communication network (Section
3.3.1).

• Improving Kubernetes schedule’s efficiency for ROS-based applications: Makespan:
adaptation and analysis of the most efficient Quality of Service (QoS)-oriented
scheduling approach (HEFT) in Kubernetes. HEFT4K, a new scheduler for Ku-
bernetes that, starting from the HEFT task ranking, takes advantage of the Oper-
ating System (OS) niceness to reduce priority inversions and preemptions of tasks.
An event-driven remapping strategy that supports Kubernetes’ scaling and recovery
capabilities while minimizing the interruption of robot functionality (Section 3.3.2).

4. RT-Kube: Real-Time Kubernetes in the Edge-Cloud continuum (Section 3.4):
• An orchestration platform for MCS that extends the Kubernetes scheduling with con-

tainer sorting, node filtering, scoring, and container-node binding through criticality-
aware algorithms and policies.

6 1 Introduction

• A monitoring mechanism that checks the status of each RT container across the
Edge-Cloud and efficiently notifies temporal violations. An RT scheduler that im-
plements the runtime migration of state-less containers across the cluster nodes to
avoid system performance degradation.

5. Assertion-based verification and workload migration in Kubernetes for robotic systems
(Section 3.5):

• A workload-aware orchestration mechanism to migrate monitors synthesized from
Signal Temporal Logic (STL) assertions by considering a strategy to handle overload
scenarios where the available computational resources are insufficient to execute both
the robot’s functional tasks and the verification environment.

Fig. 1.3 summarizes the methodology of this thesis. The first step is represented on the
right-hand side. The top of the figure shows the second step. The bottom shows the third
and fourth steps. Finally, the dark boxes show the fifth step.

The methodology is analyzed on a multitude of synthetic benchmarks and scenarios.
To guarantee the reliability and performance in high-complexity industrial scenarios, the
methodology is also verified through real-case studies, such as the software implementing the
mission of a Robotnik RB-Kairos mobile robot interacting with an industrial agile production
chain.

1.1 Thesis outline

Chapter 2 explores the state-of-the-art and background required in the following chapters.
Chapter 3 analyzes each methodological step presented in this Introduction to achieve the
goals that have been set (see Fig. 1.2). Chapter 4 presents the results obtained on both a
synthetic and a real case of study. Finally, Chapter 5 presents the conclusions, considerations
on the results obtained, and how this methodology could be expanded in future work.

2

Background and Related Work

This chapter summarizes the background and related work for each of the five steps required
to reach the objectives of Fig. 1.2. Section 2.1 details the background and related work for
edge optimizations. Section 2.2 introduces the background related to containerization and
orchestration, as well as the related work. Section 2.3 shows the background for container-
ization and orchestration in the context of software reconfigurability. Section 2.4 introduces
the real-time background required to understand the notions used in the methodology and
the state-of-the-art capabilities for orchestration software applied in MCSs. Finally, Section
2.5 shows the related work for the adaptations proposed to allow for runtime migration of
tasks and containers.

2.1 Optimizing performance on heterogeneous devices at the edge

Edge computing and embedded boards offer new capabilities that allow to reduce the la-
tency between data generation and data computation. They often do so with stringent
requirements, such as small form factor, low power consumption, and low heat dissipation
capabilities. Because of this, they use heterogeneous hardware accelerators such as CPU
cores, GPUs, and Digital Signal Processor (DSP)s. This variety requires additional care in
the configuration and implementation of software applications that take advantage of these
heterogeneous embedded boards.

This section analyzes the background and related work regarding several important as-
pects required to optimize computations on edge-computing platforms:

• OpenVX and DAG-based embedded vision applications.
• Static scheduling for embedded vision applications.
• Efficient UMA programming.

OpenVX and the DAG-based embedded vision applications

OpenVX is a framework to develop embedded vision applications and optimize them by
taking into account several extra-functional constraints such as performance and energy
efficiency. It is constructed on top of a graph-based system to define a high-level and ar-
chitecture independent representation of the application. Such system is modular and, by
utilizing a set of already existing primitives, the user can build the application using the
most commonly utilized functionalities and information objects in computer vision appli-
cations, such as scalars, arrays, matrices and images, as well as high-level data objects like
histograms, image pyramids, and look-up tables.

Thanks to the libraries of architecture-oriented implementation of the primitives, which
are provided by the board vendors, and to the data-structures available in the framework, the
high-level representation (i.e., the graph) is then automatically optimized and synthesized
into the target device.

The user can build a computer vision application by instantiating kernels as nodes and
data objects as parameters (see the example in Fig. 2.1). Each graph node is identified as

8 2 Background and Related Work

UYVY
Image

Luma
extract

Virtual
Image

Luma
extract

Virtual
ImageGradients

Virtual
Image

Virtual
Image

Magnitude Phase

VX_DF_image_u8 VX_DF_image_u8

Fig. 2.1: OpenVX sample application (graph diagram).

a function kernel that can run on a Computing Elements (CE) of the target heterogeneous
architecture. The application can then be executed across different hardware accelerators
(e.g., CPU cores, GPUs, DSPs) thanks to the partitioning of the whole application into
blocks given by the graph representation.

The programming flow starts with the creation of an OpenVX context, which manages
the references to all objects used. The code builds the graph and generates all required data
objects based on this context. It then creates the kernels as graph nodes and generates their
connections. OpenVX checks the graph for integrity and correctness (e.g., checking for data
type coherence between graph nodes and absence of cycles) and then, as the final step, it
processes the graph. All created data objects, the graph, and the context are released at the
end of the execution.

Fig. 2.1 shows an example of an application that computes the gradient magnitude and
gradient phase from a blurred input image. The Magnitude and Phase nodes are computed
independently, because they do not need the output of the other. OpenVX does not require a
simultaneous or parallel execution, but leaves the decision of mapping and execution strategy
to the runtime manager of the board vendor.

Vendor libraries that implement the graph nodes as Computer Vision primitives can
be used by OpenVX to create several mapping strategies between nodes and processing
elements of the heterogeneous board that can be used to target different design constraints
(e.g., performance, power, energy efficiency).

The Neural Networks extension of the framework enables execution and integration
of Deep Neural Networks in OpenVX processing graphs. Deep Neural Network topologies
can be represented by OpenVX graph, where the layers are represented as OpenVX nodes
(vx_node) and vx_tensor objects as the data objects connecting the nodes (layers) of the
OpenVX graph (Deep Neural Network). An OpenVX graph can be defined to represent a
mix of Deep Neural Network layers and Vision nodes.

Static scheduling for embedded vision applications

There has been extensive prior research in task scheduling for multi/many cores at different
levels of abstractions over the past decade. We refer the reader to [28] for an extensive
overview of mapping and scheduling techniques. Considering the applications addressed in
this section (i.e., computer vision at the edge on embedded heterogeneous devices), the focus
is limited to the class of static scheduling for heterogeneous architectures, for which the most
recent and related works is summarized in the following.

2.1 Optimizing performance on heterogeneous devices at the edge 9

Algorithm Intra cluster
mapping

Inter cluster
mapping

Heterogeneous
architectures

Multiple
node imple-
mentations

Optimization
for partial
multiple im-
plementations

Global-best
mapping

Tetris [29] 3(*) 3 7 7 7 3(*)

VisionWorks
[30]

7 7 3 3 7 7

G-FL [31] 3(**) 3 3 7 7 7

Proposed
HEFT impl.

3 3 3 3 7 3

XEFT 3 3 3 3 3 3

Table 2.1: Comparison of representative heuristics and static scheduling methods for hetero-
geneous platforms. (* application-level mapping)(** mapping implicitly performed by the
OS).

In [29], Goens introduces TETRiS, a runtime system for static mapping of multiple
applications on heterogeneous devices. It relies on compile-time information to extrapolate
the best application mapping and to migrate such applications still preserving predictability
of system performance. However, it is not tailored for DAG-based applications, and it does
not support multiple (i.e., one implementation of a graph node for each CE) and exclusive
implementations (i.e., single implementation of a node) of nodes for heterogeneous CEs (e.g.,
both CPUs and GPUs).

In [32] and in [31], the authors defined an approach to schedule DAG-based OpenVX
applications for multi-core CPUs and GPU architectures. They introduce the concept of
pipelined scheduling by overlapping sequential executions of the (DAG) application. They
do not consider multiple implementations of nodes, and they do not implement any mapping
heuristics. The mapping algorithm targets the best local solution, whereby if there exists a
GPU kernel for a DAG node then that node is offloaded onto the GPU.

To support the node mapping over the different heterogeneous possibilities, we consider
the HEFT algorithm [33]. Let us represent an application through a DAG, G = (V,E), where
V is the set of v tasks and E is the set of e edges between tasks. An edge (t, q) " E represents
the constraint of precedence such that task t has to complete its execution before task q
starts. HEFT maps and schedules tasks in two phases. The first is the task prioritizing phase,
in which the tasks are ranked according to each task’s priority as follows1:

rank(t) = wt + max
q"succ(t)(ct,q + rank(q)) (2.1)

where succ(t) is the set of immediate successors of task t, ct,q is the average communication
cost of edge (t, q), and wt is the average computation cost of task t.

The second is the processor selection phase, in which each task t on the rank list is
mapped onto the CE that minimizes the finish time of t. HEFT has shown to be the best
static scheduling approach for a bounded number of heterogeneous processors [34,35], and its
optimizations show its portability and offer encouraging potential for embedded multi/many-
core architectures [36–38].

Table 2.1 summarizes and compares the features of the most representative schedul-
ing algorithms and heuristics for computer vision applications on programmable embedded
devices. The first column represents the intra-cluster mapping, which is the ability of the
approach to choose on which core inside of a given CE (e.g., CPU) to map each single DAG
task. Differently from HEFT and XEFT in which it is explicitly implemented, such a map-
ping is done by the operating system in multi-threaded applications. The second column
1 We consider the upword ranking [33] since it has shown to provide the best results for our graph

characteristics. However, the optimization based on the exclusive overlap is independent of any
ranking methodology.

10 2 Containerization and orchestration on Edge-Cloud architectures

represents the capability of deciding on which CE, of the same type (e.g., either CPU or
GPU) to map the graph node. This particularly applies in those architectures that have
multiple CPU clusters. As an example, in the Nvidia Jetson TX2, once it has been decided
that the node will run on the CPU, it is necessary to specify which of the two different CPU
clusters (Dual-Core Denver or Quad-Core A57). The third column represents the ability of
the algorithm to support the mapping and scheduling on heterogeneous architectures. The
fourth column shows if the algorithms support multiple implementations of DAG nodes, that
is, if they consider more than one execution times of each node during the scheduling. The
fifth column shows which algorithms are optimized to handle nodes that have partial multi-
ple implementations, meaning that the number of available implementations for each node
may differ from one to many. Finally, the table shows if the scheduler targets system-level
performance and provides near-optimal solutions rather than providing local-best solutions.

Efficient UMA programming

Programming UMA is a difficult task due to the complex nature of memory architectures.
Since all processors are now using layered memory-access topologies through on-chip caches,
sharing a unified memory space between multiple processors can become problematic for
cache coherency.

Cache coherency for GPU accelerators has been investigated in many research works.
In [39], the authors propose a push-based, coherence mechanism that explicitly exploits the
CPU and GPU’s producer-consumer relationship by automatically moving data from CPU
to GPU’s last-level cache. In [40], the authors propose a cache coherence protocol designed
for forward-looking multi-GPU systems. HALCONE [41] is a timestamp-based coherence
protocol for multi-GPU systems. It replaces the compute unit level logical time counters
with cache level logical time counters to reduce coherence traffic. In [42], the authors propose
selective caching, by which they disallow GPU caching of any memory that would require
coherence updates to propagate between CPU and GPU. A survey of additional techniques
for managing and leveraging caches in GPUs proposed more in the past is presented in [43].

In contrast to the above-mentioned works that propose cache coherency protocols for
CPU-iGPU or multi-node GPUs, this thesis analyzes a framework to accurately estimate
the potential speedup a CPU-iGPU application may have on a given device by considering
different communication models.

A performance model for tuning GPU applications has been proposed in [44]. The model
relies on a suite of micro-benchmarks to extrapolate the characteristics of specific GPU de-
vice components (e.g., arithmetic instruction units, memories, etc.) in terms of throughput,
power, and energy consumption. GPUPerfML [45] combines decision trees and theoretical
analytical models to locate performance bottlenecks in GPU applications and guide the
optimization of the application. A comprehensive review of previous works addressing per-
formance models for GPUs is presented in [46]. All the analysed contributions focus on GPU
computation and memory access patterns over different platforms.

Unlike these previous works that target the tuning of GPU applications (i.e., kernels),
the framework proposed in this step targets the tuning of CPU-iGPU communication on
physically shared memory.

2.2 Containerization and orchestration on heterogeneous

Edge-Cloud computing architectures

One of the major issues in programming and configuring robots in real contexts and different
application areas, like agile production, agriculture, healthcare, and smart manufacturing, is
that the system must satisfy in addition to functional constraints, also extra-functional con-
straints [47–50]. Heterogeneous (Internet-of-Things (IoT)/Edge/Cloud) architectures com-
bine computation, storage, and network resources to solve such a problem [51]. Even though
the heterogeneous nodes can provide resources to various devices, each device requires its
own application to either process the received sensor data, or specific software to make use

2 Containerization and orchestration on Edge-Cloud architectures 11

Publisher 3

Topic 1
Publisher 2

Publisher 1

Topic 2

Subscriber 1

Subscriber 3

Subscriber 2

Fig. 2.2: ROS publisher-subscriber communication approach.

of the onboard sensors and forward the readings on the network, depending on where it is
located on the architecture stack.

In this context, containerization is increasingly being adopted as a virtualization mecha-
nism to solve such modularity and portability issues [52]. Software containers have emerged
from the field of cloud computing and the need to manage large-scale server clusters [53].
Some generic architectures for CPSs, based on containers (e.g., Docker) and using ROS as a
middleware, have been recently explored [54]. The modular architecture revealed the poten-
tial for better information flow among different network levels as well as increased modularity
in the use of software components. Such a decoupling can ease the concurrent development
of the subsystems as well as their runtime control at operation time. Moreover, Edge-Cloud
computing is increasingly used to provide more advanced services, such as intelligent and
adaptive control, fault detection, and state analysis [55].

Open-hardware architectures are also seeing an increased adoption rate with new
consumer-level hardware becoming available. Nevertheless, the potential for Edge-Cloud
computing continuum remains untapped due to a lack of software support, especially re-
garding containerization and orchestration. It is also unknown how much of a performance
degradation such a new architecture might incur with the adoption of containerization and
orchestration.

This section analyzes the background and related work regarding containerization and
orchestration on Edge-Cloud computing platforms:

• ROS-based communication for modular CPSs.
• Container orchestration in Edge-Fog-Cloud architectures.
• Container orchestration in emerging open-hardware architectures and its overhead.

ROS-based communication for modular CPSs

ROS has been proposed as a flexible framework to develop software for robotic and cyber-
physical systems. It is a collection of APIs, libraries, and conventions that aim at simplifying
the task of creating robust and complex robot behavior on a wide variety of robotic platforms.
It has become a de facto reference standard for developing robotic and cyber-physical system
applications.

In ROS, the functionality of the system is implemented through nodes that communi-
cate and interact. The nodes exchange data using two mechanisms: the publish-subscribe
paradigm and the service model (i.e., Remote Procedure Call (RPC)) [56].

The publish-subscribe paradigm is based on topics, which are communication buses iden-
tified by a name [57]. A publisher node sends the data asynchronously and a subscriber node
receives the data simultaneously.

The topic-based model relies on socket-based communication, which also allows collective
communication. The communication channel is instantiated at the system start-up and never
closed. In this type of communication, there can be many publishers and many subscribers
on the same topic, as in the example of Figure 2.2.

With the service model, a node provides an on-demand service (see Fig. 2.3). Any client
can query the service synchronously or asynchronously. In case of synchronous communica-
tion, the querying node waits for a response from the service. There can be multiple clients,
but only one server is allowed.

12 2 Containerization and orchestration on Edge-Cloud architectures

Service Client 2

Service 1

Service Client 1 Service Server 1

Service Server 2

Request

Response

Service 2
Request

Response

Fig. 2.3: ROS service communication approach.

R
O
S

CPU
Operations

Thread T1 Process P

TOPIC
RECEIVE

TOPIC
SENDpublish

Memory

DataMsg
Synchronous Ownership

ROS Zero Copy

Thread T2

R
O
S

CPU
Operations

publishsubscribe

subscribe

Thread T2

Fig. 2.4: ROS2 intra-process communication.

In general, the service model relies on point-to-point communication (i.e., socket-based)
between client and server, and, for each client request, the server creates a dedicated new
thread to serve the response. After receiving the response, the communication channel is
closed.

The publish-subscribe communication paradigm is implemented through physical copy
of data. In case of nodes running on the same device and sharing the same resources, the
copy of large size messages may slow down the entire computation. ROS2 introduced ROS
zero copy (ROS-ZC), a new method to perform efficient intra-process communication [58].

Figure 2.4 shows the overview of this communication method. With ROS-ZC, two nodes
exchange the pointer to the data through topics, while the data is shared (not copied) in
the common physical space.

Even though such a zero-copy model guarantees high communication bandwidth between
nodes instantiated on the same process, it has several limitations that prevent its applica-
bility. First, it does not apply to service-based communication. Second, it does not apply
to inter-process communication. Then, it does not support multiple concurrent subscribers.
Finally, it does not allow for computation-communication overlapping.

Container orchestration with Kubernetes

Kubernetes is an open-source container orchestration platform that simplifies the manage-
ment of containerized applications [59]. It works by coordinating and distributing workloads
across a cluster of devices, i.e., the computing nodes, ensuring efficient resource utilization
and high availability.

The standard Kubernetes architecture is composed of a single master and one kubelet
unit per cluster node. Each kubelet manages one or more pods. Pods are logical units used
to cluster related containers to share resources. Each pod can have one or more contain-
ers, each containing one application (or more). The master serves as the central control
plane, overseeing the state of the cluster through a controller manager, a database of cluster
information (ETCD), and a scheduler unit. The scheduler manages the container deploy-
ments across the cluster nodes. The functional units (i.e., master and kubelets) communicate
through the HTTP REST protocol. The master manages the kubelets requests through an
API server [60].

2 Containerization and orchestration on Edge-Cloud architectures 13

Containerization in Edge-Fog-Cloud architectures

Containerization in Edge-Fog-Cloud architectures has been investigated in several works
(e.g., [61–63]). The experimental results show that container-based virtualization combined
with the Edge-Cloud computing continuum provides better scalability, resource utilization,
and performance. Containers have little to no performance overhead, although care is needed
when multiple containers access shared resources [64].

Containerization combined to orchestration has been investigated for Fog and Edge com-
puting [65–67]. Different microservice deployment strategies can be adopted to improve, in
addition to performance, energy efficiency and carbon footprint [65] as well as quality of
service [66,67].

Distributed control of independently operating devices, providing local data storage, can
be achieved. However, those resources are limited, making their effective management and
utilization imperative to enable advanced flexibility in robotic systems. A few approaches
seek to improve upon more monolithic control and production paradigms via virtualization
and modern software approaches (e.g., [68]), which also considers the connection to the
legacy systems. The results demonstrate merit for combining edge and server computing
solutions, with Cloud applications and scheduling algorithms. In [69], an approach to work-
flow management and task modeling is discussed, in which low-level robotic operations are
executed by the ROS framework to reduce code time and increase the reconfigurability of
components. Containerizing ROS environments allows more reproducible and stable deploy-
ments across a distributed architecture of complex software [70,71]. Efforts have been made
to migrate ROS-based applications to the cloud to be used as containerized services [72].
In [73], the authors show an approach to generate container images from a configuration file
for packages ROS, allowing easier and automatic deployment on the target HW.

RISC-V CPU

RISC-V is an open source Instruction Set Architecture (ISA) developed by researchers at
the University of California, Berkeley, in 2010 [74]. The acronym RISC stands for Reduced
Instruction Set Computer, which means the architecture has a smaller set of simple and
standardized instructions. The simplicity and modularity of the RISC-V ISA make it ideal
for various computing devices, such as smartphones, tablets, embedded systems, but also
High Performance Computing (HPC) systems. Additionally, the open source nature of RISC-
V allows anyone to design and manufacture chips based on the architecture, encouraging
innovation and competition in the market.

The RISC-V architecture has evolved over the years, and various versions have been
released, including RV32I, RV32E, and their 64 bits counterparts. The different letters in
the naming scheme indicate variations in the ISA features. For example, “I” stands for the
base integer instructions, “E” stands for the embedded profile, “F” includes instructions for
single-precision floating-point arithmetic, and “D” for double-precision floating-point arith-
metic. The RISC-V architecture also supports extensions that can be added to the base
ISA to enhance functionality, such as the vector “V”, bit manipulation “B”, and compressed-
instructions “C” extensions.

RISC-V technologies have gained popularity in recent years, with many companies adopt-
ing the architecture in their products. For instance, SiFive, a leading RISC-V chip designer,
provides a range of processors for various applications, including embedded systems, IoT
devices, and HPC systems. Other companies, such as Western Digital, NVIDIA, and Qual-
comm, use RISC-V in their products.

The future of RISC-V technologies looks promising, with ongoing developments and col-
laborations among industry players and academia. The European Commission, for instance,
in the context of the chip sovereignty strategy, is pushing open-source architectures and
RISC-V, in particular, as a future seed for HPC systems [75]. This leads to a possible future
scenario of edge and cloud systems composed of heterogeneous architectures with specific
features (enabled by the RISC-V customizability), where computing continuum technologies
play a crucial role in achieving global optimization thanks to orchestration.

14 2 Containerization and orchestration on Edge-Cloud architectures

Fig. 2.5: The Monte Cimone Server Blade hosts two SiFive Freedom U740 SoCs and has a
form factor of 4.44 cm (1 RackUnit) in height, 42.50 cm in width, and 40 cm in depth. Each
RISC-V board has dimensions of 170 mm by 170mm.

The Monte Cimone cluster

Monte Cimone represents a prototype and experimental platform of a comprehensive RISC-
V (RV64) computing cluster, enclosing all the essential hardware components apart from
processors, such as primary memory, non-volatile storage, and interconnect. It is composed
of eight computing nodes; each one is based on the U740 System-on-Chip (SoC) from SiFive
and integrates four U74 RV64GCB application cores (the U74 processor is a dual issue
in-order execution pipeline, with a peak sustainable execution rate of two instructions per
clock cycle), running up to 1.2GHz and 16GiB of DDR4, 1TiB node-local NVME storage,
and PCIe expansion cards. The U740 is Linux-capable SoC with a consumption of 6 Watt,
placing the system in a low-power category, making it suitable for an edge-computing role.

As the target is to move towards high performance edge/fog computing, with a final
goal of scaling toward HPC systems based on RISC-V, an entire HPC software ecosystem
and a complete system monitoring infrastructure have been ported to Monte Cimone. In
particular, it runs a software stack composed of a job scheduler (SLURM), an LDAP server,
the Spack package manager with compiler toolchains and scientific libraries, and a monitoring
framework based on ExaMon. It is established that actual HPC applications can be executed
on Monte Cimone.

Impact of containerization and orchestration in Edge-Cloud architectures

Many works in literature have analyzed the impact of containerization, with several bench-
marks emerging as standard, such as CPU compression/decompression of files, system mem-
ory and storage latency, as well as network bandwidth and latency. Other works have also
analyzed specific applications, such as MySQL for cloud environments and REST applica-
tions for IoT.

2.3 Re-configurability of software for Edge-Cloud computing continuum 15

The authors at IBM have analyzed the impacts of containerization with many different
benchmarks, such as pxz for decompression, linpack for floating point performance, Stream
for memory and netperf for the network. They found little performance overhead and some
network latency degradation due to Network Address Translation (NAT) [76]. In an HPC-
focused work [77], the authors have used different benchmarks, such as sysbench, Stream
and HPCG, to measure the performance impact of containerization, finding no significant CPU
overhead, but discovering a higher memory usage for containerized applications. In [78], the
authors used the Phoronix test suite to benchmark the containerization overhead and
analyze the impact of orchestration. They found minimal overhead in containerization and
a worst-case scenario of 8% reduced performance when using an orchestration platform such
as Kubernetes.

IoT architectures have also been analyzed with several different benchmarks. In [79], the
authors used 7zip for compression/decompression, OpenSSL for cryptography, RAMspeed for
system memory latency, Tio for disk performance and sockperf for the network. In [80], the
authors tested edge architectures based on AWS Greengrass and Microsoft Azure IoT Edge
with custom-made benchmarks for speech and image recognition and found some limitations
in system throughput when using containerization.

Other works, such as [81] and [82], have also compared the performance of containeriza-
tion on different architectures like x86 and ARM. In the first work, many benchmarks were
used, such as lmbench, netperf, sysbench and linpack, showing negligible overhead in all
types of tests. In the second work, the authors analyzed the impact of containerization on
REST services, finding that while the overhead of containerization is negligible, there are
latency spikes when measuring end-to-end latency for the service.

When analyzing containers, the authors of [83] focused on the delay between a container
being scheduled for execution and the container starting and found that delay very low and
predictable, correlating the delay to the number of containers active on the device.

In [84], the authors built a complex architecture for data analysis, with edge nodes
collecting data to compute and a suite of applications to analyze and store the data. These
applications are distributed either on the edge nodes themselves or on fog or cloud nodes.
They found that edge computing is a valid and robust alternative to fog or cloud computing
while the amount of data to compute is lower than a threshold, thanks to much lower average
latency.

2.3 Re-configurability of software for Edge-Cloud computing

continuum

Improving adaptability and performance of containers on an Edge-Cloud computing archi-
tecture is of paramount importance to improve the reliability and safety of modern robotics
systems found in industrial automation production plants. As these robotic applications are
becoming more and more reliant on containerization and orchestration, there is a need to
deploy them in a more efficient manner, while maintaining transparency for the container-
ized application. This translates in a need to optimize the orchestrating software to allow it
to take more specialized decisions.

Some works have been proposed to better use the software and functionalities already
included in Kubernetes. In [85], the authors use a modular architecture that employs a
continuous probing of the deployed services (i.e., cloud native) to test their response time.
They collect resource usage statistics and when a container is experiencing high load, they
scale it up by one by using the Kubernetes Auto Scaler. In [86], the authors manually add
data to deployments through Kubernetes labels, such as a compute domain tag (i.e., cloud,
fog, edge) and geographical location. They then use affinities to match labels and nodes.
They monitor the network topology and node failures, and if there are events, they modify
the deployments to trigger the Kubernetes scheduler.

Cloud deployments require the users to define the containers’ resource usage manually.
The authors in [87] improve upon the Kubernetes vertical Autoscaler by analyzing data
coming from the metrics server and updating deployments with better defined resources.

16 2 Containerization and orchestration on Edge-Cloud architectures

They obtain improved performance when the resource information on the initial deployment
is not accurate.

Various works have been done for the 5G network computing infrastructure. Some work
has been done to address the problem that, when a node dies, the containers in the node are
not immediately restarted but take several minutes. This creates downtime for services that
need to be restarted [88]. The authors also improve node filtering and scoring thanks to more
flexible resource selection through the use of weights. In subsequent work [89], there has also
been a proposal for an extended and more lightweight monitoring tool for edge devices. The
scheduler can make decisions based on the collected data and the system administrator can
adapt the scheduling with weights on the different data points, including CPU temperature
to avoid throttling/crashing of edge nodes.

In [90], the authors propose a framework to trade between performance and energy
consumption by using a stateless migration policy based on premade energy and performance
models. They use a set of benchmarks to create the performance models. The benchmarks
need to be run on all nodes of the target platform beforehand. They then use a function to
balance performance and energy consumption based on a target ratio defined by the user.

There has also been a proposal for a framework that can analyze data from previous
executions and decide which node is the best candidate by focusing on accelerators, such as
GPUs and code with multiple implementations. It evaluates the possibility of waiting for a
faster node or starting the container on a slower node. To achieve this, the platform makes
use of external components, such as a secondary scheduler and a database to archive the
performance data. They use the Earliest Finish Time to decide on which node to run the
container [91]. In another work [92], Particle Swarm Optimization has also been proposed
to improve the Kubernetes scheduler and better allocate containers to nodes. In [93], the
authors proposed a framework that schedules and monitors repetitive and short-lived tasks,
such as deep learning training or batch operations. They use progress as a metric to improve
scheduling and reduce makespan. The application progress is obtained by modifying the
application’s source code and sending its progress to the monitoring framework.

HEFT is an offline list scheduler that produces high quality scheduling with low com-
putational cost [33]. Effort has been made to improve this algorithm with the look ahead
variation, which obtains up to 40% improved makespan compared to its original counter-
part [94] and specifically in cloud-based virtual machine management, where HEFT has been
modified to create a more accurate ranking and select the best possible CPU [95]. In the
context of a microservice-oriented containerized edge cloud environment, the authors of [96]
create an alternative algorithm to HEFT that computes the optimal data flow between edge
nodes to obtain the lowest possible makespan when scheduling tasks, showing improvements
over the original HEFT algorithm but having several limitations. Firstly, the requirement
of direct control of the device’s scheduling, and secondly, high complexity and overhead.
Finally, there are no dynamic rescheduling capabilities.

Efforts from industry leading companies have also been made with the Telemetry Aware
Scheduler (TAS) from Intel [97] and Trimaran from IBM [98]. TAS can use many node char-
acteristics to decide where to deploy a container and then monitor its health. Trimaran mon-
itors standard Kubernetes metrics providers (i.e., Kubernetes Metrics Server, Prometheus
Server, and SignalFx) and extends the scoring phase of the Kubernetes scheduler, without
interfering with the other native plugins, accounting for both average load and load spikes.

Table 2.2 summarizes the state of the art in this context. The first column specifies
whether the proposed work makes use of standard Kubernetes features or requires source
code modifications. The second column shows if the framework can take action after the
deployment is made, e.g., if a node becomes unavailable and some containers need to be
rescheduled. The third column is for edge-cloud specific optimizations, such as assuming
that the computing nodes in the cluster might have very different computational capabilities.
The fourth column shows if the proposed work takes into account the total makespan of the
application deployed and if it optimizes for it. The task scheduling column shows if the tasks
deployed inside the containers are being controlled and scheduled on the target device by the
best effort scheduler of the operating system or by an optimized software. The last column

2.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 17

Work
No source

code
modifications

Dynamic
Riadaptation Edge-Cloud Makespan

Oriented
Task

scheduling
Resource

optimization

[85] 7 3 7 7 7 7

[86] 3 3 3 7 7 7

[87] 7 3 7 7 7 3

[88, 89] 7 3 7 7 7 7

[90] 3 3 7 7 7 7

[91] 3 7 7 3 7 3

[92] 7 7 7 7 7 3

[93] 3 7 3 3 7 3

[96] 3 7 3 3 3* 7

[97] 7 3 3 7 7 3

[98] 7 7 3 7 7 3

This thesis 3 3 3 3 3** 3

Table 2.2: Summary of the scheduling features proposed in the state of the art. *Optimizes
the device’s task scheduling, but requires direct control of each device’s scheduling. **Opti-
mizes the device’s task scheduling, but does not control it directly.

shows whether the proposed frameworks can optimize the resource utilization beyond the
simple resource limits/requests of Kubernetes.

While efforts have been made by both the research community and industry to tackle the
problem of scheduling for DAG-based applications, they did so for cloud systems based on
virtual machines or by using expensive exact algorithms that do not offer online scheduling or
orchestration capabilities due to their high execution time. Some, like [33] and [96], require
direct control over the devices’ scheduling, which may cause overhead or invasive kernel
modifications.

2.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum

Real-time software applications are often crucial for mission-critical tasks, and their timing
requirements must be precise and reliable. These applications can have varying degrees of
requirements on their timing, typically falling into two categories: soft real-time and hard
real-time.

In the case of a soft real-time application, consider a scenario like Simultaneous Local-
ization And Mapping (SLAM) software. This software periodically processes sensor data to
create a map. While it is essential that this computation is timely, some degree of delay may
be tolerable. In this context, a delayed result could lead to a temporarily less accurate map,
which might result in navigation errors. However, such errors are acceptable as long as they
are within certain limits.

In contrast, a hard real-time application has no tolerance for delayed results. For example,
in an antilock braking system in cars, any delay in applying the braking correction can be
detrimental. A late correction could adversely affect the handling of the car, rather than
improving it. In such cases, a task is considered late if it exceeds its deadline, which represents
the absolute time by which its execution must be completed.

Both hard and soft real-time tasks typically consist of repetitive computation phases
that are triggered periodically or sporadically. In periodic tasks, these computation phases
are activated at fixed and regular intervals. Conversely, sporadic tasks are activated with a

18 2 Containerization and orchestration on Edge-Cloud architectures

minimum time interval between each activation, but the actual intervals may vary, allowing
for more flexibility in their timing.

During execution, tasks can vary in the amount of time they take to complete, but this
variation must have an upper limit. This upper limit is known as the Worst Case Execution
Time (WCET), which represents the maximum amount of time a task can take to finish
under any possible system condition. These conditions are influenced by the state of the
system, including factors such as resource availability (e.g., CPU, memory, network) and
resource characteristics (e.g., CPU/memory clock frequency, network bandwidth).

A real-time task is defined as follows:

RT_task = (P, D, WCET) (2.2)

where P represents the task’s period, indicating how often new instances of the task arrive.
D is the deadline, specifying the time by which the task must be completed. WCET is the
worst-case execution time. These times need to abide the following:

WCET & D & P (2.3)

Determining deadlines and periods is a crucial aspect of system design and involves spec-
ifying system requirements and task characteristics during the design phase. Estimating the
WCET is accomplished through various techniques. These methods include static analysis,
which carefully examines the code to identify the longest possible execution path, and dy-
namic analysis, where real-time tasks are executed on the target platform to measure their
observed worst-case execution times. Advanced tools are already available for conducting
this analysis and are considered state-of-the-art. An emerging technique uses probabilistic
analysis instead of deterministic approaches to estimate task execution times, which should
allow for enhanced resource utilization [99]. However, it is not considered since the Linux
kernel that this thesis relies on does not implement it.

Linux scheduling

The Linux kernel has several scheduling policies, some for real-time tasks and others for
standard processes. Real-time sporadic and periodic tasks can be scheduled using the
SCHED_DEADLINE policy. This policy is an implementation of the Earliest Deadline First
(EDF) scheduling algorithm, augmented with a Constant Bandwidth Server to allow for
better timing control (the reader can refer to [100] to dive deeper into the topic).

The SCHED_DEADLINE policy requires an admission test to check if there is room to
guarantee the task WCET within the deadline, every period. This means that the task
(tnew) has to pass the multiprocessor global EDF task admission test to be placed in the
scheduling pool of RT tasks:

RT < {tnew}
9
i

WCETi

Pi

& M ò
sched_rt_runtime_us
sched_rt_period_us (2.4)

where RT is the set of running RT tasks, WCETi and Pi are the worst-case execution
time and period of the tasks, M is the number of CPU cores, and sched_rt_runtime_us/
sched_rt_period_us represents the maximum allowed utilization of the CPU for RT tasks
(user-defined Linux kernel variable equal to 95% by default)2.

Related work

Container-based Edge-Fog-Cloud systems have been investigated in several works (e.g., [61–
63,101]). The experimental findings demonstrate that the Edge-Cloud computing continuum
and container-based virtualization, when combined together, improve scalability, resource
usage, and performance. Containers have minimal to no performance overhead, but caution
2 In Equation (2.4), runtime is used instead of WCET due to Linux documentation terminology.

2.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 19

is required when many containers access the same shared resources [64]. Recently, various
architectures for CPSs based on containers (e.g., Docker) and using ROS as middleware have
been investigated [54]. These works have shown the potential to improve information flow
among various network levels and increase software modularity.

Containerization combined with orchestration has been investigated in fog and edge com-
puting [65–67,102]. Different microservice deployment strategies can be adopted to improve
performance, energy efficiency and carbon footprint [65,103], as well as QoS [66,67].

Several research works have been done to improve the performance of robotic applica-
tions. In this direction, SeART [104] is a framework that can intelligently schedule real-time
tasks by taking into account the current context to activate the minimum-cost tasks. Other
real-time robotic applications also show the need for improving performance to guaran-
tee real-time constraints [105]. The issues tied to containerization in a Fog-based system
for robotic applications have also been explored. In [15], the authors highlight the lack of
Fog-based frameworks to satisfy the real-time demands of robotic applications.

Containers with real-time constraints (i.e., RT containers) have been the focus of several
recent studies due to the increasing adoption of container-based virtualization. The review
in [106] explores existing solutions that guarantee real-time constraints when working with
containerized applications. The authors underline the lack of tools for real-time container
management and analysis on communication between real-time containers.

Legacy applications with real-time constraints have been successfully emulated using
containers [22] and the performance overhead is low enough to run containerized real-time
applications for industrial automation applications [17]. Real-time technologies (real-time OS
ResinOs, Ubuntu Core, Co-kernel Xenomai 3, and Ubuntu with Preempt_rt software patch)
have been tested together with containerization to demonstrate that container isolation is
a new, competitive paradigm that allows for better resource usage when combined with
real-time [107]. The Linux scheduler SCHED_DEADLINE was compared to the cgroups policy
(i.e., the main technology used to enable containers) to analyze which technology better
handles real-time application resources [25]. The scheduler is consistently more reliable and
achieves better results than cgroups. This is also true in resource-constrained situations
caused by high system load. Extensions of the Linux kernel have been proposed to improve
the efficiency of real-time scheduling of cgroups [24]. The same authors also proposed a
modification of the Kubernetes source code to include some real-time constraints [108].

HPC makes wide use of containers. A framework has been proposed to efficiently schedule
real-time containers in many-CPU systems [109] but additional research is needed to deter-
mine the effects of the operating system and I/O on deadlines. The feasibility of migrating
real-time applications from bare-metal servers to virtualized Infastructure as a Service (IaaS)
configurations for Industry 4.0 has also been explored [26].

A framework for applications in mixed criticality systems has been proposed in [23] to
reduce interference between tasks when an application exceeds its WCET. The framework
shows low efficiency due to the adopted static priority scheduler and it supports only one
computing node. In subsequent work [110], it has been extended to use dynamic priority
scheduling with a bandwidth server to improve performance.

To fulfill the need of safety-critical real-time systems and streamline the certification pro-
cess, the authors in [111] examined the benefits of utilizing both SGX isolation and unikernel
features. Another proposed framework for real-time orchestration introduces extensive mod-
ifications of the Kubernetes code-base and uses a unique patch for the Linux kernel to deploy
best-effort and real-time tasks [112].

Several works [113–115] show how, in Edge-Cloud computing architectures, live container
migration can improve performance when resource usage can be monitored and utilization
spikes mitigated by migrating services to a different computing node.

20 2 Containerization and orchestration on Edge-Cloud architectures

2.5 Assertion-based verification and workload migration in

Kubernetes for robotic systems

Several solutions have been proposed to automatically synthesize monitors from their high-
level specifications and integrate them into ROS-based designs for both single robots [116,
117] and robot swarms [118]. In these solutions, temporal logic and regular expressions are
the main languages adopted to describe system properties and temporal patterns. Such
formal languages provide powerful environments to define temporal order and concurrency
among states and events. Variants and extensions have also been proposed to address the
complexity of such monitoring tasks [117, 119]. A common strategy is to design monitors
that reproduce the original system specification according to a set of rules and current
inputs. After such a transformation, each monitor alerts if a certain form has been obtained
[120,121]. As an alternative, the monitors are designed as automata implemented through a
large look-up table that maps all possible transformations for all possible inputs [122]. The
static definition of the table provides better performance at runtime than rewriting-based
monitors. Nevertheless, these approaches do not scale well in size as the automata could
potentially become very large, non-compositional, and non-extensible. A compositional and
extensible approach relies on the design of monitors as a network of small computation
nodes generated from temporal logic specifications [123]. This approach has been extended
to timed specifications [124], quantitative [125], and parametric [126]. Similar solutions have
been applied to fault detection and condition verification of production facilities [127–129].
In recent years, STL has become the accepted solution for monitoring robotic and distributed
applications [130]; recent works propose efficient and reliable ways of synthesizing monitors
from STL specifications [131–133]. Concerning the use of ROS, [134] and [135] propose a
runtime verification framework for robotic applications. Finally, a complete survey of runtime
verification of distributed systems is proposed in [136].

The state-of-the-art approaches assume no limit from the point of view of the availability
of computational resources for the execution of monitors. As a consequence, they are not ef-
fective in scenarios where strict limits must be respected, especially concerning the overhead
caused by the runtime verification of the System Under Verification (SUV).

3

Methodology

This chapter summarizes the five steps required to reach the objectives of Fig. 1.2. Section
3.1 analyzes the edge-related optimizations. Section 3.2 shows the porting of containerization
and orchestration to robotic environments. Section 3.3 adapts containerization and orches-
tration to allow for the reconfigurability of software. Section 3.4 introduces the real-time
capabilities for an orchestration software to be applied in a MCS context. Finally, Section
3.5 shows the adaptations proposed to allow for runtime migration of tasks and containers.

3.1 Optimizing performance on heterogeneous devices at the edge

The need to deploy complex applications such as low-level control, dynamic planning, com-
puter vision, monitoring, and inference applications based on neural networks at the edge
on programmable low-power embedded devices is increasingly spreading in many different
fields ranging from robotics, autonomous driving, and security [137].

We define device-level heterogeneity as computing systems with multiple processing units
available for computation. In this context, heterogeneous parallel computing implemented in
modern embedded boards in the form of multi-core CPUs, accelerators, and GPUs is recog-
nized as the best solution to simultaneously target different extra-functional constraints like
processing performance, power consumption, and energy efficiency [138]. Nevertheless, as the
complexity of such Artificial Intelligence (AI) applications increases, performance limitations
due to slow memory access, workload balancing, synchronization, and communication be-
tween multi-cores, many-cores, and heterogeneous cores are expected to worsen [139]. This
makes it difficult for developers to fully exploit the theoretically available computing power.

We apply the performance optimizations required to improve embedded boards’ response
time and throughput when used as the target of an edge-computing deployment. The pro-
posed optimizations cover three very critical aspects:

• Section 3.1.1: improving the performance of DAG-based applications for embedded vision
applications.

• Section 3.1.2: improving the performance of Edge-computing embedded boards that
make use of UMA.

• Section 3.1.3: analyzing the effects of UMA-specialized techniques on the performance
of ROS-based CPS applications.

3.1.1 Improving the scheduling on DAG-based embedded vision applications

OpenVX [140] has been proposed as a solution to assist in the development and deployment
of computer vision applications for embedded and real-time use cases, and it has rapidly
spread in the edge computing community as a de-facto standard for the design and opti-
mization of embedded vision applications. The OpenVX design flow begins with a DAG
representation of the application where the nodes use implementations (called primitives)
from libraries provided by the target architecture vendors (e.g., NVIDIA VisionWorks [30],

22 3 Methodology

AMD OVX [141], Intel CV SDK [142]) or developed by users. OpenVX also supports the
mapping and scheduling of the DAG and its automatic synthesis onto the target heteroge-
neous platform. OpenVX offers the benefits of functional and performance portability across
different hardware platforms by providing a framework that supports different hardware
architectures without requiring significant modifications to the OpenVX model.

Several research works have been done to optimize the performance of the code generated
through OpenVX frameworks [143–149]. They implement advanced data access patterns such
as DAG node merge, data tiling, and through heterogeneous parallel programming. Other
research contributions proposed OpenVX task scheduling algorithms to provide real-time
guarantees through more fine grained handling of the DAGs and by using pipelining to
provide better task parallelism [31,32].

No work in literature addresses efficient mapping and scheduling strategies of OpenVX
(DAG-based) applications for heterogeneous architectures. All state-of-the-art mapping ap-
proaches for OpenVX applications implement local best algorithms, by which if a DAG node
has multiple implementations (e.g., both for GPU and CPU), the node is mapped on the
computing element that provides the best node-level performance. In the NVIDIA Vision-
Works framework, if a node has a GPU implementation then the node is mapped onto the
GPU, as it is assumed that the GPU accelerator always provides better performance than
the CPU [30].

What is missing is a mapping strategy that targets the system throughput (i.e., global
best) rather than node throughput (i.e., local best). The fact that there can be multiple im-
plementations for nodes (e.g., one that is executable on a GPU and another on CPU), which
is pervasive in the OpenVX libraries [30,141,142,150], can allow for additional mapping flexi-
bility, and as a consequence, for better load balancing at system level (e.g., a CPU implemen-
tation that is slower at kernel level can lead to a faster application at system level). However,
such a combined mapping and scheduling problem is similar to the Quadratic Assignment
Problem [151], a well-known Nondeterministic Polynomial Time (NP)-hard problem. Find-
ing an optimal solution satisfying all the given DAG constraints is difficult. Thus, heuristics
based on the application domain knowledge need to be employed to find a near-optimal
solution.

To take into consideration the heterogeneity of the target architectures, the possible
multiple implementations of DAG nodes, and the problem complexity, in this thesis we first
present an implementation of the HEFT heuristic [33] for static mapping and scheduling of
OpenVX applications. We present results obtained on a large set of benchmarks, in which we
found that the HEFT implementation sensibly outperforms (i.e., up to 70% of performance
gain) the state-of-the-art solution currently adopted in one of the most widespread smart
system for moving computer vision at the edge (i.e., the NVIDIA VisionWorks framework
on the NVIDIA Jetson TX2 device). Then, we show that such a heuristic, when applied
to DAG graphs for which not every node has multiple implementations, can lead to idle
periods for the CE. Since multiple implementations do not exist for all nodes in a majority
of real embedded vision contexts, this thesis proposes an algorithm, which we call XEFT,
that reorganizes the HEFT ranking to improve load balancing. XEFT aims at generating
sequences of nodes with the single implementation (which we call clusters of exclusive nodes)
in the ranking with the objective of reducing idle times caused by the combination of DAG
constraints and exclusive implementations.

Finally, since scheduling approaches for pipelined DAG executions have been recently
proposed to deliver real time guarantee in CPU-GPU devices [31], we present an extensive
evaluation and comparison in terms of performance and memory footprint between those
solutions [31], XEFT, and a pipelined version of XEFT. We present the results on a large set
of benchmarks, including a real-world localization and mapping application (ORB-SLAM)
combined with an NVIDIA Convolutional Neural Network (CNN) application for object
detection.

This section first presents an implementation of the HEFT heuristic and its application
for static scheduling of OpenVX applications. We show that it sensibly improves the system
performance w.r.t. the native OpenVX scheduler. Then, an analysis of the main limitations
of HEFT in the context of embedded vision applications, which can cause idle periods and

3.1 Optimizing performance on heterogeneous devices at the edge 23

2 3 4

5 6 7

1

0

node tCPU tGPU HEFT
(ms) (ms) rank (max)

0 1 - 15

1 - 10 10

2 4 2 14

3 4 1 10

4 6 - 6

5 4 2 14

6 4 1 10

7 6 - 6

Fig. 3.1: Example of DAG-based application, execution time of tasks mapped on CPU/GPU,
and the corresponding HEFT ranking.

workload imbalance among heterogeneous computing elements. This section then focuses
on XEFT, a rank-based static scheduling algorithm tailored for DAG-based embedded vi-
sion applications. We introduce the concept of exclusive overlap between nodes and show
how XEFT implements such a concept to improve the load balancing. Finally, the static
scheduling of pipelined execution of DAG instances is considered, including advantages and
limitations of such an approach by considering different scheduling algorithms.

Embedded HEFT, exclusive overlapping and XEFT

Figure 3.1 depicts an example DAG model of a SW application to be deployed on a pro-
grammable heterogeneous CPU/GPU device. We assume there exists a library of primitives
that implement the DAG nodes. In particular, the library includes the exclusive implemen-
tation for CPUs of node #0 (which is the starting point of the application), of node #4 and
of node #7. The library also includes the exclusive implementation for GPUs (i.e., GPU ker-
nel) of node #1, while it provides multiple implementations (CPU implementation and an
equivalent GPU kernel) of nodes #2, #3, #5, and #6. Figure 3.1 also reports the execution
time of each primitive when executed in isolation on the corresponding CE.

For the sake of brevity, in this example we assume the data transfer time between CPU
and GPU to be negligible (we considered such an information both in the proposed scheduling
formulation, implementation, and in the experimental analysis). We consider the heteroge-
neous target device to consist of one CPU core and one GPU accelerator. We also assume
task executions to be non-preemptive.

Figure 3.2(a) shows the mapping and scheduling of the DAG nodes implemented by
the runtime system of NVIDIA VisionWorks. A very similar approach is implemented by
the runtime system of AMD OpenVX (AMDOVX). The mapping implements the local best
optimization, i.e., a node is mapped on the GPU accelerator if there exists the corresponding
GPU kernel in the library. The scheduling algorithm considers the topological order of nodes
in the DAG and honors the topological order constraints among nodes. VisionWorks does not
implement overlapped execution of tasks across the different CEs. In any case, implementing
such an overlapping would reduce the makespan by 1 unit.

Figure 3.2(b) depicts, for the same running example of Figure 3.1, the mapping and
scheduling of the proposed HEFT implementation for OpenVX. Such an implementation
takes advantage of both task overlapping and the mapping implements a heuristic that
targets the global best optimization. Starting from a task ranking generated as for equation
(2.1), the algorithm maps one node at a time onto the CE that involves a better application
execution time. A node can be mapped on a CE that leads to a higher execution time at
the task level (see tasks of nodes #5, #3, and #6 in the example of Figure 3.2(b)). If we
assume that the nodes have the multiple implementations and not necessarily all the GPU
kernels are faster then the corresponding CPU primitives, the HEFT algorithm heuristically

24 3 Methodology

CPU

GPU

4 8 12 16 20 24

(b): HEFT task scheduling order: 0, 2, 5, 1, 3, 6, 4, 7

280t (ms)

idle

CPU

GPU

4 8 12 16 20 24

521 3 6

4 7

(a): NVIDIA VisionWorks standard task scheduling order: 0, 1, 2, 5, 3, 6, 4, 7

280t (ms)

idle

idle

CPU

GPU

4 8 12 16 20 24

(c): Optimized HEFT task scheduling order: 0, 2, 5, 3, 6, 1, 4, 7

280t (ms)

Makespan (29)

Makespan (25)

Makespan (17)

Total Overlapping (14)

Exclusive Overlapping (10)

0

i

0

i

0

i

5

2 1

3 6 4 7

5

2 13

4 7

6i i

Total Overlapping (12)

(Potential XO = 10)

Fig. 3.2: Task scheduling algorithms of the DAG of Fig. 3.1: native NVIDIA VisionWorks
(a), HEFT (b), and the proposed optimized HEFT (c).

provides workload balance over the CEs by overlapping the task execution. As confirmed
by our experimental analysis, this leads to performance improvements at system level (i.e.,
reduction to the application makespan). However, the library includes nodes that do not have
multiple implementations. In this case, the iterative nature of node mapping and balancing
of HEFT may lead to (even long) idle periods. A meaningful example is the idle period on
the GPU in Fig. 3.2(b), which could be reduced (or even fully avoided) by an implementation
of node #7 for GPU.

In general, in the context of heterogeneous architectures, the main limitation of HEFT
is that it iteratively maps one task at a time by following the rank order and by target-
ing the best load balancing at each iteration. It does not consider the single or multiple
implementations of the nodes.

The proposed idea is that the load balancing can be improved by prioritizing the over-
lap between exclusive nodes, which we call exclusive overlapping. Considering the standard
definition of overlapping between two tasks t and q as follows:

O(t, q) = max �0,min (tend, qend) �max (tstart, qstart)⌥ (3.1)

3.1 Optimizing performance on heterogeneous devices at the edge 25

6

2

5

3

1

(a) (b) (c)

6

7

4

2

5

3

1

6

7

4

2

5

3

1

6

7

4

c1∊ C

(d)

2

5

3

1

7

4

0

c2∊ C

0

Cluster
(G)

0 0

Fig. 3.3: Cluster generation step (APPLY(rank, cluster)) for the example in Fig. 3.1.

where tstart and tend are the starting and ending times of task t, respectively. We define
Exclusive Overlapping (XO) between two tasks t and q running on different CEs as follows:

XO(t, q) =
~ÑÑÑÑÇÑÑÑÑÄ
O(t, q), if (æ tCPU 0 æ qGPU)

1(æ tGPU 0 æ qCPU)
0, otherwise

(3.2)

where tCPU and tGPU represent the CPU implementation and GPU implementation, re-
spectively, of task t.

The exclusive overlapping applies to nodes that cannot compete for the same CE due to
exclusive implementations. It is a subset of the standard overlapping. We define the total
overlapping and the total exclusive overlapping between tasks of an application A as follows:

O(A) = 9
t,q"A

O(t, q) (3.3)

XO(A) = 9
t,q"A

XO(t, q) (3.4)

Figure 3.2(c) shows the exclusive overlapping between the tasks of our running example.
The main idea is that increasing XO can lead to shorter idle periods when these periods
are caused by the combination of DAG constraints and exclusive implementation (see for
example the idle time on the GPU between instants 13 and 25 in Figure 3.2(b)). In our ex-
perimental analysis, we found that increasing XO corresponds to an increase of the standard
overlapping and, as a consequence, to a performance improvement.

To increase XO, we propose an algorithm (Algorithm 1) that, starting from a given
ranking list, it reorganizes the list to identify and generate clusters of exclusive nodes, i.e.,
sequences of exclusive nodes that are strictly consecutive in the ranking (see nodes #1, #4,
and #7 in Figure 3.2(c)).

The algorithm starts from the standard task ranking obtained by applying HEFT to the
application graph (row 2). One node at a time, and for every node of the list (row 4), the
algorithm identifies a new cluster starting from the next exclusive node of the list (row 6).
It searches among all the next nodes in the ranking that are exclusive and that do not have
topological constraints in the DAG with the current cluster nodes (i.e., that are not in the

26 3 Methodology

Algorithm 1: Cluster identification and generation
1 Procedure BuildCluster(graph):
2 rank ⇥ build_rank(graph)
3 i ⇥ 0
4 while i < size(rank) do
5 if rank[i] is exclusive then
6 candidates ⇥ rank[i]
7 j ⇥ i + 1
8 while j < size(rank) do
9 if rank[j] is exclusive 0ºp " candidates, p à rank[j] then

10 candidates ⇥ candidates < rank[j]
11 end
12 j ⇥ j + 1

13 end
14 totalcpu ⇥ reducesum(candidates, tcpu)
15 totalgpu ⇥ reducesum(candidates, tgpu)
16 C ⇥ exclusive CPU nodes in candidates

17 G ⇥ exclusive GPU nodes in candidates

18 if totalgpu < totalcpu

ncores
then

19 cluster ⇥ G

20 for ºc " C do
21 t ⇥ reducesum(cluster, tcpu)
22 if ∂totalgpu �

t+ccpu
ncores

∂ < ∂totalgpu � t

ncores
∂ then

23 cluster ⇥ cluster < c

24 end
25 end
26 else
27 cluster ⇥ C

28 for ºg " G do
29 t ⇥ reducesum(cluster, tgpu)
30 if ∂ totalcpu

ncores
� t + ggpu∂ < ∂ totalcpu

ncores
� t∂ then

31 cluster ⇥ cluster < g

32 end
33 end
34 end
35 Apply(rank, cluster)
36 i ⇥ clusterend + 1

37 else
38 i ⇥ i + 1
39 end
40 end
41 return rank

same DAG path). The second condition is necessary to avoid serialization among the cluster
nodes. The algorithm then extrapolates the total makespan of the cluster nodes for each CE
(rows 12 and 13). The shortest among the calculated makespans characterizes the maximum
XO of the cluster under generation. For the sake of clarity, in Algorithm 1, we considered
two possible cluster makespans (totalcpu and totalgpu). The algorithm concludes the cluster
identification by including all nodes (for the same CE) that give the shortest makespan and,
incrementally, with the exclusive nodes that lead to a comparable makespan on the other
CEs (rows 16-26). The first node of any other CE that causes makespan unbalancing starts
a new cluster in the following iteration of the algorithm.

The algorithm generates clusters of exclusive nodes by moving either the identified nodes
up on the ranking or the whole cluster down on the ranking. All the identified nodes (i.e.,
candidates in Algorithm 1) and the cluster can be moved and made adjacent since, for the
condition in row 9, they cannot have topological constraints against each other.

3.1 Optimizing performance on heterogeneous devices at the edge 27

The APPLY(rank,cluster) procedure implements such a node shift in the ranking by
considering the identified cluster. Figure 3.3 shows, as an example, the two shift types for the
running example. Given that nodes #1, #4, #7 have not topological constraints, G = {#1},
C = {#4,#7}, totalcgu = 10, and totalcpu = 12, the cluster starts by node #1 (Figure 3.3(a)).
The algorithm merges the CPU node #4 to the cluster in two steps. First (Figure 3.3(b))
by moving node #4 upword in the ranking since it has not topological constraints with the
switching nodes (node #6 in the example). Then (Figure 3.3(c)) by moving downword the
cluster since node #4 has topological constraints with node #3. For the same concept, the
algorithm merges node #7 to the cluster by moving downword the cluster (Figure 3.3(d)),
since node #7 has a topological constraint with node #6.

Reducing idle time with pipelined DAG executions

In embedded vision applications, the whole DAG model has to be applied to each image
(i.e., frame) of the input stream. In this context, a different technique to reduce the idle
periods generated by the scheduler on the CEs is to overlap DAG executions. The idea is
that multiple instances of DAG nodes can create a larger pool of tasks that satisfy their
temporal constraints and that can be selected by the scheduler along the makespan. Such a
pipelined DAG execution involves an additional double temporal constraint among nodes.
Considering a pipeline of n overlapping frames, where 0 & i < n:

if initNode
i " DAG

i
and initNode

i+j " DAG
i+j

� initNode
i

start < initNode
i+j
start

with 1 & j < n (3.5)

if termNode
i " DAG

i
and termNode

i+j " DAG
i+j

� termNode
i

end < termNode
i+j
end

with 1 & j < n (3.6)

whereby the initial task of any DAG instance always has to be scheduled before the corre-
sponding initial tasks of the later DAG instances (Eq. (3.5)) and any DAG last task cannot
be scheduled (and thus terminated) before the last task of an earlier DAG (Eq. (3.6))1.
This is because not all applications allow input frames to be computed out of order due to
inter-frame dependencies, so this restriction forces an in order execution that works for all
visual computing applications. To avoid starvation of tasks, those from earlier DAG instances
always have higher priority compared to the ones from later DAGs.

In addition, the scheduling time of any initial DAG task should consider the frame rate
of the input camera, so that:

initNode
i+1
start � initNode

i

start ' 1/CameraFPS (3.7)

Considering, for example, an input sensor at 30 FPS, the distance between the initial
nodes of two consecutive DAG instances has to be greater than 33.3̄ ms.

We started from the approach proposed in [31], in which the authors propose a pipelined
version of the G-FL scheduling algorithm. Although the pipeline mechanism leads to
makespan reductions w.r.t. the non-pipelined version on several benchmarks, it does not
give any advantage on the majority real-case study we tested. This is due to the fact that
the scheduling strongly depends on the constraints of Eq. (3.7).

Figures 3.4(a) and (b) show, for example, the comparison between the G-FL scheduling
and a 2-frame pipelined G-FL scheduling, respectively, of our running example (Figure 3.1)
by considering an input sensor at 45 FPS (22ms between consecutive instances of initial
DAG node). In this example, we have several idle times but they cannot be filled with nodes
from the subsequent DAG as the data for the nodes does not arrive until the 22ms mark,
and therefore no overlapping can be forced.
1 The same constraint applies between nodes of different DAG instances that have a dependency

constraint (see OpenVX nodes with delayed output [140]).

28 3 Methodology

(a): G-FL task scheduling for two DAGs

CPU

GPU

4 8 12 16 20 24

52 13 6

4 7

0t
(ms)

Makespan (42)

0

28 32 36 40

52 13 6

4 70

First DAG (21) Second DAG (21)

idle

idle

idle

idle

(c): G-FL task scheduling for two DAGs in batch and pipeline

CPU

GPU

4 8 12 16 20 24

52 13 6

4 7

0t
(ms)

Makespan (36)

0

28 32 36

52 13 6

4 70

First DAG (21)

Second DAG (32)

idle

i i

(b): G-FL task scheduling for two DAGs with Pipeline and input sensor at 45 FPS (22ms inter-frame interval)

CPU

GPU

4 8 12 16 20 24

52 13 6

4 7

0t
(ms)

Makespan (43)

0

28 32 36 40

52 13 6

4 70

First DAG (21) Second DAG (21)

idle

idle

idle

idle

i

i

44

40 44

44

Fig. 3.4: G-FL task scheduling of example of Figure 3.1 without pipeline (a), with 2-frame
pipeline and input sensor at 45 FPS (b), and with 2-frame batched pipeline (c).

To relax the constraints of Eq. (3.7), we implemented a batched approach for the DAG
pipelining, by which a number n of input frames are stored simultaneously in a buffer
structure in memory. We evaluated the overhead needed to handle the pipeline structure, the
additional memory required to keep multiple frames in system memory, and the additional
scheduling time required due to additional frames being in queue in Section 4.1.1.

Figure 3.4(c) shows the result of such a batched solution. In the example, a batch of two
frames allows the second instance of node #0 (green) to be executed right after the first
instance of node #0, which then allows the second instance of node #2 to start earlier, while
the last node of the first graph is still executing.

The batching mechanism improves the performance of any pipelined scheduling. Never-
theless, as confirmed by our experimental analysis, the combination of the pipeline with the
batching mechanisms strongly amplifies the dependency of the scheduling performance with
the mapping algorithm. This is particularly relevant in the context of OpenVX frameworks,
in which the multiple implementation of many nodes makes the mapping strategy critical.

In particular, the most important factor to consider when using the pipeline is that
the mapping has to be balanced over the different CEs. We found that the pipelined G-
FL scheduling often causes bottlenecks on the GPU and idle periods on the CPU cores.
This is due to the mapping approach implemented in [31], which emulates the runtime
system of NVIDIA VisionWorks. The mapping process gives priority to the local best node
implementations, i.e., the GPU kernels for almost every node. Because of this, the GPU is

3.1 Optimizing performance on heterogeneous devices at the edge 29

Makespan (36)

(a): GPU bottleneck when using G-FL task scheduling with the native mapping

CPU

GPU

4 8 12 16 20 24

52 13 6

0t
(ms)

0

28 32 36

idle

(b): HEFT/XEFT scheduling

CPU

GPU

4 8 12 16 20 24

5

2 1

3 6 4

7

0t
(ms)

Makespan (22)

0

28 32 36

idle

4

idle

7

0

2

Fig. 3.5: Task scheduling of batched pipelined G-FL for the example of Figure 3.1, in which
all nodes, except node #zero, have been considered with the GPU implementation one time
unit faster then the corresponding CPU implementation (a), and the result of rank-based
approaches like HEFT and XEFT (b).

often loaded with a disproportionate number of nodes compared to the CPU cores, creating
a bottleneck where the pipeline cannot do anything as almost all nodes are forced in a
sequential execution.

Figure 3.5(a) shows the scheduling provided by the batched pipelined G-FL on a modified
version of our running example, in which we consider all nodes except node #0 to have a
faster GPU implementation by one time unit.

The result is that all nodes have been allocated to the GPU, and due to the graph
dependencies, the overlapping is limited due to the intra-DAG time constraints between
nodes and the GPU bottleneck. In these cases, any rank-based scheduling approach such as
HEFT and XEFT does a much better job at balancing the workload (see Figure 3.5(b)).

3.1.2 Improving performance on Edge computing embedded boards with
Unified Memory Architecture

Unlike traditional CPU-GPU communication models, which require copying data from the
CPU memory to the GPU memory and back, Zero Copy (ZC) allows CPU and GPU to
access concurrently to a shared memory space inside the UMA.

Communication based on ZC consists of passing data through pointers to the pinned
shared address space. When CPU and the iGPU physically share the memory space, their
communication does not rely on the PCIe bus; thus, communication can be made more effi-
cient through ZC. Such a communication model is instrumental for performance and energy
efficiency in many real-time applications. Examples are camera- or sensor-based applica-
tions, in which the CPU offloads streams of data to the GPU for high-performance and
high-efficiency processing [152,153].

Zero-copy through shared address space requires the system to guarantee cache coherency
across the memory hierarchy of the two processing elements. Since the overhead involved by
SW coherency protocols applied to CPU-iGPU devices may elude the benefit of the zero-
copy communication, many systems address the problem by disabling the Last Level Cache
(LLC) completely (see Fig. 3.6(a)) [154].

30 3 Methodology

Heterogeneous SoC

iGPUCPU

System Memory

CPU logical
space

GPU logical
space

Copy

(c) Standard copy (SC)

System Memory

(d) Unified memory (UM)

Unified logical space
CPU logical

space
GPU logical

space

L1/L2/L3
Cache L2 cache

Heterogeneous SoC

iGPUCPU

L1/L2/L3
Cache

L1 cache

L2 cache

L1 cache

System Memory

(a) Zero-copy (ZC)

Pinned shared address space

System Memory

(b) Zero-copy + HW I/O coherency

Pinned shared address space

I/O Coherency

Heterogeneous SoC

iGPUCPU

Heterogeneous SoC

iGPUCPU

L1/L2/L3
Cache

L1 CacheL1 cache

Fig. 3.6: CPU-iGPU communication models.

Although zero-copy best applies to many SW applications (e.g., applications in which
CPU is the data producer and the GPU is the consumer), it often leads to strong per-
formance degradation when the applications make intensive use of the GPU cache (i.e.,
cache-dependent applications). To reduce such a limitation, more recent embedded devices
include hardware-implemented I/O coherence, by which the iGPU directly accesses the CPU
cache, while the GPU cache is still disabled (see Fig. 3.6(b)). Even though these solutions
limit the performance loss, traditional communication models based on data copy, which we
call Standard Copy (SC), are often the best solution with cache-dependent SW applications.
With SC between CPU and iGPU, the physically shared memory space is partitioned into
different logical spaces and the CPU copies the data from its own partitions to the iGPU
partitions (see Fig. 3.6(c)). The caches, which are all enabled, hide the data copy overhead,
and cache coherence is guaranteed implicitly by flushing the caches before and after each
GPU kernel invocation.

To ease the CPU-GPU programming and avoid explicit data transfer invocations, user-
friendly solutions allow the programmer to implement CPU-iGPU communication through
data pointers. In this communication model, which we call Unified Memory (UM), the phys-
ically shared memory is still partitioned into CPU and GPU logic spaces although they
are abstracted and used by the programmer as a virtually unified logic space. The runtime
system maintains cache coherence through on-demand page migration (see Fig. 3.6(d)) [155].

Choosing the most efficient CPU-iGPU communication model amongst SC, UM, and
ZC depends on both the SW application characteristics (i.e., compute vs. memory bound,
usage of caches, etc.) as well as the characteristics of the target embedded device. Indeed,
the overhead introduced by the cache coherence driver or the advantages provided by any
I/O coherence implemented in hardware may affect the overall performance.

3.1 Optimizing performance on heterogeneous devices at the edge 31

Target embedded
platform

CPU_CacheThreshold

Standard CopyUnified Memory

yes

Zero Copy

SC/ZC potential
speedup

SC/UM potential
speedup

ZC/SC potential
speedup

CPU_CacheLL-L1
usage

yes

no

noSC or UM
in SW

application
no

yes

SW application

CPU
code

GPU
code

Standard CPU/GPU
profiling

Micro-
benchmarks

Microbenchmarking

>

GPU_CacheThreshold

GPU_CacheLL-L1
usage

>

Cache dependentNot cache dependent

Fig. 3.7: Overview of the proposed framework.

In this section, we present a framework that, through the use of a set of micro-
benchmarks and of a performance model, analyses the characteristics of the SW appli-
cation and the target device to provide the potential performance the system can reach
by changing the communication model. Switching from one communication model to an-
other is often a time consuming and error prone task. Even more challenging is the switch-
ing from the models in which CPU routines and iGPU kernels are implicitly synchro-
nized (i.e., SC and UM) to the model in which synchronization and task overlapping is
the responsibility of the programmer. This framework (which is available for download at
github.com/FrancescoL96/Cache-Benchmark) endeavours to support the programmer dur-
ing the development and tuning of CPU-iGPU applications by proposing the most suited
communication model and, in case of zero-copy, a communication pattern to best exploit
this communication model’s potential for improved performance.

This section introduces the proposed framework, as well as the following:

• A set of micro-benchmarks to characterize the CPU-iGPU communication performance
of the device. The micro-benchmarks mix different amounts of computation and memory
accesses on both the CPU and the iGPU to measure the performance impact of each
communication model on the given embedded device.

• A performance model that combines the information provided by the micro-benchmarks
and by any standard profiling tool to extrapolate the potential speedup the system
performance can reach by switching from one model to another.

• A zero-copy communication pattern to enhance the system performance by taking ad-
vantage of a synchronized and overlapped execution of CPU and iGPU tasks.

32 3 Methodology

The Framework

Fig. 3.7 shows the overview of the proposed framework. Given a SW application and a target
embedded platform, a standard profiling tool is applied to extrapolate information on the
usage levels of both CPU and GPU caches2.

The idea is that if the application strongly benefits from both caches, then concurrent
accesses of CPU and iGPU on the pinned shared memory space and thus the ZC commu-
nication model cannot provide the best overall performance. This is due to the fact that
the cache coherence protocol, or the caches disabled for guaranteeing consistency with the
zero-copy model, may elude the benefit of eliminating the data copy. In this case, SC or UM
are the best solutions. In contrast, if the cache usage is low on the iGPU, the best model
depends on the CPU cache usage. If the CPU cache usage is high, ZC could give the best
performance if the device implements a sufficiently efficient cache coherence protocol (e.g.,
the hardware I/O coherence of the NVIDIA Jetson AGX Xavier). Otherwise, SC or UM are
likely the best solutions.

In case the application makes low usage of both the CPU and iGPU caches (i.e., the caches
do not affect the application performance), ZC could provide at least equivalent performance
w.r.t. SC and UM. In this case, ZC is generally preferred, as shown in the experimental
results section, because it can guarantee lower energy consumption due to the saved data
transfers for the copies. The performance model proposed aims at characterizing such a
cache usage of the application, and correlates this value with the potential performance
of each communication model. As a result, considering the application, the implemented
communication model, and the target device, the framework allows the user to accurately
estimate the potential speedup the application may have by changing the communication
model.

It is important to note that the characteristics of the target device strongly affect the
choice of the best communication model and the potential speedup achieved from one model
to another. The micro-benchmarks aim at extrapolating the device characteristics and ac-
curately estimating such a potential speedup.

Finally, ZC may provide even better performance if combined with an overlapped exe-
cution of CPU and iGPU tasks. The performance model allows estimating the maximum
performance improvement of ZC with task overlapping. We propose an access pattern to
implement such an overlapping while guaranteeing data consistency.

Profiling and performance model. Given a SW application and an embedded device,
we define the usage of the LLC of the CPU and iGPU as follows:

CPU_Cache
usage

LL_L1(%) = miss_rate_L1CPU

✓ (1 �miss_rate_LLCPU) (3.8)

GPU_Cache
usage

LL_L1(%) = tn ò tsize ò (1 � hit_rate_L1GPU)
kernel_runtime

✓
1

GPU_Cache
max_throughput

LL_L1

(3.9)

where tn and tsize represent the number of memory transactions and their size, respectively.
The definitions assume an architecture with L2 as LLC. It can be generalized for different
memory architectures. The two equations represent, in percentage, the amount of data that
is obtained from the LLC of the CPU and iGPU, respectively out of all the requested data
from the CPU/iGPU multiprocessors. All the miss/hit rate information are provided by
any standard profiling tool. The maximum throughput in Eq. (3.9) is extrapolated by the
micro-benchmarks.
2 We consider the LLC for both CPU and iGPU as the caches involved in data coherency protocols

for CPU-iGPU communication. We consider them as the only caches disabled with ZC.

3.1 Optimizing performance on heterogeneous devices at the edge 33

We define the potential speedup a SW application may have by changing the communi-
cation model as follows:

SC/ZCspeedup = SCruntime

SCruntime � copy_time

1 + (CPUtime/GPUtime)
& SC/ZCMax_speedup

(3.10)

ZC/SCspeedup = ZCruntime

ZCruntime

1/[1 + (CPUtime/GPUtime)] + copy_time

& ZC/SCMax_speedup

(3.11)

where SCruntime (ZCruntime) is the execution time of the SW application with the
SC(ZC) communication model. copy_time is the time spent for CPU-iGPU data transfer,
CPUtime(GPUtime) is the runtime of the only CPU task (GPU kernel).

SC/ZCMax_speedup and ZC/SCMax_speedup represent the maximum speedup that can be ob-
tained by moving from one model to another on the given device. These values are indepen-
dent from the application and are extrapolated by the micro-benchmarks. Eq. (3.10) defines
the potential speedup an application that has been classified as not cache-dependent (first
checks of the framework flow) may have by replacing the originally implemented SC model
with ZC. It takes into account the SC runtime from which the data copy time is removed
and the potential overlap between CPU and iGPU computation (CPUtime/GPUtime).

Eq. (3.11) defines the potential speedup an application classified as cache-dependent may
have by switching from ZC to SC. It takes into account the overall time needed by SC to
explicitly copy data. It also considers the serialization of the CPU and iGPU tasks since
their overlapping is not allowed in SC. It is important to note that if an application is cache
dependent and originally implemented with SC, the framework does not suggest any change
to the communication model and any further potential speedup.

For the sake of space and without loss of generality, we consider the performance of UM
similar to SC. In all our micro-benchmarks, the maximum difference between the two model
performance ranges between ±8% in all the considered devices. The difference is strictly
related to the driver implementation of the on-demand page migration. Compared to the
difference between SC(UM) and ZC, we consider negligible the difference of performance
between SC and UM. It is also important to note that the programming effort to switch
between these two models (SC and UM) is minimal.

Micro-benchmarks. The micro-benchmark code is implemented with the aim of satisfying
four main properties.

• Stressing capability. The micro-benchmarks apply extensive and heavy workloads to the
memories and caches. This allows the framework to reach the steady state in which each
functional component is fully work-loaded to measure the real (w.r.t. theoretical) peak
performance while minimizing the side effects that can incur throughout the measure-
ments.

• Workload variability. The communication model and the corresponding components are
stressed with different workloads. This allows the framework to quantify the effect of
moving from one model to another.

• Selectivity. The micro-benchmarks stress, as much as possible, only one target functional
component at the time. This allows the framework to extrapolate the potential speedup
obtained by moving from one communication model to another, considering that they
can involve different functional components.

• Portability. The micro-benchmarks are implemented independently from any CPU/iGPU
platform.

Since the compiler may optimize the code (e.g., code-block reordering, dead code elimina-
tion, etc.) and, by means of the consequent side effects, it may affect the target properties,

34 3 Methodology

232 GB/s

59 GB/s

0 GB/s

50 GB/s

100 GB/s

150 GB/s

200 GB/s

0 us

200 us

400 us

600 us

800 us

1000 us

1200 us
LL_L1

Throughput
Runtime

Array section length

𝐺𝑃𝑈_𝐶𝑎𝑐ℎ𝑒𝐿𝐿_𝑙1
𝑀𝑎𝑥_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡:

𝐺𝑃𝑈_𝐶𝑎𝑐ℎ𝑒𝐿𝐿_𝑙1
𝑀𝑎𝑥_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡:

Fig. 3.8: Second micro-benchmark results on an NVIDIA Jetson Xavier. Relationship be-
tween LL_L1_throughput and kernel times of the iGPU.

the code has been checked and refined throughout the different steps of the compilation
process.

The first micro-benchmark aims at finding the peak throughput of the GPU LL-L1
cache on the target device (GPU_Cache

max_throughput

LL_L1). This value allows accurately clas-
sifying an application as GPU cache dependent/not cache-dependent (see Eq. (3.9)). Then,
in case the application is cache dependent and originally implemented with the ZC model,
this value is used to estimate the potential speedup obtained by switching from ZC to SC
(ZC/SCMax_speedup in Eq. (3.11)). It implements the elaboration of a matrix data structure
computed by both CPU and GPU. In particular, the CPU performs a series of floating
point operations with data read and written from and to a single memory address. These
operations include square roots as well as divisions and multiplications. The GPU performs
a 2D reduction multiple times through linear memory accesses. This is achieved through
iterative loading of the operands (i.e., ld.global instructions), a sum (i.e., add.s32), and
the result store (st.global). The two classes of operations (CPU and iGPU) allow the
micro-benchmark to evaluate the peak usage of the CPU and iGPU caches. The two rou-
tines (CPU and GPU) are evaluated by considering the three communication models. ZC
makes use of the concurrent execution of the routines and the concurrent access to the
shared data structure. SC and UM explicitly exchange the data structure before the routine
computation.

The second micro-benchmark implements extensive GPU computations, with varying
levels of linear memory accesses. It aims at finding the GPU cache thresholds used by the
framework to suggest the best communication model between ZC and SC/UM (see Fig.
3.7). The micro-benchmark routine accesses sections of different lengths of a fixed-size array
(e.g., from 1/4000 to 1/2), through a single ld.global and st.global, combined with a
fma.rn (i.e., fused multiply-add) that uses two locally calculated values. It is implemented
with both ZC and SC communication models and extrapolates the GPU_CacheThreshold

value by comparing the LL-L1 caches. Fig. 3.8 shows, for example, the results for this micro-
benchmark on an NVIDIA Jetson Xavier, in which the threshold has been found at 1/2000
accesses. A comparable throughput of the two models (from 1/4000 to 1/2000) translates
into comparable system runtime with the two models (see light dotted lines in the figure).
From 1/2000 onward, the difference between the throughput values and the runtime linearly
increases. GPU_CacheThreshold, in percentage, is calculated by considering the last compa-
rable value of the throughput over the peak cache throughput (GPU_Cache

max_throughput

LL_L1)
provided by the first micro-benchmark (i.e., 20 GB/s and 59 GB/s, respectively, for the SC
model in the example). The micro-benchmark extrapolates the CPU_CacheThreshold in a
similar way.

3.1 Optimizing performance on heterogeneous devices at the edge 35

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Widthx

W
id

th
y

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Phase i Phase i+1

Bsize= min(GPU_LLC_blocksize ,
CPU_LLC_blocksize)

word0

word3

…

Fig. 3.9: Overview of the communication pattern for ZC.

The third micro-benchmark performs a balanced CPU+iGPU computation through a
routine whose performance is fully independent from the GPU cache. The GPU kernel imple-
ments repetitive memory accesses with sufficiently sparse single read access (ld.global) and
single write access (st.global) in order to guarantee the maximum miss rate. It implements
a concurrent access pattern and a perfect overlapping of the CPU and iGPU computations to
extrapolate the maximum communication performance (and thus SC/ZCMax_speedup and
ZC/SCMax_speedup) the given embedded platform can provide by considering both SC and
ZC.

Zero-copy communication pattern. With ZC, data copy is removed while CPU and
iGPU access concurrently to the same pinned logical and physical space. Concurrent ac-
cesses by heterogeneous processors requires both data consistency and race conditions to be
solved by the programmer. Even though explicit synchronization points would allow these
issues to be easily addressed, the overhead involved by synchronization strongly affects the
overall system performance. To avoid explicit synchronizations at every memory access while
guaranteeing deterministic results, we propose a concurrent pattern based on tiling [156],
which is accessed by CPU and iGPU through alternate producer-consumer phases.

Fig. 3.9 shows an overview of the communication pattern. An n-dimensional data struc-
ture, where n depends on the problem (2D matrix for images in the example of Fig. 3.9),
is created and its size (Widthx ✓ Widthy) is calculated depending on the available GPU
LL cache. The data structure is partitioned into data blocks (tiles) which size (Bsize) corre-
sponds to the smaller size between GPU and CPU LLC cache block size. This allows each
access to a tile to be performed by a coalesced memory transaction.

CPU-iGPU communication relies on a pipelined sequence of access phases in which at
phase i the CPU first reads and then writes onto the even blocks while the iGPU reads and
writes on the odd blocks. At phase i + 1, even and odd blocks are inverted for CPU and
iGPU.

3.1.3 Improving performance for CPS on Edge computing embedded boards
with UMA

Although some work has been proposed to study the best choice among the different com-
munication models by considering the application characteristics [157], the effects of making
these models compliant with the standard communication protocols adopted for the devel-
opment of CPS have never been investigated. The design of a CPS, for example a robotic
system, involves experts from different application domains [158–160], who must integrate

36 3 Methodology

R
O
S

CPU
task

R
O
S

iGPU
wrapper

Process P1

iGPU
task

Process P2

CPU-iGPU
Communication

TOPIC
RECEIVE

TOPIC
SENDpublish subscribe

publishsubscribe

DataMsg DataMsg DataMsg
Memory

Standard Copy/
Unified Memory

Memory Memory

Fig. 3.10: CPU-iGPU standard copy with ROS topic paradigm.

the various software applications developed to address the specific issues of each distinct do-
main. However, such an integrated design is still an open problem [161–164]. In recent years,
to facilitate the integration of such multi-domain components and (sub)systems, distributed
frameworks like ROS have been proposed to provide the necessary support to develop dis-
tributed software for system components and devices. Compliance to ROS is nowadays a
key aspect for application re-use and easy integration of software blocks in complex systems.
However, it can cause performance degradation and can have a detrimental impact on the
characteristics of the CPU-iGPU communication model.

This section presents different techniques to efficiently implement CPU-iGPU commu-
nication on UMA that complies with the ROS standard. We show that directly porting
the most widespread communication protocols to the standard ROS architecture can lead
to overheads of up-to 5000%, often eluding the benefits of GPU acceleration. The afore-
mentioned issues are addressed through several dedicated solutions that implement ROS-
compliant communication protocols that take advantage of the CPU-iGPU communication
models provided by the embedded device, apply different mechanisms included in the ROS
standard and are customized to different communication scenarios, from two to many ROS
nodes.

Efficient ROS-compliant CPU-iGPU communication

We consider, as a starting point, communication between CPU and iGPU implemented
through CUDA-SC or CUDA-UM (see Fig. 3.6(c) and Fig. 3.6(d)). For the sake of space
and without loss of generality, we consider the performance of UM similar to SC, as in the
previous section.

Fig. 3.10 shows the most intuitive solution to make such a communication model com-
pliant to ROS. The main CPU task and the wrapped GPU task3 are implemented by two
different ROS nodes (i.e., processes P1 and P2). Communication between the two nodes
relies on the publish-subscribe model. The CPU node (i.e., process P1) has the role of exe-
cuting the CPU tasks and managing the synchronization points between the CPU and GPU
nodes. The CPU node publishes input data into a send topic and subscribes on a receive
topic to get the data elaborated by the GPU. The GPU node (i.e., process P2) is imple-
mented by a GPU wrapper and the GPU kernel. The GPU wrapper is a CPU task that
subscribes on the send topic to receive the input data from P1, it exchanges the data with
the GPU through the standard CPU-iGPU communication model, and publishes the result
on the receive topic.

This solution is simple and easy to implement. However, the system keeps three synchro-
nized copies of the I/O data messages (i.e., for CPU task, GPU wrapper, and GPU task).
For each new input data received by the wrapper through the send topic, the memory slot
allocated for the message has to be updated both in the CPU logic space (i.e., for the GPU
wrapper) and in the GPU logic space (i.e., for the GPU task) as for the CUDA-SC standard
model.
3 GPU-accelerated code (i.e., GPU kernels) cannot be directly invoked by a ROS-compliant node.

To guarantee ROS-compliance for any task accelerated on the GPU, the GPU kernel has to be
wrapped to become a ROS node.

3.1 Optimizing performance on heterogeneous devices at the edge 37

R
O
S

CPU
task

R
O
S

iGPU
wrapper

Process P1

iGPU
task

Process P2

CPU-iGPU
Communication

DataMsg DataMsg DataMsg
Memory

Standard Copy/
Unified Memory

Memory Memory

Service

Provide

REQUEST

RESPONSE

Fig. 3.11: CPU-iGPU standard copy with ROS wrapper service paradigm (RPC).

Thread T1 Thread T2Process P

TOPIC
RECEIVE

TOPIC
SENDpublish subscribe

publishsubscribe

DataMsg
Synchronous Ownership

ROS Zero Copy

CPU-iGPU
Communication

Standard Copy/
Unified Memory

Memory

R
O
S

CPU
task

R
O
S

iGPU
wrapper

iGPU
task

DataMsg
Memory

Fig. 3.12: CPU-iGPU standard copy with ROS native zero copy and topic paradigm.

CPU and GPU tasks can overlap, as the publish-subscribe protocol allows for asyn-
chronous and non-blocking communication.

Fig. 3.11 shows a ROS-compliant implementation of the CUDA-SC model through the
ROS service approach. Similarly to the publish-subscribe solution, the memory for the data
message is replicated in each ROS node and in the GPU memory. The message has to be
copied during every data communication, and since the service request can be performed
asynchronously, CPU-iGPU operations can be performed asynchronously.

Fig. 3.12 shows a more optimized version of such a communication standardization, which
is based on ROS-ZC and intraprocess communication. The ROS nodes are implemented as
threads of the same process. As a consequence, each node shares the same virtual memory
space, and communication can rely on the more efficient protocols based on shared memory.
Nevertheless, the usage of ROS-ZC has several limitations:

• ROS-ZC can be implemented only for communication between threads of the same
process. When a zero copy message is sent to a ROS node of a different process (i.e., inter-
node communication), the communication mechanism falls back to the ROS standard
copy.

• ROS-ZC does not allow for multiple nodes to subscribe on the same topic. If several
nodes have to access a ROS-ZC message concurrently, ROS-ZC applies only to one of
these nodes and returns to the ROS standard copy for the others. This condition holds
for both intra-process and inter-process communication.

• ROS-ZC only allows for synchronous ownership of the memory address. A node that
publishes a zero copy message over a topic will not be allowed to access the message
memory address. For this reason, CPU and iGPU operations cannot be performed in
parallel, as the CPU node cannot execute after sending the message (i.e., no overlapping
computation is allowed over the shared memory address).

These limitations guarantee that race conditions in shared memory locations will not
happen and provide better performance w.r.t. ROS standard copy in the case of intraprocess
communication. Nevertheless, it does not apply to inter-process communication, which is
fundamental for the portability of robotic applications.

Due to the several limitations involved by the previous solutions, we propose a new
approach that maintains the standard ROS interface and its modularity advantages while
taking advantage of the shared memory between processes when nodes are deployed in the
same unified memory architecture (see Fig. 3.13). The idea is to implement a ROS interface

38 3 Methodology

DataMsgDataMsg
IPC Shared Memory

Concurrent Access

Process P2

Memory Memory Memory

CPU-iGPU
Communication

Standard Copy/
Unified Memory

TOPIC
RECEIVE

TOPIC
SENDpublish subscribe

publishsubscribe

Memory Attach Memory AttachDataMsg DataMsg

R
O
S

CPU
task

Process P1

R
O
S

iGPU
wrapper

iGPU
task

Fig. 3.13: CPU-iGPU standard copy with the proposed ROS-ZC solution and topic paradigm.

IPC Shared Memory

TOPIC
RECEIVE

TOPIC
SENDpublish subscribe

publishsubscribe

CPU GPU Memory

DataMsg DataMsgDataMsg
Concurrent Access

Memory Attach

Zero Copy

Memory
Memory Attach

R
O
S

CPU
task

Process P1

R
O
S

iGPU
wrapper

iGPU
task

Process P2

CPU-iGPU
Communication

Fig. 3.14: CPU-GPU Zero Copy with our ROS Zero Copy solution and topic paradigm.

that shares the reference to the inter-process shared memory with the other ROS nodes,
and exchanges only synchronization messages. The proposed solution, ROS-SHM-ZC, has
the following characteristics:

• Not only intra-process: This solution also applies to inter-process communication
by means of a Inter-Process Communication (IPC) shared memory managed by the
operating system.

• Unique data allocation: the only memory allocated for data exchange is the shared
memory.

• Efficient CUDA-ZC (see Fig. 3.6(a) and (b)): The reference to the shared memory
does not change during the whole communication process between ROS nodes. As a
consequence, it also applies to the CUDA-ZC communication between the wrapper and
the iGPU task. (see Fig. 3.14).

• Easy concurrency: The shared memory can be accessed concurrently by different
nodes, allowing concurrent access to the same memory space.

The two drawbacks of this implementation are the risk of race conditions, which have to
be managed by the programmer, and the need to fall back to the standard ROS communi-
cation protocol when one of the nodes moves outside of the unified memory architecture.
Making multi-node CPU-iGPU communication compliant to ROS. The most in-
tuitive ROS integration in a concurrent CPU-iGPU application is the partition of the CPU
and iGPU tasks into two different nodes. In case of multiple nodes (CPUs and iGPU), we
propose a different architecture in which a dedicated node exclusively implements the syn-
chronization and scheduling (see Fig. 3.15). In particular, the CPU nodes wait for any new
data message from the send topic, perform the defined tasks, and then return the results in
the corresponding topic. The iGPU node(s) performs similarly for the CUDA kernel tasks.
While the scheduler node acts as a synchronizer for the CPU and iGPU nodes, it provides
the data to elaborate on the send topic, waits for CPUs and iGPU responses and, when both
are received, it merges the responses and forwards the merged data.

Fig. 3.15 shows the multi-node architecture implemented as an extension of the two node
architecture based on the ROS topic paradigm. It can be analogously implemented with the
ROS service paradigm.

Comparing the two solutions with multi-node architecture, the topic paradigm is more
efficient than the service paradigm in terms of communication, as the sending topic is shared
between the other subscriber nodes. In the service paradigm, a new request has to be made

3.1 Optimizing performance on heterogeneous devices at the edge 39

ROS

CPU
Layer

GPU
Operations

Process Pm

Data
Msg

Memory Memory

ROS

CPU
Operations

Process Pn
Memory

ROS

CPU
task

ROS

iGPU
wrapper

Process P1

iGPU
task

Process P2

CPU-iGPU
Communication

Memory

GPU TOPIC
RECEIVETOPIC SEND

publish

ROS

Node Scheduler

CPU TOPIC
RECEIVE

publish

publish

Data
Msg

Data
Msg

Data
Msg

Data
Msg

Standard Copy/
Unified Memory

Process P3

Memory Memory

Memory

subscribe

subscribe

subscribe

subscribe

… …

Fig. 3.15: CPU-GPU Standard Copy with ROS topic paradigm in multi-node architecture.

ROS

CPU
Layer

GPU
Operations

Thread Tm

Data
Msg

Memory Memory

…

ROS

CPU
Operations

Thread Tn
Memory …

ROS

CPU
task

ROS

GPU
wrapper

GPU TOPIC
RECEIVETOPIC SEND

publish

ROS

Node Scheduler

CPU TOPIC
RECEIVE

publish

publish

Memory
access

Memory
access

Process P

Data
Msg

Data
Msg

ROS Zero Copy
Synchronous Ownership

Shared
between
2 nodes

Copy for
concurrent

node

iGPU
task

Thread T2

CPU-iGPU
Communication

Data
Msg

Standard Copy/
Unified memory

Memory

Memory

Memory
access

Thread T1

Thread T3

subscribe

subscribe

subscribe

subscribe

Fig. 3.16: CPU-GPU SC with ROS native Zero Copy, topic paradigm and multi-node archi-
tecture.

for each required service. This aspect is particularly important as it underlines the scalability
advantages of the multi-node architecture compared to the two node architecture. Assume an
application with N CPU tasks and M GPU tasks all sharing the same resource. The system
can be ROS-compliant with one scheduler node, N CPU nodes, and M GPU nodes. All
nodes are synchronized by the scheduler node with the ROS topic or ROS service paradigm.

With the topic paradigm, the system requires N +M receive topics and one send topic,
while in the service paradigm, each of the N +M nodes has to create a service, which will be
used by the scheduler node. Since the topic paradigm relies on a single send topic that can
be shared by different subscribers, it is more efficient in the case of data-flow applications.

40 3 Methodology

ROS

CPU
Layer

GPU
Operations

Process Pm
Memory

ROS

CPU
Operations

Process Pn
Memory …

ROS

CPU
task

ROS

GPU
wrapper iGPU

task

ROS

Node Scheduler

Data
Msg

Data
Msg

Data
Msg

M
em

or
y

At
ta

ch

M
em

ory Attach

Memory
Atta

ch

GPU TOPIC
RECEIVETOPIC SEND

publish

CPU TOPIC
RECEIVE

publish

publish

subscribe

subscribe

subscribe

subscribe
Memory

Memory

Memory

Process P2Process P1

Process P3

CPU-iGPU
Communication

Zero Copy

IPC Shared
Memory

Concurrent Access

Data
Msg

Fig. 3.17: CPU-GPU Zero Copy with our ROS Zero Copy solution, topic and 3 nodes archi-
tecture.

Fig. 3.16 shows the multi-node architecture implemented through the ROS-ZC for node
communication. The CPU node, the iGPU node, and the scheduler node have the same
roles as before, but they are executed as threads of the same process and the exchanged
messages rely on the ROS-ZC paradigm. For this reason, two communicating nodes (i.e.,
scheduler-CPU or scheduler-iGPU) can exchange only the reference address of the data.
The communication for the remaining, competing, node automatically switches to ROS-SC.
The zero-copy exchange will be provided to the first node ready to receive the data and the
choice of such a node is not predictable. In general, this architecture with N CPU tasks
and M iGPU tasks requires N +M � 1 data instances in the virtual address memory space
(e.g., for one CPU task and one iGPU the system requires two data instances, as shown in
Fig. 3.16), as only one instance can be shared in zero copy between the scheduler node and
another node. Therefore, due its limitations, the native ROS-ZC can reduce the memory
used only by one data instance, compared to ROS-SC. The advantage of the multi-node
architecture ROS-ZC is that it overcomes the two node limitations of the native ROS-ZC.
Thanks to the scheduler node, which implements CPU-iGPU synchronization, all CPU and
iGPU can be executed in overlap. However, since data copy is still needed, it is not possible
to combine ROS-ZC to CUDA-ZC in the case of multiple nodes by fully taking advantage of
the zero copy semantics. This is due to the fact that ROS does not guarantee that the same
virtual address is maintained for the GPU node. As a consequence, and as confirmed by
our experimental results, this solution cannot guarantee the best performance in multi-node
communication compared to standard copy solutions in terms of both memory usage and
GPU management.

To overcome such a limitation, we propose the solution represented in Fig. 3.17. Differ-
ently from the previous solution, the system manages the IPC shared memory and, unlike
ROS-ZC, the nodes can be instantiated as processes. The scheduler node creates the IPC
shared memory by using the standard Linux OS syscall, then it shares with the other nodes
synchronization messages with the shared memory information. The CPU nodes and iGPU
nodes wait for synchronization messages. They obtain the IPC shared memory with the OS
syscalls and they perform the requested actions. This approach relies on the ROS-ZC mecha-
nism implemented through shared memory. It applies to both intra-process and inter-process
communication. However, since it aims at avoiding multiple copies of the data message, it

3 Containerization and orchestration on Edge-Cloud architectures 41

involves more overhead to manage race conditions among the nodes sharing the same logical
space.

3.2 Containerization and orchestration on heterogeneous

Edge-Cloud computing architectures

In the context of containerization and orchestration for Edge-Cloud computing, existing
task scheduling and resource management generally involve virtual machines or bare-metal
models based on containers. Most of the studies ignore the high concurrency of computing
nodes, and these studies focus mainly on how to reduce delays but do not consider a full set
of extra-functional constraints, which are fundamental in the robotic context.

The proposed approach implements a container-based design flow that considers different
extra-functional constraints along the robotic system programming and configuration.

Furthermore, bringing cloud-native environments to an open-hardware architecture,
RISC-V, is a new necessity arising due to its increased adoption, both in research and
industrial contexts. It allows unlocking the maximum potential of this new architecture in
the realm of computing continuum. Furthermore, analyzing the performance of the RISC-V
architecture with the porting of a complex SW infrastructure is critical.

Because of the aforementioned reasons, this section contributes the following:

• Section 3.2.1: Extending Docker and Kubernetes for ROS-compliant containerized
robotic applications

• Section 3.2.2: Expanding the Edge-Cloud computing continuum to the RISC-V Open
Hardware Architectures

3.2.1 Extending Docker and Kubernetes for ROS-compliant containerized
robotic applications

The proposed methodology targets programming advanced robotic tasks, where every
domain-specific SW component is developed and verified through a top-down design flow,
while it is integrated with the other domains for SW co-design since early in the design
flow for system-level (re)configuration (see bottom of Fig. 1.1). Rather than re-defining
new model-based approaches for single/double domain SW development, for which there al-
ready exist solid and widespread solutions (e.g., Matlab Simulink [165], RobMoSys [166]) the
proposed design flow applies containerization, inter-domain communication standards, and
orchestration concepts to reuse existing approaches and integrate them in a multi-domain
design flow.

The design methodology adopts and integrates industrial widespread applications like
Kubernetes, Docker, and ROS since they are the de-facto reference standard in robotics
for Industry 4.0/5.0. Other containerization and orchestration environments could still be
considered, as the proposed methodology is independent from them. The main goal is the
integration of multi-domain components since early in the design flow and their verification
with HW-in-the-loop before deployment. We achieve this with a methodology organized in
three main design and verification levels (see Fig. 3.18). We consider, as a starting point, the
multi-domain SW components as ROS nodes and their communication based on the ROS
standard as, at the state of the art, ROS is the de-facto reference standard for the design of
robotic SW applications.

At L1, the application undergoes functional verification on server/desktop computing
platforms. As verification is not the focus of this work, we will not explore it further, but
any state-of-the-art technique found in the literature can be used, such as assertion based
verification on ROS topics’ values. Dynamics, robot model, and environment are simulated
thorough a 3D simulator (e.g., Gazebo [167], Unity [168]). We also collect the data required
to analyze communication between ROS nodes, which we use in the clustering (and also
super-clustering phases, see Section 3.3.1).

Nevertheless, porting and testing these components to the target heterogeneous and dis-
tributed hardware and in the target software stack is a necessary step before the deployment

42 3 Containerization and orchestration on Edge-Cloud architectures

Off-the-shelf device(s) – Edge

Edge server(s)

Embedded
device(s) –
Edge

Cloud-Edge
Orchestration
and clustering

-K3S

3d simulator
-ROS-node-

AI app
-ROS node-

CNN-based
(inference)
-ROS node-

Computer Vision app
-ROS node-

Robotic SW application

Computer Vision
app -ROS node-

CNN-based
(inference)
-ROS node-

Robotic SW application

3d simulator
-ROS-node-

AI app
-ROS
node-Cloud

SW
deployment

Containerization, HW-in-the-loop
Verification and orchestration

L1: Functional
verification
on server

L2: Functional and non-functional
constraint verification with
HW-in-the-loop simulation

L3: Functional and non-
functional constraint
verification on robot

Fig. 3.18: Overview of the design flow.

to verify extra-functional constraints like real-time vs. accuracy, and this prompts the cre-
ation of realistic yet accessible robotic platforms to close the gap between the simulation
phase and the deployment phase. To avoid useless iterations of such a time-consuming step
during the SW-to-HW mapping exploration, the proposed design flow first implements a
containerization step of the SW components (i.e., ROS nodes) to abstract them from the
target environment.

The containerization relies on the following main concepts:

• ROS node hierarchy and abstraction levels. We classify the nodes implementing the
robotic application into abstraction levels, by which the multi-domain SW tasks are
organized and integrated hierarchically, from the higher level nodes implementing the
robot mission to the low-level nodes implementing the drivers. This allows for more effi-
cient clustering of nodes and, as a consequence, for improved containerization efficiency
in terms of memory overhead vs. quality of service.

• Clustering of ROS nodes into containers. Containerization of nodes involves both mem-
ory and CPU overhead. Such an overhead is negligible for a single node yet a problem in
advanced SW applications with large numbers of nodes. In addition, containerization of
nodes with intensive communication can lead to bandwidth bottlenecks. The method-
ology relies on a technique to cluster nodes into containers that considers bandwidth,
system memory, and overhead as design constraints to optimize the system efficiency.

• Inheritance-based container generation. To guarantee modularity and portability of con-
tainers across Edge-Cloud devices, SW dependencies of containers have to be satisfied.
Yet, the large number of containers may lead to prohibitive sizes of images that redun-
dantly include SW packages on disks. To avoid such a useless redundancy, containers
are generated by inheriting overlapping SW packages.

3 Containerization and orchestration on Edge-Cloud architectures 43

Drivers

Macro functionality

Functionality/
controllers

v2

v4 v8

v5

v6v1

v3

v7

v9

Mission

vm1 vm2

Fig. 3.19: Abstraction levels and hierarchy of ROS nodes.

• ROS-based communication between containers. The standard ROS efficiently implements
communication only among nodes run on the same device. We implemented the non-
isolation of containers to support node communication among nodes on distributed
architectures, which is mandatory to target Edge-Cloud architectures.

The node clustering and containerization allow for the automatic porting of ROS nodes
into distributed and heterogeneous devices (i.e., L2). The design methodology applies an or-
chestrator system that allows for the HW/SW/Network design space exploration by consid-
ering extra-functional constraints of the SW application (e.g., performance, network band-
width, real-time computation) and the target Edge-Cloud infrastructure features. In this
context, Kubernetes [169] is a standard platform to orchestrate containers and workloads,
and it is largely and increasingly adopted in the context of Cloud-native SW applications.
We combined Kubernetes and K3S [170] for the orchestration of the SW tasks across the
HW devices (see Fig. 3.18). Functional and extra-functional constraints as well as architec-
tural characteristics of the computing devices and network infrastructure (memory footprint,
latency, bandwidth, etc.) are considered to extrapolate the best HW/SW/Network system
configuration. It is important to note that, at L2, the robotic SW applications runs on the
target HW (i.e., HW-in-the-loop simulation), while the 3D simulator still replaces the robot
dynamics, model, and environment.

The 3D simulator is modularly removed from the SW system and replaced by the target
robotic platform at the deployment phase (i.e., L3). At L3, functional and extra-functional
correctness are verified on the robotic platform. Any simulation-based technique at the state
of the art can be applied (e.g., [171]).

ROS node hierarchy and abstraction levels

We classify the ROS nodes implementing the robot application into four abstraction levels
(see Fig. 3.19). Starting from the top, the mission level includes all nodes that implement
high-level commands and behaviors, i.e. the main control of the robot. This is the most
generic software and does not implement additional features, it is a collector of results from
the lower levels, that combined in a specific order create recipes that achieve a specific goal
(e.g., a sequence of commands to pickup an object and move it from position A to position

44 3 Containerization and orchestration on Edge-Cloud architectures

B). The macro-functionality level includes all the nodes that implement high level robotic
tasks. These nodes synchronize and aggregate multiple results from lower level nodes and
produce higher level abstractions (e.g., a global/local planner will use the results of the lasers,
the mapping, the localization, etc. and produce a path). Functionality and controllers [172]
handle the data coming from the drivers, but they are not always strictly dependent on the
HW. They might modify the data from a specific format to another or prepare the instruc-
tions for a driver node. The driver level includes all nodes that interact with the robotic
hardware and engines. While the nodes from the mission to the functionality/controllers
level are common for the three levels of the design flow (L1, L2, L3), the driver nodes may
differ from L1/L2 and L3. This is due to the fact that at L1 and L2, the drivers can be
included in the 3D simulator, while at L3 the drivers are HW-dependent [173]. Through
all these layers, there can be the standard ROS-based nodes, nodes custom-made by the
manufacturer of the hardware or custom built by the user. Also, these last two categories of
nodes are usually shared for the three levels of the design flow.

Clustering of ROS nodes into containers

To create the images, which are immutable objects that can be run through an isolated
virtualization layer called container, we group ROS nodes into clusters. We define a cluster
as a group of tightly communicating nodes. As confirmed by our experimental results, the
execution of images in containers involves a system memory overhead, which is negligible
for a single node yet not-negligible with the large number of nodes of real cases of study. In
these cases, the trade-off between cluster granularity vs. involved overhead is a key factor
for the overall system performance. The maximum granularity (i.e., one container per ROS
node) guarantees the most flexibility when ported to Kubernetes but also the highest over-
head. A reduced granularity, with a limited amount of containers, i.e., where each container
includes a large number of nodes, involves less overhead but it also limits the orchestrator
flexibility to distribute and balance the workload on the system. In addition, the cluster-
ing step also affects the bandwidth of communicating nodes. If two nodes with intensive
communication are placed into two separate containers, and the containers are mapped into
devices connected through a limited bandwidth network, the communication may become a
system bottleneck. This can sensibly limit the usable mapping and scheduling techniques.

To create clusters, we use a greedy algorithm that groups nodes together through it-
erative steps by analyzing their inter-node communication. The algorithm is based on the
Hierarchical Agglomerative Clustering (HAC) algorithm [174] that, when used in statistic
analysis, agglomerates sets of input data points using a distance function. We adapted the
algorithm to work on a graph G composed of ROS nodes. V (G) represents all the vertexes
and E(G) represents all the edges connecting the vertexes. In the input graph, each vertex
v " V (G) represents a single ROS node. Each e " E(G) is a non-directed weighted edge
that connects two nodes vi and vj . The weight of the edge (vi, vj) " E(G) represents the
communication bandwidth between two nodes. It represents the metric for clustering and is
defined as follows:

bandwidth(vi, vj) = n_topics ✓m ✓Msize

T
(3.12)

where n_topics is the number of ROS topics shared by (vi, vj), m is the number of messages
exchanged between publishers and subscribers over the time T , and Msize is the average
message size. These data are collected in the simulated environment at L1.

We define the distance function of the HAC algorithm to include multiple metrics. Unlike
single-linkage or complete-linkage distance functions, which use a single edge as a metric,
our distance function � maximizes the custom metric by considering the total amount of
bandwidth between clusters, i.e., the sum of the weights of the edges between connected
nodes of two clusters, as follows:

Definition 3.2.1 (�) Given a graph G and two clusters of vertexes Vi and Vj with at least
one edge between their vertexes, we define the weight � of the edge as the sum of all the
weights of the edges starting from vertexes of Vi, connected to vertexes of Vj.

3 Containerization and orchestration on Edge-Cloud architectures 45

º(vi, vj) " E(G) s.t. vi " Vi, vj " Vj

�(Vi, Vj) = 9 bandwidth(vi, vj)

The algorithm also considers the target number of clusters (n). We finally extrapolate the
upper bound of n as follows:

n & !available_system_memory

container_overhead
' (3.13)

where available_system_memory is the system memory available for the containers and
container_overhead is the overhead involved by each single container.

The output of the algorithm is a graph G¨ where each vertex v " V (G¨) is a cluster X of
nodes of G such that v.rank ' 1 and ∂X∂ ' 1. We define the rank of a vertex v " V (G¨) as
v.rank " (1, .., ∂V (G¨)∂) or as the number of nodes clustered inside each vertex.

Listing 3.20: Algorithm for cluster creation.
1 def c luster_nodes (G, n) :
2 cu l l_edge les s_nodes (G)
3 while |V(G) | > n :
4 order_by_rank (G)
5 G_b = {}
6 c l u s t e r = []
7 for each node in V(G) :
8 candidate = node . get_max_weight_node ()
9 while (candidate in c l u s t e r) :

10 candidate = node . get_max_weight_node ()
11 i f node not in c l u s t e r :
12 G_b. add (node + candidate)
13 c l u s t e r . add (node)
14 c l u s t e r . add (candidate)
15 re factor_graph (G_b)
16 G = G_b

Listing 3.20 shows the pseudo-code of the algorithm and Fig. 3.21a shows, for example,
the control flow graph G representing a SW application, and n = 2 is the target number of
clusters (i.e., containers). First, the algorithm cuts all the edge-less nodes (node v0 in the
example of Fig 3.21a). Since these nodes do not communicate with any other node, they
can be placed in any container without affecting the bandwidth. In the following steps, the
algorithm iterates as long as the number of vertexes contained in the graph is higher than
the target number of containers n (line 3). The number of vertexes in the new graph (i.e.,
G¨) decreases as the algorithm clusters the nodes that have higher communication rates
together. The number of vertexes is checked after the creation of each cluster to reach the
target number of running containers.

Then, the algorithm sorts the vertexes in the graph G by their rank. It starts from
the nodes with the lowest rank to avoid grouping everything in the same cluster. As
all nodes have the same rank when running the first iteration of the while cycle (i.e.,
ºv " V (G), v.rank = 1), the algorithm applies a lexicographic ordering, starting from v1,
proceeding with v2, and so on. For each vertex in the graph (line 7), the algorithm selects
the vertex connected by the edge with the highest value of � and it checks if it has already
been used in this iteration (line 9). In the example of Fig. 3.21a, node v1 is connected to
nodes v3 and v4 with weights 5 and 4 respectively, so the candidate is n3. If the candidate
has already been used in this iteration to create a cluster, the algorithm selects the next
edge with the highest value of � and the connected node. If no candidate is found, then
candidate will be empty and the node is added to the new graph without being clustered
in this iteration. The function add for the graph G_b will simply skip the empty candidate
node. This happens for node v5 in the example of Fig 3.21c. Otherwise, the two nodes are
clustered together and added as a single vertex (line 12), as for v1 and v3 in the example.

46 3 Containerization and orchestration on Edge-Cloud architectures

v2

v4 v8

v5

v6v1

v3

v7

v9

1

1

5 34

1

4 5

3

2 2

v0

(a)

v2

v4 v8

v5

v6v1

v3

v7

v9

1

1

5 0 3 04

1

4 5 0

3 0

2 2

(b)

v2+
v4

v8+
v9

v5

v6+
v7

v1+
v3

1

1

4+1

4

2+2

(c)

Fig. 3.21: An example graph before and after the first iteration of the clustering algorithm
in listing 3.20.

The algorithm updates the clusters with the nodes considered in the iteration (lines 13
and 14). In the example, it repeats these steps for v2, ..v9, obtaining the clusters of Fig.
3.21b (v2 + v4, v6 + v7, v8 + v9). Finally, the algorithm refactors the graph by applying
definition 3.2.1 (line 15), i.e., by merging edges towards clustered nodes together. Fig. 3.21c
shows an example, in which the vertexes actually join to create G¨ and the weights on the
edges going into nodes of the same cluster are summed together. The new graph is written
back on the original graph variable to be used as the input graph for the next iteration (line

3 Containerization and orchestration on Edge-Cloud architectures 47

v1+v2+
v3+v4+
v5

v6+v7+
v8+v9

2

Fig. 3.22: Result of the algorithm in listing 3.20 applied to the graph of figure 3.21, with
n = 2.

Drivers

Macro functionality

Functionality/
controllers

cluster 2cluster 1

C1_
v2

C1_
v4

C2_
v3

C1_
v5

C2_
v1

C1_
v1

C1_
v3

C2_
v2

C2_
v4

Ve
rt

ic
al

 p
ar

tit
io

ni
ng

Fig. 3.23: Final result of the clustering on the example graph of figure 3.21, showing the
vertical partitioning.

16). If the number of vertexes is higher than the target, the algorithm starts a new iteration
(line 3).

The algorithm generates a context based clustering, as shown in the example of Fig. 3.22.
We define a context as a group of nodes that share one or more functional properties (e.g.,
arm control and vision are two contexts in a robotic system).

Fig. 3.23 shows the results of the clustering algorithm for the running example. The
generated clusters usually form a vertical partitioning (i.e., from macro-functionality to
driver nodes) where nodes with the same context are grouped together. It may happen that
large amounts of nodes cluster together, making the containerization counter-intuitive as
all the nodes would be grouped together and thus defeating the purpose of modularity. In
these cases, we use the resources needed by each node as tie-breakers. Through profiling, we
identify resource-heavy nodes and split them into separate images as communication will
always be impacted no matter which node is split.

Inheritance-based container generation

As containers are independent from each other and the rest of the system, they cannot
run properly without installing the required software dependencies inside each image. In
ROS-based applications, these can be installed automatically (by the rosdep tool [175]).
The problem arises when considering overlapping dependencies between multiple images.
These could inflate the total disk space used in a significant manner as several software
packages and libraries might get replicated multiple times. To address this problem, we take
advantage of the Layered File System (OverlayFS) built into Docker and the principle of
inheritance.

Once all nodes are grouped in their respective clusters and all their dependencies are
listed, we can perform a check for overlapping dependencies and create a parent image from

48 3 Containerization and orchestration on Edge-Cloud architectures

C1
dependencies

C2
dependencies

C3
dependencies

overlap
β

α_deps

overlap
α

β_deps

C3

C2

C1

Fig. 3.24: Example of constructing containers with inheritance when there are overlapping
dependencies, shown with a Venn diagram. C2 is also a multi-stage build.

which the others will inherit the common parts. This is done by gathering all common
dependencies between every or some images and by creating parent images containing the
overlaps. This procedure is expensive time-wise, but it only has to be done once at the
image creation phase. The procedure also applies for images with multiple overlaps. Fig.
3.24 shows the main idea with, as an example, three containers. The procedure generates a
Venn Diagram of the dependencies with the intersections as common parts. In the example,
C2 represents an instance with multiple inheritance (in Docker, this is referred to as a
multi-stage build).

ROS-based communication between containers

In standard ROS environments, nodes communicate through IP addresses and port numbers,
where the IP corresponds to the device IP in the network and ports are assigned randomly.
This allows communication and synchronization of ROS tasks to be easily implemented also
when they are distributed on different devices of the computing cluster. In contrast, stan-
dard containers require the association to private (isolated) subnet IPs [176]. To tackle such
a communication issue among containerized ROS tasks distributed across different cluster
devices, the proposed solution implements the non-isolation of containers. All containers
are launched with access to the networking interfaces of the host (through the option “host-
Network: true” under Kubernetes). This eliminates any network overhead introduced by the
containers [76]. It also removes the NAT, which is not required in our target applications.

3.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V open
hardware architectures

In recent years, there has been considerable interest in open hardware architectures, which
allow innovation in processors to take place faster and faster, covering the whole computing
continuum spectrum from cloud to edge and low-power systems. RISC-V architectures play
a dominant role in this context for both academic and industrial product designs [8, 9].

Unlocking the potential of these architectures in the context of the computing continuum
is essential to open the way to future systems entirely based on open and novel hardware.
Indeed, the European Commission is pushing the development of HPC, cloud and edge
computing systems based on RISC-V [177], which is already gaining momentum in edge
and microcontroller architectures. Consequently, it is of utmost importance to concurrently
bring the related software ecosystem at the same technology readiness level to support
this evolution. A great effort is already happening in this direction, as indicated by the
growing software libraries and tools for RISC-V [178]. This effort is still missing regarding
software infrastructures and tools for the computing continuum. A first step in this direction
requires a preliminary evaluation and profiling of the containerization software on RISC-V
processors and platforms to identify possible bottlenecks to be faced in next-generation
architectures. However, RISC-V processors are not yet present in commercial distributed

3 Containerization and orchestration on Edge-Cloud architectures 49

computing platforms. Consequently, no container software version has yet been ported or
profiled on these systems.

This section aims to fill this gap by porting and profiling an orchestration platform
(Kubedge-V) to a RISC-V cluster prototype based on SiFive processors. The cluster, called
Monte Cimone, was designed to open the way to the future edge computing systems based
on RISC-V [179]. We identified the minimum components to support the basic features of
container orchestration, the required network plugins (e.g., EdgeMesh), and the container
runtime (e.g., runc with CRI-O) to be employed for the target RISC-V architecture.

In its current implementation, Monte Cimone performance per Watt lies in the class
of high performance edge computing platforms. For this reason, we considered a reference
architecture made of a Kubernetes node running on a high-performance server (with an
Intel Xeon processor) and KubeEdge-V running on Monte Cimone. This setting allowed us
to profile the execution of KubeEdge-V on RISC-V to characterize its overheads on different
benchmark suites (Phoronix, OSBench, IPC-Benchmark and stress-ng). In addition, we show
the overhead introduced by the KubeEdge-V system on both execution time and memory
usage. Using a set of benchmarks and scaling the number of used containers, we show how the
system performs under different load levels, finally comparing it with an equivalent system
based on an ARM architecture featuring the same power envelope. The results show that
the solution is feasible and that the performance degradation caused by containerisation
on RISC-V systems is comparable to the performance degradation observed on the ARM
system. We also identify which operations are mostly impacted by the container runtime
and should be considered for future software or hardware optimizations.

The KubeEdge-V platform

We deployed the ported orchestration platform, KubeEdge-V, on a prototype RISC-V sys-
tem. The prototype system is a computer cluster called “Monte Cimone”. Monte Cimone
nodes have been designed to explore RISC-V as the core for future edge nodes, as will be
summarized in the following. Currently, the computational power delivered by these nodes
makes them suitable for edge applications. For this reason, the reference system we consider
is made of an x86 as the cloud node and RISC-V as the edge node, where we ported and
profiled the KubeEdge platform.
Kubernetes for RISC-V. Fig. 3.25 shows a summary of the Kubernetes architecture,
where each Kubernetes component is highlighted in blue, pods are dark red, and containers
are green.

On the RISC-V edge nodes, we do not use Kubernetes but a lightweight, edge-oriented
solution: KubeEdge. KubeEdge is an open-source system for extending native container-
ized application orchestration capabilities to hosts at the edge. It is built upon Kubernetes
and provides fundamental infrastructure support for network, application deployment and
metadata synchronization between cloud and edge [180]. Fig.3.25 shows the KubeEdge com-
ponents in orange. KubeEdge is composed of two main components, the CloudCore, which
is installed through a Kubernetes container on the master node, and the EdgeCore, which is
a process that acts as a kubelet on the edge nodes. Unlike Kubernetes, KubeEdge can adapt
to mesh networks and take into account nodes that momentarily become unreachable due
to harsh conditions, e.g., remote sensors or drones. To achieve offline computing, KubeEdge
maintains a copy of the cluster status locally on the edge device to then synchronize it with
the master once connectivity is restored.

Fig. 3.26 shows a summary of the software stack required to run containers and KubeEdge
on RISC-V. Container deployment requests are made through Kubernetes, which are then
synchronized by the CloudCore to the appropriate EdgeCore, passing information through
the mesh network. The EdgeCore on the target device, chosen by the Kubernetes sched-
uler, receives the deployment and requests a new container to CRI-O (Container Runtime
Interface for the Open Container Initiative). If the container image is not already available
on the device, CRI-O downloads it. CRI-O then starts runc (Container Runtime) with the
requested parameters and network plugin (i.e., EdgeMesh). Runc starts the processes inside

50 3 Containerization and orchestration on Edge-Cloud architectures

Kubernetes Master

Device0

Device1

ETCD
Controller
manager

API serverScheduler

Kubelet Kube-proxy

Devicen

Kubelet Kube-proxy

POD0 PODj

cont1
cont0 cont0…

POD0

cont0

…

Kubelet Kube-proxy

POD0

cont0 KubeEdge
POD1

Cloud
core

Devicee1

EdgeCore

POD0

cont0

Local
Data
store

Deviceek

EdgeCore

POD0

cont0

Local
Data
store

Edge
Mesh
Master
relay

…

Fig. 3.25: Kubernetes and KubeEdge architecture.

the container and assigns them to the appropriate namespace and cgroup through Linux
system calls.

We ported and re-compiled the whole environment for RISC-V, including the container
images used to run Kubernetes. A detailed guide is also available on Gitlab4. The installation
process is summarized in the following.
Installing KubeEdge on RISC-V. An up-to-date version of the Go language compiler is
a main requirement to install the complete software stack. An older version of Golang can
be obtained from the standard Ubuntu repository to bootstrap the latest. The installation
process begins with runc and CRI-O. Configuration of CRI-O requires special attention,
specifically adjusting the default container registry to a custom one, which is a requirement
to use a custom pause image for RISC-V. The pause container is crucial for Linux to configure
namespaces and cgroups before starting the actual container. However, since the pause
image does not exist for RISC-V, it needs to be created and hosted on a custom registry.
To achieve this, we extracted the Dockerfile from Kubernetes’ pause and compiled it for
RISC-V. Next, we require the EdgeMesh network plugin, which enables the communication
between edge devices through a mesh network while relaying Kubernetes master data. The
plugin requires a container running on each device for data handling and communication.
Hence, we manually compiled the EdgeMesh executable for both x86 and RISC-V, to create
a single multi-architecture container. To support RISC-V, modifications were made to one
of the libraries used by EdgeMesh. Detailed information is available on the Gitlab page.
Finally, we compiled the KubeEdge executables, created the container images, and installed
them. These operations involved extracting Dockerfiles from the original KubeEdge, as the
original containers rely on special “builder” containers not yet available for RISC-V. With
these steps completed, KubeEdge can be successfully installed and used.
4 https://gitlab.com/parco-lab/kubeedge-v

3.3 Re-configurability of software for Edge-Cloud computing continuum 51

EdgeCore

CRI-O

Runc

Linux Kernel

Containerimage

CloudCore

CRI-O downloads and
stores the images on
the device

Kubelet (edge)

Master (cloud)
EdgeMesh
network

Fig. 3.26: Software stack for KubeEdge on RISC-V.

3.3 Re-configurability of software for Edge-Cloud computing

continuum

Stringent accuracy standards for robotic software are imperative due to the frequent involve-
ment of robots in safety-critical tasks. In addition to functional constraints, these standards
encompass supplementary extra-functional constraints such as QoS, reliability, scalability,
and energy efficiency [181]. Fulfilling these constraints necessitates the set up of robotic ap-
plication software to function across heterogeneous computing architectures, which entails
the allocation of software components across Edge-Cloud computing clusters [5].

Within this multi-container context, a significant challenge involves maintaining unin-
terrupted robot functionality despite disruptions. Consequently, there is a growing inter-
est within robotics companies in embracing orchestration platforms for software deploy-
ment [15,16].

This rises a new big challenge, as state-of-the-art orchestrators such as Kubernetes rely
on “scheduling” policies designed to enhance system-level efficiency (e.g., load balancing,
optimizing data transfer, and overall system energy efficiency) to allocate containers across
the Edge-Cloud computing nodes (referred to as “nodes” hereafter). Due to their inherent
focus on automating software deployment, these orchestrators do not support global syn-
chronization of containers, which would require source code modifications. As a result, this
limitation hinders the implementation of scheduling algorithms aimed at QoS constraints,
such as minimizing the application network usage or makespan.

To optimize these two very important aspects of the Edge-Cloud computing architecture,
this section makes the following contributions:

• Section 3.3.1: a super-clustering algorithm that extends the Kubernetes scheduler to
perform efficient mapping of the containers into the cluster of computing devices. This
enhances the clustering of ROS nodes into containers with the aim of reducing the
network bandwidth utilization.

52 3 Containerization and orchestration on Edge-Cloud architectures

+ Bandwidth

Container priority

Specification: CPU
cores, system memory,

storage, etc.

• List of nodes N
• Filtering policies

• List of nodes N
• Scoring policies
+ SuperClustering

Container CnContainer Cn

Container C2Container C2

Container C1Container C1

If 𝑄 ≠ ∅

Filtering

Scoring

Binding

Sorting

Sorted
container
queue Q

Container queue

∀𝐶𝑖 𝑖𝑛 𝑄

Fig. 3.27: K3S proposed extension for mapping of nodes based on ROS communication.

• Section 3.3.2: a new scheduling approach for Kubernetes called HEFT4K that, starting
from the HEFT task ranking, takes advantage of the OS niceness concept to reduce
priority inversions and preemptions of tasks to improve the application makespan.

3.3.1 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Network

Fig. 3.27 depicts an overview of the proposed orchestration platform with support for super-
clustering. The orchestration begins with the queue of ROS nodes clustered into containers,
and the list of computing nodes representing the computing platform (i.e., the cluster of
computing devices). In this section, nodes are computing nodes of the cluster, i.e., devices.
The instances where nodes refer to ROS nodes will be specified. A set of specifications
is provided for each container (e.g., memory, CPU, storage requirements). The platform
implements four main steps. First, sorting of containers using a hierarchical scheduling
policy to generate a priority queue ordered by a priority class. The priority class allows
the scheduler to determine which containers have to be scheduled first. This value is user-
defined depending on the container requirements, and is set by the cluster administrator
during the deployment phase. Then, for each container in the queue, the filtering phase
selects the nodes of the cluster (i.e., the devices) that satisfy the container specifications,
such as CPU cores required and available, system memory, and storage. The scoring phase
creates a node ranking by considering user-defined policies, and schedules the container on
the highest ranking node. An example of scoring policy is node affinity, where a preference for
specific nodes is given, thus giving them higher ranking and favouring them in the scheduling.
Finally, the binding phase maps the container to the node by allocating resources for the
container.

The scoring also calculates the ranking for each node-container pair, depending on the
bandwidth. We use an extended version of Eq. (3.12) where, instead of using ROS nodes, we
use the clusters obtained from Algorithm 3.20 to calculate the bandwidth between containers.
This allows us to compute the communication bandwidth between the new container and
those that are already deployed on the node. We define the rank for the deployment of
container � on node n as follows:

rankn,� = 9
c"n

bandwidth(�, c) (3.14)

3.3 Re-configurability of software for Edge-Cloud computing continuum 53

C2

C1

C0 C3

C4

2
1

3

2 1

1

3

(a) Example
graph representing
communication
between clusters of
ROS nodes (i.e.,
containers)

Container Priority
C0 3
C1 2
C2 1
C3 0
C4 4

(b) Priorities that establish
the deployment order for the
containers.

Node #1

Node #2

5

2

C2

C4

3

2
1

C0 C3

C1

(c) Example map-
ping created by
equation (3.15)
for the graph of
Fig. 3.28a and two
nodes.

Fig. 3.28: Example of Super Clustering.

where bandwidth is the extended definition of Eq. (3.12) and c " n are all the containers
already deployed on node n. This formulation gives a higher ranking to those nodes where
the bandwidth is higher. As a consequence, if container � were to be deployed on node n, it
would lead to that amount of saved bandwidth.

As other scoring policies might be active at the same time, we normalize the value such
that rankn " [0, 100]. We achieve so with the normalized rank rank_norm, obtained as
follows:

rank_normn,� =
rankn,�

maxn"N (rankn,�) ò 100 (3.15)

where N is the list of all computing nodes in the Kubernetes cluster.
Fig. 3.28a shows an example graph. Each node in the graph represents a cluster of ROS

nodes containerized together (i.e., containers). The edges represent communication between
containers and their weights represent the involved bandwidth. There are five containers,
C0, C1, C2, C3 and C4, that need to be deployed onto two compute nodes with the super-
clustering algorithm (Fig. 3.28c). The five containers have different priorities as listed in
Table 3.28b. The containers are sorted by their priority, deploying the highest priority con-
tainer first. Container C4 has the highest priority and is deployed first on either node #1
or #2, since both are empty. For this example, we used node #1. Then, the containers are
scheduled with the order C0, C1, C2, C3. To decide on which of the two nodes they should
be deployed on, we compute the rank with Eq. (3.14). C0 is calculated as follows:

C0 =v rank#1,C0
= 8

c"#1 bandwidth(C0, c) = 0

rank#2,C0
= 8

c"#2 bandwidth(C0, c) = 0
} �

(free node policy)
node #1

As container C0 has zero bandwidth towards both nodes, the one with more free resources
is taken (node #1 in the example).

The rank for all subsequent containers is calculated as follows:

C1 =v rank#1,C1
= 8

c"#1 bandwidth(C1, c) = 2

rank#2,C1
= 8

c"#2 bandwidth(C1, c) = 1
} �

(free node policy)
node #1

54 3 Containerization and orchestration on Edge-Cloud architectures

C2 =v rank#1,C2
= 8

c"#1 bandwidth(C2, c) = 1

rank#2,C2
= 8

c"#2 bandwidth(C2, c) = 2
} �

(free node policy)
node #2

C3 =v rank#1,C3
= 8

c"#1 bandwidth(C3, c) = 4

rank#2,C3
= 8

c"#2 bandwidth(C3, c) = 3
} �

(free node policy)
node #1

This example takes into consideration priority as well as bandwidth as the algorithm
tends to cluster containers together as much as possible. If the bandwidth is the only metric
considered, the best solution is to deploy all containers onto the same computing node, as
that is the best possible solution. In our experimental results, other constraints such as CPU
usage in time or cores, system memory minimum and maximum usage, storage available and
network topology are considered for the deployment.

3.3.2 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Makespan

In the context of robotic applications, response times and application runtime are two im-
portant factors that contribute to the safety and reliability of a robotic system. Modern
robotic software based on publish/subscribe paradigms (e.g., ROS), can often be repre-
sented as a DAG. This allows to apply more advanced scheduling techniques compared to
those currently available in orchestration SW, such as Kubernetes.

As an example, Fig. 3.29 shows the outcome of the Kubernetes scheduling applied to an
application represented as a DAG. This application runs on a heterogeneous (distributed)
cluster consisting of two nodes, each equipped with two CPUs. Each graph node represents
a containerized task, while the graph edges represent the temporal dependencies between
tasks. In the optimal scenario, task communication relies on a standard API such as ROS
or any other publish-subscribe paradigm. This approach ensures that temporal task-to-task
dependencies are implicitly met. However, the lack of global synchronization leads to priority
inversions between containers in the critical path (A,F,G) and other tasks. Furthermore,
in such distributed architectures, factors like preemption mechanisms (shown in blue time
slots in Fig. 3.29), which often cannot be disabled, and data transfers (red slots), impact
the application’s makespan.

To overcome this limitation, there is a need to reduce the makespan without central-
ized or distributed synchronization of containers. As a starting point, we used the HEFT
algorithm [33], which is one of the most efficient mapping and synchronization algorithms
in the current state-of-the-art for makespan optimization. HEFT typically demands cen-
tralized synchronization of tasks (containers), making it incompatible with Kubernetes. We
take advantage only of the definition of the priority ranking of tasks and the mapping topol-
ogy, while we discard synchronization information like the starting time of tasks. Fig. 3.29
(HEFT on Kubernetes scheduling) shows the outcome of implementing this approach in
Kubernetes in the example and provides a comparison of the resulting makespan (13.3 ms)
with the theoretically ideal scheduling according to HEFT (HEFT scheduling, 11 ms). While
the ranking-based mapping method improves upon the initial Kubernetes scheduling (14.7
ms), it still struggles with the issues of priority inversion and preemption during container
execution.

To improve the makespan, we propose a solution to adjust container priorities through
their niceness during the deployment phase. Additionally, to align with the orchestrator’s
automated deployment, scaling, and recovery capabilities, our approach relies on event-
driven re-scheduling. It starts with an initial offline mapping, and subsequent re-mappings
are triggered as needed, such as in the event of a node failure. The re-mappings target the
minimal subset of containers to ensure uninterrupted robot functionality to the greatest
extent possible.

3.3 Re-configurability of software for Edge-Cloud computing continuum 55

Task Time
Node0

Time
Node1

HEFT
rank

Niceness

A 1.2 ms 1.0 ms 15.1 -20.0

B 4.8 ms 4.0 ms 5.4 5.1

C 4.8 ms 4.0 ms 5.4 5.1

D 4.8 ms 4.0 ms 5.4 5.1

E 4.8 ms 4.0 ms 5.4 5.1

F 9.6 ms 8.0 ms 13.0 -14.6

G 2.4 ms 2.0 ms 3.2 10.7Application DAG

A

F

B

C

D

E

G

Node1

1Gb/s

"Edge-Cloud"
architecture

c
c

Node0
c
c

Kubernetes scheduling
Makespan: 14.7 ms

Node0

Node1

CPU0

CPU1

CPU0

CPU1

A

0 2 3 4 5 6 7

Time (ms)
1 98 10 12 13 14 1511

E
F

C

D

F CC FC

GB

HEFT scheduling
Makespan: 11.0 ms

Node0

Node1

CPU0

CPU1

CPU0

CPU1

A

0 2 3 4 5 6 7

Time (ms)
1 98 10 12 13 14 1511

B E

D
C

GF

HEFT on Kubernetes scheduling
Makespan: 13.3 ms

Node0

Node1

CPU0

CPU1

CPU0

CPU1

A

0 2 3 4 5 6 7

Time (ms)
1 98 10 12 13 14 1511

E
F

D

F BB FB

C

GB

Priority inversion: 𝐻𝐸𝐹𝑇𝑅 𝐹 > 𝐻𝐸𝐹𝑇𝑅(𝐵)

Preemption

Fig. 3.29: Application example represented by a DAG and the corresponding makespan
achieved with native Kubernetes, (ideal) HEFT, and HEFT on Kubernetes schedulers. Red
boxes represent data transfer, blue boxes represent preemption.

The HEFT4K scheduling

Let Gc = (V c, Ec) be a connected but not necessarily complete graph representing the
distributed Edge-Cloud computing architecture. Each vertex vci " V c is a computing node
and each edge ecj,k " Ec is the communication link between vcj and vck. Each edge has a
bandwidth value associated with l(ecj,k).

We define Ga = (V a, Ea) as the DAG representing the software application a, where
each vertex vai " V a is a containerized task to be scheduled on a distributed computing
architecture. Each edge eaj,k " Ea is a temporal dependency between tasks (vaj , vak). Each task

56 3 Containerization and orchestration on Edge-Cloud architectures

has a corresponding computational cost t(vai,j) for each node vcj " V c (ms). Each edge has a
corresponding communication cost d(eaj,k). The communication value is represented in Mbits.
Combined with the network bandwidth, it allows to calculate the actual communication costs
after the task-to-node mapping. The goal is to find a mapping of V a in V c that achieves the
best makespan without the need for global synchronization among tasks.

Starting from the execution time of each task vai in each node vcj and the communication
latency of each link ecj,k (which we obtain with the open shortest path first routing algo-
rithm), we apply the HEFT algorithm (look ahead version [94]). The algorithm generates a
ranking of the tasks. By following the rank list, it calculates, for each task, the task-to-node
mapping, the start and the finish times of the task in the selected node. The mapping and
the scheduling times guarantee that the execution of tasks follows the priority order of the
generated rank (condition 1), and the temporal constraints between tasks (i.e., the execution
order of the DAG nodes in each path) are satisfied (condition 2).

Nevertheless, due to the lack of global synchronization, the Kubernetes scheduling can-
not apply the start and finish times of tasks on the distributed nodes. Although adopting
the HEFT mapping in Kubernetes without task synchronization achieves makespan im-
provements over the standard Kubernetes scheduling (i.e., 17.7% on average), it suffers from
priority inversion and preemption of tasks, which often lead to makespan increase. In addi-
tion, HEFT is a static scheduler, which requires re-execution at each deployment event of
Kubernetes. It requires the shut down and re-start of the whole container set, which involves
unsustainable interruptions of the robot functionality.

We propose HEFT4K, which relies on three points. First, we assume that the robotic
software application implements task communication through a standard API, such as ROS
or any other publish-subscribe paradigm. This guarantees that condition 2 is satisfied. At
the deployment time, we associate a niceness value to each task for the preemption rules
implemented by the target operating system. Although condition 1 cannot be guaranteed,
the niceness values force the priority of the tasks by considering the HEFT ranking. Finally,
it implements an event-driven remapping approach to deploy tasks after node failure without
requiring the application deployment from scratch.

HEFT ranking-based priority through task niceness

In the Linux kernel, the standard scheduler relies on a dynamic priority-based scheduling
algorithm. Initially, each process is assigned a base priority. This base priority increases each
time the process remains idle or waits in the ready queue. The operating system allows ad-
justment of the base priority through the niceness value, which can elevate a process’s base
priority, resulting in more frequent scheduling. This scheduler ensures that every process
receives a fair share of CPU time and prevents any process from becoming starved. Eventu-
ally, even a process with the lowest base priority will see its dynamic priority rise, making it
the next to be executed. Once a process is scheduled to run, its dynamic priority is reset to
its base value. It is important to note that, in this system, negative values indicate higher
priorities compared to positive ones.

We leverage this dynamic priority system to assign a niceness value which depends on
the HEFT rank of each task. The HEFT rank represents the task scheduling order com-
puted by HEFT within each device’s scheduler. This approach effectively mitigates priority
inversions and drastically reduces preemptions, addressing the challenge of limited control
over a process start and finish times.

HEFT4K calculates the task niceness as follows:

niceness(vai) = (niceH � niceL) ò HEFTR(vai)
max(HEFTR(Ga)) + niceL (3.16)

where niceH and niceL denote the upper and lower bounds for the niceness values to be
assigned to each task. HEFTR provides the HEFT rank for the given task.

Fig. 3.30 shows the resulting scheduling for the running example. Compared to HEFT on
Kubernetes in Fig. 3.29, we observe the elimination of priority inversions and preemptions
along the critical path, particularly with task f. This leads to a notable enhancement of

3.3 Re-configurability of software for Edge-Cloud computing continuum 57

HEFT4K scheduling
Makespan: 11.0 ms

Node0

Node1

CPU0

CPU1

CPU0

CPU1

A

0 2 3 4 5 6 7

Time (ms)
1 98 10 12 13 14 1511

D
C

GF
E BB EB B EEE BB E

Fig. 3.30: Scheduling the example of Fig. 3.29 with HEFT4K.

approximately 20.9% in the makespan. In comparison to the scheduling implemented by
Kubernetes, the speedup is 33.6%.

Event-based remapping

To complement the orchestrator functionality, we also account for scenarios where a com-
puting node becomes unavailable and the tasks running on that node necessitate an online
re-deployment (i.e., restart of the tasks on a different node without restarting the whole
system). This operation can lead to suboptimal remapping and extended makespan as stan-
dard orchestrators like Kubernetes implement such a re-deployment of containers targeting
workload balancing instead of makespan optimization. To address this issue, HEFT4K in-
corporates the partial remapping of tasks. This approach specifically remaps only the tasks
that were lost onto operational nodes, with a focus on optimizing makespan to minimize the
impact of node failures.

Conversely, there are scenarios where partial re-mapping might result in makespan in-
creases, and a complete task re-mapping from the beginning, along with a corresponding
temporary service interruption, would be more acceptable. HEFT4K employs a threshold
mechanism to determine whether to choose partial or total remapping. If the cumulative
HEFT ranks of the rescheduled tasks exceeds a certain percentage of the total sum of
HEFT ranks for the entire DAG, the decision is made to reschedule the entire application.
The idea is that, given that the HEFT rank encompasses task computation time, communi-
cation time, and priority, exceeding the HEFT rank threshold implies that either numerous
less critical tasks or a few highly crucial ones were assigned to the failed node. In either
scenario, this indicates a significant deterioration in the current mapping.

The threshold value is user-defined and system-dependent. We developed a benchmark
that, starting from a given �-value representing the maximum increase of makespan and the
architecture characteristics (node compute capability, communication, etc.), it extrapolates
the threshold for any DAG size. The benchmark iterates over the threshold values until the
� is reached, giving the best compromise between rescheduling frequency and performance.

Fig. 3.31, for example, depicts the results for � = 10% in our experimental setup, i.e., the
performance difference between a re-mapping created from scratch and a partial re-mapping
for different DAG sizes, when a node in the cluster is lost. We found the corresponding
near-optimal value of the threshold at ⌅20%. Green denotes the DAGs that lost less than
20% of the total HEFT rank of the application, while blue denotes applications that lost
more than 20%.

Algorithm 2 outlines the complete re-mapping procedure. First, it identifies all tasks
affected by an offline node (line 1). It checks if a critical task has been impacted or if the
threshold has been surpassed (lines 3-6). If either condition is met, it performs a complete
re-mapping of the DAG. Otherwise, a partial re-mapping is performed, and the list of tasks
is sorted according to their HEFT ranks (lines 8-9). For each task in the graph, if it is not
one of the affected tasks, and for each node in the Edge-Cloud cluster that differs from
the node on which the current task was originally scheduled, it modifies the CPU time to
the maximum. This adjustment compels the HEFT algorithm to remap tasks that were not

58 3 Containerization and orchestration on Edge-Cloud architectures

Fig. 3.31: Performance loss when the sum of the HEFT rank lost due to a node failure is
higher than 20%.

affected on the same node as before, while dropped tasks are mapped around locked tasks
in the most optimal manner possible (line 18). The algorithm computes the niceness value
according to Eq. (3.16) (line 19). Finally, it restores all modified runtimes in Ga (line 20).

This algorithm allows for improved rescheduling efficiency and is also efficient itself. The
overall complexity is the same as HEFT because the HEFT rank sorting takes O(∂V a∂ ✓
log ∂V a∂), the CPU time modification phase added to HEFT takes O(∂V a∂ ✓ ∂V c∂) and, the
niceness computation phase takes O(∂V a∂). Thus, the overall complexity remains O(∂V a∂2 ✓∂V c∂) (from [33]).

Finally, HEFT4K implements the complete re-deployment also when a node failure in-
volves a critical task, i.e., a task whose offline affects the entire application and causes the
system downtime.

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum

The standard Kubernetes architecture does not support any notion of RT containers, as
it does not have the data structures or the modules required to handle the additional re-
quirements of such containerized RT tasks5. This means that these RT tasks will be treated
equally, even though their requirements are different.

This section introduces a platform for container orchestration onto edge-cloud archi-
tectures for mixed-criticality systems based on off-the-shelf technologies (i.e., Linux OS +
Preempt-RT, Kubernetes-K3S). The platform is ROS- and Kubernetes-compliant and does
not require any custom software patch to be used; thus, it is supported in provisioned instal-
lation of Kubernetes, as well as normal environments. It supports per-node WCET, different
levels of criticality (e.g., A, B, and C for RT containers), real-time monitoring of all resources
and overrun deadlines, and stateless migration of ROS tasks based on customizable policies.
This framework allows for better meeting the functional and extra-functional constraints of
advanced multi-domain software which are typical of autonomous mobile robots.

Fig. 3.32 presents an overview of the proposed extended architecture. RT-Kube evolves
the standard platform with the following components (highlighted in green in Fig. 3.32).
5 For the sake of clarity, this section will refer to ROS nodes as “software tasks” (or simply “tasks”),

and real-time ROS nodes as “RT tasks”. We will use “computing nodes” or “nodes” to refer to the
physical devices within the Edge-Cloud computing cluster.

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 59

Algorithm 2: Rescheduling algorithm in case of nodes that go offline.
input : The graphs G

a and G
c

output: The container-to-node-mapping.

1 Function reschedule (Ga, Gc):
2 OT ⇥ get_offline_tasks()
3 if Ω vai " OT ∂ vai is crit. or 8

i"OT
HEFTR(vai) > threshold then

4 for v
a

i " G
a do

5 sched ⇥ HEFTsim (vai , Gc)
6 end
7 else
8 G

a ⇥ sort(Ga
, HEFTR)

9 G
a

copy ⇥ G
a

10 for v
a

i " G
a do

11 if v
a

i ä OT then
12 for v

c

j " G
c do

13 if v
c

j j n(vai) then
14 t(vai,j) = 9999999
15 end
16 end
17 end
18 sched ⇥ HEFTsim (vai , Gc)
19 optimize_niceness(vai)
20 G

a ⇥ G
a

copy

21 end
22 end
23 return sched

Monitoring
data

RT
CRD

Cluster-level
Monitor

Controller
manager

ETCD

Master

API server

Scheduler

Secondary
RT scheduler

API initiated
eviction

kubeletj

kubelet1

kubelet0

containern

container1

Kubelet(s)

container0

Container(s)

RT task
(ROS node)

#include
"monitoring.h"

Container-level
Monitor

HTTP
REST API

Fig. 3.32: The RT-Kube overview.

1. A Custom Resource Definition (CRD) for RT containers (RT CRD). It allows for the
specification of RT parameters, such as deadline, period, WCET, and criticality level of
containers.

2. A secondary RT scheduler. It implements a scheduler with RT plugins that uses the
additional data (RT CRD) to perform the schedulability test of RT containers.

3. Container-level and cluster-level monitors of RT tasks. These implement the monitoring
of RT containers at two levels. At the container-level, the monitors collect information
at runtime about temporal violations (i.e., overrun WCET and missed deadlines). At
the cluster-level, one main monitor combines such information to the cluster status to
implement container migration and recover from temporal violations.

60 3 Containerization and orchestration on Edge-Cloud architectures

1 apiVersion: rt.scheduling/v1
2 kind: RealTime
3 metadata:
4 name: example-realtime-data
5 spec:
6 criticality: C
7 rtPeriod: 100
8 rtDeadline: 100
9 rtWcets:

10 - node: nodeA
11 rtWcet: 50
12 - node: nodeB
13 rtWcet: 60
14 ---
15 apiVersion: apps/v1
16 kind: Deployment
17 metadata:
18 name: nginx-deployment
19 labels:
20 app: nginx
21 spec:
22 replicas: 1
23 selector:
24 matchLabels:
25 app: nginx
26 template:
27 metadata:
28 labels:
29 app: nginx
30 rt-scheduling: example-realtime-data
31 spec:
32 schedulerName: RT-scheduler
33 containers:
34 - name: nginx
35 image: nginx:1.14.2
36 ports:
37 - containerPort: 80
38 tolerations:
39 - key: "RealTime"
40 operator: "Equal"
41 value: "RT"
42 effect: "NoSchedule"

Listing 3.33: Example of RT CRD (lines 1-13) and the corresponding Kubernetes
configuration module for the container deployment configured with the real-time parameters.

We also implemented the non-isolation of containers to support communication among
containerized ROS tasks. See Section 3.2.1.

The CRD module for RT containers

In standard orchestration platforms, the user provides a set of specifications for each
container (e.g., memory, CPU, storage requirements). To schedule RT containers, we con-
sider four additional specifications: criticality level, deadline, period, and the WCET of the
corresponding containerized RT task. The platform takes advantage of this information to
calculate the utilization of all containers in each node, and assesses the impact of a new RT
container deployment on the system performance.

Figure 3.33 shows an example of CRD module (lines 1-13) with the extended specifica-
tions for the deployment of the Kubernetes nginx use case [182]. The first 13 lines create

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 61

Real-Time containers
specifications:

• Deadline
• Period
• WCET

+
• Criticality (A, B, C)

• List of nodes N
• Filtering policies
+ RealTimeFilterPlugin

• List of nodes N
• Scoring policies
+ RealTimeScorePlugin

Container Cn

Container C2

Container C1

…

If ! ≠ ∅

Filtering

Scoring

Binding

Sorting

Sorted
container
queue Q

Container queue

∀%!	'(!

Real-Time containers
specifications:

• Criticality (A, B, C)

Fig. 3.34: The secondary RT-scheduler.

the CRD object “example-realtime-data”, where lines 6 to 13 contain the RT CRD with
the four additional values. Criticality (A, B, C, and D) is used for the new sort and score
phases, as well as in the monitoring (see Fig. 3.34). We borrowed such a criticality classifica-
tion from the automotive safety integrity levels (ASIL) standard, with C being the highest
the platform supports as of now. Note that it would be possible to support ASIL-D tasks,
but it would require a compute platform that honours ASIL-D requirements as well. Further,
criticality standards from other domains could also be adopted in a similar way.

The platform uses the deadline, period, and WCET information for the sorting, filtering,
and scoring phases.

The CRD object is linked to the deployment object (Kind fields, lines 2 and 16) through
a label that matches the RT specification at lines 4 and 30. These labels are compared at
scheduling time for each deployment to find the matching RT CRD.

The secondary RT scheduler

Fig. 3.34 shows an overview of the secondary RT-scheduler. The orchestration begins with the
queue of containers (i.e., standard and RT), and the list of nodes representing the compute
platforms (i.e., the cluster of computing devices).

We assume that each real-time ROS task is mapped to one RT container. Our evaluation
shows that this one-to-one configuration, when compared to other solutions, is the most
flexible as it incurs negligible overhead and experiences minimal performance penalties for
RT tasks. The scheduler implements the following four steps. First, sorting of containers
using a hierarchical scheduling policy to generate a priority queue ordered by criticality.
Then, for each container in the queue, the filtering phase selects the nodes of the cluster
that satisfy the container specifications. The scoring phase creates a node ranking by consid-
ering user-defined policies, and schedules the container on the highest ranking node. Finally,
the binding phase maps the container to the cluster node by allocating resources on the
identified node for the container. To deploy RT containers, the platform relies on the taint
and tolerations features of Kubernetes [182] to identify which nodes of the cluster run a

62 3 Containerization and orchestration on Edge-Cloud architectures

Algorithm 3: Real-time filtering extension for the Kubernetes scheduler.
input : A list of nodes N , an RT container x

output: A list of schedulable nodes M

1 Function RealTimeFilterPlugin (N , x):
2 M ⇥ N

3 for ºn " N do
4 currentUTn ⇥ 8

c"n
WCETc

Pc

5 newUTn ⇥ currentUTn + WCETx

Px

6 if newUTn > n.thresholdUT then
7 M ⇥ M � {n}
8 else if (x.criticality = “C” h n.criticality = “C”) then
9 M ⇥ M � {n}

10 end
11 end
12 return M

real-time operating system (Figure 3.33, line 38). Nodes with no RT operating system or
RT capabilities are automatically excluded from the pool of schedulable nodes for RT tasks.
Filtering of nodes. The platform applies Eq. (2.4) extended to the containerized version
of tasks to implement the container admission test. Algorithm 3 depicts the filtering phase,
which relies on such a container admission test. The algorithm takes as input the list of
nodes N of the cluster, and the container of task tnew that has to be scheduled, x. For each
node of the cluster (line 3), the algorithm considers all the containers currently running (i.e.,
already deployed) in the node and sums up the utilization of each container (line 4). The
result (currentUTn) represents the left hand side of Eq. (2.4) extended to containers. The
algorithm calculates the projected total utilization of the node (newUTn) by considering
the additional resources of container x under deployment (line 5). If the resulting projected
utilization is greater than the threshold n.thresholdUT (which represents the right hand side
of Eq. (2.4) extended for containers), the algorithm filters the current node from the pool of
schedulable nodes. The algorithm also uses an XOR operator (line 8) to check whether both
the node and task criticality are C. If only one of the two is C, the node n is marked as not
schedulable6.
Scoring of nodes. To implement the scoring phase, the platform relies on the following
equation to obtain a normalized ranking (nRank) for each node:

ºn " N ⇥ nRank =
~ÑÑÑÇÑÑÑÄ
1 � n.thresholdUT�newUTn

n.thresholdUT if crit. = A

n.thresholdUT�newUTn

n.thresholdUT if crit. = C
(3.17)

where n.thresholdUT represents the threshold RT utilization (Mòsched_rt_runtime_us/
sched_rt_period_us), and newUTn represents the projected RT utilization after the de-
ployment of x in n.

With a normalized utilization value [0, 1] for each node, independent of the total runtime
and CPU cores available on the node, the platform applies a custom policy for scoring based
on the value of the criticality field in the RT specification extension (see Algorithm 4). If a
task has a criticality level of A, the algorithm assigns the task to the node with the highest
RT load (i.e., the node with the highest normalized utilization), line 3. In contrast, for level
C, the algorithm gives the highest rank to the node with the lowest normalized utilization
(line 11). For the criticality level B (line 5), the algorithm maps the utilization to a function
that gives the highest rank to the nodes with a utilization level closest to 1

K
, as follows:

6 In the Kubernetes terminology, a non-schedulable node is a cluster node that does not satisfy the
requirements of the container that has to be scheduled.

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 63

Fig. 3.35: The mapping results with Eq. (3.18) for the criticality level B with the coefficients
adopted in the experimental results (a = 1

5
, b = 9

10
, a¨ = 5

3
, b¨ = � 9

2
, c¨ = 17

6
).

ºn " N ⇥

nRank =
~ÑÑÑÇÑÑÑÄ
h�n.thresholdUT�newUTn

n.thresholdUT ⌥ n.thresholdUT�newUTn

n.thresholdUT & 1
K

g�n.thresholdUT�newUTn

n.thresholdUT ⌥ otherwise
(3.18)

Scoring with this function allows us to modify the deployment behavior to best fit the needs
and requirements of the tasks. For example, we can make a criticality B task resemble the
behavior of a criticality A task with K � 1� and a linearly increasing h(�), or closer to C
with K � 0+ and a linearly decreasing g(�).

In our experiments, we applied Eq. (3.18) with K = 2, a linear function h(�) = a(�) + b,
and a quadratic function for g(�) = a¨(�)2+b¨(�)+c¨. This allows us to linearly increase rank for
nodes that have newUTn lower than 1

2
, but greater than 0, and then a sharp decrease once

that the threshold utilization value is reached. Fig. 3.35 shows the corresponding mapping,
whereby the nodes with average RT load are classified as nodes with the highest ranking.

Container-level and cluster-level monitoring of RT containers

RT-Kube implements the monitoring of RT containers at two levels. At container-level, one
monitor per container collects temporal information of the corresponding RT task and re-
ports, at runtime, any temporal violation (i.e., overrun WCET or missed deadline) to the
cluster-level monitor. This last implements the reconcile phase, which consists of checking
the temporal constraints (i.e., threshold of missed deadlines) and eventually migrating con-
tainers to free resource and recover the system. To guarantee portability, each container-level
monitor takes advantage of the SIGXCPU signal [183] that any Linux operating system can
raise when a temporal violation occurs. Once the monitor receives such a signal, it commu-
nicates the updated counter of missed deadlines to the cluster-level monitor, which in turn
implements the corresponding orchestration countermeasures. The injection of monitors in
the SW application does not require any modification to the source code. Fig. 3.36 de-
picts the sequence diagram of the whole SW orchestration, starting from the container-level
monitoring units. The figure reports the components of the standard Kubernetes release
and the extension components in blue and green, respectively. To implement a continuous
runtime monitoring while saving computational resources, we implemented each container-
level monitor unit through two threads. The first receives the SIGXCPU signal and updates

64 3 Containerization and orchestration on Edge-Cloud architectures

Algorithm 4: Real-time scoring extension for the Kubernetes scheduler.
input : A node n, the RT container x, the projected utilization newUTn

output: The score s for RT container x on node n

1 Function RealTimeScorePlugin (n, x, newUTn):
2 nRank ⇥ n.thresholdUT�newUTn

n.thresholdUT
3 if x.criticality = “A” then
4 s ⇥ 1 � nRank
5 else if x.criticality = “B” then
6 if nRank & 1

K
then

7 s ⇥ h(nRank)
8 else
9 s ⇥ g(nRank)

10 end
11 else if x.criticality = “C” then
12 s ⇥ nRank
13 end
14 return s

1 apiVersion: rt.monitoring/v1alpha1
2 kind: Monitoring
3 metadata:
4 name: monitoring-test
5 spec:
6 node: nodeA
7 containerName: nginx
8 missedDeadlinesPeriod: 0
9 missedDeadlinesTotal: 0

Listing 3.37: Example of monitoring object created by the container-level monitor of RT-
tasks.

the counters for the missed deadlines. The second communicates the RT container status
(i.e., the updated number of missed deadlines) to the API server periodically through the
HTTP-REST protocol. The container status is encoded into a Kubernetes compliant JSON
object (see Figure 3.37) to guarantee modularity and scalability of the system. The API
server validates the object syntactically (validation request in Fig. 3.36) and updates the
RT container status in the ETCD database. It then requests for the system-level check to
the cluster-level monitor (i.e., reconcile request).

The cluster-level monitor implements the reconcile phase. It collects the updated status
of missed deadlines from each container-level monitor of the cluster. The updated status
consists of the number of deadlines missed since the last update and the total number of
missed deadlines in the RT container lifetime. If the number of missed deadlines, either in
the period or total, is higher than the user-defined threshold (obtained from the centralized
ETCD database), the cluster-level monitor selects a container to be immediately evicted and
killed. The choice relies on the policy statically defined by the user. In our implementation,
aside from RT containers with criticality C, any container with a lower criticality than the
one with temporal violations and that has a stateless task can be selected. The cluster-level
monitor notifies the eviction target to the controller manager (init. eviction in Fig. 3.36),
which implements the container eviction and automatic re-deployment as for the standard
protocol of Kubernetes’ controllers. The monitor also implements tainting of the node that
hosted the evicted container, which consists of marking the node as not available to host
new containers for a period of time. This allows us to avoid immediate deployments of new
containers in the node where the missed deadlines were observed. As a consequence, the
evicted container is re-deployed on a different cluster node, thus implementing a de-facto
stateless migration.

3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 65

Fig. 3.36: Sequence diagram of the whole dynamic SW orchestration, starting from the
container-level monitoring units.

Response time and predictability of the system recovery from temporal
violations

We define response time (RT c

i) of the system recovery from temporal violations of the RT
container c on the cluster node i, as the time elapsed from the first deadline missed by c
that leads c to exceed the threshold of missed deadlines to a container eviction on i. It is
characterized by three components (see Fig. 3.38):

RT
c

i & 1
fc

+HTTP_trans(JSONc) +Rec_phase (3.19)

66 3 Containerization and orchestration on Edge-Cloud architectures

Network
[𝐻𝑇𝑇𝑃_𝑡𝑟𝑎𝑛𝑠(𝐽𝑆𝑂𝑁𝑐)]

Container-level
Monitor
• [updating

frequency 1
𝑓𝑐
]

Cluster-level Monitor
Rec_phase:
• [obtaining, validating

analyzing data]
• [Eviction_phase]

RT task

Kubelet Master

[𝐻𝑇𝑇𝑃_𝑡𝑟𝑎𝑛𝑠(𝐾𝑖𝑙𝑙)]

Fig. 3.38: The RT-Kube architecture considered for the analysis and formalization of the
response time.

where fc is the frequency the monitor in container c updates the master with the total
number of missed deadlines; HTTP_trans(JSONc) is the time spent for transferring the
JSON object containing the counter information from node i to the master; Rec_phase is
the time spent by the master for the reconcile phase.

Each cluster-level monitor updates the counter of missed deadlines at every SIGXCPU
signal locally, while it updates the master periodically to save system resources. The period
between two counter updating defines the worst case delay (i.e., first component of Eq.
(3.19)).

We assume that the cluster-level monitor and the Kubernetes master are hosted on the
same cluster node. As a consequence, we consider the communication latency between mon-
itor and master being negligible. In contrast, we consider the time spent for transferring
the updated data from the container-level monitor to the master over the network. This
latency strongly depends on the static and dynamic characteristics of the communication
network (i.e., bandwidth, traffic, etc.). Predictable networks for RT applications have been
extensively studied in literature [184], and could be considered to increase the predictability
of such a response time component. Nevertheless, we generalize the definition and consider
HTTP_trans(JSONc) as the worst case time spent for transferring the JSON object con-
taining the counter information (e.g., ⌅ 180Bytes in our case study) to the master over
HTTP.

The third component represents the time spent by the master for the reconcile phase.
The master accesses the ETCD database for the semantic validation of the updating message
(i.e., the JSON object), the request for specifications of each container (i.e., memory, CPU,
storage requirements) and the additional specifications for RT containers (i.e., CRD module
with deadline, period, WCET, criticality). Using this information, the master implements the
victim selection and eviction through a message (i.e., standard killing Kubernetes message)
over the network. We model the latency of the reconcile phase as follows:

Rec_phase & 2 � n � tSPEC + nRT � tCRD

+Eviction_phase
+HTTP_trans(Kill)

(3.20)

where n is the total number of containers, nRT is the number of RT containers (nRT & n),
tSPEC and tCRD are the latencies spent for retrieving the container and RT container spec-
ifications from the database. HTTP_trans(Kill) represents the latency spent for notifying
a killing procedure by the master to the cluster node operating system. For this compo-
nent, the considerations formulated before on the transfer time of a Kubernetes message
over HTTP apply. The time for the eviction phase strictly depends on the complexity of the
algorithm implementing the victim selection. We implemented three policies with different
complexity. The first relies on an iterative linear search over the list of containers deployed
on node i to find the container with the highest use of a single system resource (i.e., either
CPU or memory). It starts from the lowest priority class of containers (i.e., non real-time)
and, in case none of them is deployed in i, it iterates on the lists of the higher-priority
containers.

3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 67

The second policy implements a similar search, by considering the combination of two
system resources. Being based on reordering and search phases, its complexity is linearithmic
on the number of containers (i.e., n � log(n), with n the number of containers). The third
considers inter-container communication dependencies and task semantics, and has quadratic
complexity (n2). We present a comparison among the three policies in terms of response time
in Section 4.4.

3.5 Assertion-based verification and workload migration in

Kubernetes for robotic systems

Thanks to the recent advances in robotics and artificial intelligence, autonomous mobile
robots are now adopted in a wide spectrum of applications. Nevertheless, their safety and
reliability requirements as well as their robustness guarantees remain major barriers to their
large-scale adoption in real-world systems. Although various formal verification methods
have been proposed to validate end-to-end software correctness [185–187], there is still a
shortage of research and understanding in developing solutions to support runtime system
verification. Runtime verification is a mandatory component for the validation process of
robotic infrastructure. It is required to verify that the software implementing the robot’s
mission and behavior is correct and also satisfies extra-functional constraints (e.g., real-time,
energy efficiency, reliability) when run on a real-world robotic platform.

Good design practice for runtime validation requires the use of Assertion-Based Verifica-
tion (ABV) [188]. Assertions (i.e., user-defined properties that express desired behaviors of
the target system) are first synthesized into monitors (i.e., chunks of code that implement
the assertion semantics) and then checked at runtime to report any violation and possibly
enforce fail-safe behaviors. In the state of the art, robotic applications monitors are generally
applied to watch system resources and detect local faults [189]. Nevertheless, with the in-
creased complexity in perception and control, modern robots and autonomous systems need
more advanced and complex monitoring tasks during their daily missions. Such monitoring
tasks range from enforcing security and safety properties while ensuring the correct execution
of synthesized plans, to pattern matching over sensor readings to help perception [4].

Runtime verification based on such a monitor introduces computational overhead, whose
amount depends on the number of active assertions, the complexity of the assertions, and
the observed signals. When adopted in resource-constrained architectures, such workload
variability can lead to system overloads and failures even with very few monitor instances.
In similar contexts, migrating functional tasks from edge devices in the IoT to edge servers
or to the cloud has been shown to be a valid solution to free resources and avoid system
bottlenecks [190]. On the one hand, applying the same technique for migrating monitors
may free resources for functional tasks at the edge. On the other hand, moving monitors far
from the sensors or from the functional tasks that generate the observed events (i.e., signal
values) requires continuous updating of these events through the communication network.
As a consequence, the migration of monitors is a challenging task, as it could move the
bottleneck problems from the edge to the network, with consequent inefficiency in the overall
system performance.

We address this challenge by proposing an ABV platform for the automatic generation,
orchestration, and deployment of monitors across Edge-Cloud computing architectures for
robotic systems. Starting from STL assertions that express the behavior of the system as
required by its specification, the platform synthesizes monitors that comply with the ROS
[12] standard7. It then enables dynamic balancing of the SUV workload by considering a
trade-off among verification accuracy, runtime constraints, and resource requirements. This
is achieved by a novel approach that allows migrating the runtime evaluation of the monitors
across the different layers of the Edge-Cloud computing platform. Finally, the verification
environment is containerized to enable portability.
7 We refer to the standard as ROS, even though the platform and the generated monitors are

compliant to ROS2.

68 3 Containerization and orchestration on Edge-Cloud architectures

Problem statement

As a starting point, we consider the SUV being implemented as a set of distributed software
tasks, which are modelled through ROS nodes. The ROS nodes execute on computing de-
vices, which are distributed across an edge-cloud platform. This assumption is justified by
the fact that ROS is the standard developing environment in the robotic community. It is
based on a publish-subscribe communication paradigm, where a sender node publishes data
on a topic, on which one or many nodes subscribe to receive the data (see Section 2.2). The
adoption of ROS provides different advantages. First, it allows the modelling and simulation
of complex systems through nodes running on different target devices. Second, it implements
inter-node communication in a modular way to guarantee code portability. Finally, it adopts
standards and widespread protocols requiring minimum intervention or modifications of the
original code.

Based on this premise, we automate the generation and deployment of a monitoring
platform for the runtime verification of ROS-compliant robotic systems. The challenge lies
in formulating a strategy to seamlessly integrate monitors into the SUV implementation,
ensuring accurate runtime verification without compromising its functionality (e.g., degrad-
ing the quality of the service or violating real-time constraints), which may happen if part
of the computing resources have to be preempted for the verification tasks.

Each ROS node is located in a computational layer between the edge and the cloud.
Its position is initially chosen with the ideal goal of keeping the source of data as close
as possible to the computing unit that will elaborate it. At the edge, since data is elabo-
rated immediately, monitoring and verification involve low response latency. However, edge
devices are generally characterized by limited computational resources. As a consequence,
execution of the SUV functionality may be hampered by the addition of runtime verification,
as monitoring steals computational resources from other software tasks, possibly delaying
their completion.

On the cloud, we assume no limitation in terms of computational capabilities. Nonethe-
less, end-to-end verification latency can become unpredictable due to the variability of band-
width and traffic on the shared communication network. As a consequence, failure notifica-
tions could be delayed. We propose a verification architecture that generates ROS-compliant
monitors that can automatically migrate between computing layers in accordance with the
available resources and requirements of the functional tasks to best take advantage of the
strengths of each platform.

Verification architecture

Fig. 3.39 shows an overview of the proposed verification platform. It is intended to sup-
port assertion-based verification of robotic systems at runtime by dynamically migrating
the execution of monitors among the computational layers of the SUV implementation from
edge to cloud. The platform automatically synthesizes monitors from STL assertions in the
form G(antecedent � consequent). Monitors exploit the ROS publish-subscribe paradigm
to collect at runtime the values of the SUV variables involved in the target assertions, thus
allowing their evaluation. In the following, we call event the value assumed by a SUV vari-
able at a time instant t. Whenever an event occurs, the system publishes such information
on a topic. Then, each monitor subscribes to the topics associated with the variables in-
cluded in the corresponding assertion, to receive all the events required for its evaluation.
Thus, the platform enables the integration of monitors into the SUV without requiring any
modifications to its source code.

The execution of monitors is finally managed by a set of monitor handlers. There is one
monitor handler per computing device in the system. The handler is a ROS-compliant node
containing an orchestrator and an instance of every monitor. At each execution instant,
exactly one handler activates one instance per monitor, according to the decision taken by
the orchestrator. Such a decision relies on the analysis of the trade-off between verification
accuracy, runtime constraints, and resource requirements.

3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 69

Fig. 3.39: Verification architecture.

In this way, we can set up an ABV environment that dynamically migrates the execution
of monitors across computing devices, taking into consideration both resource constraints
and communication latency.

Through containerization of the verification environment, the platform allows for the
deployment of monitors across different hardware architectures and operating systems, as
well as for handling the resources allocated for verification. The software application imple-
menting the robotic tasks is also containerized through Docker and orchestrated through
Kubernetes.

Monitor synthesis

The input of our verification architecture is a set of assertions expressed by using the STL
logic. Assertions are then synthesized into monitors. They are composed of a C++ evaluation
function to check the assertions dynamically and a ROS-compliant handler to capture the
events necessary for performing their evaluation and enabling the edge-cloud migration. The
evaluation function is created following state-of-the-art automatic procedures [131–133], and
since this is a standard approach, we do not provide further details on it. On the contrary,
we will focus more on the structure of the ROS-compliant handler in the following.
Assertion grammar. STL is a temporal logic formalism for specifying the properties of
continuous signals introduced in [191]. STL is widely used to analyze programs in cyber-
physical systems that interact with physical entities. STL extends the temporal operators
of the Linear Temporal Logic (LTL) with intervals, forcing the formulae to resolve within a
temporal window. The main temporal operators in LTL are:

• F (eventually): The formula F� is true if there exists a future time point at which � is
true.

• G (globally): The formula G� is true if � is true at all future time points.

70 3 Containerization and orchestration on Edge-Cloud architectures

Fig. 3.40: Assertion grammar.

Fig. 3.41: Architecture of a monitor.

• X (next): The formula X� is true if � is true at the next time point.
• U (until): The formula �1U�2 is true if �2 is true at some future time point t and �1 is

true at all time points up to t.

STL also includes temporal operators that specify a range of time intervals, such as:

• F[a, b] (eventually within interval): The formula F[a, b]� is true if there exists a future
time point within the interval [a, b] at which � is true.

• G[a, b] (globally within the interval): The formula G[a, b]� is true if � is true at all time
points within the time interval [a, b].

• �1U[a, b]�2 (until within interval): is a temporal operator that specifies a range of time
intervals. The formula is true if and only if there exists a time t¨ " [a, b] such that �2

is true at time t¨, and �1 is true for all time points in the interval [t, t¨], where t is the
current time. In other words, �1 must hold until �2 holds within the interval [a, b].
Our verification architecture allows the formalization of assertions according to the gram-

mar reported in Fig. 3.40, which implements a fragment of STL. In this work, the intervals
in the STL operators specify the time window in milliseconds.
Monitor architecture. The process of translating an assertion to a C/C++ monitor con-
sists of three main phases, as shown in Fig. 3.41:

1. Substitution of each proposition in the assertion with a placeholder.
2. Generation of the evaluation function.
3. Generation of the monitor handler (i.e., the infrastructure to capture the events).

Each proposition included in the target assertion is first substituted with a placeholder
(i.e., a Boolean variable). This is motivated by the fact that Boolean information can be
compressed through a single bit per value, which in turn allows a more efficient monitor
migration. To illustrate, let us refer to the running example shown in Fig. 3.41. The assertion:

G(speed > 0 � F [0, 5000](arrived))
is first substituted by:

3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 71

G(p0 � F [0, 5000](p1))
where p0 and p1 are the placeholders for speed > 0 and arrived, respectively. Once the
substitution is completed, we generate a C++ evaluation function capable of checking the
truth values of the assertion. The interface of the evaluation function is formalized as follows:
eval(p0, p1, ...pn) where each pi is a Boolean placeholder. The function is called each time a
new event (new values for the assertion variables) must be evaluated.

Since all assertions are of the form G(antecedent � consequent), each new event at time
ti requires checking the truth value of the implication at time ti; furthermore, multiple pend-
ing instances (evaluation instances that require future events to determine the truth value
of the assertion) can accumulate in the monitor. The monitor is also capable of differenti-
ating between antecedent and consequent instances. We will exploit the number of pending
instances in the monitor to determine the priority of the monitor. Additionally, the pending
instances correspond to the state (memory) of the monitor that will need to be migrated
during the orchestration process.

During execution, the monitor evaluation function needs to receive as input the sequence
of values assumed by the variables involved in the corresponding assertion during the SUV
execution. We then describe below how to generate a ROS-compliant monitor handler to
provide the evaluation function with such values.

The monitor handler subscribes to all topics used to exchange information (i.e., values
of variables) included in the corresponding assertion. For each variable, a callback is used
to retrieve the interesting events (i.e., variable changes) from the corresponding ROS topic.
The system attaches a callback procedure to an independent thread that executes each
time a message is processed from the subscriber queue. More formally, an event is a tripleÖv, new_value, timestampã to specify that the value new_value is assumed by the variable v
at time timestamp, during the execution of the SUV. A captured event is added to an event
buffer in the monitor handler each time a callback is executed, delaying its processing. the
buffer enables the orchestrator to move the monitor evaluation across the edge-cloud layers,
without considering the location where the events were observed. Furthermore, the buffer
can be sorted by making use of timestamps, thus ensuring that the events are processed in
chronological order. This minimizes the evaluation errors caused by synchronization prob-
lems and/or communication delays.

When the buffer’s size reaches a certain threshold, it is sorted. A higher threshold im-
proves verification accuracy since this increases the probability of evaluating the events in the
correct order; however, this can severely reduce verification responsiveness. For this reason,
every computing node in our architecture is synchronized with the precision time protocol,
guaranteeing synchronization errors of the order of nanoseconds while requiring minimal
bandwidth and little processing overhead. Consequently, the sorting threshold can be set
to a low value, allowing for high verification responsiveness, while suffering from negligible
accuracy errors.

After the buffer has been ordered, the Boolean placeholders of the target assertions are
replaced by using the values corresponding to its events. These values are stored, in the same
order as Boolean constants, in a new compressed buffer, where the timestamps associated
with the events are removed (since the events are already ordered). Each time the evaluation
function is called, an event is consumed from the compressed buffer and used to advance the
verification.

In the example reported in the right part of Fig. 3.41, the ROS handler subscribes to
two topics: speed and arrived. They correspond to the variables involved in the assertion
shown in the left-hand side of Fig. 3.41. In this example, three events are captured and
added to the event buffer by the callback functions: Öspeed, 8.1, 10022ã, Öarrived, false, 10021ã,
and Öspeed, 17.3, 10023ã. If the sorting threshold, for example, was set to 3, after the arrival
of the third event, the elements of the event buffer are ordered according to their times-
tamps and moved to the sorted buffer. Then, each event is compressed and added to the
compressed buffer. Events Öspeed, 17.3, 10023ã and Öspeed, 8.1, 10022ã are compressed to 1 and
0, respectively, as the corresponding proposition p1 ⇥ speed > 10 is true for speed equal to 17.3
and false for speed equal to 8.1; moreover, Öarrived, false, 10021ã is directly translated to 0.

72 3 Containerization and orchestration on Edge-Cloud architectures

Fig. 3.42: Orchestrator’s architecture.

Monitor containerization

The monitors are containerized after the synthesis process to make the verification environ-
ment portable across various HW/SW architectures. Different containerization techniques
are at the state of the art for cloud-native applications. However, they provide each container
with its own private (isolated) subnet IP addresses. As a result, they only allow ROS nodes
to communicate if they are assigned to the same subnet IP. To solve this communication
issues between distributed ROS nodes, we expanded the containerization process based on
Docker for edge computing.

The proposed platform automatically maps each container IP address to the IP address
of the host device (i.e., where the ROS node executes) while randomly allocating port num-
bers. This reduces communication latency by eliminating any network overhead caused by
containers [76]. See Section 3.2.1 for further details.

By using multi-architecture containers (e.g., Docker buildx), the platform supports the
simple generation and integration of containers for different HW/SW target architectures,
from cloud to off-the-shelf edge devices (e.g., NVIDIA Jetson). These multi-architecture
containers are concealed behind a single container that has multiple integrated versions,
which allow for greater orchestration flexibility.

Monitor runtime management

The orchestration aim is to balance the responsiveness of verification and resource con-
sumption during the SUV execution. Low verification responsiveness may cause delays in
the identification of assertion failures. Conversely, intensive use of computational resources
for verification may cause the violation of run-time constraints related to functional tasks
running on the same device, thus causing assertion failures.

In the optimal situation, a monitor is executed on the same edge node that generates the
values for the variables observed by the monitor itself. When computing resources at this
node become not enough to support both the verification effort and the execution of the
functional tasks, our orchestration system migrates the execution of the monitors towards
another computing unit, possibly belonging to a higher computational layer, in the edge-
cloud architecture. This guarantees that additional resources are available at the destination
device to handle the monitor, but at the cost of lower responsiveness. In fact, in this new
configuration, the monitor is evaluated farther from the source of the observed events.
Architecture and workflow of the orchestrator. The orchestrator consists of two
main elements: a set of handlers, one per each computing unit in the SUV, and a global
coordinator (see Fig. 3.42), which make up a fully connected verification network.

The coordinator orchestrates the allocation of monitors to the computing units in the
SUV by continuously searching for the optimal allocation of resources. It then issues requests
to the handlers to force such allocation. The coordinator requests are of the following types:

• EXEC request: the coordinator commands a handler to execute a certain set of monitors;
• MIGRATE request: the coordinator commands a handler to migrate a certain set of

monitors to another handler;

3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 73

• SHUTDOWN request: the coordinator commands a handler to stop executing.

Each handler is responsible for collecting statistics about the state of the execution in
the corresponding computing unit (through the stat handler module) and satisfying the
requests from the coordinator (through the request handler module). It also controls the
execution of monitors assigned by the coordinator through its scheduler module. Statistics
are periodically sent by the handlers to the coordinator. They mainly include the current
CPU usage dedicated to the verification process, and the time elapsed from the publishing
of a ROS topic (corresponding to the change of a variable) to the evaluation of the monitors
that have subscribed for the topic.

The scheduler of each handler manages the dynamic allocation of computational resources
to evaluate the elements stored in the event buffers of allocated monitors. Each monitor
evaluation is seen as a request to be fulfilled by the scheduler. The scheduler satisfies these
requests by spawning as many worker threads as the available cores of the device. A thread
that receives a request keeps executing the evaluation function of the corresponding monitor
until a fixed time slice runs out or until the event buffer is empty. After that, the request is
pushed back to the scheduler’s queue. The scheduler handles the requests by using a priority
delay queue. To avoid starvation, requests with low priority are promoted to higher priorities
as their waiting time increases.

The orchestrator life cycle is then divided into three main parts: init, allocation, and
termination.

At the init time, the verification network is initialized. Each handler discovers the exis-
tence of all the other computing units by sending a broadcast message. Then the handlers run
an election algorithm to determine which unit will execute the coordinator. The algorithm
selects the handler executed on the unit with the highest available computational resources;
the handler spawns an additional thread that executes the coordinator. After that, each
handler starts sending statistics to the coordinator and listening for requests. Note that the
verification network is designed to automatically include new nodes (handlers arrived late)
and to elect a new coordinator if it becomes unresponsive for an extended period of time.

After that, the allocation phase takes place. The coordinator periodically analyses the
statistics from the handlers of the SUV computing units and calculates the optimal allocation
of monitors that maximizes the responsiveness of the verification without saturating the CPU
of any machine. Then, the coordinator sends EXEC or MIGRATE requests to handlers to
enforce optimal allocation in the network. This is repeated throughout the SUV execution.

At termination, when the SUV execution stops, the coordinator issues a SHUTDOWN
request to all handlers, and all nodes of the verification network terminate.
Computation of the optimal allocation. During the allocation phase, the coordina-
tor periodically solves a Mixed Integer Linear Programming (MILP) problem to determine
where to allocate the monitors among the various computing units comprising the SUV. The
solution to the MILP problem corresponds to the allocation of monitors that maximizes the
responsiveness of the verification without saturating any CPUs. The coordinator constructs
the MILP problem by using the statistics received from the handlers. The statistics are
formalized as follows:

• monitorCPUmi
cj

percentage of CPU usage spent to execute monitor mi on computing
unit cj ;

• topicCPU tk
cj

percentage of CPU usage spent to receive data from ROS topic tk on com-
puting unit cj ;

• availableCPUcj
percentage of unused CPU plus the CPU consumption of the verification

process on computing unit cj ;
• delaytkcj time (in milliseconds) to receive data from ROS topic tk on computing unit cj .

Formally, for M monitors, C computing units and T topics, we search for the allocation of
any monitor mi to a computing unit cj that minimizes the objective function:

T

9
k=1

(C

9
j=1

getDelay_tk_cj (M⌥
i=1

mi == cj)). (3.21)

74 3 Containerization and orchestration on Edge-Cloud architectures

Fig. 3.43: Example of buffer migration.

The objective function is subject to the following constraint:

C

⇧
j=1

(availableCPUcj
>=

(M9
i=1

getMonitorCPU_mi_cj (mi == cj)+
T

9
k=1

getTopicCPU_tk_cj (M⌥
i=1

mi == cj)))
(3.22)

where, m1, m2, ...,mM are enumerated integer variables, associated with the monitors, which
can assume one value among c1, c2, ...cC , associated with the computing units. Intuitively,
the above constraint ensures that the CPU usage of the resulting allocation of monitors does
not exceed the available CPU on any computing unit.

The result of the MILP is an assignment of variables that minimizes the objective func-
tion. The functions getDelay_tk_cj , getMonitorCPU_mi_cj and getTopicCPU_tk_cj
take as input a Boolean value, and they return zero if such a value is false; otherwise, they
return, respectively, delaytkcj , monitorCPUmi

cj
, and topicCPU tk

cj
.

Since the MILP contains only linear constraints and integer arithmetic, the dynamism of
the system is not affected by the execution time of the MILP, as it is capable of computing
the optimal allocation of monitors in just a few milliseconds, even when there are hundreds
of monitors.
Monitor migration. The migration of a monitor takes place when the coordinator sends
a MIGRATE request. Since each machine has a copy of all monitors, to move a monitor mj

from the computing unit c1 to the computing unit c2 the migration procedure operates as
follows: it first turns off mj on c1, then it sends the state and event buffer of mj to c2, and,
finally, it activates mj on c2. This procedure requires data to be moved through the network.
However, the proposed migration strategy is extremely effective because it is lightweight by
design, even in slower networks. This is also thanks to data compression. Additionally, since
no event is lost during migration, the suggested approach does not experience any false
negatives (the monitor does not fail when it should) or false positives (the monitor fails
when it should not).

To explain the migration protocol between two machines, let us consider the example
shown in Fig. 3.43. It shows monitor1 that, executing at level li of the edge-cloud hierarchy,
moves from handler1 to handler2 at level li+1. Before migration, handler1 executes monitors
1 and 4, while handler2 executes monitors 2 and 5. Let us assume that, at a given point,
handler1 receives a MIGRATE request from the coordinator (step 1). Then, handler1 re-
moves monitor1 from the scheduler (step 2a), but the process of adding events to its buffer is
not interrupted. Sequentially, handler1 notifies that the migration has started to handler2
(step 2b). As a consequence, handler2 starts adding events to the buffer of monitor2 by
attaching the callbacks (step 3). At this time, monitor2 is not yet on the scheduler. Once

3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 75

monitor2 receives enough events to make the first ordering, handler2 returns to handler1
the timestamp of the oldest event in monitor1 (step 4). In this way, as soon as monitor1
receives the timestamp, it recognizes which buffer events must be sent (i.e., the events eval-
uated with a timestamp lower than the received timestamp). When this happens, handler1
detaches the callbacks from monitor1 to stop adding events to its buffer (step 5a) and sends
the correct events to handler2 together with the state of monitor1 (step 5b). At that point,
monitor1 is inactive on handler1 and handler2 finishes the migration by filling the buffer of
monitor1 with the received events and by putting the monitor on the scheduler to start its
evaluation (step 6).
Handling overload scenarios. The buffer migration procedure is intended to free compu-
tational resources on heavily loaded machines to balance the verification effort among the
cloud-edge computation layers. This is of utmost importance in systems where the lack of
computational resources could severely affect the reactivity of the SUV, making its functional
tasks miss deadlines or, in the worst scenario, causing the whole system to crash. However,
it might happen that no allocation of monitors exists that does not saturate any CPU in the
SUV. To handle this overload scenario, we implemented two additional strategies to reduce
the computational load of verification. First, by assigning the scheduling priorities according
to the run-time criticality of the monitors, and second, by reducing the observation frequency
of the events evaluated in the monitors. The first strategy affects the responsiveness of the
verification, while the second may affect the accuracy of the verification.

The first strategy consists of assigning a higher scheduling priority to monitors containing
active instances (i.e., whose antecedent has been fired and the consequent is still pending),
purposely increasing their responsiveness. The evaluation function is capable of counting the
number of active instances in a monitor: after each evaluation, the priority of a monitor is
increased proportionally to the number of active instances. The priority is the lowest when
no instance is active.

The second strategy consists in discarding not-yet evaluated events from the event buffer
and resetting the monitor to its initial state. Thus, performing an approximation of the event
trace. When a monitor is left behind in the evaluation, its event buffer keeps filling with
past events. This can happen mainly for two reasons: either those events cannot be evalu-
ated because the executing machine does not provide enough resources to the verification
environment, or because of the low priority of the monitor, which is considered non-critical
by the scheduler, and thus its evaluation function is executed with a lower frequency.

Approximating the event trace by removing “old” events from the buffer decreases the
required resources, as the discarded events no longer have to be evaluated, and increases the
responsiveness of the monitor, as more up-to-date events are used in the evaluation. However,
discarding events may affect verification accuracy. In fact, this approach can either cause
a monitor failure, when it should instead succeed (false positive), or can make the monitor
miss a failure (false negative).

Fig. 3.44 shows an example to clarify this concept. Let us consider the simple assertion
always(a � next(b)). The variables a and b represent the input of the monitor (reported
in row I) in three different instants. The values in row O are the outputs of the monitor.
Evaluated events are shown in row E. In the upper part of Fig. 3.44, we show an example
of a false negative. In this scenario, the original event trace causes the monitor failure after
e1. In the approximated trace, e1 is instead discarded, making the monitor miss the failure
due to e1. The approximation then produced a false negative. In the lower part of Fig. 3.44,
we show an example of a false positive. In this case, the values originally assumed by a and
b, i.e., (1, 0), (0, 1), (0, 0), at event e0, e1, e2 (table on the left) do not make the monitor fail;
therefore, the monitor output is always 1. When the event approximation is applied (table
on the right), event e1 is discarded. This causes the monitor failure after receiving event e2.
Thus, the approximation produced a false positive.

It should be noted that, in our verification architecture, monitors synthesized from as-
sertions following the template G(antecedent � consequent) are guaranteed to not produce
false positives because the monitor is reset after discarding the events. Thus, only false neg-
atives are possible. Consequently, in scenarios where the presence of a few false negatives is
not the main concern, this approach is useful to reduce resource consumption while main-

76 3 Containerization and orchestration on Edge-Cloud architectures

Fig. 3.44: False negative/positive example.

taining good responsiveness. The cost is paid in terms of degradation in the verification
accuracy or in terms of a delay in detecting a failure. This makes sense, for example, when
assertions are intended to monitor soft tasks that affect the system performances or the
quality of service, or when a stable property (e.g., a deadlock occurs, a token gets lost, the
program terminates) is monitored, where a delayed detection does not cause catastrophic
effects. Nevertheless, this second approach should not be applied to monitors that check
hard tasks and safety-critical requirements, as a missed failure might be catastrophic.

4

Experimental Results

This chapter reports the results obtained for each of the five steps required to reach the ob-
jectives of Fig. 1.2. Section 4.1 analyzes the benefits of edge-related optimizations. Section
4.2 shows how the porting of containerization and orchestration to robotic environments
allows for improved performance thanks to the Edge-Cloud computing continuum. Section
4.3 demonstrates how adapting containerization and orchestration allows for the reconfig-
urability of software and more advanced deployment configurations. Section 4.4 proves how
containerization is compatible with real-time, as well as orchestration software. Finally, Sec-
tion 4.5 shows the results of the proposed runtime migration of tasks and containers.

4.1 Optimizing performance on heterogeneous devices at the edge

This Section focuses on the results obtained for the optimizations related to the edge-
computing components, specifically:

• Section 4.1.1 analyzes the improvements obtained with XEFT and the pipelined DAG-
executions (see Section 3.1.1).

• Section 4.1.2 analyzes the benefits of ZC techniques on UMA (see Section 3.1.2).
• Section 4.1.3 analyzes the improvements obtained by applying ROS-ZC (see Section

3.1.3).

4.1.1 Improving the scheduling on DAG-based embedded vision applications

To compare the different algorithms and heuristics, we considered two categories of bench-
marks. The first is a real-world SLAM application [192] combined with an inference applica-
tion based on CNN for object detection [193]. Such a computer vision application implements
the simultaneous localization and mapping algorithm with one or more RGB camera sen-
sors. It computes, in real-time, the camera(s) trajectory, a 3D scene reconstruction, and
car/pedestrian detection. We tested the different scheduling solutions by considering three
versions of the applications: Monocular with a DAG composed of 41 tasks, stereo (81 tasks),
and 4-stereo (161 tasks). We adopted the standard KITTI input dataset [194] for the evalu-
ation, which is the de-facto standard evaluation benchmark in computer vision and robotics.
It consists of video streams taken by a car driven around city blocks.

The second category is a large set of synthetic DAGs. We implemented a parametric DAG
generator which we used for our evaluation by creating around 40,000 DAGs with different
characteristics: size (from 20 to 250 nodes), degree of nodes, execution times of the node
implementations for CPU and GPU, multiple implementations vs. exclusive implementation
of nodes, and CPU/GPU speedup for nodes with multiple implementations. We collected
the generated DAGs in two classes: Tree, for DAGs with high average degree, medium small
diameters, and low standard deviation; linear for the rest. The idea was to classify the DAGs
depending on the average level of topological constraints among nodes.

For all benchmarks, we used an NVIDIA Jetson TX2 device as edge computing architec-
ture, which is a prevalent low-power heterogeneous device used in industrial robots, machine

78 4 Experimental Results

ORB-SLAM
version

CPU
cores
(#)

DL
time
(ms)

Max XO
(ms)

Overlap (ms) XO (ms) Idle time (%) XO / Max_XO (%) Makespan (ms) Speedup SLR

HEFT XEFT HEFT XEFT HEFT XEFT HEFT XEFT VW HEFT XEFT
HEFT
on VW

XEFT
on VW

XEFT
on HEFT HEFT XEFT

Monocular 2 15 30.0 43.1 46.0 10.7 24.5 45.9% 27.6% 35.8% 81.8% 74.7 39.9 31.7 46.6% 57.5% 20.4% 2.45 1.95

Monocular 3 15 44.1 62.1 70.2 18.7 32.5 31.5% 20.7% 42.3% 73.7% 74.7 30.2 25.3 59.6% 66.2% 16.3% 1.86 1.56

Monocular 4 15 44.1 76.0 80.2 26.5 29.4 28.2% 40.5% 60.0% 66.6% 74.7 26.5 25.3 64.6% 66.2% 4.4% 1.63 1.56

Monocular 5 15 44.1 90.1 82.0 37.8 31.3 21.8% 40.9% 85.6% 70.9% 74.7 23.0 24.4 69.2% 67.4% -5.7% 1.42 1.50

Monocular 2 20 40.0 51.6 55.2 7.0 32.5 43.9% 15.5% 17.6% 81.2% 79.7 46.0 32.7 42.3% 59.0% 29.0% 2.16 1.54

Monocular 3 20 44.1 72.3 80.2 19.1 32.5 31.9% 30.8% 43.4% 73.7% 79.7 35.4 30.3 55.6% 62.0% 14.3% 1.66 1.43

Monocular 4 20 44.1 92.9 98.2 31.3 34.4 21.2% 30.1% 71.0% 77.9% 79.7 29.5 28.7 63.0% 64.0% 2.6% 1.39 1.35

Monocular 5 20 44.1 103.2 100.4 41.0 37.4 23.1% 35.1% 93.0% 84.7% 79.7 26.9 27.9 66.3% 65.0% -3.8% 1.26 1.31

Monocular 2 25 44.1 60.3 70.4 0.3 36.8 42.9% 14.4% 0.7% 83.5% 84.7 52.8 35.3 37.7% 58.3% 33.2% 2.01 1.34

Monocular 3 25 44.1 84.9 92.0 16.6 34.2 29.3% 25.1% 37.6% 77.4% 84.7 40.0 34.4 52.8% 59.5% 14.1% 1.52 1.31

Monocular 4 25 44.1 107.3 109.4 32.9 37.4 20.2% 31.2% 74.7% 84.7% 84.7 33.6 32.9 60.3% 61.2% 2.2% 1.28 1.25

Monocular 5 25 44.1 119.2 119.2 42.3 42.3 22.0% 22.0% 95.9% 95.9% 84.7 30.6 30.6 63.9% 63.9% 0.0% 1.16 1.16

Stereo 2 15 30.0 66.4 67.8 5.7 21.1 50.7% 43.8% 18.9% 70.3% 118.8 67.4 60.3 43.3% 49.2% 10.5% 4.15 3.71

Stereo 3 15 45.0 92.5 96.6 8.8 25.5 40.7% 31.3% 19.6% 56.7% 118.8 52.0 46.8 56.3% 60.6% 9.9% 3.20 2.88

Stereo 4 15 60.0 115.4 121.4 17.2 45.1 32.8% 15.3% 28.7% 75.2% 118.8 42.9 35.9 63.9% 69.8% 16.5% 2.64 2.21

Stereo 5 15 75.0 133.0 137.0 15.6 41.5 32.4% 25.8% 20.8% 55.3% 118.8 39.4 34.2 66.9% 71.2% 13.1% 2.42 2.11

Stereo 2 20 40.0 74.2 76.6 9.8 30.4 48.8% 38.7% 24.4% 75.9% 123.8 72.4 62.5 41.5% 49.5% 13.7% 3.41 2.94

Stereo 3 20 60.0 101.9 110.0 6.4 46.1 42.2% 17.6% 10.7% 76.9% 123.8 58.8 44.5 52.6% 64.1% 24.3% 2.76 2.09

Stereo 4 20 80.0 122.1 127.1 12.4 50.6 39.3% 19.0% 15.5% 63.2% 123.8 50.3 44.2 59.3% 68.3% 22.1% 2.37 1.85

Stereo 5 20 88.2 146.3 147.0 16.0 41.5 34.2% 35.2% 18.1% 47.0% 123.8 44.4 39.2 64.1% 68.3% 11.7% 2.09 1.85

Stereo 2 25 50.0 81.0 87.0 0.0 36.7 51.2% 31.7% 0.0% 73.4% 128.8 83.0 63.7 35.6% 50.5% 23.2% 3.16 2.43

Stereo 3 25 75.0 110.8 123.1 0.0 57.3 44.2% 10.0% 0.0% 76.4% 128.8 66.2 45.6 48.6% 64.6% 31.1% 2.52 1.74

Stereo 4 25 88.2 134.1 147.1 6.2 50.6 40.7% 28.1% 7.0% 57.3% 128.8 56.6 44.2 56.1% 65.7% 21.9% 2.16 1.68

Stereo 5 25 88.2 163.4 167.8 13.0 44.9 33.4% 36.4% 14.8% 50.9% 128.8 49.1 43.3 61.9% 66.4% 11.8% 1.87 1.65

4-stereo 2 15 30.0 112.7 114.0 1.8 1.0 57.3% 54.3% 6.1% 3.2% 207.0 131.9 124.7 36.3% 39.8% 5.5% 5.63 5.32

4-stereo 3 15 45.0 155.5 159.6 8.3 0.9 47.8% 43.2% 18.5% 2.1% 207.0 99.3 93.7 52.1% 54.8% 5.6% 4.23 3.99

4-stereo 4 15 60.0 189.2 195.5 10.5 0.0 44.1% 39.0% 17.5% 0.0% 207.0 84.6 80.2 59.1% 61.3% 5.2% 3.61 3.42

4-stereo 5 15 75.0 217.8 228.7 12.4 13.3 42.0% 35.0% 16.5% 4.3% 207.0 75.1 70.4 63.7% 66.0% 6.3% 3.20 3.00

4-stereo 2 20 40.0 120.3 126.7 0.0 16.6 56.3% 48.6% 0.0% 41.4% 212.0 137.7 123.2 35.0% 41.9% 10.6% 5.87 5.25

4-stereo 3 20 60.0 164.2 179.5 7.8 21.8 48.1% 34.3% 13.0% 36.4% 212.0 105.5 91.0 50.2% 57.1% 13.7% 4.50 3.88

4-stereo 4 20 80.0 202.2 215.6 9.7 16.1 43.8% 32.9% 12.2% 20.1% 212.0 89.9 80.3 57.6% 62.1% 10.6% 3.83 3.43

4-stereo 5 20 100.0 237.0 248.6 13.7 61.4 40.1% 29.1% 13.7% 61.4% 212.0 79.1 70.1 62.7% 67.0% 11.4% 3.37 2.99

4-stereo 2 25 50.0 130.7 137.3 0.0 33.4 54.6% 43.9% 0.0% 66.8% 217.0 144.0 122.4 33.7% 43.6% 15.0% 5.48 4.66

4-stereo 3 25 75.0 181.4 188.8 0.0 27.1 45.1% 32.9% 0.0% 36.1% 217.0 110.1 93.8 49.3% 56.8% 14.8% 4.20 3.57

4-stereo 4 25 100.0 222.4 236.0 3.8 89.0 40.3% 22.9% 3.8% 89.0% 217.0 93.2 76.6 57.1% 64.7% 17.8% 3.55 2.92

4-stereo 5 25 125.0 258.3 276.5 8.1 114.4 38.1% 17.4% 6.4% 91.5% 217.0 83.5 66.9 61.5% 69.2% 19.8% 3.18 2.55

Table 4.1: Experimental results with ORB-SLAM+DL on Jetson TX2.

vision cameras, and portable medical equipment. It consists of a quad-core ARM Cortex-A57
MPCore, a dual-core NVIDIA Denver 2 64-Bit CPU, and a 256-core NVIDIA Pascal GPU
with 256 NVIDIA CUDA cores. We tested the mapping and scheduling activity over 2, 3,
4, and 5 CPUs core + 1 GPU. We reserved one Denver CPU core for the OpenVX runtime
system and CPU/GPU synchronization.

Evaluation of rank-based heuristics: HEFT vs. XEFT

Table 4.1 summarizes the results we obtained with different configurations of the ORB-
SLAM run with the inference application (ORB-SLAM+DL) on the Jetson TX2 device with
the different CPU/GPU scenarios (i.e., #CPU cores enabled combined to the GPU). The
table reports the comparison of the rank-based mapping and scheduling solutions considered,
i.e., the proposed HEFT implementation and XEFT. NVIDIA VisionWorks (VW) [30] has
been taken as reference. The schedule length ratio (SLR) represents the normalization of
the makespan over the maximum critical path.

We found that, as expected, HEFT sensibly improves (from 33.7% to 69.2%) the sys-
tem performance w.r.t. the scheduling system currently implemented and released with the
NVIDIA VisionWorks library. The table also shows that XEFT generates an exclusive over-
lapping among nodes that is higher than that provided by HEFT in almost all cases (see

4.1 Optimizing performance on heterogeneous devices at the edge 79

double column XO). We observed a XO reduction only with the simpler application versions
(monocular) run on a large number of CPU cores (i.e., 5). This is due to the fact that the
scheduler easily finds computing resources for the few executing nodes, thus any clusteri-
zation in the ranking cannot give better results. For this reason, in these two cases, HEFT
also gives slightly better system performance w.r.t. XEFT (-5.7% and -3.8%).

The idle time values underline that this category of benchmarks scheduled with HEFT
suffers from workload imbalance. The HEFT efficiency to generate exclusive overlapping is
measured in column XO/Max_XO. Such a value is higher with the simpler applications
that have also low levels of maximum potential XO. The clustering effect of XEFT is an
increase of the XO efficiency and a reduction of the idle times in the CEs. The two values
improve by increasing the application complexity.

We found that, in general, XEFT provides better performance w.r.t. HEFT up to 33.2%
and, more importantly, it can provide the same or better performance w.r.t. HEFT with
less architectural resources (e.g., with one ore more CPU cores less). As an example, in the
configuration Stereo with 20ms DL, XEFT provides the same performance of HEFT with 2
CPU cores less.

Figures 4.1 and 4.2 show the performance comparison between XEFT and HEFT on the
synthetic benchmarks. The two figures identify each benchmark on the plot by considering
two metrics evaluated with HEFT: the XO and the idle time. As an example, the rightmost
side and top side of the plot group the benchmarks for which HEFT provides the highest
XO and the highest idle time, respectively. For each benchmark, the circle and the cross
represent the improvement and loss of performance, respectively. The size of circles(crosses)
represents the improvement(loss) measure.

The figures aim at understanding the correlation between the XEFT efficiency w.r.t.
HEFT and the DAG characteristics. For both the synthetic classes, the results underline
that XEFT generally outperforms HEFT with benchmarks for which (i) HEFT suffers from
idle time, and (ii) the XO efficiency of HEFT is low. This class of benchmarks are grouped,
in both figures, in the leftmost top side. XEFT cannot improve the HEFT performance if
the benchmark, with HEFT, is already well balanced (low idle time) or already presents
high XO efficiency. In these cases, XEFT can lead to a loss of performance up to 19%.

Figure 4.1 shows that HEFT already performs well with the main parts of DAGs of
class Tree. This is due to the fact that they provide high potential overlapping, less node
constraints and, as a consequence, HEFT generates low idle time. Since the potential XO
is also related to the number of exclusive nodes, which has been generated with a Gaussian
distribution for the analysis, XEFT improves the performance mostly in benchmarks with
less than 80% XO of HEFT. Figure 4.2 shows that the rest of the benchmarks are more
distributed over the space. Here it is evident the main contribution of XEFT on the leftmost
top side of the plot. The ORB-SLAM+DL benchmarks belong to this category of DAGs.

Evaluation of scheduling with pipelined DAG executions

In this section we first present the evaluation of the benefits provided by the pipelined DAG
execution in terms of performance improvement for all the considered scheduling alternatives.
Then we present a global comparison among the alternatives. They include G-FL [31],
the proposed HEFT implementation, and XEFT. Since we found that, in all the adopted
benchmarks, the batched pipelined G-FL approach often causes GPU bottlenecks, as shown
in Figure 3.5, generally leading to low performance w.r.t. the rank-based approaches, we
also implemented an improved version of the G-FL algorithm. This modified version, which
we call G-FLc, uses the mapping produced by the HEFT heuristic and then schedules all
the nodes using the normal G-FL scheduling rules.

For brevity, we focus the analysis and comparison on the batched version (without the
constraint of Eq. (3.7)) for all the approaches. In general, the experimental results confirmed
that such a constraint almost always leads all the approaches to not provide any performance
improvement w.r.t. the non-pipelined version.

Table 4.2 shows what kind of benefits we can expect when combining a batched pipeline
of DAGs with each scheduling compared to the non-pipelined makespan of the same sched-

80 4 Experimental Results

Fig. 4.1: Experimental results with the Tree class of synthetic DAGs on the Jetson TX2.

Fig. 4.2: Experimental results with the Linear class of synthetic DAGs on the Jetson TX2.

uler. In linear graphs, it is evident that the batched pipeline, on average, leads to better
performance. We also found that, as expected, the gain increases with the number of CPU
cores available to the scheduler.

With G-FL, moving from two CPU cores to three yields a 40% higher improvement on
average for any number of pipeline levels (Frames in the table). Moving past three cores
does not give any further benefit.

When looking at the length of the pipeline (number of frames), moving from three to five
frames allows the biggest improvement out of any configuration with an average increase of
51% when compared to three frame. We also tested a ten frames pipeline, which still showed
a slight improvement while sensibly less than from three to five.

G-FLc behaves almost identically, even though it showed the best average improvement,
ranging from 7.6% when using two cores to 11.9% when using five. This suggests that high
idle times generated by the schedule allow to take advantage of nodes from successive DAG
instances.

4.1 Optimizing performance on heterogeneous devices at the edge 81

Class CPUs - Frames G-FL HEFT G-FLc XEFT

Linear 2 - Any 2.66% 3.57% 7.62% 3.23%
Linear 3 - Any 3.72% 5.77% 9.63% 5.56%
Linear 4 - Any 3.87% 7.54% 10.92% 7.51%
Linear 5 - Any 3.73% 8.88% 11.94% 8.89%
Linear Any - 3 2.79% 4.71% 7.93% 4.62%
Linear Any - 5 4.20% 8.17% 12.12% 7.98%
Linear Any - 10 5.15% 11.28% 15.16% 10.71%

Tree 2 - Any 0.55% 0.62% 0.71% 0.72%
Tree 3 - Any 0.71% 0.01% 0.03% 0.14%
Tree 4 - Any 0.81% 0.53% 0.51% 0.80%
Tree 5 - Any 0.88% 0.97% 0.83% 2.14%
Tree Any - 3 0.67% 0.05% 0.09% 0.23%
Tree Any - 5 0.81% 0.51% 0.44% 0.68%
Tree Any - 10 0.94% 1.90% 1.93% 2.11%

Table 4.2: Evaluation of benefits provided by the batch pipeline on the scheduling algorithms
with the different classes of benchmarks (Linear and Tree) considering multiple configura-
tions of CPU cores and batch sizes.

vs G-FL vs G-FLc vs XEFT vs G-FL (p) vs G-FLc (p) vs XEFT (p)

G-FL -22.66% -25.05% -2.07% -27.34% -28.14%
G-FLc 29.29% -3.10% 26.62% -6.06% -7.09%
XEFT 33.43% 3.20% 30.67% -3.05% -4.12%

G-FL (p) 2.11% -21.02% -23.47% -25.81% -26.62%
G-FLc (p) 37.63% 6.45% 3.15% 34.78% -1.10%
XEFT (p) 39.16% 7.63% 4.29% 36.28% 1.11%

Table 4.3: Overall comparison of the scheduling approaches without and with the batched
pipeline (p).

XEFT and HEFT run with the batched pipeline show moderate improvements, from
around 3% to 9%. The improvement increases from two to three cores, allowing an average
72% better improvement, a further 35% when moving from three to four, and a further 18%
when moving from four to five. Looking at the size of the pipeline, the change from three
to five frames creates an improvement 73% higher, which, just like G-FL, is better than
what we find when moving from five to ten, showing only a 34% better improvement. HEFT
behaves basically the same as XEFT, only showing slightly lower margins when moving from
two to three cores (62%).

In general, with a lower number of cores, XEFT shows fewer improvements than G-FLc,
due to the fact that XEFT generates less idle times. G-FL shows very limited improvements
(2-3%) in almost all situations due to the bottleneck problems analyzed in Section 3.1.1.

The second part of the table shows how, in almost every instance of the tree graph class,
the improvements are less than 1% and thus negligible for all the scheduling approaches.
This is due to the fact that, as explained in Section 4.1.1, the characteristics of this DAG
instances lead the schedulers to generate very small idle periods, for which the pipeline
cannot provide any benefits.

The correlation between the idle periods of the non-pipelined HEFT and XEFT and the
potential improvements given by the pipeline is better represented in Figure 4.3. The figure
shows the speedup obtained by applying the pipeline for both HEFT and XEFT considering
4 CPU cores+GPU and 5 overlapped DAG instances for the linear benchmark class. For
a large number of these benchmarks, the non-pipelined XEFT already provides very low
idle times (leftmost side of the plot). For these cases, the speedup is very limited as the
scheduler, even on the multi DAG instances, has no actual room for improvements. In case
of benchmarks for which XEFT generates idle periods (center, rightmost side of the plot),

82 4 Experimental Results

Fig. 4.3: Performance improvement with DAG pipelining for HEFT and XEFT considering
4 CPU cores+GPU and 5 frames with the linear class of benchmarks.

the pipeline can further improve the results. Similar trends can be observed with the HEFT
scheduler, even though the higher idle time degree of the benchmarks with the non-pipeline
HEFT is evident.

Table 4.3 shows the global comparison of the different schedulers. The first row shows
how G-FL is up to 25.09% slower than all other solutions, and up to 28.14% slower when
compared to the corresponding pipelined version. XEFT provides the best performance
globally, being significantly faster than G-FL, and slightly faster than G-FLc. As shown
before, the pipelined G-FL does not improve enough particularly over G-FL, because the
pipeline cannot improve on the bottlenecks that come from poor mappings. Even when
compared to non-pipelined XEFT, it is significantly worse, begin on average 23.46% slower.
The situation improves significantly when looking at G-FLc, while this solution is still slower
than XEFT, it is 29.29% faster than G-FL. It is important to remark that, the mapping
implemented by G-FLc is extrapolated from the execution of the HEFT scheduling.

The pipelined version of G-FLc is comparable to XEFT and slightly behind the pipelined
XEFT. This underlines that, both with and without the pipeline, XEFT is the fastest al-
gorithm, but also that the mapping is of utmost importance to obtain the best possible
result.

Pipeline memory footprint and effectiveness

When adopting the scheduling with batched pipeline, it is important to also consider the
additional costs that comes with pipelining multiple DAG instances. As the addressed strate-
gies relies on static scheduling to limit any run time overhead, the situation changes when
looking at memory. Pipelining multiple DAGs means keeping them in the system memory
while performing the computation and until all the operations on the corresponding frames
are completed (i.e., all the nodes from the same DAG are scheduled and executed). This
translates in a much higher memory usage. Because of this, when scheduling an embedded
vision application with the pipeline, the number of DAGs we can overlap heavily depends
on how much memory is available.

In addition, increasing the number of potential pipeline levels does not always trans-
late into a corresponding number of DAG instances effectively overlapped at run time (see
mapping and temporal constraints issues analysed in Section 3.1.1). To understand the ef-
fectiveness of the scheduling approach to exploit the pipeline levels, we report the average
number of memory allocations reserved for the different frames that are actually exploited
concurrently by the schedulers during the execution (see Table 4.4). For this analysis, we al-
lowed each scheduler to reuse, for the computation of a DAG instance, the allocated resources
used for the computation of any previous DAG as long as there is no more temporal overlap

4.1 Optimizing performance on heterogeneous devices at the edge 83

Schedulers with batched pipeline
DAG instances G-FL G-FLc HEFT XEFT

3 2.0-2.1 2.6-2.9 2.5-2.9 2.5-2.9
5 2.8-3.1 3.7-4.6 3.4-4.6 3.4-4.6
10 4.6-5.3 5.7-8.1 6.3-8.2 5.4-8.0

Table 4.4: Average number of actual frame buffers exploited during the scheduling of
pipelined DAG instances for the synthetic graphs (2 cores - 5 cores).

between the two instances. Reuse of resources for single nodes has not been considered (i.e.,
either all the allocated space can be reused or new space gets allocated).

The results in Table 4.4 underline that, on average, G-FL does not exploit all the resources
instantiated for the pipeline. By allocating memory space for 3 overlapped DAG instances,
G-FL uses in average the resources for 2 (2.0 represents the average number of levels exploited
by considering all benchmarks with 2 cores, while 2.1 represents the same value with 5 cores).
The waste of memory resources gets worse as soon as resources for more levels of the pipeline
are allocated (e.g., for 5 overlapping DAG instances, G-FL actually uses in average 2.8 and
3.1 levels with 2 and 5 cores, respectively). With 10 available levels of pipeline, it can take
advantage of half of the allocated resources.

The table also shows that all the other approaches take advantage of all the allocated
resources until 5 levels of pipeline and by considering 5 CPU cores. Further than this level,
these schedulers also cannot fully take advantage of the allocated resources, and the trend
of performance improvement decreases (see Table 4.3).

4.1.2 Improving performance on Edge computing embedded boards with
Unified Memory Architecture

To verify the benefits obtained with the UMA ZC framework (see Section 3.1.2), we start with
the analysis of the micro-benchmarks on three edge computing devices, i.e., NVIDIA Jetson
Nano, TX2, and AGX Xavier. We then utilize the results obtained for the tuning of two
different real cases of study: an application for the extraction of centroids in Shack–Hartmann
wave front sensors [195] and an ORB-SLAM application for the simultaneous localization
and mapping [192].

Device micro-benchmarking

Fig. 4.4 shows the results of the first micro-benchmark on the Jetson TX2 and Xavier. ZC
has side-by-side bars to show the overlapping execution. For the sake of space, the results
on the Nano, which are equivalent to those of the TX2, have been omitted. The figure shows
that the execution time of both the CPU routine and GPU kernel of the micro-benchmark
with ZC are higher than those of SC or UM. This is due to the fact that the system disables
the GPU cache when adopting the concurrent accesses of ZC.

With TX2, the performance difference is sensibly higher (up to 70%) since, differently
from Xavier, TX2 disables also the CPU cache with ZC. The results shown in Table 4.5
(GPU_Cache

max_throughput

LL_L1) confirm that the GPU memory accesses with ZC form an
important bottleneck with a GPU throughput that is up to 77 times lower than the GPU
throughput provided by SC and UM.

With Xavier, which implements I/O coherency and the CPU cache is always enabled, the
difference between the GPU kernel performance with ZC and SC is “limited” to 3.7 times.
Table 4.5 shows that the GPU_Cache

max_throughput

LL_L1 of ZC in Xavier is still significantly
worse than that in SC (or UM), even though the difference is sensibly reduced when compared
to TX2 (i.e., 7 times lower in Xavier vs. 77 times lower in TX2).

In conclusion, when considering cache-dependent applications originally implemented
with ZC, the ZC to SC switching can lead to a MaxZC/SC_speedup equal to 70 in the TX2,

84 4 Experimental Results

Kernel: 231,63

Kernel: 75,18

Kernel: 3,29
Kernel: 20,36

Kernel: 3,6

Kernel: 21,7CPU: 121,56
CPU: 167,92

CPU: 117,11

CPU: 194,68

CPU: 750,94

CPU: 178,44

Total: 752,19

Total: 179,93
Total: 127,75

Total: 192,28
Total: 122,56

Total: 219

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

800 ms

TX2 ZC Xavier ZC TX2 SC Xavier SC TX2 UM Xavier UM

Kernel CPU Total

Fig. 4.4: First benchmark results: Execution times on the Jetson TX2 and Xavier with ZC,
SC, and UM.

Board GPU_Cache
max_throughput

LL_L1

Zero Copy Unified Memory Standard Copy

TX2 1.28 GB/s 97.34 GB/s 104.15 GB/s
Xavier 32.29 GB/s 214.64 GB/s 231.14 GB/s

Table 4.5: First benchmark results: Maximum throughput of the GPU cache on the Jetson
TX2 and Xavier.

while equal to 3.7 in Xavier. Since these values represent upper bounds, the micro-benchmark
results underline that Xavier likely gives positive performance by adopting ZC also in many
cache-dependent applications.

Figures 4.5 and 3.8 show the results of the second benchmark on the Jetson TX2 and
Xavier, respectively. With TX2 (Fig. 4.5), from 1/16,000 to 1/8000 accesses, the GPU cache
throughput between ZC and SC is comparable. This allows us to identify the GPU cache
threshold (2.7%). Over 1/8000, the difference on throughput as well as on performance
sensibly increases.

With Xavier (Fig. 3.8), we identified three zones (delimited by the vertical lines in the
figure). In the first zone (left-most), ZC and SC provide the same performance. This allows us
to identify the GPU cache threshold (16.2%) to switch to ZC. In the second zone (between the
two vertical lines) the performance difference is below 200% (cache usage between 16.2% and
57.1%). In this case, the device may still provide equal or better performance by switching
to ZC. In the third zone the performance difference sensibly increases over 200%, which
suggests to adopt SC. This underlines that, when compared to SC, ZC can offer identical
performance when there is limited cache usage, with linear performance degradation up to
a hard limit for bandwidth (i.e., 59 GB/s on Xavier). The closer we move towards the third
zone, the higher must be the time the application gains with concurrent execution and task
overlapping. After 57.1% of GPU cache usage, the GPU is severely bottlenecked and the
recommendation is to not use ZC.

Fig. 4.6 shows the results of the third benchmark, which are used to extrapolate the
SC/ZCMax_speedup. The runtime of the CPU and GPU tasks are comparable and the tasks
can be fully overlapped. Due to the large data set used, 227 floats (i.e., 512 MB), transfer
times contribute significantly to the system performance. ZC is up to 164% faster than UM
and up to 152% faster than SC.

4.1 Optimizing performance on heterogeneous devices at the edge 85

105 GB/s

8 GB/s

0 GB/s

20 GB/s

40 GB/s

60 GB/s

80 GB/s

100 GB/s

0,0 ms

0,5 ms

1,0 ms

1,5 ms

2,0 ms

2,5 ms

3,0 ms

3,5 ms

LL_L1
Throughput

Time

Array section length

𝐺𝑃𝑈_𝐶𝑎𝑐ℎ𝑒𝐿𝐿_𝑙1
𝑀𝑎𝑥_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡:

𝐺𝑃𝑈_𝐶𝑎𝑐ℎ𝑒𝐿𝐿_𝑙1
𝑀𝑎𝑥_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡:

Fig. 4.5: Second benchmark results on the NVIDIA Jetson TX2.

Kernel: 1904 Kernel: 1914 Kernel: 1913

Copy: 1070

CPU: 3417 CPU: 2102

CPU: 2021

Total: 2024

Total: 5349
Total: 5095

0 ms

1.000 ms

2.000 ms

3.000 ms

4.000 ms

5.000 ms

6.000 ms

0 ms

1.000 ms

2.000 ms

3.000 ms

4.000 ms

5.000 ms

6.000 ms

Zero Copy Unified Memory Standard Copy

Kernel Copy CPU Total

Fig. 4.6: Third benchmark results.

Board
CPU

Cache
usage
LL_L1

(%)

CPU
cache

thresh.
(%)

GPU

Cache
usage
LL_L1

(%)

GPU
cache

thresh.
(%)

Kernel
times
(µs)

Copy
time/k-

ernel
(µs)

SC/ZC
speedup

(up to,
%)

Nano 19.8 15.6 1.7 2.5 453.5 44.8 �

TX2 19.8 15.6 3.7 2.7 175.2 22.4 �

Xavier 6.1 100 7.0 16.2-57.1 41.2 16.88 69.3

Table 4.6: Profiling results of the SH-WFS application.

Tuning the Shack–Hartmann adaptive optics application

Adaptive optic algorithms measure and compensate optical aberrations when capturing im-
ages. We applied the proposed framework to tune an implementation of the adaptive optics
with Shack-Hartmann sensors algorithm for edge computing [195]. Table 4.6 shows the pro-
filing results, which quantify the dependency of the application performance on the CPU
and GPU caches. In particular, the CPU cache usage of the application on Nano and TX2

86 4 Experimental Results

Board
SC time

(CPU
only)

SC
kernel

time

UM time
(CPU
only)

UM
kernel

time

UM
speedup
(vs SC)

UM
kernel

speedup
(vs SC)

ZC time
(CPU
only)

ZC
kernel

time

SC/ZC
speedup

(actual
vs SC)

ZC
kernel

speedup
(vs SC)

Nano 1070.1µs
(238.6µs) 453.54µs 1021.5µs

(259.7µs) 454.92µs 5% 0%
1796.1µs

(1120.7µs) 467.21µs �67% �3%

TX2 765.04µs
(79.6µs) 175.18µs 783.67µs

(217.2µs) 177.16µs �2% �1%
801.24µs
(307.4µs) 244.17µs �5% �39%

Xavier 304.57µs
(41.9µs) 41.24µs 305.80µs

(88.8µs) 47.08µs 0% �14%
220.15µs
(45.4µs) 47.14µs 38% �14%

Table 4.7: SH-WFS centroid extraction algorithm performance results.

Board
CPU

Cache
usage
LL_L1

(%)

CPU
cache

thresh.
(%)

GPU

Cache
usage
LL_L1

(%)

GPU
cache

thresh.
(%)

Kernel
times
(µs)

Copy
time
per

kernel
(µs)

SC/ZC
speedup

(up to,
%)

TX2 0 15.6 25.3 2.7 93.56 1.57 �

Xavier 0 100 20.1 16.2-57.1 24.22 1.35 5.9

Table 4.8: Profiling results of the ORB-SLAM application.

exceeds the threshold. This suggests that the application on these devices likely takes more
advantage from the SC or UM communication models. With Xavier, the framework suggests
to switch to ZC, with an estimated potential speedup of up-to 69%.

To evaluate the performance model, we implemented the application with the three
communication models. Table 4.7 shows the results. As expected, the difference between SC
and UM is negligible (below ±5%). Switching from SC to ZC on Nano and TX2 lead to a
significant performance degradation. A sensible loss of performance has been measured with
Nano (-67%), which was expected as, in that board, the micro-benchmarks classified the
application CPU cache dependent while not GPU cache dependent. A loss of performance
has been measured and was expected on TX2, since both the CPU and GPU cache usage were
behind the corresponding thresholds. With Xavier, we observed a performance improvement
of the system equal to 38%. Thanks to ZC and the corresponding data transfer elimination,
we measured, in average, 0.12J and 0.09J per second energy saving on Xavier and TX2,
respectively, w.r.t. SC. We did not consider the energy saving on Nano as the performance
loss is not negligible.

ORB-SLAM application

For the sake of space, we report the comparison between the ORB-SLAM application con-
sidering only SC and ZC. We do not report the result with the Nano device as it does not
allow satisfying the real time constraints of the (heavy) application. Table 4.8 shows the
profiling results, which classify the application as GPU cache-dependent with both TX2 and
Xavier. However, with Xavier, the profiling maps the application in the second zone of the
GPU cache usage (see Fig. 3.8).

Table 4.9 shows the application performance we obtained with the application imple-
mented with both SC and ZC on TX2 and Xavier. As expected, ZC on TX2 strongly limits
the application performance. Instead, Xavier provides the same performance by considering
the application implemented with SC and ZC. In this case, the performance of the GPU
kernel that slightly decreases (�10%) is fully compensated by the absence of data transfers
and task overlapping. With a 30Hz camera as input sensor, we measured an energy saving
of 0.17J per second on the Xavier, on average.

4.1 Optimizing performance on heterogeneous devices at the edge 87

Board SC
time

SC kernel
time

ZC
time

ZC kernel
time

SC/ZC
speedup

(actual)

ZC
kernel

speedup

TX2 70ms 93.56µs 521ms 824.20µs �744% �880%

Xavier 30ms 24.22µs 30ms 26.99µs 0% �10%

Table 4.9: ORB-SLAM performance results.

Fig. 4.7: The embedded platforms used for testing. The Nvidia Jetson Xavier (left) and
Nvidia Jetson TX2 (right).

NVIDIA device Benchmark GPU Copy Time (ms) SD (ms)

Jetson TX2 Cache CUDA-SC 833.0 ± 3.8
Jetson TX2 Cache CUDA-ZC 8 509.1 ± 131.7
Jetson TX2 Concurrent CUDA-SC 1 053.0 ± 8.2
Jetson TX2 Concurrent CUDA-ZC 1 316.1 ± 33.9
Jetson Xavier Cache CUDA-SC 207.7 ± 9.8
Jetson Xavier Cache CUDA-ZC 244.7 ± 11.0
Jetson Xavier Concurrent CUDA-SC 381.2 ± 8.3
Jetson Xavier Concurrent CUDA-ZC 256.9 ± 6.1

Table 4.10: Time reference of cache benchmark and concurrent benchmark in NVIDIA Jetson
TX2 and Xavier with CUDA-SC and CUDA-ZC.

4.1.3 Improving performance for CPS on Edge computing embedded boards
with UMA

To verify the performance of the proposed ROS-compliant communication models, we care-
fully tailored two different benchmarks: cache-dependent and concurrent benchmark. For
details on the benchmarks, see Section 4.1.2.

For all tests, we used an NVIDIA Jetson TX2 and a Jetson Xavier as embedded com-
puting architectures (see Fig. 4.7). The routines of both benchmarks are optimized on I/O
coherent hardware through the use of the cudaHostRegister API.

These two synthetic tests aim at maximizing the communication bottleneck and are rep-
resentative of a worst-case scenario communication-wise. Real world applications, especially
in the field of machine learning, will see a lesser bottleneck because of a more coarse-grained
communication. In contrast, a high number of nodes with limited communication will still
benefit from the application of the proposed methodology to reduce the overall communica-
tion overhead.

Table 4.10 shows the performance results obtained by running the two benchmarks on
the two different devices with different communication models (i.e., CUDA-SC, CUDA-ZC)
without ROS. The reported times are the averaged results of 30 runs. Standard deviation is
also considered in the fifth column (i.e., column “SD”). As expected, the TX2 device provides

88 4 Experimental Results

Arch. GPU Copy ROS Type ROS Copy Time (ms) SD (ms) Overhead

2 nodes (fig. 3.10) CUDA-SC Topic ROS-SC 22 825.2 ± 5 763.5 2 640%
2 nodes (fig. 3.11) CUDA-SC Service ROS-SC 22 715.0 ± 3 929.8 2 627%
2 nodes (fig. 3.12) CUDA-SC Topic ROS-ZC 1 056.0 ± 32.2 27%
2 nodes (fig. 3.12) CUDA-ZC Topic ROS-ZC 10 254.2 ± 189.0 21%
2 nodes (fig. 3.13) CUDA-SC Topic ROS-SHM-ZC 852.6 ± 7.7 2%
2 nodes (fig. 3.14) CUDA-ZC Topic ROS-SHM-ZC 9 474.0 ± 226.3 11%
3 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 6 334.2 ± 3 562.1 660%
3 nodes (fig. 3.15) CUDA-SC Service ROS-SC 6 755.5 ± 4 589.0 711%
3 nodes (fig. 3.16) CUDA-SC Topic ROS-ZC 1 087.6 ± 39.4 31%
3 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 862.7 ± 9.7 4%
3 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 9 408.1 ± 213.0 11%
5 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 12 234.2 ± 3 487.9 1 369%
5 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 1 737.1 ± 9.1 109%
5 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 11 381.6 ± 65.6 34%

Table 4.11: Results for the Cache Benchmark on the NVIDIA Jetson TX2. The reference
execution time for CUDA-SC is 833.0 ms and 8 509.1 ms for CUDA-ZC.

less performance than the Xavier. In the Jetson TX2, the cache benchmark with the CUDA-
ZC model, which disables the LLC of CPU and GPU, provides the worst performance. The
concurrent benchmark, even with a light cache workload and concurrent execution, still leads
to performance loss. The I/O coherency implemented in hardware in the Xavier reduces this
performance loss. In contrast, such a performance loss is extremely evident in the TX2. The
concurrent benchmark shows how lighter cache usage combined with I/O coherency and con-
current executions, thanks to CUDA-ZC, allows for significant performance improvements
compared to CUDA-SC.

The results of Table 4.10 will be used as reference times to calculate the overhead of all
the tested ROS-based configurations.

We present the results obtained with the proposed ROS compliant models into four ta-
bles. Tables 4.11 and 4.12 present the results on the Jetson TX2 with the cache and concur-
rent benchmarks, respectively. Tables 4.13 and 4.14 present the results on the Jetson Xavier
with the cache and concurrent benchmarks, respectively. In the tables, the first column
indicates the proposed ROS-compliant communication model, with a reference to the cor-
responding figure in the methodology section. The second column indicates the CPU-iGPU
CUDA communication type. The third and fourth columns indicate the ROS communication
protocol. The fifth and sixth show the average run time of 30 executions and the standard
deviation respectively. The last column shows the overhead.

In Table 4.11, the first two rows show how a standard implementation of the ROS protocol
(i.e., ROS-SC) decreases the overall performance to unacceptable levels, for both services
and topics. The ROS-ZC standard shows noticeable improvements compared to ROS-SC,
by reducing the overhead by a factor of ⌅ 100. The proposed ROS-SHM-ZC improves even
further by reducing the overhead down to 2% and 11% when compared to CUDA-SC and
CUDA-ZC respectively.

Moving from two to three nodes, we found a performance improvement by combining
CUDA-SC with ROS-SC in both topics and services. While there is a slight overhead caused
by the addition of the third node, these models lead to better overall performance due to
the easier synchronization between nodes. The standard deviation shows high variance be-
tween results, suggesting a communication bottleneck that can be exacerbated by the system
network conditions, outside of the programmer’s control. This communication bottleneck is
greatly reduced in the ROS-ZC and ROS-SHM-ZC configurations, thanks to the reduced
size of the messages. The third node overhead still reduces the performance when compared
to two nodes. Overall, the difference between two nodes and three nodes in the zero-copy
configurations is negligible.

The same considerations hold for the five node architecture, which also proves to be very
costly due to the additional nodes. Nevertheless, it is still better than the two nodes ROS-

4.1 Optimizing performance on heterogeneous devices at the edge 89

Arch. GPU Copy ROS Type ROS Copy Time (ms) SD (ms) Overhead

2 nodes (fig. 3.10) CUDA-SC Topic ROS-SC 4 666.0 ± 68.9 343%
2 nodes (fig. 3.11) CUDA-SC Service ROS-SC 4 930.0 ± 73.3 368%
2 nodes (fig. 3.12) CUDA-SC Topic ROS-ZC 1 584.6 ± 46.3 50%
2 nodes (fig. 3.12) CUDA-ZC Topic ROS-ZC 1 910.6 ± 73.1 45%
2 nodes (fig. 3.13) CUDA-SC Topic ROS-SHM-ZC 1 046.1 ± 82.3 -1%
2 nodes (fig. 3.14) CUDA-ZC Topic ROS-SHM-ZC 1 203.2 ± 47.2 -9%
3 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 8 244.6 ± 2 938.4 683%
3 nodes (fig. 3.15) CUDA-SC Service ROS-SC 8 505.7 ± 767.6 708%
3 nodes (fig. 3.16) CUDA-SC Topic ROS-ZC 2 261.7 ± 47.1 115%
3 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 997.9 ± 75.6 -5%
3 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 1 172.5 ± 41.5 -11%
5 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 41 773.4 ± 12 118.6 3 867%
5 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 1 923. ± 89.7 131%
5 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 1 978.3 ± 131.9 50%

Table 4.12: Results for the Concurrent Benchmark on the NVIDIA Jetson TX2. The reference
execution time for CUDA-SC is 1 053.0 ms and 1 316.1 ms for CUDA-ZC.

Arch. GPU Copy ROS Type ROS Copy Time (ms) SD (ms) Overhead

2 nodes (fig. 3.10) CUDA-SC Topic ROS-SC 8 371.3 ± 3 210.8 3 930%
2 nodes (fig. 3.11) CUDA-SC Service ROS-SC 10 385.2 ± 3 423.4 4 900%
2 nodes (fig. 3.12) CUDA-SC Topic ROS-ZC 338.1 ± 48.8 63%
2 nodes (fig. 3.12) CUDA-ZC Topic ROS-ZC 653.6 ± 35.4 167%
2 nodes (fig. 3.13) CUDA-SC Topic ROS-SHM-ZC 230.0 ± 15.5 11%
2 nodes (fig. 3.14) CUDA-ZC Topic ROS-SHM-ZC 251.9 ± 25.3 3%
3 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 5 139.1 ± 3 484.6 2 374%
3 nodes (fig. 3.15) CUDA-SC Service ROS-SC 6 744.4 ± 4 367.4 3 147%
3 nodes (fig. 3.16) CUDA-SC Topic ROS-ZC 333.9 ± 30.5 61%
3 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 236.9 ± 13.1 14%
3 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 400.9 ± 20.8 64%
5 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 7 466.4 ± 5 225.2 3 495%
5 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 492.5 ± 15.6 137%
5 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 847.6 ± 36.4 246%

Table 4.13: Results for the Cache Benchmark on NVIDIA Jetson Xavier. The reference
execution time for CUDA-SC is 207.7 ms and 244.7 ms for CUDA-ZC.

SC configuration, overhead-wise. In this instance, for the sake of clarity, the only reported
solutions are the proposed ROS-SHM-ZC. The overhead obtained, while not negligible, is
still limited, especially in the CUDA-ZC configuration.

Considering the concurrent benchmark on the Jetson TX2 (Table 4.12), we found per-
formance results similar to the cache benchmark but with lower overall overheads in the
two nodes ROS-SC configurations. In this benchmark, the service mechanism of ROS is
consistently slower than the topics mechanism. The speedups obtained with ROS-SHM-ZC
are notable. With CUDA-SC they are within a margin of error at �1% with two nodes and
�5% with three nodes. With CUDA-ZC they are more significant at �9% and �11% with
two and three nodes, respectively. This is thanks to the caches not being disabled on the
CPU. As the hardware is not I/O coherent, we had to manually handle the consistency of
the data, and because the cache utilization is low but still present, the CPU computations
have better performance. This allows for an improvement when compared to the original
CUDA-ZC solution of Table 4.10. Nevertheless, this also means that, while there should be
no copies in these two configurations, the combination of the ROS mechanisms with the
CUDA communication model (CUDA-ZC) actually forces explicit data copies. One from
CPU to iGPU and one in the opposite direction. These copies are responsible for the loss in
performance when comparing ROS-SHM-ZC + CUDA-ZC to ROS-SHM-ZC + CUDA-SC.

90 4 Containerization and orchestration on Edge-Cloud architectures

Arch. GPU Copy ROS Type ROS Copy Time (ms) SD (ms) Overhead

2 nodes (fig. 3.10) CUDA-SC Topic ROS-SC 3 501.0 ± 3 052.9 818%
2 nodes (fig. 3.11) CUDA-SC Service ROS-SC 5 307.0 ± 5 841.7 1 292%
2 nodes (fig. 3.12) CUDA-SC Topic ROS-ZC 658.5 ± 41.7 73%
2 nodes (fig. 3.12) CUDA-ZC Topic ROS-ZC 672.4 ± 34.9 162%
2 nodes (fig. 3.13) CUDA-SC Topic ROS-SHM-ZC 403.3 ± 43.0 6%
2 nodes (fig. 3.14) CUDA-ZC Topic ROS-SHM-ZC 266.7 ± 23.4 4%
3 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 17 054.5 ± 5 763.9 4 374%
3 nodes (fig. 3.15) CUDA-SC Service ROS-SC 25 033.2 ± 14 269.0 6 467%
3 nodes (fig. 3.16) CUDA-SC Topic ROS-ZC 655.7 ± 42.1 72%
3 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 408.0 ± 56.9 7%
3 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 451.3 ± 62.6 76%
5 nodes (fig. 3.15) CUDA-SC Topic ROS-SC 43 808.4 ± 8 735.0 11 392%
5 nodes (fig. 3.17) CUDA-SC Topic ROS-SHM-ZC 761.9 ± 86.5 100%
5 nodes (fig. 3.17) CUDA-ZC Topic ROS-SHM-ZC 859.0 ± 66.5 234%

Table 4.14: Results for the Concurrent Benchmark on the NVIDIA Jetson Xavier. The
reference execution time for CUDA-SC is 381.2 ms and 256.9 ms for CUDA-ZC.

When analyzing the results obtained with the Jetson Xavier, (Tables 4.13 and 4.14),
the ROS-SC model is much slower compared to the reference performance and services
are consistently slower than topics. ROS-ZC is faster than ROS-SC by a wide margin. It
is also important to note that, for ROS-SHM-ZC, there are no negative overheads on the
Xavier. This is due to the hardware I/O coherency, which already extrapolates the maximum
performance for CUDA-ZC and the manual handling of the coherency does not lead to
performance improvements. In both benchmarks, the three node configurations for ROS-
SHM-ZC show higher overhead compared to the two node variants, highlighting the higher
cost of the third node and, thus, leading to a significant performance loss when compared
to the optimal performance of the native configuration.

4.2 Containerization and orchestration on heterogeneous

Edge-Cloud computing architectures

This Section focuses on the results obtained for the optimizations related to the porting
and application of containerization and orchestration components to edge-cloud and edge
environments, specifically:

• Section 4.2.1 analyzes the improvements obtained with the containerization and orches-
tration methodology to a robotic real-case of study (see Section 3.2.1).

• Section 4.2.2 analyzes the performance of Kubernetes on RISC-V and compare it to an
equivalent ARM-based platform (see Section 3.2.2).

4.2.1 Extending Docker and Kubernetes for ROS-compliant containerized
robotic applications

We evaluated the proposed design methodology to program the mission of a Robotnik RB-
Kairos mobile robot in an industrial agile production chain. Such a mobile robot consists
of a skid-steering platform equipped with an Universal Robots UR5 manipulator and a
Schunk WSG50 end-effector for grasping. The robot is also equipped with different sensors
including two Sick S300 laser scanners for localization, and an RGB-D Intel RealSense D415
camera. The computing HW architecture consists of four edge devices installed on-board.
One Main Control Board (MCB) is equipped with an Intel i7 9700 3.0 GHz limited to 4
cores (20W power constraint), 4GB of RAM, and Ubuntu 16.04 OS with ROS Kinetic.
Two additional devices are installed for the real-time control SW of the UR5 manipulator
and WSG50 gripper, respectively. They run a real-time Ubuntu OS and real-time kernels
that communicate with the driver nodes for low-level tasks. They are not available for the

4 Containerization and orchestration on Edge-Cloud architectures 91

Node type L1 L2 L3

Mission 1 1 1
Macro-functionality 4 4 4
Functionality/controllers 25 25 52
Drivers 2 2 12

Total: 32 32 69

Table 4.15: ROS-node classification and abstraction levels.

orchestrator. The fourth edge device consists of an Nvidia Jetson Nano with JetPack 4.2. The
on-board devices are connected through a local (Ethernet) network, which is controlled by an
on-board router. The computing HW architecture also includes an external server equipped
with an Intel i5-7400 3.5 GHz, 8GB of RAM, Ubuntu 18.04. The server is connected to the
on-board devices through a 300 Mbps wireless network.

We configured a K3s cluster, version 1.20.4+k3s1, on the MCB, on the Jetson Nano and
on the external server. The external server also runs the K3s master agent.

We started from the ROS-compliant SW application implementing the robot mission.
It consists of four main tasks that implement the interaction of the mobile robot with an
industrial agile production chain. The init task initializes the robot on a starting position,
aligns with the production chain, and waits in idle for the start of the following tasks. The
first task consists of a series of arm and gripper operations to grasp production pieces from
the conveyor belt through the gripper and to move them to the cargo bay. The second
task implements movements of the robot base, arm, and gripper. It moves the base towards
the storage area, then it unloads the pieces from the cargo bay. The third and last task
implements the movement of the base and the arm. The robot returns to the production
line and re-aligns itself with the conveyor belt. It then moves the arm in the ready position.

ROS node classification and abstraction levels

The final SW application deployed on the robot consists of 69 ROS nodes. 32 nodes im-
plement the robot mission (i.e., the four tasks described above), macro-functionality (i.e.,
local/global planner, localization and mapping, arm motion planner), functionality/con-
trollers, and drivers that are used for the simulation and automatically offloaded on the
target HW architecture for the system deployment. We extended the starting SW with a
further macro-functionality to implement a visual SLAM, i.e. an ORB-SLAM [192]. Fur-
ther 27 nodes implement low-level controllers and drivers which are used only on the real
HW at the deployment phase (L3). Table 4.15 summarizes the node classification over the
abstraction levels.

Clustering of ROS nodes and inheritance-based container generation

Considering the available system memory and the container overhead, we run the algorithm
presented in Section 3.2.1 to cluster the nodes into 11 containers. Table 4.16 reports the
generated clusters (i.e., image name) and the corresponding image size without and with
the proposed inheritance-based optimization. The last five images represent the overlapping
packages, which are included in every image without the optimization, while they are shared
by the 11 images in the optimized version. Overall, we found that the proposed inheritance-
based optimization led to a reduction of the memory footprint of 83.2% when all images are
downloaded on the same device.

At L3, we analysed the impact of the containerization process as well as the impact of
the node orchestration system in terms of memory and CPU overhead on the target HW
architecture.

As the cluster includes devices with different architectures (i.e., AMD64 and ARM64), we
created container images that are compatible with both types of architectures using Docker
and the buildx command for linux/arm64/v8 and linux/amd64.

92 4 Containerization and orchestration on Edge-Cloud architectures

Image name Size (GB) Size optimized (GB)

mission-rb 4.087 0.367
hmi-webserver-rb 0.699 0.567
arm-rb 4.343 0.623
rostful-rb 3.777 0.129
local-control-rb 3.967 0.320
rms-rb 3.769 0.134
perception-rb 3.770 0.135
map-nav-rb 3.886 0.251
navigation-rb 3.771 0.135
main-rb 4.136 0.416
hmi-rb 3.872 0.237
wsg50-ros-pkgs � 0.379
summit-xl-bringup � 0.052
summit-xl-robot-local-control � 0.000
summit-xl-navigation � 0.000
base � 3.634

Total: 39.897 6.705

Table 4.16: Docker image sizes on disk before and after the proposed optimization.

MCBExternal Server

Robot SW

Jetson Nano

EthernetWiFi

RealSense

Image
FilteringMission +

HMI

Fig. 4.8: native configuration.

MCBExternal Server

Robot SW

ORB-SLAM

Jetson Nano

EthernetWiFi

RealSense

Image
FilteringMission +

HMI

Fig. 4.9: native + orb configuration.

MCBExternal Server Jetson Nano

EthernetWiFi Containers

RealSense

Image
Filtering

Containers

Robot SW

Mission +
HMI

Fig. 4.10: cont(native) configuration.

We developed six different versions of the SW. Then, thanks to the containerization pro-
cess, we rapidly analysed the containerized versions with different orchestration alternatives
across the distributed computing HW devices.

Figures 4.8 through 4.13, summarize the configurations. The robot’s SW is categorized
into Robot SW and Mission + HMI, where the latter represents the containers demo-rb,
hmi-rb and hmi-webserver-rb from Table 4.16, while the former represents the remaining
containers listed in the same table. The ORB-SLAM has its own block.

4 Containerization and orchestration on Edge-Cloud architectures 93

MCBExternal Server

K3S

Jetson Nano

EthernetWiFi Containers

RealSense

Image
Filtering

Containers

Robot SW

Mission +
HMI

Fig. 4.11: k3s-a(native) configuration.

MCBExternal Server

K3S

Containers

Robot SW

K3S

Containers

Mission +
HMI

ORB-SLAM

Jetson Nano

EthernetWiFi Containers

RealSense

Image
Filtering

Fig. 4.12: k3s-b(native + orb) configuration.

MCBExternal Server

K3S

Containers

Robot SW

ORB-SLAM

K3S

Containers

Mission +
HMI

Jetson Nano

EthernetWiFi Containers

RealSense

Image
Filtering

Fig. 4.13: k3s-c(native + orb) configuration.

Fig. 4.8 shows the starting point, which consists of the software stack without container-
ization (i.e., native) run on the MCB. Fig. 4.9 represents the native stack extended with the
ORB-SLAM task (i.e., nat.+orb) on the MCB. Fig. 4.10 depicts the native SW application
containerized through Docker and run on the MCB through the Docker runtime (i.e., cont.).
We then extended the containerized version by including the k3s orchestrator (k3s-a), which
maps the whole SW on the MCB (Fig. 4.11). In a further configuration (k3s-b), the orches-
tration system maps the mission nodes, the ORB-SLAM, and the human-machine-interface
(HMI), which includes web and mysql servers, into the external server, while the rest of the
nodes are mapped on the MCB (Fig. 4.12). In the last configuration (k3s-c), the orchestrator
maps the HMI, the web and mysql servers, and the mission nodes into the external server,
while the rest of the nodes including the ORB-SLAM are mapped on the MCB (Fig 4.13).
In all configurations, the nodes implementing the video frame control and image filtering
are mapped on the edge device (i.e., Jetson Nano) connected to the RGB-D camera.

Table 4.17 summarizes, for each SW version and HW/SW configuration, and for each
mission task, the memory footprint and the overhead involved by containers and orchestra-
tor. The table reports the total overhead, the overhead per container, and the overhead in
terms of average CPU usage. The overhead per container has been calculated by considering
11 containers running on the containerized and k3s-a configurations (due to the omitted
ORB-SLAM), while 12 in all the other versions.

We found that the system incurs, on average, in an overhead of 29 MB of system memory
per container when using the Docker runtime (cont. rows). The orchestrator involves an
additional 34.5% overhead per container (around 39 MB per container). In addition, the k3s
master agent, which runs on the external server, requires 508.1 MB on average.

In general, we found that the CPU overhead involved by containerization and orchestra-
tion is negligible. The measured variance on the CPU usage is in line with the fluctuations
due to the operating system, considering that the robot SW application runs on a stan-
dard installation of Ubuntu 16.04. We also found that K3s is consistently more expensive

94 4 Containerization and orchestration on Edge-Cloud architectures

Task configuration

Memory
Usage
(MB)

Overhead
(MB, total)

Overhead
(MB, per cont.)

Avg
CPU usage

(%)

init

native 3453.5 � � 64.4
nat. + orb 3905.6 � � 91.0
cont(native) 3771.1 317.6 28.9 55.6
k3s-a(native) 3880.0 426.5 38.8 60.8
k3s-b(native+orb) 2684.8 � � 60.0
k3s-c(native+orb) 3136.9 � � 93.4

1

native 3454.4 � � 63.2
native + orb 3906.5 � � 89.8
cont(native) 3773.0 318.6 29.0 55.6
k3s-a(native) 3881.9 427.5 38.9 59.4
k3s-b(native+orb) 2685.4 � � 58.3
k3s-c(native+orb) 3137.5 � � 97.1

2

native 3454.7 � � 62.6
native + orb 3906.8 � � 89.2
cont(native) 3773.8 319.1 29.0 72.8
k3s-a(native) 3885.2 430.5 39.1 63.6
k3s-b(native+orb) 2685.8 � � 58.6
k3s-c(native+orb) 3137.9 � � 91.6

3

native 3454.1 � � 63.8
native + orb 3906.2 � � 90.4
cont(native) 3775.2 321.1 29.2 58.4
k3s-a(native) 3886.2 432.1 39.3 61.4
k3s-b(native+orb) 2684.2 � � 59.6
k3s-c(native+orb) 3136.3 � � 94.5

Table 4.17: Resource usage on the robot MCB with all proposed configurations.

Configuration
Computation

time (ms)
Network

latency (ms)
Supported

FPS
Network

usage (Mbps)

ORB-SLAM 34.6 � 29.6 �
native + orb 58.3 � 17.2 �
cont(native + orb) � � � �
k3s-a(native + orb) � � � �
k3s-b(native + orb) 33.5 3.5 27.0 4.1
k3s-c(native + orb) 60.0 � 16.7 0.0

Table 4.18: ORB-SLAM supported frame rates.

in terms of CPU consumption, with 4% overhead on average, when the CPU is overcharged
(e.g., k3s-c in our experimental results). The overhead caused by k3s is negligible in all the
other cases.

We finally evaluated the real-time constraint on the ORB-SLAM task by considering 20
FPS as minimum supported rate for the 20Hz RGB-D camera input stream. We tested six
different configurations at L3 (see Table 4.18). The first implements the only ORB-SLAM
application run on the MCB, in order to measure the maximum FPS supported by the
original code. Then, we measured the ORB-SLAM FPS when it is run concurrently with the
rest of the nodes implementing the native application on the same edge device (MCB). The
results show that, even though the overall SW correctly executes, the CPU cannot maintain a
real-time behavior (i.e., 17.2 FPS). The containerization process leads to a memory footprint
larger than total memory available on the MCB and, thus, to out-of-memory issues. As a
consequence, the orchestration system cannot run when the native SW and the ORB-SLAM
are mapped on the MCB (k3s-a in Table 4.18).

4 Containerization and orchestration on Edge-Cloud architectures 95

We then set the orchestrator to map the containerized native SW on the MCB and
the ORB-SLAM on the external server (k3s-b in Table 4.18). In this configuration, we also
considered the overhead involved in the network to send the image data flow from the
RGB-D camera to the ORB-SLAM. To achieve the lowest possible network latency, the
ROS node implementing the image reading and control sends compressed images from the
edge device to the external server, in which a republish node of the image_transport ROS
package decompresses the image as input for the ORB-SLAM. Such a data transfer requires,
on average, 4.1 Mbps of bandwidth compared with 47.2 Mbps when uncompressed. This
network usage also adds latency to the node communication as the idle round trip time from
the server to the robot increased from 3ms, with a standard deviation of 0.7ms, to a round
trip time of 3.5ms, with a standard deviation of 1.2ms. This translates into an elaboration
time of the ORB-SLAM of 37ms per frame (27FPS) for the k3s-b configuration. We finally
evaluated the configuration in which the native and ORB-SLAM applications run on the
MCB, while the mission+HMI nodes are mapped on the external server (k3s-c). The results
show that, even though the resource hungry mission+HMI nodes are moved to the external
server, the rest of the nodes and the ORB-SLAM suffer from resource (CPU) contention and
communication overhead when running concurrently. This leads the ORB-SLAM application
to not satisfy the real-time constraint. In conclusion, the k3s-b configuration guarantees the
real-time performance of the ORB-SLAM at the cost of a negligible overhead on the network.

4.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V open
hardware architecture

We tested a set of benchmarks to quantify the containerization impact on the performance
of the RISC-V architecture. We used sysbench for CPU integer performance, the Stream
benchmark for system memory throughput, the Phoronix test suite for CPU-related bench-
marks and finally, a sequence of system-related tests to verify the OS performance. We run
each benchmark both natively and through KubeEdge. After benchmarking each test on the
RISC-V board, we also verified the performance overhead on an ARM-based board, which
allowed us to compare the results and verify if there was any odd behavior on the new
architecture.

To run the containerized benchmarks, we configured a Kubernetes cluster with the mas-
ter running on an x86 device. Then, we connected two boards with KubeEdge. The first
board is a SiFive HiFive Unmatched, part of the Monte Cimone cluster, and has a RISC-V
architecture. It runs Ubuntu 21.10 with Linux Kernel 5.11 on 4 CPU cores running at 1GHz
and 16GB of system memory. The second board is an ARM-based Jetson Xavier AGX run-
ning Ubuntu 20.04 with Linux kernel 5.10 on 8 CPU cores running at 2.3GHz and 16GB of
system memory. We configured the Jetson to run with only 4 cores at 1.2GHz, achieving a
comparable CPU power target to the RISC-V board (i.e., ⌅ 5W).

In our analysis, we focused on a single node because our testing methodology is specifi-
cally designed to assess the architectural impact of containerization, regardless of orchestra-
tion policies. Because of this, the network impact of orchestration has not been measured
as it would not influence the outcome of this analysis. Still, it is important to note that the
results obtained with the profiling we conducted are not restricted by the use of a single
node and can be applied in broader scenarios.

Benchmark results

Sysbench. Table 4.19 shows the results obtained with sysbench, averaging 15 runs. The
benchmark was run with 4 threads, calculating up to 1 million primes with a 1-hour time
limit. The Unmatched board exhibits significantly lower performance compared to the Je-
ston, but it experiences less overhead from containerization.
Stream. Table 4.19 also shows the results for the STREAM benchmark run on the system
memory, averaging 15 runs. The test was configured to run on 1.8GB of data with 4 threads.
The memory subsystem of the Unmatched board is composed of 16GB of DDR4 memory
running in dual channel with a 64bit bus at 1866MT/s, resulting in a theoretical maximum

96 4 Containerization and orchestration on Edge-Cloud architectures

Table 4.19: STREAM benchmark results with native and KubeEdge configurations on both
RISC-V and ARM64. [higher is better,] lower is better.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead ([])

Sysbench CPU 2.47 ± 0.39% 2.46 ± 0.19% -0.4% 6.40 ± 0.06% 6.17 ± 1.72% -3.7% event/s [

Stream

Copy 1 294 ± 0.28% 1 274 ± 2.19% -1.5% 22 765 ± 0.51% 20 500 ± 0.15% -10.0% MiB/s [

Scale 1 079 ± 0.50% 1 096 ± 1.01% 1.6% 23 929 ± 0.42% 22 229 ± 0.09% -7.1% MiB/s [

Add 1 181 ± 0.20% 1 180 ± 0.89% -0.1% 24 866 ± 0.10% 24 719 ± 1.46% -0.6% MiB/s [

Triad 1 165 ± 0.18% 1 191 ± 1.94% 2.2% 24 499 ± 0.25% 25 044 ± 0.16% 2.2% MiB/s [

Average: 0.4% Average: -3.8%

Table 4.20: Phoronix test suite results with native and KubeEdge configurations on both
RISC-V and ARM64. [higher is better,] lower is better. The results include the relative
standard deviation.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead ([])

Rodinia LavaMD 12 298 ± 1.05% 13 462 ± 0.41% -8.7% 1 731 ± 2.41% 1 742 ± 2.05% -0.6% s]

x265 3.4 Bos. 1080p 150 ± 0.00% 140 ± 0.00% -6.7% 1 240 ± 0.00% 1 230 ± 0.24% -0.8% fps [

[1e-3] Bos. 4K 30 ± 0.00% 30 ± 0.00% 0.0% 340 ± 0.00% 330 ± 0.00% -2.9% fps [

7-Zip Comp. 1 782 ± 0.80% 1 805 ± 0.77% 1.3% 7 972 ± 2.63% 6 983 ± 3.60% -12.4% MIPS [

Decomp. 3 433 ± 0.54% 3 430 ± 0.13% -0.1% 5 921 ± 1.36% 5 309 ± 1.10% -10.3% MIPS [

POV-Ray Trace 2 948 ± 1.33% 2 948 ± 1.79% -0.0% 541 ± 2.38% 541 ± 2.38% 0.0% s]

OpenSSL

SHA256 66.1 ± 0.38% 63.1 ± 5.89% -4.7% 1 589.5 ± 2.45% 1 593.1 ± 0.69% 0.2% MB/s [

SHA512 92.7 ± 1.08% 90.4 ± 0.63% -2.5% 398.5 ± 0.38% 387.1 ± 0.40% -2.9% MB/s [

RSA4096_s 41 ± 0.00% 42 ± 0.73% 0.5% 155 ± 0.47% 147 ± 0.48% -5.2% sign/s [

RSA4096_v 3 139 ± 0.28% 3 124 ± 0.69% -0.5% 11 01 ± 0.01% 10 532 ± 0.05% -4.4% verify/s [

AES-128 65.0 ± 0.37% 64.1 ± 0.12% -1.5% 4 964.8 ± 0.07% 4 866.4 ± 0.09% -2.0% MB/s [

AES-256 53.9 ± 0.55% 53.2 ± 0.62% -1.3% 3 677.2 ± 0.01% 4 027.0 ± 0.05% 9.5% MB/s [

ChaCha20 231.1 ± 0.27% 227.3 ± 0.09% -1.7% 2 213.2 ± 0.01% 2 080.9 ± 0.08% -6.0% MB/s [

Poly1305 168.0 ± 0.26% 165.7 ± 0.33% -1.4% 1 497.4 ± 0.04% 1 415.9 ± 0.03% -5.4% MB/s [

Average: -1.9% Average: -3.1%

bandwidth of ⌅ 30GB/s. The Jetson board has a much more sophisticated memory subsys-
tem, composed of 16GB of LPDDR4x memory running in dual channel with a 256-bit bus
at 1333MT/s, resulting in a theoretical maximum bandwidth of ⌅ 86GB/s. As expected,
due to these significant hardware differences, we observed that the RISC-V board is much
slower in this test compared to the Jetson. However, the KubeEdge overhead is lower on the
RISC-V architecture across all memory tests.
Phoronix. Table 4.20 shows the results obtained with the Phoronix test suite. We used the
following benchmarks, and each run 15 times:

• Rodinia: this suite is focused on accelerator-based computing. We picked the LavaMD
test based on OpenMP to benchmark multicore performance;

• x265: a CPU-based encoding test;
• 7-Zip: uses the integrated compression and decompression benchmarks;
• POV-Ray: Persistence of Vision Raytracer, it creates 3D graphics using ray tracing;
• OpenSSL: tests SSL (Secure Sockets Layer) and TLS (Transport Layer Security) proto-

cols, including encryption and hashing functions.

This suite presents similar results to the other benchmarks. The Jetson is much faster, but
the container overhead is, on average, 37.5% smaller on the RISC-V Unmatched board.
OSBench, IPC-Benchmark and stress-ng. Table 4.21 shows the results for OSBench,
IPC-Benchmark and stress-ng, with each test run 15 times. OSBench performs a series of
activities that are connected to running applications. The IPC benchmark tests the inter-
process communication speed and bandwidth. Finally, stress-ng contains a multitude of tests,
and those targeting the operating system were chosen.

4 Containerization and orchestration on Edge-Cloud architectures 97

Table 4.21: OSBench, IPC-Benchmark and stress-ng results with native and KubeEdge con-
figurations, on both RISC-V and ARM64. [higher is better,] lower is better. The results
include the relative standard deviation.

Suite Test RISC-V ARM64 Unit

Native KubeEdge Overhead Native KubeEdge Overhead ([])

OSBench

Create Files 426 ± 5.48% 596 ± 4.32% -28.4% 183 ± 2.28% 279 ± 4.71% -34.3% µs]

ë mount - 425 ± 5.42% 0.2% - 190 ± 3.64% -3.7% µs]

C. Thread 197 ± 2.15% 212 ± 0.28% -7.1% 136 ± 2.27% 171 ± 2.06% -20.6% µs]

C. Processes 402 ± 2.37% 452 ± 2.47% -10.9% 262 ± 1.59% 272 ± 1.05% -3.7% µs]

Launch Prog. 618 ± 1.07% 673 ± 0.23% -8.2% 924 ± 0.71% 818 ± 1.32% 13.0% µs]

Malloc 1 399 ± 0.43% 1 424 ± 1.19% -1.8% 565 ± 1.49% 542 ± 0.23% 4.2% µs]

IPC
bench.

TCP Socket 117 705 ± 5.01% 112 507 ± 14.08% -4.4% 137 263 ± 2.35% 136 135 ± 0.99% -0.8% msg/s [

PIPE Un. 270 793 ± 0.36% 274 776 ± 1.96% 1.5% 154 689 ± 0.25% 152 937 ± 0.38% -1.1% msg/s [

PIPE FIFO 269 931 ± 1.24% 266 265 ± 1.35% -1.4% 155 666 ± 0.33% 157 966 ± 0.47% 1.5% msg/s [

Unix Socket 95 177 ± 2.17% 95 469 ± 0.94% 0.3% 90 560 ± 1.13% 92 266 ± 1.37% 1.9% msg/s [

Stress-ng

Mutex 158 964 ± 2.16% 135 805 ± 0.52% -14.6% 57 472 ± 4.30% 56 235 ± 2.49% -2.2% ops/s [

Malloc 99 067 ± 0.17% 97 948 ± 0.98% -1.1% 54 320 ± 1.16% 52 001 ± 0.22% -4.3% ops/s [

Forking 1 851 ± 2.34% 2 020 ± 1.98% 9.1% 1 601 ± 3.07% 1 684 ± 12.59% 5.2% ops/s [

Pthread 2 690 ± 1.07% 2 340 ± 0.53% -13.0% 3 633 ± 2.06% 3 473 ± 0.91% -4.4% ops/s [

CPU cache 23 254 ± 4.07% 23 549 ± 8.91% 1.3% 182 042 ± 1.59% 177 345 ± 1.07% -2.6% ops/s [

Semaphores 845 130 ± 2.05% 793 821 ± 2.37% -6.1% 201 253 ± 9.87% 194 155 ± 5.54% -3.5% ops/s [

Matrix Math 518 ± 0.22% 507 ± 0.17% -2.1% 3 698 ± 0.15% 3 770 ± 0.05% 1.9% ops/s [

Vector Math 348 ± 0.33% 354 ± 0.02% 1.8% 6 484 ± 0.53% 7 084 ± 0.69% 9.3% ops/s [

Functions 2 294 ± 0.36% 2 249 ± 0.36% -2.0% 18 766 ± 2.58% 16 004 ± 2.43% -14.7% ops/s [

Cntx switch 84 110 ± 4.90% 66 082 ± 5.53% -21.4% 47 990 ± 2.48% 47 865 ± 2.39% -0.3% ops/s [

Average: �5.4% Average: �2.9%

The most interesting results are related to the file creation (i.e., the first two rows of Table
4.21) and process-related activities, i.e., launch programs, create processes, pthread, and
context switching. The former because it shows how the file system architecture of containers
creates significant overhead in I/O-based operations and when excluded by mounting a native
folder of the underlying file system inside the container, this overhead is not present anymore.
This applies to RISC-V and to some extent to ARM64, where there is still some overhead
even with the native mount. The latter shows how RISC-V incurs significant overhead when
operations related to processes or threads are made. This is especially true when considering
context switching, where RISC-V loses 21.4% of its performance.

To find the root cause of this delay on RISC-V, we run the stress-ng context switch
benchmark again, along with the perf profiler. We found that system calls were taking
significantly longer, up to 40% more time. This additional delay is probably caused by the
container runtime system call interception procedure.

When a containerized process makes a system call, it is intercepted by the container
runtime, which verifies permissions and resources before initiating the system call. To verify
this theory, we formulated the following hypothesis: if the overhead is due to the container
runtime rather than additional data structures from namespaces and cgroups, and if we
manually associate a native process with the same namespaces and cgroups as a KubeEdge
process, then:

1. system call speed should be comparable to a native execution;
2. cgroups/namespaces should work exactly like in KubeEdge.

To verify these hypotheses, we conducted the following experiment. We used two test
applications: the first performs around 10 million system calls and calculates their average
time, which should verify the initial hypothesis. The second test allocates 1GB of system
memory using malloc with a cgroup limitation of 128MB, checking if the cgroup works
properly by killing the application when it exceeds the limit. We used three configurations:
native as a reference, containerized using KubeEdge, and manually associating the processes
within namespaces/cgroups using nsenter and the cgroup parameter.

Table 4.22 shows the results. Native system calls and manual namespaces/cgroups have
the same execution time, while there is a slowdown when executing them from KubeEdge.
However, namespaces and cgroups were working correctly, as the memory allocation applica-
tion was killed once it exceeded 128MB. Therefore, the overhead is definitely not caused by

98 4 Containerization and orchestration on Edge-Cloud architectures

Table 4.22: Overhead analysis for RISC-V system calls under KubeEdge.

Native Manual KubeEdgens/cgroup

Syscall time 192.18 ns 191.72 ns 206.48 ns
OOM kill No Yes Yes

Table 4.23: Average memory usage for KubeEdge software stack. The results include the
relative standard deviation.

Process Avg.Memory
[MiB]

KubeEdge 87.4 ± 2.10%
EdgeMesh 82.6 ± 3.10%
cri-o 76.6 ± 3.00%
runc 1.5 ± 5.30%

Table 4.24: Scaling overhead of containers.

Containers Available Memory Overhead
[#] [MiB] [MiB]

0 15 827 -
4 15 821 1.4

16 15 804 1.4
32 15 775 1.6
64 15 704 1.9

namespaces/cgroups, but it is reasonable to think that it is caused by the container runtime.
This hypothesis does not justify the difference in overhead between RISC-V and ARM, but,
as we manually ported the container runtime in this work, there may be differences due to
implementation or architectural optimizations missing for RISC-V.

Memory footprint and scaling analysis

We also analyzed the memory usage of this lightweight virtualization technique to assess
potential overhead beyond CPU performance. This involved testing applications running
inside and outside containers, as well as the additional software overhead incurred by the
system for containerization and orchestration.

Firstly, we measured the average memory usage of the runc, CRI-O, KubeEdge and
EdgeMesh processes. All these applications are required to run containers. Table 4.23 shows
the results. The highest impacts are caused by KubeEdge, EdgeMesh and CRI-O, which
combined use almost 250MB of system memory. This overhead is substantial and could
limit the applicability of such an orchestration system for edge applications.

The second test uses a varying number of identical containers to analyze what is the
memory overhead for each container started. The containers only start the sleep process and
thus use no memory or CPU. We obtain the available memory readings by accessing the
/proc/meminfo variable. Table 4.24 shows the results. The overhead is measured at 1.51MB
per container when using 4 containers, but it grows to 1.92MB per container when there are
64 containers deployed. These overheads can be attributed to runc, which was measured at
1.5MB per container in Table 4.23. Overall, the memory impact of 64 containers running is
122.52MB, which is quite significant.

The last test compares memory utilization and performance in the sysbench memory
benchmark. It compares five configurations: native execution with one thread in total and
one thread per CPU core, containerized execution with one container and either one thread

4.3 Re-configurability of software for Edge-Cloud computing continuum 99

Table 4.25: Results for running sysbench memory benchmark in different process, thread
and containerization configurations.

Conf. Result CPU Mem.
[MiB/s] [%] [MiB]

Native - 1T 306.7 24.9% 1000.0
1 cont. - 1T 305.9 25.0% 1000.4

Native - 4T 1058.5 92.7% 1000.0
1 cont. - 4T 1065.6 88.6% 1000.1
4 cont. - 1T 1078.9 95.7% 1068.4

in total or one thread per CPU core, and containerized execution with one container per
CPU core.

Table 4.25 shows the results. The first two rows compare native and containerized execu-
tion with only one thread. The difference is negligible despite the containerized benchmark
using slightly more memory. This may be caused by the nature of libraries in containers,
requiring static linking and resulting in higher system memory usage. When comparing ver-
sions with four workers, performance is similar across configurations, but memory usage
increases significantly with multiple containers due to the less efficient nature of running
multiple identical copies compared to letting the benchmark handle four threads indepen-
dently.

4.3 Re-configurability of software for Edge-Cloud computing

continuum

This section analyzes the improvements for the re-configuratibility of SW for Edge-Cloud
computing, specifically:

• Section 4.3.1: ROS bandwidth-aware orchestration with superclustering allows for im-
prove mapping and a reduction of network usage for the Kubernetes scheduler.

• Section 4.3.2: HEFT4K further optimizes the Kubernetes scheduler to improve the
makespan of deployed applications that can be represented by a DAG.

4.3.1 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Network

ROS bandwidth-aware orchestration with superclustering

We consider a similar computing cluster for the RB-Kairos to Section 4.2, but the Jetson
Nano has been replaced with a Jetson Xavier NX. It consists of 6 ARMv8 CPU cores,
8GB of system memory and Jetpack 4.5. This edge board allows us more freedom in the
orchestration thanks to the improved performance and similar power consumption. The
remaining computing nodes of the cluster are unchanged. We verified the super clustering
algorithm presented in Section 3.3.1 with the containerized software stack of Tables 4.15
and 4.16, and compared the resource usage to the results of Table 4.17.

Table 4.26 shows the containers considered for super-clustering, along the specifications
used for the orchestration in K3S. The main-rb and arm-rb containers have a required
affinity for the MCB node, as these containers have drivers that need a direct communication
with their respective devices. As these containers are the only ones with a physical constraint
due to the device drivers presence, we set their priority higher than all other containers. The
map-nav-manager-rb container is quite resource-hungry as it executes most of the macro-
functionality nodes (i.e., localization, local and global planning). We set the affinity to the
Jetson to avoid the mapping of such a container to the same node of the arm motion planner
or too far away from the actual robot’s HW. Nodes that do not have a specific amount of

100 4 Containerization and orchestration on Edge-Cloud architectures

Container name Priority
Allocated

CPU (cores)
Allocated

System Memory (GB) Affinity

main-rb 1 2 1.0 MCB
arm-rb 1 1 1.0 MCB
mission-rb 0 1 1.0 �
perception-rb 0 � 1.0 �
local-control-rb 0 � 1.0 �
map-nav-man.-rb 0 3 2.0 Jetson
navigation-rb 0 1 2.0 �
hmi-rb 0 1 1.0 Server

Table 4.26: Parameters used for the automatic scheduling of the containers onto the k3s
computing cluster.

local-
control-

rb

percep-
tion-rb

arm-rb

naviga-
tion-rb

map-
nav-

manager
-rb

hmi-rb

mission-
rb

main-rb

5

3

3
2

10

102

48

15

37

8

14

40

19 5294

Fig. 4.14: ROS communication graph for the Kairos mobile robot with the highest commu-
nicating nodes highlited.

CPU cores allocated are not particularly resource intensive and can be executed with the
“left-over” resources.

The remaining containers hmi-webserver-rb, rms-rb and rostful-rb (see Table 4.16)
create a convenient interface to communicate with the robot from a web accessible format.
These containers have been deployed manually (shown in green in Fig. 4.15).

Fig. 4.14 shows the graph with the bandwidth between each container pair. For the sake of
readability, some low-weight edges have been omitted. The nodes and edges highlighted in red
represent the highest communicating containers: local-control, navigation, perception
and map-nav-manager. These containers should be kept together or as close as possible.
Fig. 4.15 shows the resulting mapping obtained with the optimized (super-clustering) K3S
scheduler. The results underline that the affinities have been respected and that the super
clustering actually kept together the tightly communicating nodes.

With this optimized mapping, we can analyze the resource usage on the nodes of the
computing cluster. Table 4.27 compares the obtained results to those of Table 4.17 for the
two similar configurations: native from Fig. 4.8 and k3s-a(native) from Fig. 4.11. The task
init corresponds to the init task of Table 4.17, while mission refers to the mission’s tasks 1, 2
and 3 (see the introduction of Section 4.3.1). The memory usage on the MCB is significantly
reduced, thus allowing for new robotic hardware to be added with its respective software

4.3 Re-configurability of software for Edge-Cloud computing continuum 101

MCBExternal Server

K3S

Containers

K3S

Containers

Jetson Xavier NX

EthernetWi-Fi

RealSense

K3S

Containers

mission-rb

hmi-rb

hmi-
webserver-rb

base

map-nav-
manager-rb

local-control-
rb

perception-rb

navigation-rb

arm-rb

rms-rb

main-rb

rostful-rb

Fig. 4.15: Super clustering and mapping for the Kairos containers on the K3S computing
platform.

Configuration Task
Node
Name

Memory
Usage
(MB)

Avg
CPU usage

(%)

Avg outgoing
Network traffic

(Mbps)

Native init MCB 3453.5 64.4 �
mission MCB 3454.4 63.1 �

k3s-a(native) [196] init MCB 3880.0 60.8 �
mission MCB 3884.4 61.5 �

SuperClustering

init
MCB 2011.0 42.2 10.29
Jetson 2568.1 16.6 0.91
Server 3103.5 45.8 1.59

mission
MCB 2014.6 48.4 11.69
Jetson 2585.2 18.3 0.93
Server 3221.5 72.6 1.69

Table 4.27: Resource usage with SuperClustering.

stack. Also, the CPU utilization is lower due to the ROS nodes being moved to a different
computing node, which allows a native installation of the ORB-SLAM (see first row of Table
4.18). The Jetson supports most of the navigation nodes with low CPU and system memory
load. The server undergoes a significant increase in CPU load, especially when the robot is
moving. This is due to the base container, which deploys the roscore node that handles
communication setup between nodes and the parameter server. The network communication
increases due to the distributed nature of the software. The highest traffic is found on the
MCB while running the mission, which has to communicate with both the server and the
Jetson on its two network interfaces (i.e., 6.46 Mbps and 5.23 Mbps, towards the server with
Wi-Fi and the Jetson with Ethernet, respectively). The network traffic on the Wi-Fi interface
is comparable to deploying the ORB-SLAM on the external server, but this configuration
yields improved frame times.

4.3.2 Improving the Kubernetes schedule’s efficiency for ROS-based
applications: Makespan

We first tested HEFT4K with 100k synthetic DAGs on a computing platform simulating an
Edge-Cloud architecture composed of 6 nodes, with 2 CPUs per node. The DAGs topology
and characteristics as well as the cluster configuration were randomly generated (Table 4.28
summarizes the range of the considered values).

102 4 Containerization and orchestration on Edge-Cloud architectures

Graph characteristics min. max. avg. median

Nodes (#) 4 511 181.8 130
Edges (#) 3 1576 305.6 158
Outdegree 0.9 3.1 1.4 1.2
Critical path (ms) 4 446 64.3 41
Task comp. cost (ms) 1 20 10 10
Task comm. cost (Mb) 1 5 2.5 2.5

Node comm. (Mb/s) 500 1000 750 750

Table 4.28: Range of values considered for the random generation of DAGs and cluster
configuration.

Fig. 4.16: Speedup of HEFT4K vs. the standard Kubernetes on different DAG sizes.

We then tested HEFT4K on the software that implements the mission of a Robotnik
RB-Kairos, which is a skid-steering mobile platform equipped with a Universal Robots UR5
and a Schunk WSG50 gripper. The computing cluster consists of three nodes: two on-board
programmable devices, i.e., an NVIDIA Jetson Xavier and a Jetson Nano. The onboard
nodes communicate through a Gigabit Ethernet switch (802.3ab). The third node consists
of an off-board desktop with an octa-core CPU and 16GB of RAM. It communicates with
the other cluster nodes through WiFi (802.11ac).

The software is a ROS2-compliant application that executes a robot mission through
a 42-task DAG. It allows for interaction between the mobile robot and an agile industrial
production chain. The robot starts at a designated position, aligned with the production
chain, and remains idle until objects arrive on the conveyor belt. Using a sequence of arm
and gripper operations, the robot grasps production pieces from the conveyor belt and stores
them in its cargo bay. Subsequently, it moves towards the storage area, unloads the pieces
from the cargo bay, and then returns to the production line, aligning itself with the conveyor
belt for the next cycle.

For both the synthetic benchmarks and the real case study, we compared the results
obtained with the standard Kubernetes scheduler, HEFT on Kubernetes, the most efficient
scheduler for Edge-Cloud architectures targeting QoS in literature (DPE) [96], and the
proposed HEFT4K. We also tested the event-driven rescheduling of HEFT4K, analyzing its
ability to maintain a positive makespan when sequentially removing nodes from the cluster.

4.3 Re-configurability of software for Edge-Cloud computing continuum 103

Fig. 4.17: Speedup of HEFT4K vs DPE scheduler on different DAG sizes.

HEFT4K vs. state of the art Kubernetes scheduling

Fig. 4.16 summarizes the comparison results between HEFT4K and the standard Kubernetes
scheduler. Even with graphs of size 32 or less (first box plot from the left), HEFT4K achieves
a significant speedup of 40%+ and, in the upper 25% of cases, the speedup grows to over
60%. With larger graphs, the speedup exceeds 100%. The red dot in Fig. 4.16 represents
the speedup (48.2%) measured with the real case of study. With DAG sizes larger than 160
tasks, the Kubernetes scheduler fails. This is due to the fact that, differently from HEFT4K,
Kubernetes stops the deployment of tasks when there are no resources available (i.e., free
computing nodes).

Fig. 4.17 shows the comparison results between HEFT4K and DPE [96]1. On average,
HEFT4K achieves a speedup of 16% and reaches up to 40% speedup with DAG sizes larger
that 64 tasks. In a limited number of cases (< 25%), the DPE is slightly faster, on average,
with 4% speedup w.r.t. HEFT4K. This is due to the fact that DPE does not use preemp-
tion and takes advantage of global synchronization. In the smaller graphs, small scheduling
inefficiencies caused by the Linux scheduler, can translate in large percentage slowdowns.

We also compared HEFT4K and DPE on the Robotnik RB-Kairos case study. We ob-
tained a 14.2% speedup on our 42-task DAG workload, which is in line with the average
speedup obtained for the same DAG size in the synthetic dataset.

HEFT4K vs. HEFT on Kubernetes

The speedup achieved by HEFT4K on HEFT on Kubernetes is on average ⌅ 13% across
all DAGs and cluster configurations. Figure 4.18 shows a three dimensional heat map to
represent the speedup of HEFT4K over HEFT on Kubernetes, by considering the DAG size
and the critical path length. The speedup is limited with small graphs with short critical
paths (lower left-most part of the plot), but it increases linearly with the DAG size and
with the critical path length, albeit not as quickly with the critical path length (i.e., the
1 In [96], DPE achieves a performance improvement of ⌅40% over a standard HEFT [33] with one

CPU per node. We measured a loss of performance ⌅15% of DPE when compared to HEFT with
the look-ahead variant [94] with multiple CPUs per node.

104 4 Containerization and orchestration on Edge-Cloud architectures

HEFT on Kubernetes vs HEFT4K

Cr
iti

ca
l P

at
h

le
ng

th
 (m

s)

DAG size (# nodes)
100 200 300 400 500

10
0

15

0

20
0

25
0

30

0

Fig. 4.18: Heatmap comparing the performance of HEFT4K and HEFT on Kubernetes,
plotting the number of tasks in the DAG and the length of the critical path.

Fig. 4.19: Speedup of HEFT4K event-based remapping when rescheduling DAGs in case of
node shutdown, compared to the previous makespan obtained with HEFT4K.

bottom half of the Figure has lower speedups compared to the top half). This is due to the
fact that larger graphs with a longer critical path are generally more sequential and thus
have less scheduling freedom. Therefore, the niceness optimization cannot really improve the
scheduling, resulting in lower speedups.

Performance of event-based remapping

We reused the same six node architecture and 100k DAGs as the previous tests, and we
repeated the scheduling five times. In each iteration, we removed one random node from the
cluster until only one node was left. Fig. 4.19 shows the result in terms of makespan increase
(i.e., negative speedup in %).

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 105

Fig. 4.20: RB-Kairos compute architecture.

The loss of one to three nodes of the cluster translates into a performance loss of ⌅ 6%,
for each lost node, when looking at DAG sizes smaller than 96 nodes. When considering
larger DAG sizes, the performance degradation increases, although remaining below 15%
on average when one or two nodes are lost. When three nodes are lost, the average trends
towards �20%. However, at this point, half the cluster is offline, and the mapping strategy
becomes quite limited.

The results for losing 4 and 5 nodes are similar, trending toward an average performance
loss of ⌅ 25% (not reported for readability).

In general, the algorithm provides resilience against node faults. It achieves positive per-
formance especially when losing one to two nodes of the computing cluster, which represents
the most common scenario in real application cases.

The overall time required to return the application to a working state after a node
failure, and thus its downtime, depends strongly on its size and architecture. To recover
from a node failure, the system needs to first execute the rescheduling algorithm and assess
whether a partial rescheduling would significantly degrade performance. The time required
by the rescheduling algorithm is negligible (few ms in our setup) since it is as efficient
as HEFT. In addition, it needs to restart some (or all) containers on a new cluster node.
However, restarting a container is a rather fast process that takes on average less than a
second, and is parallelized, restarting multiple containers at once.

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum

We evaluated RT-Kube efficiency on the software that implements the mission of a Robotnik
RB-Kairos, which is a skid-steering mobile platform equipped with a Universal Robots UR5
and a Schunk WSG50 gripper. The software is distributed on computing cluster that consists
of three nodes (see Fig. 4.20): two on-board programmable devices, i.e., an NVIDIA Jetson
Xavier with the RT operating system (Linux kernel v5.10, and the preempt_rt patch) and
a desktop with an i7 9700 locked at 3.0 GHz with 8GB RAM and a standard non real-time
Linux-based operating system. The onboard nodes communicate through a Gigabit Ethernet
switch (802.3ab). The third node consists of an off-board desktop with an octa-core CPU
and 16GB of RAM, with Linux kernel v5.10, and the preempt_rt patch. It communicates
with the other (on-board) cluster nodes through WiFi (802.11ac).

We first evaluated empirically the impact of containerization on RT tasks in terms of
WCET overruns and missed deadlines. We then compared the efficiency of the proposed
Kubernetes extension to support RT containers in terms of task rejections and missed dead-
lines with a synthetic software benchmark and with the real software implementing the

106 4 Containerization and orchestration on Edge-Cloud architectures

#
tasks config.

average
runtime

(ms)

average
runtime

with
stress
(ms)

Observed
WCET
(ms)

Observed
WCET
with
stress
(ms)

WCET
over-
runs
(#)

WCET
overruns

with
stress
(#)

missed
dead-
lines
(#)

missed
dead-
lines
with
stress
(#)

total
dead-

lines per
config
(#)

1 native 1.219 1.256 3.143 3.655 0 0 0 0
30k1 container 1.164 1.172 3.055 3.119 0 0 0 0

2
native 1.234 1.251 3.118 3.755 0 0 0 0

60k1 container 1.154 1.169 3.092 3.052 0 0 0 0
2 containers 1.144 1.162 3.091 3.090 0 0 0 0

4
native 1.225 1.262 3.100 3.845 0 0 0 0

120k1 container 1.155 1.160 3.522 4.014 0 1 0 1
4 containers 1.134 1.154 3.783 3.704 0 0 0 0

8
native 1.187 1.204 3.565 4.120 0 9 0 5

8M1 container 1.155 1.146 4.337 4.511 28 23 24 21
8 containers 1.140 1.141 4.405 4.322 26 18 10 14

Table 4.29: Comparison of RT-tasks running natively, containerized in a single and multiple
Docker containers.

robot mission. Then, we analysed the response time of the system recovery from temporal
violations achieved by RT-Kube (see Section 3.4).

Impact of containerization on RT-tasks

Workload configuration. We evaluated the impact of containerization on RT tasks by
using a large set of standard software bencharmarks for RT tasks. For brevity, we only report
the results obtained with the cyclicdeadline benchmark from rt-tests [197] (the results with
the other benchmarks show similar behavior). The benchmark is configured to run with either
1, 2, 4 or 8 identical tasks, maximum utilization of 95% per task, WCET of 3.8ms, period
of 4.0ms, and deadline equal to the period. Note that we set these parameters to experience
a full workload capacity on the system, which allows us to assess the performance impact
of containerization. We evaluated three scenarios: (1) All RT tasks running natively on the
edge platform to establish a baseline performance metric; (2) All RT tasks running in one
container to analyze whether an application composed of multiple RT tasks is affected by
the overhead; (3) All RT tasks running, where each RT task is mapped into its own container
to evaluate how the overhead of containerization scales with multiple isolated tasks and if
the overhead caused by a high number of containers can interfere with RT deadlines. We
also run these three scenarios with additional tasks that overload the system with memory
accesses to assess the behavior of the RT tasks under stress.
Key results. Table 4.29 shows the average actual runtime among n tasks, observed WCET
among all the n tasks, total WCET overruns, and total of missed deadlines for all n tasks.
Columns with “stress” identify those scenarios where the system was overloaded with memory
accesses.

Our results indicate that containerization does introduce overhead on observed WCET,
and that such an overhead is evident only in the higher CPU-load configurations, i.e., 4 or
more tasks on the 8-core CPU. However, containerization does not impact the average-case
runtime of tasks with or without stress. When compared to tasks running natively on the
device, containerization impacts the WCET overruns and missed deadlines only when the
RT utilization is close to 100% (last two rows of the table). This is due to the fact that when
the task overruns the deadline and all CPU cores are allocated to RT tasks, the system
cannot remap the task to a different available core. Interestingly, the number of containers
created to group the RT tasks does not influence the observed WCET as, both when using
one container and n containers, the observed times are similar. This is highlighted by the
increased value of observed WCET (both with or without stress) by around 9.5% when
the tasks are grouped into one container w.r.t. the native configuration, while the value is

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 107

1st deployment (#) 2nd deployment (#)

Criticality A 32 16
Criticality B 24 24
Criticality C 16 32

Stress 1 1

Table 4.30: RT containers distribution for the RT orchestration.

comparable between 1 container and n containers with any number of tasks. We observed the
same behavior for the WCET overruns and missed deadlines. The task WCET was overrun
28 times with 8 tasks in one Docker container, and this led to 24 missed deadlines over 8
millions (i.e., 0.00035%). The values do not increase by increasing the number of containers.
Summary. We noticed a negligible overhead when containerizing applications in general.
Only at maximum utilization (e.g., 8 tasks over 8-CPU cores with 95% utilization) does
the overhead lead to missed deadlines. With appropriate provisioning, we contend that con-
tainerization with the proposed off-the-shelf technology can support real-time applications.
In our experimental analysis, we obtained no missed deadlines for the containerized con-
figurations also with eight tasks by slightly relaxing the deadline w.r.t. to the period (e.g.,
increasing the period from 4.0 to 4.5ms, and the WCET from 3.8ms to 4.3ms, still with 95%
maximum utilization per task).

Benchmarking the orchestration with RT support

Orchestration platform configurations. We used the following three configurations for
the orchestration platform:

1. Native K3S-standard : The standard Kubernetes configuration for orchestration.
2. Native K3S-best configuration: The best configuration for orchestration with the na-

tive Kubernetes scheduler. We statically and manually assign an optimal task-to-node
orchestration solution.

3. RT-Kube: Our proposed orchestration platform with the extended RT specifications and
secondary RT scheduler.

Workload and deployment setups. The workload consists of 73 tasks. 72 of them have
been containerized into 72 RT containers. The remaining task has been containerized into a
non-RT container and implements stress activity through memory accesses on the platform.

All containers have one instance of “cyclicdeadline”, the WCET has been set to 2.9ms for
all tasks, and the deadlines at 24.2ms, 18.1ms and 14.5ms for levels A, B, and C, respectively.
The resulting RT utilizations are: 12% for A, 16% for B, and 20% for C. We tested two
deployment setups, shown in table 4.30. With these configurations and deployments, an
improper orchestration would result in higher than 100% RT utilization on a single cluster
node and, thus, rejected tasks.
Key results. Table 4.31 summarizes the workload and deployment setup in the first three
columns. The fourth column shows the number of RT tasks that have been mapped into
the corresponding RT nodes by the orchestrator, but that have been rejected by the Linux
kernel admission test (see Eq. (2.4)). The last column shows, for all criticality levels, the
number of missed deadlines. This column reports the deadlines missed by the running tasks
(not rejected) and the total missed deadlines (those missed by the running + those missed
because of the task rejection).

We found that the orchestration of the standard Kubernetes produces a task-to-node
mapping that is inadequate for RT tasks. This is underlined by the amount of RT tasks
that, after mapping, have been rejected by the Linux Kernel RT admission test and by the
number of missed deadlines w.r.t. the best (manually configured) orchestration configuration.

Table 4.32 reports the efficiency comparison between the proposed solution when com-
pared with the native Kubernetes, with a dynamic workload. The benchmark implements a
sequential number of RT container deployments. We set up a first scenario (first two rows

108 4 Containerization and orchestration on Edge-Cloud architectures

Deployment Config.
Critical
tasks/
Nodes

Tasks
rejected

Deadlines missed
(running tasks -

running+rejected)

1st

Native K3S-standard

A: J(32)
B: J(24)
C: J(16)
oth.: J(1)

A: 8
B: 7
C: 6

A: 3.3% - 27.5%
B: 9.1% - 35.6%
C: 6.5% - 41.5%

Native K3S-best config.

A: I(32)
B: I(24)
C: J(16)

oth.: R(1)

A: 0
B: 0
C: 0

A: 0.0% - 0.0%
B: 0.0% - 0.0%
C: 0.0% - 0.0%

RT-Kube

A: I(32)
B: I(24)
C: J(16)

oth.: R(1)

A: 0
B: 0
C: 0

A: 0.0% - 0.0%
B: 0.0% - 0.0%
C: 0.0% - 0.0%

2nd

Native K3S-standard

A: J(16)
B: J(24)
C: J(32)
oth.: J(1)

A: 8
B: 10
C: 10

A: 0.0% - 50.0%
B: 2.9% - 44.6%
C: 4.3% - 34.2%

Native K3S-best config.

A: I(16)
B: I(24)
C: J(32)

oth.: R(1)

A: 0
B: 0
C: 0

A: 0.0% - 0.0%
B: 0.0% - 0.0%
C: 0.0% - 0.0%

RT-Kube

A: I(16)
B: I(24)
C: J(32)

oth.: R(1)

A: 0
B: 0
C: 0

A: 0.0% - 0.0%
B: 0.0% - 0.0%
C: 0.0% - 0.0%

Table 4.31: Comparison among Kubernetes standard orchestration, best orchestration, and
the proposed RT-Kube.

T0 T0 + t↵

Configuration Deployed Pending -
Rejected Deployed Pending -

Rejected

Native-
K3S

N1: 8 1 - 0 N1: 9 0 - 1N2: 8 N2: 8

RT-Kube N1: 8 1 - 0 N1: 8 1 - 0N2: 8 N2: 8

Native-
K3S

N1: 8 1 - 0 N1: 9 0 - 1N2: 0 N2: 0

RT-Kube N1: 8 1 - 0 N1: 8 0 - 0N2: 0 N2: 1

Table 4.32: Experimental results for dynamic orchestration.

of Table 4.32) in which 16 RT containers are deployed and run correctly onto the cluster for
100% RT utilization. In this context, there is CPU available for the (standard) orchestrator,
while the CPU is fully loaded for the RT admission test (see Eq. (2.4)). When a new RT
container has to be deployed (instant T0 + t↵), the orchestrator of the native Kubernetes
immediately deploys the container on the cluster. This leads to an overload of the cluster RT
utilization (i.e., more than 100%) and, as a consequence, to a failed admission test by the
Linux kernel. This failing deployment keeps getting restarted by Kubernetes. The admission
test succeeds and the container is deployed only when RT resources of the same node become

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 109

Missed deadlines

Configuration
Avg

runtime
(ms)

Std. dev.
Observed

WCET
(ms)

Max.
lateness

(ms)

arm
driver SLAM

Native 7.15 3.58 32.32 - 24.50% -

non-RT + RT [108,112] 0.20 0.11 5.72 0.95 1.28% ⌅ 0%

non-RT + A + B + C 0.15 0.07 2.06 0.49 0.17% ⌅ 0%

Table 4.33: Experimental results with the RB-Kairos.

available and the new RT utilization is within 100%. Nevertheless, if any other different RT
node becomes available, the issue persists as Kubernetes has no way of knowing the cause
of the failure. In contrast, with the proposed solution, the new container remains pending
at orchestration level until any RT resources in the cluster become available.

We set up a second scenario (last two rows of Table 4.32), in which the first RT node has
utilization 100%, with 8 containers, while the second RT node has utilization 0%. When a
new RT container has to be deployed, with the native Kubernetes, there is only a 50% chance
for the correct node to be picked, as the orchestrator has no knowledge of the RT utilization.
In contrast, the proposed orchestration platform guarantees that the correct node (one with
0% RT utilization) is always selected.

Orchestration with RT support of the robot’s mission software

Software configuration. The robot’s mission is implemented through a SW application
composed of 80 ROS tasks. It performs pick and place operations, delivering goods from
a conveyor belt to a storage area and vice-versa. The most critical part of the software is
the driver controlling the arm operations. This task needs to maintain a control loop that
communicates directly with the arm hardware at 120Hz (8ms deadline, 7.6ms WCET, 90%
utilization). Exceeding the deadline and delaying such a communication beyond a certain
threshold causes the arm to go into safe mode and halting operations. This translates into
a measured maximum lateness of 0.7ms, after which the connection is dropped.
Key results. As expected, we found that, with the native K3S orchestration, all tasks were
mapped onto the three devices randomly. This resulted in missed deadlines to exceed the
threshold and to the safety stop of the robot. We then evaluated two alternative scenarios
with the proposed RT orchestrator. The first supports multiple criticality levels (i.e., non
real-time tasks with A, B, and C real-time tasks), while the second only supports non
real-time with real-time tasks (e.g., [108, 112]). In the first solution, we classified 3 tasks
implementing the robot SLAM as RT criticality B. Then, the arm driver as an RT task with
criticality C. We defined the edge server as an RT node for criticalities A and B, while the
on-board Jetson for criticality C. In the second scenario, we classified the SLAM, as well
as the arm driver, as RT. Both are deployed on the RT-capable Jetson onboard. In both
scenarios the rest of the software was configured as non real-time. These two test cases allow
us to evaluate the improvement for the automatic separation of different classes of criticality
as well as the benefits of RT orchestration.

Table 4.33 shows the results. Our solution based on multi-level criticality (third row in
the table) manages to take advantage of criticality-aware load distribution, which allows the
arm driver to perform substantially better than native and other alternatives, with lower
observed WCET and reduced deadline misses. The much less restrictive control loop of the
SLAM nodes allows for performance improvement in both solutions.
Summary. Unlike other alternatives, the proposed solution did not suffer from any safety-
related stop as the maximum lateness bound was never exceeded. This is due to the isolation
of the highest criticality tasks from the lower criticality ones implemented by the orchestra-
tor. We also observed very different average runtime and WCET when comparing the native
Kubernetes approach and RT-Kube. With the native Kubernetes, our case study caused an

110 4 Containerization and orchestration on Edge-Cloud architectures

Containers (#) Cont. Distribution Reconcile phase (ms)

non-RT � RT Linear Linearithmic Quadratic

1 1 � 0 41.07 40.81 40.83
1 0 � 1 41.75 41.49 41.51

8 8 � 0 40.26 39.27 57.27
8 4 � 4 42.98 41.99 59.99
8 0 � 8 45.70 44.71 62.71

16 16 � 0 51.32 51.62 157.94
16 8 � 8 56.76 57.06 163.38
16 0 � 16 62.20 62.50 168.82

32 32 � 0 65.43 106.07 173.57
32 16 � 16 70.87 111.51 179.01
32 0 � 32 76.31 116.95 184.45

64 64 � 0 115.23 152.39 687.02
64 32 � 32 126.11 163.27 697.90
64 0 � 64 136.99 174.15 708.08

Table 4.34: Cluster-level monitor reconcile response times for various combinations of RT
scheduling objects and containers.

order of magnitude more missed deadlines w.r.t. RT-Kube, which make the native solution
practically unusable.

Analysis of response time for container migration

Software configuration. We first measured the response time of the system recovery from
temporal violations implemented by RT-Kube (Eq. (3.19) in Section 3.4) through a large
set of benchmarks, which consist of different numbers and distributions of non-RT and RT
containers on the cluster. We deployed the container-level monitors on each device of the
cluster and, the cluster-level monitor on the K3S master node (i.e., the external server). In all
tests, we set the updating frequency of the container-level monitors to 10Hz. We measured,
on average, 53ms as the time elapsed from the missed deadline to the update instant (the
first component of Eq. (3.19)).
Network impact. We analyzed the time taken to transfer the updating messages from the
container-level monitors to the master across the Ethernet+WiFi network, with and without
network congestion. Without network congestion, we measured an average latency of ⌅ 3ms
for both transmissions (HTTP_trans(JSONc) and HTTP_trans(Kill)). With a congested
network, we measured, on average, a communication latency of 9.9ms for the two transmis-
sions. We measured the worst-case transfer time to send each update message to the server
as 115.2ms (i.e., HTTP_trans(JSONc)) and 84.99ms to send the HTTP_trans(Kill) mes-
sage to the node. The congestion was obtained through 1Gb/s of traffic from the master
to the container-level monitor, and vice versa (obtained with the netcat and pv emulation
software).
Key results. Table 4.34 reports the average time spent for the reconcile phase in the tested
configurations. The first column indicates the total number of containers deployed in the
cluster node. The second column reports the distribution of standard and RT containers. The
last three columns report the time spent in the reconcile phase with the linear, linearithmic,
and quadratic policies.

We found that the time required by the three policies is comparable with a low num-
ber of containers deployed in the cluster node (i.e., 8 in our experimental setup). Linear
and linearithmic still achieve comparable performance for up to 16 containers. With more
containers, the different impacts of the three policies on the response time become evident.
When analyzing how each policy is affected by the number of standard and RT container, we
observed that, when moving from 1 to 32 standard containers, the latency of the reconcile

4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum 111

Cont.
Container

Distribution Eq. (3.19)
AVG
Time WCET

(#) non-RT � RT (# element) (ms) (ms)

(1) updating freq. 50.00 100.00
18 14 � 4 (2) trans(JSONc) 9.89 115.21

(3) Rec_phase 23.47 108.09
(3.1) trans(Kill) 8.67 84.99

Total 92.03 408.29

Table 4.35: Cluster-level monitor response time on the autonomous mobile robot case study.

phase increases by 59.3%, 159.9%, and 325.1% with the linear, linearithmic, and quadratic
policies, respectively. When moving from 1 to 32 RT containers, the time increases by 82.3%,
181.9% and 344.5%.
Summary. In general, the response time with both linear and linearithimc policies is less
than 200ms, in which, as expected, there is a negligible contribution of the transfer latency.
The contribution of the monitor updating to the overall latency could become negligible at
higher updating frequencies. The trade-off comes at the cost of more computational resources
spent on operations, particularly on the master node. The smarter quadratic policy leads to
a response time of around 750ms. In general, RT containers impact the reconcile time slightly
more than standard containers. Such an additional overhead is negligible and becomes even
less relevant as the complexity of the algorithm grows. This is due to the fact that the
overhead for each container is constant.

Analysis of response time for system recovery with the robot’s mission software

Software configuration. We measured the response time of the system recovery with the
robot’s mission software. The 80 ROS tasks implementing the robot’s mission were organized
into 13 containers, for a total of 18 containers by including the RT containers of the SLAM
software and arm drivers. The first two columns of table 4.35 show the configuration and
distribution. We deployed all the non-RT containers on the robot’s on-board i7 and all the
RT containers on the on-board Jetson.
Key results. Table 4.35 shows the results. The fourth column reports the average time and
the last column reports the worst case time for each component, with the total time in the
last row. On average, the delay caused by the updating frequency is 50ms, the communication
both ways takes ⌅ 20ms, and the computation is ⌅ 20ms, with a total time of ⌅ 90ms. In the
worst-case scenario, communication consumes half of the total response time, with one fourth
being computation for the reconcile phase. The last one fourth is the configurable updating
frequency, where the same considerations of the previous section apply. Nonetheless, the
observed worst-case response time, from detecting a missed deadline to the Kubelet on the
target node receiving a command is below half a second (⌅ 408ms).

We also analyzed the CPU usage and the number of missed deadlines through Prometheus
and Grafana (i.e., two popular monitoring and visualizing tools for Kubernetes). Figure 4.21
shows the collected data. To showcase cluster-level monitor eviction, we deployed an RT con-
tainer with a CPU-intensive task to stress the system, bypassing the schedulability check
on the Jetson and forcing the system into a particularly unsustainable scenario. At instant
36, Fig. 4.21a underlines the start of a sequence of CPU overload, while Fig. 4.21b reports
the corresponding increase of missed deadlines. At instant 71, the missed deadlines cross the
threshold and the cluster-level monitor starts the eviction process. The RT container of the
CPU-intensive task was selected for eviction as it had the highest CPU utilization. In the
following time instants, Figures 4.21a and 4.21b, depict the decrease of both CPU usage and
missed deadlines. Meanwhile, the RT container of the CPU-intensive task was sent back to
the scheduling queue and restarted on the server, as it is the only other node of the cluster
with RT support.

112 4 Containerization and orchestration on Edge-Cloud architectures

(a) CPU usage with the RT tasks for the Jetson Xavier on the Robotnik RB-Kairos.

(b) Missed deadlines for the RT tasks for the Jetson Xavier on the Robotnik RB-Kairos.

Fig. 4.21: Real-Time monitoring on the Robotnik RB-Kairos.

During the eviction phase, the victim container is immediately killed and restarted on a
different node. This results in the evicted task experiencing downtime due to the required
cold-starting on the new node. RT-Kube migrates non-critical or less-critical tasks that steal
resources to higher criticality tasks in devices where temporal violations are observed. In our
system, all container images are already downloaded onto permanent storage for all nodes to
avoid unpredictable network latency. This is possible thanks to the proposed multi, smaller,
and modular container organization of the software. With this configuration, the downtime
is in average less than one second (less than three seconds in the worst case). Since it involves
only “less-critical tasks”, it is acceptable and does not involve any disruption.

4.5 Assertion-based verification and workload migration in

Kubernetes for robotic systems

We evaluated the effectiveness of the proposed orchestration- and assertion-based verification
approach, discussed in Section 3.5, in two case studies. In the first, we set up a cluster of
three nodes and implemented a synthetic benchmark to quantitatively evaluate the behavior
of the monitor orchestration. In the second, we applied the platform in a real industrial case
study, which implements the mission of a Robotnik RB-Kairos mobile robot in a smart
manufacturing line.

4.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 113

Fig. 4.22: Verification statistics of the first case study.

4.5.1 Case Study 1: synthetic benchmark on a three-level cluster

We first tested the orchestration functionality on a distributed edge-cloud system composed
of three computing nodes. At the edge level, the cluster includes a 4-core Intel i7 (2.8 GHz)
node with 4GB of RAM (i.e., edge node). At the cloud level, it includes a computing node
equipped with a 16-core AMD Ryzen (3.9 GHz) CPU and 16 GB of RAM (i.e., server node).
It then includes a desktop machine equipped with an 8-core Intel CPU (3.2 GHz, 8 GB of
RAM), which is connected between the edge and the cloud nodes (i.e., desktop node). The
server node lies at a 100 ms (average) ping distance from the other nodes while the edge
and desktop nodes lie at a 10 ms (average) ping distance from each other. The verification
environment consists of 50 monitors requesting input values from 5 different topics. All
topics are published on the edge machine, which represents the most common configuration
in most practical use cases. The orchestrator is set to recompute the optimal allocation of
monitors every second. The SUV does not contain any tasks, while the CPU consumption of
the computing nodes is artificially influenced by a custom test bench capable of generating
a variable amount of computational workloads. The purpose of the testbench is to gradually
saturate the CPU of the nodes, allowing us to study the behavior of the orchestrator under
such conditions.

Fig. 4.22 reports the quantitative history of the monitor orchestration and the CPU uti-
lization of each node while executing both the testbench and the verification environment.
It includes the available CPU of the different nodes (available_edge, available_desktop,
available_server), which represents, in percentage, the total CPU minus the CPU used
by the SUV tasks. The verification environment usage (verUsage_edge, verUsage_desktop,
verUsage_server) corresponds to the percentage of CPU used to execute the verification en-
vironment on the corresponding machine. The values nMonitors_edge, nMonitor_desktop
and nMonitor_server represent the number of monitors currently executing on the corre-
sponding node. On the x-axis, the figure reports the time (in seconds) that elapsed from the
beginning of the simulation. At time 0, all nodes had 100 percent of the available CPU and
the edge node was executing all 50 monitors using, on average, 38 percent of the available
CPU. After 20 seconds, the testbench started saturating the CPU of the edge node. As a
consequence, the node was no longer able to handle the computational load of the verification
environment. Therefore, the orchestrator enabled the migration of monitors to the desktop
node, which had available computing resources and guaranteed the least reduction in ver-
ification responsiveness. The monitor migration, as expected, was performed incrementally
at the varying of the testbench workload. Since the edge CPU was not immediately satu-
rated, the orchestrator started moving 20 monitors after 22 seconds, and then, at the next
allocation period (second 23), as the edge CPU had been further loaded by the testbench,
it migrated the remaining 30 monitors. From 23 to 40 seconds, the desktop node executed
all the monitors. After that, the testbench saturated the CPU of the desktop node to test
the migration from the desktop to the server. Similarly to the previous iteration, the orches-
trator migrated the monitors to the server node, which was the only device remaining with
available CPU resources. Saturating such a node caused the system to fall into the overload

114 4 Containerization and orchestration on Edge-Cloud architectures

Fig. 4.23: Overview of the programmable cluster nodes in the second case study.

scenario. Note that this time, the monitors were transferred all at once towards the server,
since the testbench reduced the available CPU on the desktop machine more quickly than
in the previous transfer (from the edge machine), forcing the orchestrator to quickly free
computational resources on the desktop machine. To observe the behavior of the verification
environment in the overload scenario, the testbench started partially saturating the CPU of
the server node (65 seconds), leaving only 8% of the available CPU. Since the verification
environment required 18% of the CPU, it started dropping events from the buffers of the
monitors, effectively reducing the computational cost of verification to 7.5% (on average).
Then, the testbench removed the computational load on the server machine (87 seconds),
restoring the execution of the monitors to their original accuracy and CPU consumption.
Finally, the testbench removed the computational load on all nodes. As a consequence, the
orchestrator moved all the monitors to the edge node where verification could achieve the
best responsiveness (105 seconds). During the entire simulation, the orchestrator spent on
average 27ms (every second) to solve the MILP problem, proving the scalability of this
approach.

4.5.2 Case Study 2: Autonomous mobile robot for a smart manufacturing line

We evaluated the proposed methodology to assess the mission of a Robotnik RB-Kairos
mobile robot2 in an industrial agile production chain. Such a mobile robot consists of a skid-
steering platform equipped with a Universal Robots UR5 manipulator and a Schunk WSG50
end-effector for grasping (see Fig. 4.23). The robot is also equipped with different sensors
including two Sick S300 laser scanners and an RGB-D Intel RealSense D415 camera for
localization. The computing HW architecture consists of two edge devices installed onboard.
One MCB is equipped with an Intel i7 9700 3.0 GHz, 8GB of RAM, and Ubuntu 22.04 OS
with ROS2 Humble. The second edge device consists of an Nvidia Jetson Xavier NX with
JetPack 4.5. The onboard devices are connected through a local gigabit Ethernet router
(802.3ab). The cluster of nodes also includes an external server equipped with an Intel i5-
7400 3.5 GHz, 8GB of RAM, and Ubuntu 18.04. The server is connected to the onboard
devices through an 866Mbps wireless network (802.11ac).

We configured a K3s cluster, version 1.20.4+k3s1, on the MCB, on the Jetson Xavier
and on the external server. The server also runs the K3s master agent.

We measured the system performance while executing the ROS-compliant SW appli-
cation that implements the robot mission. It consists of several tasks that implement the
2 Note that, while it is the same robot as Fig. 4.20, the computing architecture is different. This is

caused by the different computing requirements, i.e., in Fig. 4.20 the Edge-server needed to have
an RT kernel.

4.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 115

Component Devices No monitors Monitors

CPU
Jetson 38.64% 45.49%
MCB 23.44% 28.50%
Server 30.96% 50.98%

Network Wi-Fi 0.31 MiB/s 0.39 MiB/s
Ethernet 1.31 MiB/s 1.41 MiB/s

Table 4.36: Resource usage overhead with and without monitors.

interaction of the mobile robot with an industrial agile production chain. See Section 4.2 for
details on the mission.

The software for the Kairos is split between all three computing nodes inside the K3s
cluster. The MCB handles most of the robotic functionality such as mission, arm and grip-
per planning, etc. The Jetson node is tasked with the navigation stack, while the server
node handles HMI and monitoring. To collect the performance metrics we used Prometheus
connected to Grafana. As the server node is tasked with scraping the data, its CPU usage
fluctuates significantly when there is a data update.

We configured the MILP solver with threshold CPU usage for the MCB of 40%, 60%
for the Jetson, and 90% for the external server. These thresholds allow the Kairos HW to
continue working properly and not be overwhelmed by the computational load when the
monitors are running together with the robotic software. The system includes 201 monitors
running on the cluster, on all three computing nodes. We also used a moving window to
average the last 10 values obtained from the ROS topics to create a low-pass filter that
removes signal spikes that often happen when analyzing real sensor data.

Functional analysis: With the use of RGB cameras and an inference-based image
recognition system [193], the robotic software implements an ORB-SLAM [192] application
for localization and mapping. It is then connected to a move-base system that relies on a
global and local planner for obstacle avoidance.

Considering the temporal constraints of the software system, the aim was to check the
functional correctness of the applications. In particular, we designated the global planner as
a non-critical task on the server. We considered the ORB-SLAM and local planner running
in real time on the Jetson (i.e., 125 ms application makespan). We enforced a corresponding
minimum supported rate of 8 FPS for the RGB camera input stream.

To evaluate the effect of orchestration, we consider a scenario in which the robot must
reach a user-defined location Öx2, y2ã from the starting point Öx1, y1ã. First, the global planner
finds the path to reach the arrival point. Subsequently, while the robot moves, the local plan-
ner reschedules the path trajectory (waypoints) to take care of changes in the environment
that may cause unwanted collisions with moving obstacles.

After the initial allocation of 201 monitors on the Jetson, we observed that the mon-
itor corresponding to the assertion G((robot_x1 = x1 && robot_y1 = y1 && newGoal) �(F [0, timeout](robot_x2 = x2 && robot_y2 = y2))) failed. This monitor was set up to check if
the robot can reach Öx2, y2ã before a given timeout. The monitor failed due to the overhead
introduced by the verification environment, which causes an increment in the execution time.
Consequently, the robot moved in the wrong direction because the robot’s controller was
unable to support the minimum updating frequency for the motor velocities. For proper
operations, the controller for the motor velocities needs an update at least every 125 ms
(8 Hz). The system guarantees a makespan of 115 ms without the verification environment
(8.7Hz). When the verification overhead is introduced, this value increases to 140 ms (7.1
Hz). When, thanks to the buffer migration approach, 150 monitors are automatically trans-
ferred from the Jetson to the server during execution; therefore, some of the verification load
on the edge device is relieved. The robot’s controller resumed functioning normally with a
makespan of 125 ms (8 Hz), which prevented the aforementioned assertion from failing.

Orchestration and overhead: Table 4.36 summarizes the CPU and network usage
with and without monitors. We can observe higher CPU usage overall, distributed across
the computing cluster, and a slight increase in network usage of ⌅ 0.1 MiB/s. The high

116 4 Containerization and orchestration on Edge-Cloud architectures

Fig. 4.24: CPU overhead for all the nodes correlated to the number of monitors during the
execution of the robot’s mission.

bandwidth on the Ethernet interface is caused by the constant communication to handle
the navigation SW components deployed on the Jetson. We also observed a negligible and
static increase of ⌅ 40MB of system memory usage on all nodes of the cluster due to the
allocation of the resources needed by the monitors (not reported in Table 4.36).

Figure 4.24 shows the overhead in more detail, as well as the number of running monitors
on each node during the mission of the RB-Kairos. As reported in the summary table, CPU
usage is higher overall for all devices due to the additional SW for the monitors running, but
the highest average increase is found on the server and Jetson. On these two devices, the

4.5 Assertion-based verification and workload migration in Kubernetes for robotic systems 117

monitors spend most of their time as reported in the last graph (yellow and green for server
and Jetson respectively). We also observed notable CPU usage spikes when the monitors
are moved onto a particular device. An example is at the time instant 29, where some
monitors are moved to the MCB and we can see the CPU usage reach the threshold, causing
a migration towards the server. It is also evident at the time instant 85, where all monitors
are migrated towards the MCB and its CPU usage exceeds the threshold, also causing a
reduction in CPU usage on the other two devices. When the threshold value is exceeded,
the MILP begins a migration towards the Jetson and also towards the server, causing spikes
in usage on all the involved CPUs, but freeing the crucial resources needed by the MCB to
correctly run the robot SW.

5

Conclusions and Future Work

This thesis focused on optimizing performance in Edge-Cloud architectures, leading to strong
results for containerized environments in robotics, industrial automation, and emerging ar-
chitectures like RISC-V.

It introduced a design methodology based on Docker and Kubernetes to program ad-
vanced robotic tasks. It aimed to facilitate the containerization and orchestration of ROS-
based robotic software applications across diverse hardware architectures. Through com-
prehensive case studies, this thesis demonstrated the methodology’s ability to integrate
and verify multi-domain components early in the design process, enabling functional and
extra-functional verification prior to system deployment. It also introduced and evaluated
an innovative node clustering algorithm, which improves the efficiency of the organization
of ROS nodes within containers. This approach significantly optimized memory usage, CPU
overhead, and network bandwidth.

Additionally, since the adoption of containerization and Kubernetes orchestration in
resource-constrained edge computing environments, including robotics and CPSs, has gained
significant traction due to the complexity of AI-based software on modern autonomous
platforms, this thesis introduced RT-Kube, an orchestration platform tailored for mixed-
criticality systems, seamlessly integrating real-time containers into standard Kubernetes.
This research enabled containerized mixed-criticality environments, previously unattainable,
and offered a transparent monitoring solution for temporal violations. The experiments
demonstrated the negligible overhead when deploying real-time tasks on embedded systems
and showcased RT-Kube’s ability to reduce missed deadlines by up to 50% compared to
standard Kubernetes, ensuring improved reliability and robust real-time performance.

Another significant result was effectively integrating the essential components of con-
tainerization and orchestration, such as network plugins and container runtime, into a RISC-
V platform. The thesis demonstrated that these technologies can be efficiently implemented
on a distributed computing system based on the RISC-V architecture with a small per-
formance degradation, comparable to the performance degradation observed on the ARM
architecture. The experimental findings have significant implications for the development
of open digital infrastructures. They broaden the possibilities for creating large computing
ecosystems with an open and scalable infrastructure, leveraging the open hardware design
of RISC-V as well as the adaptability and effectiveness of containerization and orchestration
technologies.

Furthermore, this research addressed performance improvements at both the application
level and system level. At the application level, it tackled task mapping and scheduling
challenges for OpenVX DAG-based embedded vision applications on heterogeneous CPU-
GPU devices. It presented innovative scheduling algorithms and frameworks that enhance
the efficiency of embedded vision applications while considering device heterogeneity and
multiple node implementations. These approaches were extensively evaluated through a
considerable set of benchmarks and real-world applications, providing valuable insights into
their effectiveness.

At the system level, it introduced HEFT4K, a scheduling approach based on the HEFT
task ranking, optimized for orchestrator platforms such as Kubernetes. Using the OS nice-

120 5 Conclusions and Future Work

ness concept and event-driven remapping, HEFT4K significantly reduced the makepan of
DAG-based applications by an average of 43% on synthetic datasets and real case studies,
outperforming existing Kubernetes schedulers.

In summary, this research has advanced the field of Edge-Cloud architectures and in-
troduced innovative methodologies and frameworks that significantly enhance the efficiency,
reliability, and real-time performance of robotic systems and embedded vision applications.
The improved resource management reduces the need for over-provisioning and hardware
upgrades, meaning that systems can handle more tasks more efficiently, leading to less
stress on hardware components while reducing costs. Moreover, better performance allows
for more reliable runtime calculation and prediction mechanisms that minimize operational
risks, leading to safer industrial and robotic environments. The goals established in Fig. 1.2
were achieved by following five research and implementation steps, which methodically and
consistently improved the architecture for the Edge-Cloud computing continuum.

5.1 Future work

In the context of the Edge-Cloud computing continuum, research across various fields has
been making strong leaps toward more sustainable computing, thanks to improved algo-
rithms and methodologies that allow for improved efficiency. Containerization especially has
allowed the flexibility required by these techniques to reconfigure and adapt the workloads
to more dynamic infrastructures. However, many challenges remain open.

First and foremost, there is a need for improved communication. The problem of reliable
network has been extensively studied for wired connections, but, especially in the case of
mobile robots, which rely on wireless communications standards like 5G or Wi-Fi, there
is a need to transform an unreliable medium into a reliable one. This could be achieved
with better and stronger connections, but also with SW redundancy and failsafes. Simple
solutions could be applied, such as stopping the robot in case the connection is lost or
applying a redundant controller for navigation. However, these solutions come with tangible
drawbacks. The first one interrupts the robot’s mission, which may result in catastrophic
failures or costly delays. And using onboard resources for a redundant controller, resources
that were freed by migrating the navigation controller to the cloud completely negates
the advantages of such a methodology. This translates into a concrete need to improve
communication or techniques to improve redundancies and failsafe.

Another challenge that is still open in this context is to integrate more diverse accelerators
into the workflow of robotic and industrial workloads. With the increased adoption of RISC-
V, the proliferation of customized and dedicated accelerators will probably require adapting
the SW architecture to accept these new computing nodes in the edge-cloud paradigm. Con-
tainerization and orchestration allow for the partitioning of memory or CPU resources, but
there is a need for more in-depth segmentation that allows control over dedicated acceler-
ators that do not enter into the simple categorization of "GPUs". This translates into the
need for more modular approaches for the development of SW, which is a strong attraction
for research opportunities.

The hardware itself could also be assessed for optimization since we are considering a het-
erogeneous and flexible computing architecture. Some computing hardware can be dynami-
cally altered at “runtime” to fit the computational needs of a specific application, for example,
by adapting a computing platform to the software requirements of a robotic system. By in-
corporating reconfigurable hardware architectures such as Field-Programmable Gate Array
(FPGA) or Coarse-Grained Reconfigurable Array (CGRA), robots could modify their com-
putational behavior in real-time to optimize for different tasks or environmental conditions.
These customized devices, including task-specific accelerators, such as Application-Specific
Integrated Circuit (ASIC), could be seamlessly integrated into the computing architecture
thanks to its dynamic and heterogeneous composition, allowing for even more flexibility and
performance.

References

1. X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and industry 5.0 - inception,
conception and perception,” Journal of Manufacturing Systems, vol. 61, pp. 530–535, 2021.

2. M. Di Nardo and H. Yu, “Special issue “industry 5.0: The prelude to the sixth industrial
revolution”,” Applied System Innovation, vol. 4, no. 3, 2021.

3. A. Al-Yacoub, Y. Zhao, W. Eaton, Y. Goh, and N. Lohse, “Improving human robot collabo-
ration through force/torque based learning for object manipulation,” Robotics and Computer-
Integrated Manufacturing, vol. 69, 2021.

4. H. Abbas, I. Saha, Y. Shoukry, R. Ehlers, G. Fainekos, R. Gupta, R. Majumdar, and D. Ulus,
“Special session: Embedded software for robotics: Challenges and future directions,” in Proc.
of ACM/IEEE International Conference on Embedded Software, EMSOFT, 2018.

5. P. Thakur and V. Kumar Sehgal, “Emerging architecture for heterogeneous smart cyber-
physical systems for industry 5.0,” Computers and Industrial Engineering, vol. 162, 2021.

6. J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceedings of the IEEE,
2019.

7. F. Lumpp, F. Fummi, H. Patel, and N. Bombieri, “Containerization and orchestration of
software for autonomous mobile robots: a case study of mixed-criticality tasks across edge-
cloud computing platforms,” in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2022, pp. 1–6.

8. Sifive website. [Online]. Available: https://www.sifive.com/
9. E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and L. Benini, “GAP-8: A

RISC-V SoC for AI at the Edge of the IoT,” in 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2018, pp. 1–4.

10. NVIDIA. (2021) Isaac SDK-Powered Robots Collaborating in Simulated Factory Environment.
[Online]. Available: https://developer.nvidia.com/isaac-sdk

11. AMAZON. (2021) AWS RoboMaker. [Online]. Available: https://aws.amazon.com/
robomaker/?nc1=h_ls

12. Open Source Robotics Foundation. (2023) Robot Operating System. [Online]. Available:
www.ros.org

13. D. Merkel et al., “Docker: lightweight linux containers for consistent development and deploy-
ment,” Linux journal, vol. 2014, no. 239-art.2, 2014.

14. P. Melo, R. Arrais, and G. Veiga, “Development and deployment of complex robotic appli-
cations using containerized infrastructures,” in 2021 IEEE 19th International Conference on
Industrial Informatics (INDIN), 2021, pp. 1–8.

15. M. Shaik and et al., “Enabling fog-based industrial robotics systems,” in IEEE Symposium
on Emerging Technologies and Factory Automation, ETFA, vol. 2020-September, 2020, pp.
61–68.

16. N. Nikolakis, R. Senington, K. Sipsas, A. Syberfeldt, and S. Makris, “On a containerized
approach for the dynamic planning and control of a cyber - physical production system,”
Robotics and Computer-Integrated Manufacturing, vol. 64, p. 101919, 2020.

17. M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating docker for lightweight
virtualization of distributed and time-sensitive applications in industrial automation,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3566–3576, 2021.

18. AUTOSAR: AUTomotive Open System ARchitecture, “The standardized software framework
for intelligent mobility,” 2021, www.autosar.org.

19. Collins Aerospace, “Connectivity and network services,” 2021, www.arinc.com.
20. A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of Computer Science,

University of York, Tech. Rep, pp. 1–69, 2013.

122 References

21. ——, “A survey of research into mixed criticality systems,” ACM Computing Surveys, vol. 50,
no. 6, 2017.

22. T. Tasci, J. Melcher, and A. Verl, “A container-based architecture for real-time control appli-
cations,” in 2018 IEEE International Conference on Engineering, Technology and Innovation,
ICE/ITMC, 2018.

23. M. Cinque, R. Corte, A. Eliso, and A. Pecchia, “Rt-cases: Container-based virtualization for
temporally separated mixed-criticality task sets,” in Leibniz International Proceedings in In-
formatics, LIPIcs, vol. 133, 2019.

24. L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time scheduling in the linux
kernel,” SIGBED Rev., vol. 16, no. 3, p. 33–38, Nov. 2019.

25. M. Thiyyakat, S. Kalambur, and D. Sitaram, “Improving resource isolation of critical tasks in
a workload,” Lecture Notes in Computer Science, vol. 12326 LNCS, pp. 45–67, 2020.

26. F. Hofer, M. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, “Industrial control via application
containers: Maintaining determinism in iaas,” Systems Engineering, vol. 24, no. 5, pp. 352–368,
2021.

27. D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud Com-
puting, vol. 1, no. 3, pp. 81–84, 2014.

28. A. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on multi/many-core systems: Sur-
vey of current and emerging trends,” in Proc. od ACM/IEEE Design Automation Conference,
2013.

29. A. Goens, R. Khasanov, J. Castrillon, M. Hähnel, T. Smejkal, and H. Härtig, “TETRiS: A
Multi-Application Run-Time System for Predictable Execution of Static Mappings,” in Proc.
of ACM International Workshop on Software and Compilers for Embedded Systems, 2017, pp.
11–20.

30. NVIDIA Inc., “VisionWorks,” https://developer.nvidia.com/embedded/ visionworks.
31. M. Yang, T. Amert, K. Yang, N. Otterness, J. Anderson, F. Smith, and S. Wang, “Making

OpenVX Really ’Real Time’,” in Proc of IEEE Real-Time Systems Symposium (RTSS), 2019,
pp. 80–93.

32. G. Elliott, K. Yang, and J. Anderson, “Supporting Real-Time Computer Vision Workloads Us-
ing OpenVX on Multicore+GPU Platforms,” in Proceedings - Real-Time Systems Symposium,
2016, pp. 273–284.

33. H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 13, no. 3, pp. 260–274, 2002.

34. A. Maurya and A. Tripathi, “Performance Comparison of HEFT, Lookahead, CEFT and PEFT
Scheduling Algorithms for Heterogeneous Computing Systems,” in Proc. of ACM International
Conference on Computer and Communication Technology, 2017, pp. 128–132.

35. S. AlEbrahim and I. Ahmad, “Task scheduling for heterogeneous computing systems,” Journal
of Supercomputing, vol. 73, no. 6, pp. 2313–2338, 2017.

36. L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, “DAG Scheduling Using a Looka-
head Variant of the Heterogeneous Earliest Finish Time Algorithm,” in Proc. of Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2010, pp. 27–34.

37. H. Zhao and R. Sakellariou, “An experimental investigation into the rank function of the
heterogeneous earliest finish time scheduling algorithm,” in Euro-Par 2003 Parallel Processing,
H. Kosch, L. Böszörményi, and H. Hellwagner, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 189–194.

38. K. R. Shetti, S. A. Fahmy, and T. Bretschneider, “Optimization of the HEFT Algorithm for
a CPU-GPU Environment,” in Proc. of International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2013, pp. 212–218.

39. A. Yudha, R. Pulungan, H. Hoffmann, and Y. Solihin, “A simple cache coherence scheme
for integrated CPU-GPU systems,” in Proc. of ACM/IEEE Design Automation Conference
(DAC), 2020.

40. X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans, “Hmg: Extending cache
coherence protocols across modern hierarchical multi-gpu systems,” in Proc. of IEEE Inter-
national Symposium on High Performance Computer Architecture, HPCA 2020, 2020, pp.
582–595.

41. S. A. Mojumder, Y. Sun, L. Delshadtehrani, Y. Ma, T. Baruah, J. L. Abellán, J. Kim, D. R.
Kaeli, and A. Joshi, “HALCONE : A hardware-level timestamp-based cache coherence scheme
for multi-gpu systems,” CoRR, vol. abs/2007.04292, 2020.

42. N. Agarwal, D. Nellans, E. Ebrahimi, T. Wenisch, J. Danskin, and S. Keckler, “Selective gpu
caches to eliminate cpu-gpu hw cache coherence,” in Proc. of International Symposium on
High-Performance Computer Architecture, 2016, pp. 494–506.

References 123

43. S. Mittal, “A survey of techniques for managing and leveraging caches in gpus,” Journal of
Circuits, Systems and Computers, vol. 23, no. 8, 2014.

44. N. Bombieri, F. Busato, and F. Fummi, “Power-aware performance tuning of gpu applications
through microbenchmarking,” in Proc. of ACM/IEEE Design Automation Conference, 2017.

45. R. Zheng, Q. Hu, and H. Jin, “Gpuperfml: A performance analytical model based on deci-
sion tree for GPU architectures,” in Proc. of International Conference on High Performance
Computing and Communications, 2019, pp. 602–609.

46. S. Madougou, A. Varbanescu, C. De Laat, and R. Van Nieuwpoort, “The landscape of GPGPU
performance modeling tools,” Parallel Computing, vol. 56, pp. 18–33, 2016.

47. T. Exley and A. Jafari, “Maximizing energy efficiency of variable stiffness actuators through
an interval-based optimization framework,” Sensors and Actuators A: Physical, vol. 332, 2021.

48. V. Dutta and T. Zielińska, “Cybersecurity of robotic systems: Leading challenges and robotic
system design methodology,” Electronics (Switzerland), vol. 10, no. 22, 2021.

49. G. Giri, Y. Maddahi, and K. Zareinia, “A brief review on challenges in design and development
of nanorobots for medical applications,” Applied Sciences (Switzerland), vol. 11, no. 21, 2021.

50. I. Calvo, E. Villar, C. Napole, A. Fernández, O. Barambones, and J. Gil-García, “Reliable con-
trol applications with wireless communication technologies: Application to robotic systems,”
Sensors, vol. 21, no. 21, 2021.

51. C. Mouradian, D. Naboulsi, S. Yangui, R. Glitho, M. Morrow, and P. Polakos, “A comprehen-
sive survey on fog computing: State-of-the-art and research challenges,” IEEE Communications
Surveys and Tutorials, vol. 20, no. 1, pp. 416–464, 2018.

52. C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp.
24–31, 2015.

53. R. Morabito, “Virtualization on internet of things edge devices with container technologies: A
performance evaluation,” IEEE Access, vol. 5, pp. 8835–8850, 2017.

54. P. González-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. Otero, “A modular cps archi-
tecture design based on ros and docker,” International Journal on Interactive Design and
Manufacturing, vol. 11, no. 4, pp. 949–955, 2017.

55. L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in fog computing based
on containers for smart manufacturing,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4712–4721, 2018.

56. Open Source Robotics Foundation, “Ros 2 documentation,”
https://docs.ros.org/en/dashing/index.html.

57. ——, “Ros wiki,” http://wiki.ros.org/.
58. ——, “Efficient intra-process communication,” https://docs.ros.org/en/foxy/Tutorials/Intra-

Process-Communication.html.
59. Cloud Native Computing Foundation. (2023) Kubernetes. [Online]. Available: kubernetes.io
60. Architecture. [Online]. Available: https://kubernetes.io/docs/concepts/architecture/cloud-

controller/
61. F. Carpio, M. Delgado, and A. Jukan, “Engineering and experimentally benchmarking a

container-based edge computing system,” ICC 2020 - 2020 IEEE International Conference
on Communications (ICC), Jun 2020.

62. V. Ibarra-Junquera, A. González, C. M. Paredes, D. Martínez-Castro, and R. A. Nuñez-
Vizcaino, “Component-based microservices for flexible and scalable automation of industrial
bioprocesses,” IEEE Access, vol. 9, pp. 58 192–58 207, 2021.

63. G. Kurtzer, V. Sochat, and M. Bauer, “Singularity: Scientific containers for mobility of com-
pute,” PLoS ONE, vol. 12, 05 2017.

64. A. Moga, T. Sivanthi, and C. Franke, “Os-level virtualization for industrial automation systems:
Are we there yet?” in Proc. of the ACM Symposium on Applied Computing, vol. 04-08-April-
2016, 2016, pp. 1838–1843.

65. K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman, “Keids: Kubernetes-
based energy and interference driven scheduler for industrial iot in edge-cloud ecosystem,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4228–4237, 2020.

66. H. Sami and A. Mourad, “Dynamic on-demand fog formation offering on-the-fly iot service
deployment,” IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp.
1026–1039, 2020.

67. H. A. Ozmen, S. Işık, and C. Ersoy, “A hardware and environment-agnostic smart home archi-
tecture with containerized on-the-fly service offloading,” Computers & Electrical Engineering,
vol. 92, p. 107090, 06 2021.

68. T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner, “Container-based archi-
tecture for flexible industrial control applications,” Journal of Systems Architecture, vol. 84,
pp. 28–36, 2018.

124 References

69. A. Valente, M. Mazzolini, and E. Carpanzano, “An approach to design and develop reconfig-
urable control software for highly automated production systems,” International Journal of
Computer Integrated Manufacturing, vol. 28, no. 3, pp. 321–336, 2015.

70. S. Aldegheri, N. Bombieri, F. Fummi, S. Girardi, R. Muradore, and N. Piccinelli, “Late break-
ing results: Enabling containerized computing and orchestration of ros-based robotic sw ap-
plications on cloud-server-edge architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–2.

71. R. White and H. Christensen, “Ros and docker,” Studies in Com-
putational Intelligence, vol. 707, p. 285 – 307, 2017. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019705507&doi=10.1007%
2f978-3-319-54927-9_9&partnerID=40&md5=146008c1aecf7228fec0c73479272c66

72. S. Wen, B. Ding, H. Wang, B. Hu, H. Liu, and P. Shi, “Towards migrating resource-consuming
robotic software packages to cloud,” in 2016 IEEE International Conference on Real-time
Computing and Robotics (RCAR), 2016, pp. 283–288.

73. P. Melo, R. Arrais, and G. Veiga, “Development and deployment of complex robotic appli-
cations using containerized infrastructures,” in 2021 IEEE 19th International Conference on
Industrial Informatics (INDIN), 2021, pp. 1–8.

74. A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v instruction set manual,
volume i: Base user-level isa,” EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-
62, vol. 116, 2011.

75. Eu roadmap open hardware. [Online]. Available: digital-strategy.ec.europa.eu/en/library/
recommendations-and-roadmap-european-sovereignty-open-source-hardware-software-and-
risc-v

76. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance comparison of
virtual machines and linux containers,” in 2015 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2015, pp. 171–172.

77. A. Torrez, T. Randles, and R. Priedhorsky, “HPC Container Runtimes have Minimal or No
Performance Impact,” in 2019 IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC), 2019, pp. 37–
42.

78. Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, and R. Sinnott, “A Performance Comparison of
Cloud-Based Container Orchestration Tools,” in 2019 IEEE International Conference on Big
Knowledge (ICBK), 2019, pp. 191–198.

79. Y. Jing, Z. Qiao, and R. O. Sinnott, “Benchmarking Container Technologies For IoT En-
vironments,” in 2022 Seventh International Conference on Fog and Mobile Edge Computing
(FMEC), 2022, pp. 1–8.

80. A. Das, S. Patterson, and M. Wittie, “EdgeBench: Benchmarking Edge Computing Platforms,”
in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion), 2018, pp. 175–180.

81. V. Noronha, E. Lang, M. Riegel, and T. Bauschert, “Performance Evaluation of Container
Based Virtualization on Embedded Microprocessors,” in 2018 30th International Teletraffic
Congress (ITC 30), vol. 01, 2018, pp. 79–84.

82. T. Goethals, M. Sebrechts, M. Al-Naday, B. Volckaert, and F. De Turck, “A Functional and
Performance Benchmark of Lightweight Virtualization Platforms for Edge Computing,” in 2022
IEEE International Conference on Edge Computing and Communications (EDGE), 2022, pp.
60–68.

83. T. Wei, M. Malhotra, B. Gao, T. Bednar, D. Jacoby, and Y. Coady, “No such thing as a “free
launch”? Systematic benchmarking of containers,” in 2017 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM), 2017.

84. F. Carpio, M. Delgado, and A. Jukan, “Engineering and Experimentally Benchmarking a
Container-based Edge Computing System,” in ICC 2020 - 2020 IEEE International Conference
on Communications (ICC), 2020, pp. 1–6.

85. C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin, and J.-Y. Jeng, “A kubernetes-based monitoring
platform for dynamic cloud resource provisioning,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, 2017, pp. 1–6.

86. F. Katenbrink, A. Seitz, L. Mittermeier, H. Müller, and B. Bruegge, “Dynamic scheduling
for seamless computing,” in 2018 IEEE 8th International Symposium on Cloud and Service
Computing (SC2), 2018, pp. 41–48.

87. G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential for non-disruptive
vertical auto scaling and resource estimation in kubernetes,” in 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 2019, pp. 33–40.

References 125

88. M. Chima Ogbuachi, C. Gore, A. Reale, P. Suskovics, and B. Kovács, “Context-aware k8s
scheduler for real time distributed 5g edge computing applications,” in 2019 International
Conference on Software, Telecommunications and Computer Networks (SoftCOM), 2019, pp.
1–6.

89. M. C. Ogbuachi, A. Reale, P. Suskovics, and B. Kovács, “Context-aware kubernetes scheduler
for edge-native applications on 5g,” Journal of communications software and systems, 2020.

90. I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni, “Heats: Heterogeneity-
and energy-aware task-based scheduling,” in 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), 2019, pp. 400–405.

91. G. El Haj Ahmed, F. Gil-Castiñeira, and E. Costa-Montenegro, “Kubcg: A dynamic kubernetes
scheduler for heterogeneous clusters,” Software: Practice and Experience, vol. 51, no. 2, pp.
213–234, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2898

92. J. Li, B. Liu, W. Lin, P. Li, and Q. Gao, “An improved container scheduling algorithm based
on pso for big data applications,” in Cyberspace Safety and Security, J. Vaidya, X. Zhang, and
J. Li, Eds. Cham: Springer International Publishing, 2019, pp. 516–530.

93. Y. Fu, S. Zhang, J. Terrero, Y. Mao, G. Liu, S. Li, and D. Tao, “Progress-based container
scheduling for short-lived applications in a kubernetes cluster,” in 2019 IEEE International
Conference on Big Data (Big Data), 2019, pp. 278–287.

94. L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, “Dag scheduling using a lookahead
variant of the heterogeneous earliest finish time algorithm,” in 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, 2010, pp. 27–34.

95. T. Hai, J. Zhou, D. Jawawi, D. Wang, U. Oduah, C. Biamba, and S. K. Jain, “Task scheduling
in cloud environment: optimization, security prioritization and processor selection schemes,”
Journal of Cloud Computing, vol. 12, no. 1, 2023.

96. S. Deng, H. Zhao, Z. Xiang, C. Zhang, R. Jiang, Y. Li, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Dependent function embedding for distributed serverless edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 10, pp. 2346–2357, 2022.

97. Intel. (2023) Telemetry Aware Scheduling. [Online]. Available: /www.intel.com/content/
www/us/en/developer/articles/technical/telemetry-aware-scheduling.html

98. IBM. (2023) Trimaran: Real Load Aware Scheduling. [Online]. Available: github.com/
kubernetes-sigs/scheduler-plugins/tree/master/kep/61-Trimaran-real-load-aware-scheduling

99. J. Abella, D. Hardy, I. Puaut, E. Quiñones, and F. J. Cazorla, “On the comparison of deter-
ministic and probabilistic wcet estimation techniques,” in 2014 26th Euromicro Conference on
Real-Time Systems, 2014, pp. 266–275.

100. Linux scheduler. [Online]. Available: docs.kernel.org/scheduler/index.html
101. S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli, “A containerized

ros-compliant verification environment for robotic systems,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 222–225.

102. F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, “A container-based design methodology for
robotic applications on kubernetes edge-cloud architectures,” in 2021 Forum on specification
Design Languages (FDL), 2021, pp. 01–08.

103. S. Aldegheri, N. Bombieri, F. Fummi, S. Girardi, R. Muradore, and N. Piccinelli, “Late break-
ing results: Enabling containerized computing and orchestration of ros-based robotic sw ap-
plications on cloud-server-edge architectures,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–2.

104. F. Mastrogiovanni, A. Paikan, and A. Sgorbissa, “Semantic-aware real-time scheduling in
robotics,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 118–135, 2013.

105. L. Han, L. Xu, D. Bobkov, E. Steinbach, and L. Fang, “Real-time global registration for globally
consistent rgb-d slam,” IEEE Transactions on Robotics, vol. 35, no. 2, p. 498 – 508, 2019.

106. V. Struhár, M. Behnam, M. Ashjaei, and A. V. Papadopoulos, “Real-Time Containers: A
Survey,” in Workshop on Fog Computing and the IoT, 2020, pp. 7:1–7:9.

107. F. Hofer, M. A. Sehr, A. Iannopollo, I. Ugalde, A. Sangiovanni-Vincentelli, and B. Russo,
“Industrial control via application containers: Migrating from bare-metal to iaas,” in In Proc.
of IEEE CloudCom, 2019, pp. 62–69.

108. S. Fiori, L. Abeni, and T. Cucinotta, “Rt-kubernetes: Containerized real-time cloud
computing,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing,
ser. SAC ’22. New York, NY, USA: Association for Computing Machinery, 2022, p. 36–39.
[Online]. Available: https://doi.org/10.1145/3477314.3507216

109. F. Hofer, M. A. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, “Odre workshop: Probabilistic
dynamic hard real-time scheduling in hpc,” 2020.

126 References

110. M. Cinque, R. Della Corte, and R. Ruggiero, “Preventing timing failures in mixed-criticality
clouds with dynamic real-time containers,” in 2021 17th European Dependable Computing
Conference (EDCC), 2021, pp. 17–24.

111. L. De Simone and G. Mazzeo, “Isolating real-time safety-critical embedded systems via sgx-
based lightweight virtualization,” in Proc. of International Symposium on Software Reliability
Engineering Workshops, ISSREW 2019, 2019, pp. 308–313.

112. V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V. Papadopoulos, “React: En-
abling real-time container orchestration,” in 2021 26th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2021, pp. 1–8.

113. S. Choudhury, S. Maheshwari, I. Seskar, and D. Raychaudhuri, “Shareon: Shared resource
dynamic container migration framework for real-time support in mobile edge clouds,” IEEE
Access, vol. 10, pp. 66 045–66 060, 2022.

114. A. E. González and E. Arzuaga, “Herdmonitor: Monitoring live migrating containers in cloud
environments,” in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp.
2180–2189.

115. S. Zheng, F. Huang, C. Li, and H. Wang, “A cloud resource prediction and migration method for
container scheduling,” in 2021 IEEE Conference on Telecommunications, Optics and Computer
Science (TOCS), 2021, pp. 76–80.

116. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview of the mop runtime veri-
fication framework,” International Journal on Software Tools for Technology Transfer, vol. 14,
no. 3, pp. 249–289, 2012.

117. E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, and S. Sankara-
narayanan, “Specification-based monitoring of cyber-physical systems: A survey on theory,
tools and applications,” Lecture Notes in Computer Science, vol. 10457, pp. 135–175, 2018.

118. C. Hu, W. Dong, Y. Yang, H. Shi, and G. Zhou, “Runtime verification on hierarchical properties
of ros-based robot swarms,” IEEE Transactions on Reliability, vol. 69, no. 2, pp. 674–689, 2020.

119. K. Havelund, G. Reger, and G. Roşu, “Runtime verification past experiences and future pro-
jections,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10000, pp. 532–562, 2019.

120. G. Rosu and K. Havelund, “Rewriting-based techniques for runtime verification,” Automated
Software Engineering, vol. 12, no. 2, pp. 151–197, 2005.

121. D. Ulus, T. Ferrère, E. Asarin, and O. Maler, “Online timed pattern matching using deriva-
tives,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9636, pp. 736–751, 2016.

122. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard, “Quantified event au-
tomata: Towards expressive and efficient runtime monitors,” Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 7436 LNCS, pp. 68–84, 2012.

123. A. Pnueli and A. Zaks, “On the merits of temporal testers,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 5000 LNCS, pp. 172–195, 2008.

124. D. Basin, F. Klaedtke, and E. Zălinescu, “Algorithms for monitoring real-time properties,”
Acta Informatica, vol. 55, no. 4, pp. 309–338, 2018.

125. A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for temporal logic robustness,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 8734, pp. 231–246, 2014.

126. K. Havelund, D. Peled, and D. Ulus, “First-order temporal logic monitoring with bdds,” Formal
Methods in System Design, 2019.

127. T. Zabinski, T. Maoczka, J. Kluska, M. Madera, and J. Sep, “Condition monitoring in industry
4.0 production systems - the idea of computational intelligence methods application,” in 12th
CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018,
Gulf of Naples, Italy, vol. 79, 2019, pp. 63–67.

128. W. Zhang, M.-P. Jia, L. Zhu, and X.-A. Yan, “Comprehensive overview on computational in-
telligence techniques for machinery condition monitoring and fault diagnosis,” Chinese Journal
of Mechanical Engineering (English Edition), vol. 30, no. 4, pp. 782–795, 2017.

129. O. Ljungkrantz, K. Åkesson, M. Fabian, and C. Yuan, “Formal specification and verification
of industrial control logic components,” IEEE Transactions on Automation Science and Engi-
neering, vol. 7, no. 3, p. 538 – 548, 2010.

130. G. Chen, P. Wei, and M. Liu, “Temporal logic inference for fault detection of switched systems
with gaussian process dynamics,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 3, p. 2187 – 2202, 2022.

References 127

131. J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia, “Robust online
monitoring of signal temporal logic,” Formal Methods in System Design, vol. 51, pp. 5–30,
2017.

132. S. Jakšić, E. Bartocci, R. Grosu, R. Kloibhofer, T. Nguyen, and D. Ničkovié, “From signal
temporal logic to fpga monitors,” in 2015 ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE). IEEE, 2015, pp. 218–227.

133. B. Finkbeiner, M. Fränzle, F. Kohn, and P. Kröger, “A truly robust signal temporal logic: Mon-
itoring safety properties of interacting cyber-physical systems under uncertain observation,”
Algorithms, vol. 15, no. 4, p. 126, 2022.

134. J. Huang, C. Erdogan, Y. Zhang, B. M. Moore, Q. Luo, A. Sundaresan, and G. Roşu, “Rosrv:
Runtime verification for robots,” in Runtime Verification, 2014.

135. A. Ferrando, R. Cardoso, M. Fisher, D. Ancona, L. Franceschini, and V. Mascardi, “Ros-
monitoring: A runtime verification framework for ros,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), Dec. 2020, pp. 387–399.

136. A. Francalanza, J. A. Pérez, and C. Sánchez, “Runtime verification for decentralised and
distributed systems,” in Lectures on Runtime Verification, 2018.

137. Embedded Vision Alliance, “Applications for Embedded Vision,” https://www.embedded-
vision.com/applications-embedded-vision.

138. F. Lin, X. Dong, B. Chen, K.-Y. Lum, and T. Lee, “A robust real-time embedded vision system
on an unmanned rotorcraft for ground target following,” IEEE Transactions on Industrial
Electronics, vol. 59, no. 2, pp. 1038–1049, 2012.

139. E. Gudis, P. Lu, D. Berends, K. Kaighn, G. Van Der Wal, G. Buchanan, S. Chai, and M. Pia-
centino, “An embedded vision services framework for heterogeneous accelerators,” in Proc. of
IEEE CS Conference on Computer Vision and Pattern Recognition, 2013, pp. 598–603.

140. K. Group. (2023) OpenVX: Portable, Power-efficient Vision Processing. [Online]. Available:
www.khronos.org/openvx

141. AMD, “AMD OpenVX - AMDOVX,” http://gpuopen.com/compute-product/amd-openvx/.
142. INTEL, “Intel Computer Vision SDK,” https://software.intel.com/en-us/computer-vision-sdk.
143. M. Popp, S. v. Son, and O. Moreira, “Automatic control flow generation for openvx graphs,”

in 2017 Euromicro Conference on Digital System Design (DSD), 2017, pp. 198–204.
144. D. Dekkiche, B. Vincke, and A. Merigot, “Investigation and performance analysis of OpenVX

optimizations on computer vision applications,” in Proc. of IEEE International Conference on
Control, Automation, Robotics and Vision, 2016, pp. 1–6.

145. G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “ADRENALINE: An OpenVX Envi-
ronment to Optimize Embedded Vision Applications on Many-core Accelerators,” in Proc. of
IEEE International Symposium on Embedded Multicore/Many-core SoCs, 2015, pp. 289–296.

146. S. Aldegheri and N. Bombieri, “Extending OpenVX for model-based design of embedded vision
applications,” in Proc. of IEEE International Conference on VLSI and System-on-Chip, VLSI-
SoC, 2017, pp. 1–6.

147. E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill, “Addressing system-
level optimization with OpenVX graphs,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 658–663.

148. A. Syschikov, B. Sedov, K. Nedovodeev, and V. Ivanova, “Openvx integration into the visual
development environment,” International Journal of Embedded and Real-Time Communication
Systems, vol. 9, no. 1, pp. 20–49, 2018. [Online]. Available: www.scopus.com

149. S. Aldegheri and N. Bombieri, “Enhancing performance of computer vision applications on
low-power embedded systems through heterogeneous parallel programming,” in Proc. of IEEE
International Conference on VLSI and System-on-Chip, VLSI-SoC, 2018, pp. 1–6.

150. Khronos, “OpenVX lib,” https://www.khronos.org/openvx.
151. T. C. Koopmans and M. Beckmann, “Assignment problems and the location of economic

activities,” Econometrica, vol. 25, no. 1, pp. 53–76, 1957.
152. J. Fickenscher, S. Reinhart, F. Hannig, J. Teich, and M. Bouzouraa, “Convoy tracking for adas

on embedded gpus,” in Proc. of IEEE Intelligent Vehicles Symposium, 2017, pp. 959–965.
153. X. Wang, K. Huang, and A. Knoll, “Performance optimisation of parallelized adas applications

in fpga-gpu heterogeneous systems: A case study with lane detection,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 4, pp. 519–531, 2019.

154. N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson, F. Smith, A. Berg, and S. Wang, “An
evaluation of the nvidia tx1 for supporting real-time computer-vision workloads,” in Proc. of
the IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS, 2017, pp.
353–363.

128 References

155. Nvidia Inc., “Nvidia tootlkit documentation, Unified Memory,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#um-unified-memory-programming-hd.

156. J. Cheng, M. Grossman, and T. McKercher, Professional Cuda C Programming. John Wiley
& Sons, 2014.

157. F. Lumpp, H. Patel, and N. Bombieri, “A Framework for Optimizing CPU-iGPU Communica-
tion on Embedded Platforms,” in proceedings of IEEE Design Automation Conference (DAC).
IEEE, 2021, pp. 1–6.

158. E. Lee and S. Seshia, “Introduction to embedded systems—a cyber-physical systems approach,”
MIT Press, 2015.

159. K. Adam, A. Butting, R. Heim, O. Kautz, B. Rumpe, and A. Wortmann, “Model-driven
separation of concerns for service robotics,” in DSM 2016 - Proceedings of the International
Workshop on Domain-Specific Modeling, co-located with SPLASH 2016, 2016, pp. 22–27.

160. N. Hammoudeh Garcia, L. Deval, M. Lüdtke, A. Santos, B. Kahl, and M. Bordignon, “Boot-
strapping mde development from ros manual code - part 2: Model generation,” in Proceedings
- 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems, MODELS 2019, 2019, pp. 95–105.

161. G. Bardaro, A. Semprebon, and M. Matteucci, “A use case in model-based robot development
using aadl and ros,” in Proceedings - International Conference on Software Engineering, 2018,
pp. 9–16.

162. M. Wenger, W. Eisenmenger, G. Neugschwandtner, B. Schneider, and A. Zoitl, “A model
based engineering tool for ros component compositioning, configuration and generation of
deployment information,” in IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA, vol. 2016-November, 2016.

163. P. Neis, M. Wehrmeister, and M. Mendes, “Model driven software engi-
neering of power systems applications: Literature review and trends,” IEEE
Access, vol. 7, pp. 177 761–177 773, 2019, cited By 6. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077213525&doi=10.1109%
2fACCESS.2019.2958275&partnerID=40&md5=2462fd65ed3be7846a22631f3536726a

164. E. Estévez, A. Sánchez-García, J. Gámez-García, J. Gómez-Ortega, and S. Satorres-Martínez,
“A novel model-driven approach to support development cycle of robotic systems,” Interna-
tional Journal of Advanced Manufacturing Technology, vol. 82, no. 1-4, pp. 737–751, 2016.

165. Matlab. (2021) MATLAB and Simulink for Robotics and Autonomous Systems. [Online].
Available: https://www.mathworks.com/solutions/robotics.html

166. Robmosys. (2021) Composable Models and Software for Robotics Systems. [Online]. Available:
https://robmosys.eu/

167. J. Cacace, N. Mimmo, and L. Marconi, “A ros gazebo plugin to simulate arva sensors,” in
Proceedings - IEEE International Conference on Robotics and Automation, 2020, pp. 7233–
7239.

168. E. Sita, C. Horváth, T. Thomessen, P. Korondi, and A. Pipe, “Ros-unity3d based system for
monitoring of an industrial robotic process,” in SII 2017 - 2017 IEEE/SICE International
Symposium on System Integration, vol. 2018-January, 2018, pp. 1047–1052.

169. N. Zhou, Y. Georgiou, M. Pospieszny, L. Zhong, H. Zhou, C. Niethammer, B. Pejak, O. Marko,
and D. Hoppe, “Container orchestration on hpc systems through kubernetes,” Journal of Cloud
Computing, vol. 10, no. 1, 2021.

170. H. Fathoni, C.-T. Yang, C.-H. Chang, and C.-Y. Huang, “Performance comparison of
lightweight kubernetes in edge devices,” Communications in Computer and Information Sci-
ence, vol. 1080 CCIS, pp. 304–309, 2019.

171. S. Aldegheri, N. Bombieri, S. Germiniani, F. Moschin, and G. Pravadelli, “A containerized
ros-compliant verification environment for robotic systems,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 222–225.

172. ROS. Control. [Online]. Available: http://wiki.ros.org/ros_control
173. Gazebo. Control. [Online]. Available: http://gazebosim.org/tutorials/?tut=ros_control
174. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. USA: Prentice-Hall, Inc., 1988.
175. rosdep tool. [Online]. Available: https://wiki.ros.org/rosdep
176. Docker, “Configure networking,” 2021, docs.docker.com/network.
177. Eurohpc risc-v. [Online]. Available: https://eurohpc-ju.europa.eu/new-call-developing-hpc-

ecosystem-based-risc-v-2023-02-01_en
178. Risc-v wiki. [Online]. Available: https://wiki.riscv.org/display/HOME/RISC-V+Software+

Ecosystem
179. A. Bartolini, F. Ficarelli, E. Parisi, F. Beneventi, F. Barchi, D. Gregori, F. Magugliani, M. Ci-

cala, C. Gianfreda, D. Cesarini et al., “Monte Cimone: Paving the Road for the First Generation
of RISC-V High-Performance Computers,” in 2022 IEEE 35th International System-on-Chip
Conference (SOCC). IEEE, 2022, pp. 1–6.

References 129

180. KubeEdge. (2023) KubeEdge. [Online]. Available: https://kubeedge.io
181. T. Iqbal, S. Rack, and L. D. Riek, “Movement coordination in human-robot teams: A

dynamical systems approach,” IEEE Transactions on Robotics, vol. 32, no. 4, pp. 909–919,
2016, cited By :45. [Online]. Available: www.scopus.com

182. Deployments. [Online]. Available: kubernetes.io/docs/concepts/workloads/controllers/
deployment/

183. sched_deadline: Implement “runtime overrun signal” support. [On-
line]. Available: git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
34be39305a77b8b1ec9f279163c7cdb6cc719b91

184. M. Felser, “Real-time ethernet - industry prospective,” Proceedings of the IEEE, vol. 93, no. 6,
pp. 1118–1129, 2005.

185. A. T. Praveen, A. Gupta, S. Bhattacharyya, and R. Muthalagu, “Assuring behavior of multi-
robot autonomous systems with translation from formal verification to ros simulation,” IEEE
Systems Journal, 2022.

186. R. Halder, J. Proença, N. Macedo, and A. Santos, “Formal verification of ros-based robotic
applications using timed-automata,” in IEEE/ACM International FME Workshop on Formal
Methods in Software Engineering (FormaliSE), 2017, pp. 44–50.

187. T. Klotz, J. Schonherr, N. Sesler, B. Straube, and K. Turek, “Automated formal verification
of routing in material handling systems,” IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 4, p. 900 – 915, 2013.

188. H. Foster, Applied Assertion-Based Verification: An Industry Perspective. Now Foundations
and Trends, 2009.

189. X. Zheng, C. Julien, R. Podorozhny, and F. Cassez, “Braceassertion: Runtime verification of
cyber-physical systems,” in Proceedings - 2015 IEEE 12th International Conference on Mobile
Ad Hoc and Sensor Systems, MASS 2015, 2015, pp. 298–306.

190. H. Ko, M. Jo, and V. Leung, “Application-aware migration algorithm with prefetching in
heterogeneous cloud environments,” IEEE Transactions on Cloud Computing, 2021.

191. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in FOR-
MATS/FTRTFT, 2004.

192. R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for monocular,
stereo and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262,
2017.

193. NVIDIA. (2021) Deep-learning inference networks and deep vision primitives with TensorRT
and NVIDIA Jetson. [Online]. Available: https://github.com/dusty-nv/jetson-inference

194. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
International Journal of Robotics Research (IJRR), 2013.

195. F. Kong, M. Polo, and A. Lambert, “Centroid estimation for a shack-hartmann wavefront
sensor based on stream processing,” Applied optics, vol. 56, no. 23, 2017.

196. F. Lumpp, M. Panato, F. Fummi, and N. Bombieri, “A container-based design methodology
for robotic applications on kubernetes edge-cloud architectures,” in Forum on Specification
and Design Languages, vol. 2021-September, 2021.

197. Rt-tests. [Online]. Available: git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Thesis outline

	2 Background and Related Work
	2.1 Optimizing performance on heterogeneous devices at the edge
	2.2 Containerization and orchestration on heterogeneous Edge-Cloud computing architectures
	2.3 Re-configurability of software for Edge-Cloud computing continuum
	2.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum
	2.5 Assertion-based verification and workload migration in Kubernetes for robotic systems

	3 Methodology
	3.1 Optimizing performance on heterogeneous devices at the edge
	3.1.1 Improving the scheduling on DAG-based embedded vision applications
	3.1.2 Improving performance on Edge computing embedded boards with Unified Memory Architecture
	3.1.3 Improving performance for CPS on Edge computing embedded boards with UMA

	3.2 Containerization and orchestration on heterogeneous Edge-Cloud computing architectures
	3.2.1 Extending Docker and Kubernetes for ROS-compliant containerized robotic applications
	3.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V open hardware architectures

	3.3 Re-configurability of software for Edge-Cloud computing continuum
	3.3.1 Improving the Kubernetes schedule's efficiency for ROS-based applications: Network
	3.3.2 Improving the Kubernetes schedule's efficiency for ROS-based applications: Makespan

	3.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum
	3.5 Assertion-based verification and workload migration in Kubernetes for robotic systems

	4 Experimental Results
	4.1 Optimizing performance on heterogeneous devices at the edge
	4.1.1 Improving the scheduling on DAG-based embedded vision applications
	4.1.2 Improving performance on Edge computing embedded boards with Unified Memory Architecture
	4.1.3 Improving performance for CPS on Edge computing embedded boards with UMA

	4.2 Containerization and orchestration on heterogeneous Edge-Cloud computing architectures
	4.2.1 Extending Docker and Kubernetes for ROS-compliant containerized robotic applications
	4.2.2 Expanding the Edge-Cloud computing continuum to the RISC-V open hardware architecture

	4.3 Re-configurability of software for Edge-Cloud computing continuum
	4.3.1 Improving the Kubernetes schedule's efficiency for ROS-based applications: Network
	4.3.2 Improving the Kubernetes schedule's efficiency for ROS-based applications: Makespan

	4.4 RT-Kube: real-time Kubernetes in the Edge-Cloud continuum
	4.5 Assertion-based verification and workload migration in Kubernetes for robotic systems
	4.5.1 Case Study 1: synthetic benchmark on a three-level cluster
	4.5.2 Case Study 2: Autonomous mobile robot for a smart manufacturing line

	5 Conclusions and Future Work
	5.1 Future work

	References

