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We propose a second order exponential scheme suitable for two-component coupled systems of 
stiff evolutionary advection–diffusion–reaction equations in two and three space dimensions. It is 
based on a directional splitting of the involved matrix functions, which allows for a simple yet 
efficient implementation through the computation of small sized exponential-like functions and 
tensor-matrix products. The procedure straightforwardly extends to the case of an arbitrary num-

ber of components and to any space dimension. Several numerical examples in 2D and 3D with 
physically relevant (advective) Schnakenberg, FitzHugh–Nagumo, DIB, and advective Brusselator 
models clearly show the advantage of the approach against state-of-the-art techniques.

1. Introduction

Efficiently solving systems of Advection–Diffusion–Reaction (ADR) equations is of paramount importance in practical applications. 
In fact, these kinds of models effectively capture many physical, chemical, and biological phenomena, such as electrodeposition [9], 
biochemical reactions [28,39], electric current flows [18], tumor growth [36], and epidemic dynamics [29], among the others. From 
a numerical point of view, the computation of approximated solutions gives rise to many challenges. For example, in this context 
there is often the intrinsic need of a fine spatial grid in order to correctly capture the dynamics of the system (the formation of the 
so-called Turing patterns [17], for instance). This, in turn, typically translates into working in a stiff regime [20], which requires a 
careful choice of the underlying numerical schemes.

In particular, in this work we focus on the numerical integration of two-component systems of ADR equations in the form{
𝜕𝑡𝑢(𝑡,𝒙) =𝑢𝑢(𝑡,𝒙) + 𝑔𝑢(𝑢(𝑡,𝒙), 𝑣(𝑡,𝒙)),

𝜕𝑡𝑣(𝑡,𝒙) =𝑣𝑣(𝑡,𝒙) + 𝑔𝑣(𝑢(𝑡,𝒙), 𝑣(𝑡,𝒙)),
(1)

although the method presented later on in the manuscript easily extends to an arbitrary number of components. Here 𝑢, 𝑣∶ [0, 𝑇 ] ×
Ω ⊂ ℝ ×ℝ𝑑 → ℝ represent the unknowns, 𝑢, 𝑣 are linear advection–diffusion operators, while 𝑔𝑢, 𝑔𝑣 are the nonlinear reaction 
terms. The choice of the latter basically determines the model and phenomenon under investigation. We assume that the spatial 
domain Ω is the Cartesian product of one-dimensional intervals, that is Ω = [𝑎1, 𝑏1] ×⋯ × [𝑎𝑑, 𝑏𝑑 ], as it is commonly considered 
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in ADR examples from the literature (see, for instance, References [2,5,7,17,18]). The system is finally completed with appropriate 
initial conditions and with homogeneous Neumann boundary conditions, which appear to be widely used by the scientific community. 
We introduce a spatial grid of size 𝑛1 ×⋯ × 𝑛𝑑 and apply the Method Of Lines (MOL) to model (1) to get a system with Kronecker 
sum structure. In fact, we suppose to obtain a system of stiff ordinary differential equations in the form{

𝒖′(𝑡) =𝐾𝒖𝒖(𝑡) + 𝒈𝒖(𝒖(𝑡),𝒗(𝑡)),

𝒗′(𝑡) =𝐾𝒗𝒗(𝑡) + 𝒈𝒗(𝒖(𝑡),𝒗(𝑡)),
(2)

where 𝐾𝒖 and 𝐾𝒗 are matrices of size 𝑁 ×𝑁 , with 𝑁 = 𝑛1⋯ 𝑛𝑑 , that discretize the linear operators 𝑢 and 𝑣, respectively. The 
matrices 𝐾𝒖 and 𝐾𝒗 are Kronecker sums. By definition, a matrix 𝐾 ∈ℂ𝑁×𝑁 is a Kronecker sum if it can be decomposed as

𝐾 =𝐴𝑑 ⊕𝐴𝑑−1 ⊕⋯⊕𝐴1 =
𝑑∑

𝜇=1
𝐴⊗𝜇, (3a)

where

𝐴⊗𝜇 = 𝐼𝑑 ⊗⋯⊗𝐼𝜇+1 ⊗𝐴𝜇 ⊗ 𝐼𝜇−1 ⊗⋯⊗𝐼1. (3b)

In our context 𝐼𝜇 and 𝐴𝜇 , for 𝜇 = 1, … , 𝑑, are matrices of small size 𝑛𝜇 × 𝑛𝜇 and represent the identity and a one-dimensional linear 
differential operator along the direction 𝜇, respectively. The symbol ⊗ denotes the standard Kronecker product between matrices. 
The Kronecker sum structure typically arises when applying finite differences discretizations [10,11] to the differential operators 
involved in the equations, but for instance tensor product finite elements [16,31] fit into this class as well. Notice that, for the 
method we are going to propose, we do not assume the matrices 𝐴𝜇 having a specific sparsity pattern.

Several methods can be employed for the time integration of system (2). In presence of stiffness, an attractive choice are integra-

tors of exponential or implicit type, that are useful to alleviate the stability restrictions on the time step size that come with explicit 
methods. Of course, ad-hoc techniques have to be adopted in order to retain efficiency of computation. For instance, among schemes 
of exponential type [22], Lawson integrators [25] (also known as Integration Factor methods [24]) are appealing, since they require 
just the action of the matrix exponential function and thus they can directly exploit the Kronecker sum structure of the system 
(see Reference [10], and Reference [11] for some insights on GPU scalability). On the other hand, it is well-known that they may 
suffer from a bad convergence behavior, in particular when the boundary conditions are non-periodic (see Reference [21]). Different 
exponential integrators rely on general purpose Krylov methods for the approximation of the matrix exponential or related func-

tions with a fixed size of the Krylov space (see Reference [7]) or with incomplete orthogonalization (see References [19,27]). More 
recent techniques that exploit the underlying Kronecker sum structure are presented, for instance, in References [4,13,16,17,31]. 
Concerning implicit methods, in the two-dimensional case low-rank or other Model Order Reduction techniques combined with a 
matrix formulation of the problem can be applied to classical schemes such as IMplicit EXplicit methods (see References [2,17]). We 
finally mention also the possibility to employ explicit schemes such as a Total Variation Diminishing explicit Runge–Kutta scheme 
(see Reference [37]), provided that a sufficiently small time step size is taken.

In this manuscript, we propose an exponential scheme of second order for system (2). It is a directional split version of the 
well-known exponential Runge–Kutta method of order two ETD2RK, and it approximates the required four actions of matrix 𝜑𝓁
functions by means of four tensor-matrix products (using the so-called Tucker operator). This approach allows for a simple yet very 
efficient implementation, thanks to the high performance level 3 BLAS available for basically any kind of modern computer system. A 
preliminary study of the effectiveness of the directional splitting of the matrix 𝜑𝓁 functions in exponential integrators has been done 
in Reference [10], but there the numerical examples were limited to recover the steady state of an algebraic Riccati equation and to 
measure the performance on a prototypical evolutionary equation (whose explicit analytical solution was known). Here, the focus is 
to show that the proposed exponential scheme is highly competitive with state-of-the-art methods in the solution of important ADR 
models, and in particular for the challenging task of recovering the arising patterns.

The remaining part of paper is organized as follows. In Section 2 we will briefly recall integrators of exponential type and the 
tensor framework needed to implement them efficiently. In Section 3 we will present ETD2RKds, which is the proposed integrator 
with directional splitting. Although the method is presented in arbitrary dimension 𝑑, we proceed in Section 4 by testing it on a wide 
variety of two-dimensional and three-dimensional numerical examples with popular models in the literature, i.e., the (advective) 
Schnakenberg, the FitzHugh–Nagumo, the DIB, and the advective Brusselator models. We will see that the proposed approach is 
able to effectively and efficiently integrate numerically the problems, both in terms of achieved accuracy and wall-clock time, in 
comparison with other popular techniques. Moreover, we will also show that we can attain the expected patterns of the underlying 
models in a short amount of time. Finally, we will draw the conclusions in Section 5.

2. Exponential integrators for systems of partial differential equations

The starting point for the exponential integrators under consideration is the variation-of-constants formula applied to system (2)
2

with time step size 𝜏 = 𝑡𝑛+1 − 𝑡𝑛, i.e.,
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𝒖(𝑡𝑛+1) = e𝜏𝐾𝒖
𝒖(𝑡𝑛) + 𝜏

1

∫
0

e(1−𝜃)𝜏𝐾𝒖
𝒈𝒖(𝒖(𝑡𝑛 + 𝜃𝜏),𝒗(𝑡𝑛 + 𝜃𝜏))𝑑𝜃,

𝒗(𝑡𝑛+1) = e𝜏𝐾𝒗
𝒗(𝑡𝑛) + 𝜏

1

∫
0

e(1−𝜃)𝜏𝐾𝒗
𝒈𝒗(𝒖(𝑡𝑛 + 𝜃𝜏),𝒗(𝑡𝑛 + 𝜃𝜏))𝑑𝜃.

(4)

We then apply the trapezoidal quadrature rule, by introducing an explicit intermediate stage to approximate the evaluation at 𝑡𝑛+1
(see also Reference [10]). Putting everything together, we get the second order Lawson scheme

𝒖𝑛2 = e𝜏𝐾𝒖 (𝒖𝑛 + 𝜏𝒈𝒖(𝒖𝑛,𝒗𝑛)),

𝒗𝑛2 = e𝜏𝐾𝒗 (𝒗𝑛 + 𝜏𝒈𝒗(𝒖𝑛,𝒗𝑛)),

𝒖𝑛+1 = e𝜏𝐾𝒖
(
𝒖𝑛 +

𝜏

2
𝒈𝒖(𝒖𝑛,𝒗𝑛)

)
+ 𝜏

2
𝒈𝒖(𝒖𝑛2,𝒗𝑛2),

𝒗𝑛+1 = e𝜏𝐾𝒗
(
𝒗𝑛 +

𝜏

2
𝒈𝒗(𝒖𝑛,𝒗𝑛)

)
+ 𝜏

2
𝒈𝒗(𝒖𝑛2,𝒗𝑛2).

The same method can be recovered also by multiplying the two equations of system (2) by the integration factors e−𝑡𝐾𝒖
and e−𝑡𝐾𝒗

, 
respectively, and applying the explicit Heun method (see for instance Reference [24]). The just mentioned Lawson scheme can be 
efficiently implemented by directly exploiting the Kronecker sum structure of the involved matrices. Indeed, in the two-dimensional 
case (that is, for a matrix 𝜏𝐾 = 𝜏𝐴2 ⊕ 𝜏𝐴1), we can use the well-known formula (see, for instance, Reference [32])

e𝜏𝐾𝒘 = vec
(
e𝜏𝐴1𝑾

(
e𝜏𝐴2

)𝖳)
,

where 𝑾 is a matrix of size 𝑛1 × 𝑛2 and vec is the operator which stacks the columns of the input matrix into a suitable column 
vector such that vec(𝑾 ) =𝒘. This allows for computing the action of the matrix exponential without assembling the matrix 𝐾 and 
by performing two products with the dense matrices e𝜏𝐴1 and e𝜏𝐴2 , respectively. For a matrix 𝜏𝐾 with 𝑑-dimensional Kronecker sum 
structure (3), the formula above can be generalized by employing the representation

e𝜏𝐾𝒘 = vec
(
𝑾 ×1 e𝜏𝐴1 ×2 ⋯ ×𝑑 e𝜏𝐴𝑑

)
= vec

(
𝑾

𝑑⨉
𝜇=1

e𝜏𝐴𝜇

)
, (5)

see Reference [11], where 𝑾 is an order-𝑑 tensor of size 𝑛1 ×⋯ × 𝑛𝑑 . Here, ×𝜇 denotes the 𝜇-mode product, which multiplies the 
matrix e𝜏𝐴𝜇 onto the 𝜇-fibers (i.e., the generalizations to tensors of matrix columns and rows) of the tensor 𝑾 . Notice that also in 
the 𝑑-dimensional case it can be efficiently realized by means of high performance level 3 BLAS operations at a computational cost 
(𝑛𝜇𝑁), since the matrix exponentials e𝜏𝐴𝜇 are dense matrices. The concatenation of 𝑑 different 𝜇-mode products, that we denoted 
as 

⨉𝑑

𝜇=1, is called a Tucker operator, and clearly has computational cost ((𝑛1 +⋯ +𝑛𝑑 )𝑁). The exponentials of the matrices 𝜏𝐴𝜇 can 
be efficiently computed by polynomial or rational approximations (see References [1,3,15,34]) together with a scaling and squaring 
algorithm, or even by a spectral decomposition (see Reference [17]). We refer the reader also to Reference [14] for more details 
about formula (5), the Tucker operator and related operations (implemented in a MATLAB package1).

Using the tensor formalism just introduced, it is also possible to equivalently rewrite vector ODE system (2) as

⎧⎪⎪⎨⎪⎪⎩
𝑼 ′(𝑡) =

𝑑∑
𝜇=1

(𝑼 (𝑡) ×𝜇 𝐴
𝒖
𝜇
) +𝑮𝒖(𝑼 (𝑡),𝑽 (𝑡)),

𝑽 ′(𝑡) =
𝑑∑

𝜇=1
(𝑽 (𝑡) ×𝜇 𝐴

𝒗
𝜇
) +𝑮𝒗(𝑼 (𝑡),𝑽 (𝑡)),

(6)

where

vec(𝑼 (𝑡)) = 𝒖(𝑡), vec(𝑮𝒖(𝑼 (𝑡),𝑽 (𝑡))) = 𝒈𝒖(𝒖(𝑡),𝒗(𝑡)),

vec(𝑽 (𝑡)) = 𝒗(𝑡), vec(𝑮𝒗(𝑼 (𝑡),𝑽 (𝑡))) = 𝒈𝒗(𝒖(𝑡),𝒗(𝑡)).

Notice that, in the formulation above, the actions of 𝐾𝒖 and 𝐾𝒗 are expressed in tensor form thanks to the identities

𝐾𝒖𝒖(𝑡) = vec

(
𝑑∑

𝜇=1
𝑼 (𝑡) ×𝜇 𝐴

𝒖
𝜇

)
and 𝐾𝒗𝒗(𝑡) = vec

(
𝑑∑

𝜇=1
𝑽 (𝑡) ×𝜇 𝐴

𝒗
𝜇

)
.

Each of these two evaluations has a computational cost equivalent to that of a single Tucker operator. Then, the aforementioned 
second order Lawson scheme in tensor formulation is
3

1 Available at https://github .com /caliarim /KronPACK, commit 562a9da.

https://github.com/caliarim/KronPACK
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𝑼 𝑛2 =
(
𝑼 𝑛 + 𝜏𝑮𝒖(𝑼 𝑛,𝑽 𝑛)

) 𝑑⨉
𝜇=1

e𝜏𝐴
𝒖
𝜇 ,

𝑽 𝑛2 =
(
𝑽 𝑛 + 𝜏𝑮𝒗(𝑼 𝑛,𝑽 𝑛)

) 𝑑⨉
𝜇=1

e𝜏𝐴
𝒗
𝜇 ,

𝑼 𝑛+1 =
(
𝑼 𝑛 +

𝜏

2
𝑮𝒖(𝑼 𝑛,𝑽 𝑛)

) 𝑑⨉
𝜇=1

e𝜏𝐴
𝒖
𝜇 + 𝜏

2
𝑮𝒖(𝑼 𝑛2,𝑽 𝑛2),

𝑽 𝑛+1 =
(
𝑽 𝑛 +

𝜏

2
𝑮𝒗(𝑼 𝑛,𝑽 𝑛)

) 𝑑⨉
𝜇=1

e𝜏𝐴
𝒗
𝜇 + 𝜏

2
𝑮𝒗(𝑼 𝑛2,𝑽 𝑛2).

(7)

For the two-dimensional case, the scheme can be written without introducing tensor notation as

𝑼 𝑛2 = e𝜏𝐴
𝒖
1
(
𝑼 𝑛 + 𝜏𝑮𝒖(𝑼 𝑛,𝑽 𝑛)

)(
e𝜏𝐴

𝒖
2
)𝖳

,

𝑽 𝑛2 = e𝜏𝐴
𝒗
1
(
𝑽 𝑛 + 𝜏𝑮𝒗(𝑼 𝑛,𝑽 𝑛)

)(
e𝜏𝐴

𝒗
2
)𝖳

,

𝑼 𝑛+1 = e𝜏𝐴
𝒖
1
(
𝑼 𝑛 +

𝜏

2
𝑮𝒖(𝑼 𝑛,𝑽 𝑛)

)(
e𝜏𝐴

𝒖
2
)𝖳

+ 𝜏

2
𝑮𝒖(𝑼 𝑛2,𝑽 𝑛2),

𝑽 𝑛+1 = e𝜏𝐴
𝒗
1
(
𝑽 𝑛 +

𝜏

2
𝑮𝒗(𝑼 𝑛,𝑽 𝑛)

)(
e𝜏𝐴

𝒗
2
)𝖳

+ 𝜏

2
𝑮𝒗(𝑼 𝑛2,𝑽 𝑛2).

We will refer to method (7) as Lawson2b.

Different approximations in the integrals of formula (4) lead to other exponential integrators. In particular, if we interpolate at 
𝜃 = 0 and 𝜃 = 1 the nonlinear functions 𝒈𝒖 and 𝒈𝒗 by a polynomial, and we introduce an intermediate stage for the approximation at 
𝜃 = 1, we get the exponential Runge–Kutta scheme of order two

𝒖𝑛2 = 𝒖𝑛 + 𝜏𝜑1(𝜏𝐾𝒖)(𝐾𝒖𝒖𝑛 + 𝒈𝒖(𝒖𝑛,𝒗𝑛)),

𝒗𝑛2 = 𝒗𝑛 + 𝜏𝜑1(𝜏𝐾𝒗)(𝐾𝒗𝒗𝑛 + 𝒈𝒗(𝒖𝑛,𝒗𝑛)),

𝒖𝑛+1 = 𝒖𝑛2 + 𝜏𝜑2(𝜏𝐾𝒖)
(
𝒈𝒖(𝒖𝑛2,𝒗𝑛2) − 𝒈𝒖(𝒖𝑛,𝒗𝑛)

)
,

𝒗𝑛+1 = 𝒗𝑛2 + 𝜏𝜑2(𝜏𝐾𝒗)
(
𝒈𝒗(𝒖𝑛2,𝒗𝑛2) − 𝒈𝒗(𝒖𝑛,𝒗𝑛)

)
,

(8)

known as ETD2RK (see, for instance, Reference [6]). The matrix 𝜑𝓁 functions, for a generic matrix 𝑋 ∈ℂ𝑁×𝑁 , are defined by

𝜑𝓁(𝑋) =

1

∫
0

𝜃𝓁−1

(𝓁 − 1)!
e(1−𝜃)𝑋𝑑𝜃, 𝓁 > 0. (9)

Several techniques are available in the literature to compute the matrix 𝜑𝓁 functions (see References [6,10,26] for methods based 
on rational or polynomial approximations or quadrature formulas, suitable for small sized matrices) or their action to vectors (see 
References [12,19,27] for Krylov methods with incomplete orthogonalization, suitable for large sized and sparse matrices).

Unfortunately, even if 𝑋 = 𝜏𝐾 , property (5) is not valid for the matrix 𝜑𝓁 functions. However, it is still possible to exploit the 
Kronecker sum structure of 𝐾 to compute the action of a matrix 𝜑𝓁 function on a vector 𝒘 efficiently. In fact, if we introduce a 
quadrature formula for integral definition (9), we can approximate the desired quantity by computing the actions e(1−𝜃𝑖)𝜏𝐾𝒘 using 
Tucker operators, being 𝜃𝑖 the quadrature nodes. In this way, the approximation via quadrature formula requires one Tucker operator 
for each quadrature node. The total number of quadrature nodes can be kept reasonably small by employing a modified scaling and 
squaring technique for the 𝜑𝓁 functions. Each iteration of the squaring procedure requires then the action of a matrix exponential, 
which can be realized again by a Tucker operator. Such an approach is employed in Reference [13] and is called PHIKS (PHI-functions 
of Kronecker Sums), while a similar technique is presented in Reference [16]. We refer to those manuscripts for the details on the 
choice of the quadrature formulas and of the scaling parameter.

3. Directional splitting of the matrix 𝝋𝓵 functions

As already mentioned, the splitting property

e𝜏𝐾𝒘 = e𝜏𝐴⊗1 ⋯ e𝜏𝐴⊗𝑑𝒘,

which is at the basis of equivalence (5), does not extend directly to the 𝜑𝓁 functions. However, it has been observed in Reference [10]

that a simple directional splitting of the matrix 𝜑𝓁 functions, that is
4

𝜑𝓁(𝜏𝐾)𝒘 = (𝓁!)𝑑−1𝜑𝓁(𝜏𝐴⊗1)⋯𝜑𝓁(𝜏𝐴⊗𝑑 )𝒘+(𝜏2), (10a)
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gives an approximation compatible with second order integrators. The advantage of using the above approximation is that it can be 
efficiently computed in tensor form (similarly to the matrix exponential case) as

𝜑𝓁(𝜏𝐴⊗1)⋯𝜑𝓁(𝜏𝐴⊗𝑑 )𝒘 = vec

(
𝑾

𝑑⨉
𝜇=1

𝜑𝓁(𝜏𝐴𝜇)

)
. (10b)

The approximation introduced by the directional splitting can affect in general the magnitude of the error when applied in exponential 
integrators. However, we will see later in the numerical examples that the overall computational cost required to reach the same 
level of accuracy is smaller. This is possible since only small sized matrix 𝜑𝓁 functions have to be computed, and the Tucker operator 
(which can be efficiently realized as explained in Section 2) has to be applied.

In particular, if we embed splitting formulas (10) in ETD2RK integrator (8), we obtain a scheme that we call directional split 
ETD2RK, and more concisely ETD2RKds. The complete expression of the proposed scheme for the solution of tensor ODE system (6)

is then

𝑼 𝑛2 =𝑼 𝑛 + 𝜏

(
𝑑∑

𝜇=1
(𝑼 𝑛 ×𝜇 𝐴

𝒖
𝜇
) +𝑮𝒖(𝑼 𝑛,𝑽 𝑛)

)
𝑑⨉

𝜇=1
𝜑1(𝜏𝐴𝒖

𝜇
),

𝑽 𝑛2 = 𝑽 𝑛 + 𝜏

(
𝑑∑

𝜇=1
(𝑽 𝑛 ×𝜇 𝐴

𝒗
𝜇
) +𝑮𝒗(𝑼 𝑛,𝑽 𝑛)

)
𝑑⨉

𝜇=1
𝜑1(𝜏𝐴𝒗

𝜇
),

𝑼 𝑛+1 =𝑼 𝑛2 + 2𝑑−1𝜏(𝑮𝒖(𝑼 𝑛2,𝑽 𝑛2) −𝑮𝒖(𝑼 𝑛,𝑽 𝑛))
𝑑⨉

𝜇=1
𝜑2(𝜏𝐴𝒖

𝜇
),

𝑽 𝑛+1 = 𝑽 𝑛2 + 2𝑑−1𝜏(𝑮𝒗(𝑼 𝑛2,𝑽 𝑛2) −𝑮𝒗(𝑼 𝑛,𝑽 𝑛))
𝑑⨉

𝜇=1
𝜑2(𝜏𝐴𝒗

𝜇
),

(11)

which, for the two-dimensional case, can be written as

𝑼 𝑛2 =𝑼 𝑛 + 𝜏𝜑1(𝜏𝐴𝒖
1)
(
𝐴𝒖
1𝑼 𝑛 +𝑼 𝑛(𝐴𝒖

2)
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)(
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2)
)𝖳

,

𝑽 𝑛2 = 𝑽 𝑛 + 𝜏𝜑1(𝜏𝐴𝒗
1)
(
𝐴𝒗
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)(
𝜑1(𝜏𝐴𝒗

2)
)𝖳

,

𝑼 𝑛+1 =𝑼 𝑛2 + 2𝜏𝜑2(𝜏𝐴𝒖
1)(𝑮

𝒖(𝑼 𝑛2,𝑽 𝑛2) −𝑮𝒖(𝑼 𝑛,𝑽 𝑛))
(
𝜑2(𝜏𝐴𝒖

2)
)𝖳

,

𝑽 𝑛+1 = 𝑽 𝑛2 + 2𝜏𝜑2(𝜏𝐴𝒗
1)(𝑮

𝒗(𝑼 𝑛2,𝑽 𝑛2) −𝑮𝒗(𝑼 𝑛,𝑽 𝑛))
(
𝜑2(𝜏𝐴𝒗

2)
)𝖳

.

Notice that ETD2RKds scheme (11) is second order accurate in time, as can be easily seen by comparing it with the original ETD2RK 
method and using formulas (10). The expected numerical rate of convergence of the scheme will also be verified later on in the 
numerical examples, see the tables in Section 4. Clearly, once the relevant small sized matrix functions have been computed, the 
realization of a time step requires four Tucker operators and two actions of matrices in Kronecker form. Hence, its computational 
cost mainly depends on the number of degrees of freedom 𝑁 , and not on the time step size 𝜏 . Finally, we remark that scheme (11)

can be straightforwardly generalized to systems of semilinear equations with more than two components.

4. Numerical examples

In this section, we show the effectiveness of the proposed directional split exponential integrator ETD2RKds by applying it to 
several two-dimensional and three-dimensional models of great interest. All the problems are discretized in space by second order 
centered finite differences, both for the diffusion and the advection terms, on a grid of equispaced points with 𝑛1 = … = 𝑛𝑑 = 𝑛

(for a total number of degrees of freedom equal to 𝑁 = 𝑛𝑑 ). The usage of centered finite differences for the advection terms is 
justified by the fact that the cell Péclet numbers are much less than one in all the relevant examples. The discretization of the 
homogeneous Neumann boundary conditions is directly embedded into the matrices. Notice that this choice gives rise to tridiagonal 
matrices 𝐴𝜇 ∈ ℝ𝑛×𝑛. We remark, however, that this structure is not required by our method. Concerning the computation of the 
small sized matrix 𝜑𝓁 functions needed by ETD2RKds, since we will use it in a constant time step size scenario, we compute them 
at the beginning of the time integration by the phiquad function2 (introduced in Reference [10]). In short, it approximates the 
𝜑𝓁 functions by employing the Gauss–Legendre–Lobatto quadrature rule applied to formula (9), in combination with the modified 
scaling and squaring algorithm [38]. The matrix exponentials needed in this procedure are computed by the built-in MATLAB function 
expm, that, for nonsymmetric matrices, implements a variable order rational Padé algorithm with scaling and squaring [1]. Notice 
that, instead of using phiquad, other techniques could also be employed, such as direct Padé approximation of the 𝜑𝓁 functions 
(as it is done in the function phipade of Reference [6]). As already observed in Reference [11], also for the examples presented 
here this initial phase has a negligible computational cost with respect to the total integration time, since the size of the directional 
5

2 Available at https://github .com /caliarim /phisplit, commit c67abe3.

https://github.com/caliarim/phisplit
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matrices 𝐴𝜇 is small. In fact, the maximum size of exponential-like matrix functions computed is 200 × 200 in the two-dimensional 
DIB model of Section 4.4.

We compare our scheme with other popular exponential or implicit integrators, developed both for the two-dimensional and the 
three-dimensional case. The exponential schemes are employed with constant time step size. All the methods are implemented in 
MATLAB language, and the arising matrix functions or linear systems are computed by direct methods (that is, without using iterative 
procedures). In particular, we consider the following schemes.

• An implementation of Lawson2b method (7) in tensor formulation, in which the needed small sized matrix exponentials are 
computed, once and for all at the beginning of the time integration, by the built-in MATLAB function expm. As for the ETD2RKds 
scheme, this initial phase has a negligible computational cost. Notice also that this scheme has no directional splitting error.

• An implementation of the standard ETD2RK method in which the action of the relevant matrix functions is realized in tensor 
formulation by the PHIKS routine3 (see end of Section 2 and Reference [12] for a detailed explanation). The required small sized 
matrix exponentials are computed using the function expm. The scaling parameter and the number of quadrature nodes are 
automatically chosen by PHIKS, based on the input tolerance. In fact, the tolerances range from 5e−6 to 1e−3, depending on the 
specific numerical example.

• An implementation of the Exponential Time Differencing Real Distinct Poles Integrating Factor method (ETD-RDP-IF, see Refer-

ences [4,30] and the accompanying MATLAB software4) for the solution of vector ODE system (2). The exponential functions 
within the predictor and corrector terms are approximated by a first-order Padé expansion and a second-order rational ap-

proximation with simple real distinct poles. After dimensional splitting, thanks to the chosen space discretization, the arising 
linear systems involving the large sized matrices 𝐴⊗𝜇 ∈ ℝ𝑁×𝑁 (that have three nonzero diagonals) are solved by an adapted 
Thomas algorithm. We remark that this time integrator could benefit from a three-core parallel implementation, which we do 
not consider here.

• The MATLAB solver ode23tb, which implements a variable step size diagonally implicit Runge–Kutta pair 2(3) (DIRK23, see 
Reference [23]) for vector system (2), suggested for stiff problems with “crude error tolerances”, fed with the exact Jacobian of 
the system.

Moreover, we also test the performance of the MATLAB solver ode23, which implements a variable time step explicit Runge–Kutta 
pair 3(2) (RK32, see Reference [8]) for ODE system (2). This method is considered in the comparisons to be sure that the examples, 
with the selected parameters and space discretizations, are in a stiff regime in which explicit methods do suffer from a time step size 
restriction. As a consequence, we expect that the variable step size mechanism will shrink the time step size to make the scheme 
operate in its stability region. Hence, the method will be able to reach different accuracies with approximately the same number 
of time steps and thus of computational load (see, for instance, the first experiment of Section 4.1 for more details). Whenever 
calling the built-in MATLAB integrators we always use sparse matrices and, since we are just interested in the solution at final times, 
we employ a proper output function (through the option OutputFcn) in order not to save the solutions at intermediate steps and 
hence waste memory. We believe that running the experiments with well-established built-in MATLAB integrators is valuable and 
can constitute a common and useful benchmark for the community working in the field of ADR systems using this popular scientific 
language.

In all the numerical examples, we first compare the performances of the methods in reaching a common range of accuracies with 
respect to a reference solution computed with ETD2RKds and a sufficiently large number of time steps. We therefore select, for the 
different methods, some sequences of time steps (for the fixed time step size implementations) or input tolerances (for the variable 
time step size implementations), and measure the overall needed wall-clock time. The error is computed as the 2-norm of the relative 
Frobenius norm of the solutions 𝑼 and 𝑽 at final time. First of all, this experiment is useful to check that all the constant time 
step size methods exhibit the expected rate of convergence. In addition, we compute the computational load of a single step of our 
proposed exponential scheme. Then, in a second experiment, we run ETD2RKds up to a larger final time, plot the corresponding 
component 𝑼 , and report the wall-clock time. Moreover, for the systems of diffusion–reaction equations that lead to the formation 
of a stationary Turing pattern, we show the evolution dynamics by reporting the discretized spatial mean of 𝑢(𝑡𝑛, 𝒙)

⟨𝑼 𝑛⟩ ≈ 1|Ω| ∫
Ω

𝑢(𝑡𝑛,𝒙)𝑑𝒙,

and the time increment ‖𝑼 𝑛+1 − 𝑼 𝑛‖F in the Frobenius norm, as it is typically done in the literature (see References [2,17], for 
instance).

All the experiments are performed on an Intel® Core™ i7-10750H CPU with six physical cores and 16 GB of RAM. As a software, 
we use MathWorks MATLAB® R2022a. All the codes to reproduce the examples can be found in a maintained GitHub repository.5

3 Available at https://github .com /caliarim /phiks, commit 97ae469.
4 Available at https://github .com /kleefeld80 /ETDRDPIF, commit 2647b6e.
6

5 Available at https://github .com /cassinif /ExpADRds.

https://github.com/caliarim/phiks
https://github.com/kleefeld80/ETDRDPIF
https://github.com/cassinif/ExpADRds
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Table 1

Number of time steps (or input tolerance), wall-clock time (in seconds), relative error at final time, and 
observed numerical order of convergence for the solution of 2D Schnakenberg model (12) up to 𝑇 = 0.25
with different integrators. See also Fig. 1a for a graphical representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

3000 3.82 1.78e−3 — 3000 176.98 1.65e−3 —

4000 5.17 1.01e−3 1.98 4000 227.38 9.33e−4 1.97

5000 6.43 6.42e−4 2.02 5000 282.61 5.95e−4 2.02

6000 7.73 4.41e−4 2.06 6000 334.67 4.09e−4 2.06

Lawson2b ETD-RDP-IF

steps time (s) error order steps time (s) error order

14000 10.56 3.58e−3 — 14000 97.40 1.99e−3 —

18000 13.33 2.16e−3 2.01 18000 125.23 1.21e−3 2.00

22000 16.07 1.44e−3 2.02 22000 152.67 8.05e−4 2.02

26000 19.01 1.03e−3 2.03 26000 180.81 5.71e−4 2.05

DIRK23 RK32

tolerance time (s) error tolerance time (s) error

1e−6 10.58 5.12e−3 1e−2 366.16 4.37e−3
5e−7 11.57 2.91e−3 8e−3 371.76 2.93e−3
1e−7 16.40 9.37e−4 4e−3 373.26 1.10e−3
5e−8 18.66 5.54e−4 1e−3 377.94 6.47e−4

Fig. 1a. Results for the simulation of 2D Schnakenberg model (12) with 𝑁 = 1502 spatial discretization points. The number of time steps (or input tolerance) for each 
integrator is reported in Table 1. The final simulation time is 𝑇 = 0.25.

4.1. Two-dimensional Schnakenberg model

We consider the Schnakenberg model (see References [2,5,17,35]){
𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢+ 𝜌(𝑎𝑢 − 𝑢+ 𝑢2𝑣),

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣+ 𝜌(𝑎𝑣 − 𝑢2𝑣),
(12)

in the spatial domain Ω = [0, 1]2. The unknowns 𝑢 and 𝑣 represent two chemical concentrations in autocatalytic reactions. The 
parameters, taken from Reference [2], are 𝛿𝑢 = 1, 𝛿𝑣 = 10, 𝜌 = 1000, 𝑎𝑢 = 0.1, and 𝑎𝑣 = 0.9. The equilibrium (𝑢e, 𝑣e) = (𝑎𝑢+𝑎𝑣, 𝑎𝑣∕(𝑎𝑢+
𝑎𝑣)2) is susceptible of Turing instability. The initial data are 𝑢0 = 𝑢e + 10−5 ⋅ (0, 1) and 𝑣0 = 𝑣e + 10−5 ⋅ (0, 1), where here and 
throughout the experiments  (0, 1) denotes the uniformly distributed random variable in (0, 1). The MATLAB random generator 
seed is set to the value 0. The spatial domain is discretized with a grid of 𝑁 = 1502 points. The final simulation time is 𝑇 = 0.25. The 
detailed outcome of the experiment is reported in Table 1, in which we also indicate the numbers of time steps (or input tolerances) 
and the obtained numerical order of convergence for the different integrators. In particular, concerning the MATLAB variable step 
size Runge–Kutta integrators, in this and in all the subsequent examples the options AbsTol and RelTol are set to the values of the 
reported tolerances. The results are also graphically presented in a precision diagram in Fig. 1a.

First of all, we observe that all the constant time step size methods exhibit the expected rate of convergence (see the relevant 
columns in Table 1). Then, concerning Fig. 1a, the plot is clearly divided into two parts. On the right we have the more expensive 
methods. As expected, the RK32 method performs poorly in terms of computational time. Moreover, we observe that it requires 
7

about the same computational load for the four different input tolerances. In fact, the numbers of time steps performed by the 
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Fig. 1b. Turing pattern (𝑢 component) for 2D Schnakenberg model (12) obtained at final time 𝑇 = 2 with 𝑁 = 1502 space discretization points with ETD2RKds. The 
time step size employed is 𝜏 = 5e−4. The simulation wall-clock time is 5 seconds.

Fig. 1c. Indicators for the time dynamics of 2D Schnakenberg model (12) solved up to final time 𝑇 = 2 with ETD2RKds and time step size 𝜏 = 5e−4. The top plot 
refers to the spatial mean ⟨𝑼 𝑛⟩ while the bottom plot depicts the time increment ‖𝑼 𝑛+1 −𝑼 𝑛‖F .

RK32 method are 176797, 176798, 176800, and 176802, respectively. This behavior is expected, since the scheme is explicit and is 
forced to take a large number of time steps due to stability constraints. Nevertheless, due to the automatic time step selection, slightly 
distinct sequences of time steps are produced, and hence different final accuracies are obtained. The ETD-RDP-IF scheme (specifically 
designed for this type of models) performs slightly better than the ETD2RK method, both schemes being however not competitive 
with the remaining methods. On the left hand side of the plot, we find the implicit Runge–Kutta method, which is more than ten 
times faster than the explicit one, and with performances similar to the Lawson2b method. Finally, an overall neat advantage is 
obtained by applying the proposed method ETD2RKds, which requires an average wall-clock time of 1.3e−3 seconds per time step.

In the second experiment, we perform a simulation with ETD2RKds up to final time 𝑇 = 2 with 4000 time steps. The observed 
pattern is in agreement with that already reported in the literature (compare Fig. 1b and Reference [2, Fig. 8(a)]). The overall wall-

clock time of the simulation is roughly 5 seconds, which corresponds to the just mentioned average time step cost multiplied by the 
number of steps, as expected. Finally, we report in Fig. 1c two useful indicators for the dynamics of the system, i.e., the spatial mean 
and the time increments. In particular, it is clearly visible the distinction between the initial reactivity phase (up to about 𝑡 = 0.25) 
and the stabilization to a stationary pattern.

4.2. Two-dimensional FitzHugh–Nagumo model

We consider the FitzHugh–Nagumo model (see Reference [2]){
𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢+ 𝜌(−𝑢(𝑢2 − 1) − 𝑣),

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣+ 𝜌𝑎𝑣1(𝑢− 𝑎𝑣2𝑣),
(13)

in Ω = [0, 𝜋]2. The model describes the flow of an electric current through a nerve fiber. The unknowns 𝑢 and 𝑣 represent the electric 
potential and the recovery variable, respectively. The parameters, taken from Reference [2], are 𝛿𝑢 = 1, 𝛿𝑣 = 42.1887, 𝜌 = 65.731, 
𝑎𝑣1 = 11, and 𝑎𝑣2 = 0.1. With these choices, the equilibrium (𝑢e, 𝑣e) = (0, 0) is susceptible of Turing instability. The initial solutions are 
𝑢0 = 10−3 ⋅ (0, 1) and 𝑣0 = 10−3 ⋅ (0, 1) with MATLAB random generator seed set to the value 0. The spatial domain is discretized 
by a grid of 𝑁 = 1002 points. In the first experiment we simulate up to 𝑇 = 10. The numbers of time steps (or input tolerances) for 
each integrator, as well as the detailed outcome of the experiment, can be found in Table 2. The results are graphically presented in 
8

Fig. 2a.
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Table 2

Number of time steps (or input tolerance), wall-clock time (in seconds), relative error at final 
time, and observed numerical order of convergence for the solution of 2D FitzHugh–Nagumo 
model (13) up to 𝑇 = 10 with different integrators. See also Fig. 2a for a graphical representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

20000 13.50 9.16e−3 — 20000 499.28 8.34e−3 —

22500 17.66 7.36e−3 1.85 22500 560.11 6.73e−3 1.83

25000 19.35 6.04e−3 1.88 25000 627.55 5.53e−3 1.86

27500 21.21 5.03e−3 1.91 27500 686.38 4.61e−3 1.89

Lawson2b ETD-RDP-IF

steps time (s) error order steps time (s) error order

600000 277.90 3.86e−2 — 600000 1794.51 2.57e−2 —

675000 307.72 3.04e−2 2.02 675000 2025.12 2.03e−2 2.01

750000 337.09 2.46e−2 2.02 750000 2263.78 1.64e−2 2.02

825000 362.99 2.03e−2 2.02 825000 2476.61 1.35e−2 2.02

DIRK23 RK32

tolerance time (s) error tolerance time (s) error

5e−7 33.59 1.33e−2 8e−7 1548.62 2.29e−2
1e−7 47.48 7.89e−3 6e−7 1601.73 1.48e−2
8e−8 50.95 6.39e−3 4e−7 1641.75 6.16e−3
6e−8 53.07 5.70e−3 2e−7 1654.41 2.53e−3

Fig. 2a. Results for the simulation of 2D FitzHugh–Nagumo model (13) with 𝑁 = 1002 spatial discretization points. The number of time steps (or input tolerance) for 
each integrator is reported in Table 2. The final simulation time is 𝑇 = 10.

First of all, we notice that the Lawson2b and ETD-RDP-IF methods require many more time steps than the exponential Runge–

Kutta methods, and still they cannot reach the same accuracies. Their wall-clock time is in fact at least one order of magnitude larger 
than the most efficient methods. On the other hand, as in the previous example, the ETD2RKds method is not heavily affected by the 
directional splitting error. Indeed, it reaches almost the same accuracies obtained by the ETD2RK method but with a much smaller 
computational time. In this case, the average wall-clock time per time step of ETD2RKds is 7.5e−4 seconds.

In the second experiment, we set the final simulation time to 𝑇 = 50 and integrate the problem with the ETD2RKds method with 
30000 time steps. The overall computational time is about 22 seconds. Again, the obtained pattern agrees with that reported in the 
literature (compare Fig. 2b and Reference [2, Fig. 4(a)]), i.e., a square pattern corresponding to the cosine modes (4, 4). Also, as 
expected both the indicators reported in Fig. 2c tend to zero.

4.3. Three-dimensional FitzHugh–Nagumo model

We consider again the FitzHugh–Nagumo model{
𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢+ 𝜌(−𝑢(𝑢2 − 1) − 𝑣),

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣+ 𝜌𝑎𝑣1(𝑢− 𝑎𝑣2𝑣),
(14)

but now in a three-dimensional domain Ω = [0, 𝜋]3. The parameters 𝛿𝑢 = 1, 𝛿𝑣 = 42.1887, 𝜌 = 24.649, 𝑎𝑣1 = 11, and 𝑎𝑣2 = 0.1 were 
9

obtained by following the analysis performed in Reference [18] to achieve a stationary square pattern with modes (2, 2, 2). With 
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Fig. 2b. Turing pattern (𝑢 component) for 2D FitzHugh–Nagumo model (13) obtained at final time 𝑇 = 50 with 𝑁 = 1002 space discretization points with ETD2RKds. 
The time step size employed is 𝜏 = 1.67e−3. The simulation wall-clock time is 22 seconds.

Fig. 2c. Indicators for the time dynamics of 2D FitzHugh–Nagumo model (13) solved up to final time 𝑇 = 50 with ETD2RKds and time step size 𝜏 = 1.67e−3. The top 
plot refers to the spatial mean ⟨𝑼 𝑛⟩ while the bottom plot depicts the time increment ‖𝑼 𝑛+1 −𝑼 𝑛‖F .

Table 3

Number of time steps, wall-clock time (in seconds), relative error at final time, and 
observed numerical order of convergence for the solution of 3D FitzHugh–Nagumo 
model (14) up to 𝑇 = 10 with different integrators. The DIRK23 method interrupted due 
to excessive memory requirements with tolerance 1e−1. The RK32 and the ETD-RDP-IF 
methods did not output a solution within 104 seconds. See also Fig. 3a for a graphical 
representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

12000 101.14 3.01e−3 — 12000 626.16 2.67e−3 —

14000 119.30 2.20e−3 2.03 14000 718.69 1.96e−3 2.00

16000 138.89 1.67e−3 2.05 16000 816.36 1.49e−3 2.03

18000 154.95 1.31e−3 2.07 18000 889.12 1.17e−3 2.06

Lawson2b

steps time (s) error order

250000 1429.71 1.13e−2 —

300000 1729.65 7.86e−3 2.00

350000 2013.62 5.77e−3 2.00

400000 2320.22 4.42e−3 2.01

this choice of parameters, the equilibrium (𝑢e, 𝑣e) = (0, 0) is indeed susceptible of Turing instability. The initial solutions are 𝑢0 =
10−3 ⋅ (0, 1) and 𝑣0 = 10−3 ⋅ (0, 1), with MATLAB random generator seed set to the value 0. The spatial domain is discretized by 
a grid of 𝑁 = 643 points. We simulate up to final time 𝑇 = 10 with the number of time steps given in Table 3. The results, reported 
in the table, are also graphically depicted in Fig. 3a.

First of all, despite the aforementioned cares in the usage of the DIRK23 method from the MATLAB ODE suite, the ode23tb 
10

function stopped to run after some seconds due to too large memory requirements. Moreover, the RK32 and ETD-RDP-IF methods 
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Fig. 3a. Results for the simulation of 3D FitzHugh–Nagumo model (14) with 𝑁 = 643 spatial discretization points. The number of time steps for each integrator is 
reported in Table 3. The final simulation time is 𝑇 = 10.

Fig. 3b. Turing pattern (𝑢 component) for 3D FitzHugh–Nagumo model (14) obtained at final time 𝑇 = 150 with 𝑁 = 643 space discretization points and ETD2RKds. 
The time step size employed is 𝜏 = 6e−3. The wall-clock simulation time is 230 seconds. The reported slice (left plot) corresponds to 𝑥3 = 1.55 and the isosurface 
value (right plot) is 0.08.

Fig. 3c. Indicators for the time dynamics of 3D FitzHugh–Nagumo model (14) solved up to final time 𝑇 = 150 with ETD2RKds and time step size 𝜏 = 6e−3. The top 
plot refers to the spatial mean ⟨𝑼 𝑛⟩ while the bottom plot depicts the time increment ‖𝑼 𝑛+1 −𝑼 𝑛‖F .

did not reach accuracies comparable with the other schemes within 104 seconds. Among the remaining methods, ETD2RKds is again 
the best one, with a speedup of almost one order of magnitude with respect to the second one, that is the exponential Runge–

Kutta method with the 𝜑𝓁 functions approximated by PHIKS. The average wall-clock time per time step for ETD2RKds is 8.6e−3
seconds.

We then simulate the system up to 𝑇 = 150 with 25000 time steps and the ETD2RKds method. We report in Fig. 3b the obtained 
pattern and in Fig. 3c the relevant indicators, which agree with the theoretical expectations. The overall wall-clock time is about 230 
11

seconds.
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Table 4

Number of time steps (or input tolerance), wall-clock time (in seconds), relative error at final 
time, and observed numerical order of convergence for the solution of 2D DIB model (15) up 
to 𝑇 = 2.5 with different integrators. See also Fig. 4a for a graphical representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

1250 5.51 1.13e−2 — 1250 133.63 9.48e−3 —

1500 6.72 7.80e−3 2.04 1500 146.90 6.59e−3 1.99

1750 7.82 5.69e−3 2.04 1750 167.88 4.84e−3 2.00

2000 9.13 4.34e−3 2.04 2000 190.90 3.70e−3 2.01

Lawson2b ETD-RDP-IF

steps time (s) error order steps time (s) error order

3750 11.52 1.62e−2 — 5000 62.78 2.29e−2 —

4500 13.23 1.16e−2 1.83 6000 75.46 1.62e−2 1.91

5250 16.40 8.72e−3 1.86 7000 88.46 1.20e−2 1.92

6000 18.74 6.78e−3 1.88 8000 101.04 9.29e−3 1.94

DIRK23 RK32

tolerance time (s) error tolerance time (s) error

5e−5 15.21 2.90e−2 9e−4 58.74 1.83e−2
3e−5 17.04 2.04e−2 8e−4 59.27 1.40e−2
2e−5 18.56 1.19e−2 7e−4 58.62 1.07e−2
1e−5 23.36 5.64e−3 6e−4 58.32 7.56e−3

Fig. 4a. Results for the simulation of 2D DIB model (15) with 𝑁 = 2002 spatial discretization points. The number of time steps (or input tolerance) for each integrator 
is reported in Table 4. The final simulation time is 𝑇 = 2.5.

4.4. Two-dimensional morpho-chemical DIB model

We consider the morpho-chemical DIB model (see References [2,17]){
𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢+ 𝜌(𝑎𝑢1(1 − 𝑣)𝑢− 𝑎𝑢2𝑢

3 − 𝑎𝑢3(𝑣− 𝑎𝑢4)),

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣+ 𝜌(𝑎𝑣1(1 + 𝑎𝑣2𝑢)(1 − 𝑣)(1 − 𝑎𝑣3(1 − 𝑣)) − 𝑎𝑣4𝑣(1 + 𝑎𝑣5𝑢)(1 + 𝑎𝑣3𝑣)),
(15)

in Ω = [0, 20]2. The model describes the electrodeposition process for metal growth. The unknowns 𝑢 and 𝑣 represent the morphology 
of the metal deposit and its surface chemical composition, respectively. The parameters, taken from Reference [2], are 𝛿𝑢 = 1, 
𝜌 = 25∕4, 𝑎𝑢1 = 10, 𝑎𝑢2 = 1, 𝑎𝑢3 = 66, 𝑎𝑢4 = 0.5, 𝛿𝑣 = 20, 𝑎𝑣1 = 3, 𝑎𝑣2 = 2.5, 𝑎𝑣3 = 0.2,

𝑎𝑣4 =
𝑎𝑣1(1 − 𝑎𝑢4)(1 − 𝑎𝑣3 + 𝑎𝑣3𝑎

𝑢
4)

𝑎𝑢4(1 + 𝑎𝑣3𝑎
𝑢
4)

,

and 𝑎𝑣5 = 1.5. The particular choice of the parameter 𝑎𝑣4 makes the equilibrium (𝑢e, 𝑣e) = (0, 𝑎𝑢4) susceptible of Turing instability. The 
initial conditions are 𝑢0 = 𝑢e + 10−5 ⋅ (0, 1) and 𝑣0 = 𝑣e + 10−5 ⋅ (0, 1). The MATLAB random generator seed is fixed to the value 
123. The spatial domain is discretized with a grid of 𝑁 = 2002 points. We first integrate the system up to final time 𝑇 = 2.5 with a 
number of time steps, or input tolerance, as reported in Table 4. The detailed results are reported in the table and also presented in 
the precision diagram in Fig. 4a. The plot is again divided into two parts. On the right we have the more expensive methods, with 
12

an overall wall-clock time of roughly 100 seconds. In particular, the ETD-RDP-IF method and the ETD2RK method do not perform 
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Fig. 4b. Turing pattern (𝑢 component) for 2D DIB model (15) obtained at final time 𝑇 = 100 with 𝑁 = 2002 space discretization points with ETD2RKds and with 
time step size 𝜏 = 2e−3 (left plot). The simulation wall-clock time is 219 seconds. We observe the same pattern also by using a smaller time step size 𝜏 = 1.25e−3. 
However, if a larger time step size 𝜏 = 2e−2 is used, a different labyrinth appears (right plot).

Fig. 4c. Indicators for the time dynamics of 2D DIB model (15) solved up to final time 𝑇 = 100 with ETD2RKds and different time step sizes. The top plot refers to 
the spatial mean ⟨𝑼 𝑛⟩ while the bottom plot depicts the time increment ‖𝑼 𝑛+1 −𝑼 𝑛‖F .

better than the explicit RK23 method. This means that for the considered parameters and spatial discretization the problem does not 
appear to be excessively stiff. In fact, the implicit method is roughly five times faster than the explicit one and with performances 
similar to the Lawson2b method. The ETD2RKds method is the fastest among all and, in particular, ten times faster than ETD2RK. In 
this experiment, the average wall-clock time of ETD2RKds is 4.5e−3 seconds per time step.

Then, we integrate the system up to 𝑇 = 100 with ETD2RKds and 50000 time steps. The observed steady Turing pattern is shown 
in Fig. 4b, left plot. The wall-clock time needed for this experiment is 219 seconds. It was observed in Reference [17] that a spatial 
domain not large enough or a number of discretization points too small can prevent from clearly detecting the labyrinth Turing 
pattern. In our experiment, where the domain and the number of discretization points have been properly chosen, we notice that if 
we take 5000 time steps instead of 50000, a clear steady labyrinth pattern still appears (see Fig. 4b, right plot, and the indicators in 
Fig. 4c). Instead, if we increase to 80000 the number of time steps, the first labyrinth pattern shows up again.

4.5. Three-dimensional advective Schnakenberg system

The diffusion–reaction Schnakenberg system models the limit cycle behaviors of two-component chemical reactions. An advection 
term was introduced in Reference [33] in order to study its effect on patterns (see also Reference [7]). We therefore study the system{

𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢− 𝛼𝑢(𝜕𝑥1𝑢+ 𝜕𝑥2
𝑢+ 𝜕𝑥3

𝑢) + 𝜌(𝑎𝑢 − 𝑢+ 𝑢2𝑣),

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣− 𝛼𝑣(𝜕𝑥1𝑣+ 𝜕𝑥2
𝑣+ 𝜕𝑥3

𝑣) + 𝜌(𝑎𝑣 − 𝑢2𝑣).
(16)

The computational domain is Ω = [0, 1]3, the advection parameters are 𝛼𝑢 = 𝛼𝑣 = 0.01, the diffusion parameters are 𝛿𝑢 = 0.05 and 
𝛿𝑣 = 1, the reaction parameter is 𝜌 = 100, and the concentration parameters are 𝑎𝑢 = 0.1305 and 𝑎𝑣 = 0.7695, respectively. As initial 
solution we take⎧⎪⎨𝑢0(𝑥1, 𝑥2, 𝑥3) = 𝑎𝑢 + 𝑎𝑣 + 10−5 ⋅ e−100((𝑥1−1∕3)2+(𝑥2−1∕2)2+(𝑥3−1∕3)2),

𝑎𝑣
13

⎪⎩𝑣0(𝑥1, 𝑥2, 𝑥3) = (𝑎𝑢 + 𝑎𝑣)2
,
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Table 5

Number of time steps (or input tolerance), wall-clock time (in seconds), relative error at final time, and 
observed numerical order of convergence for the solution of 3D advective Schnakenberg model (16)

up to 𝑇 = 0.4 with different integrators. The DIRK23 method interrupted due to excessive memory 
requirements with tolerance 1e−1. See also Fig. 5a for a graphical representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

50 1.35 2.34e−3 — 50 10.76 1.48e−3 —

150 3.84 3.19e−4 1.81 150 25.34 2.79e−4 1.52

250 6.74 1.26e−4 1.82 250 38.71 1.14e−4 1.76

350 9.70 6.64e−5 1.91 350 51.45 6.04e−5 1.88

Lawson2b ETD-RDP-IF

steps time (s) error order steps time (s) error order

400 6.10 6.90e−4 — 200 52.04 9.98e−4 —

800 12.16 1.89e−4 1.87 450 116.11 2.59e−4 1.66

1200 18.45 8.59e−5 1.94 700 181.09 1.17e−4 1.79

1600 24.89 4.81e−5 2.01 950 245.61 6.61e−5 1.88

RK32

tolerance time (s) error

8e−3 1075.21 8.12e−3
4e−3 1033.12 3.79e−3
8e−4 1026.94 8.60e−4
4e−4 1126.25 2.03e−4

Fig. 5a. Results for the simulation of 3D advective Schnakenberg model (16) with 𝑁 = 803 spatial discretization points. The number of time steps (or input tolerance) 
for each integrator is reported in Table 5. The final simulation time is 𝑇 = 0.4.

which corresponds to a small deviation from the steady state solution (𝑢e, 𝑣e) = (𝑎𝑢 + 𝑎𝑣, 𝑎𝑣∕(𝑎𝑢 + 𝑎𝑣)2). We integrate the system up 
to final time 𝑇 = 0.4, with the numbers of time steps (or input tolerances) given in Table 5. The degrees of freedom in space are 
𝑁 = 803. The detailed results are given in the table and depicted in Fig. 5a.

As in the previous three-dimensional example, the implicit Runge–Kutta method DIRK23 could not terminate due to excessive 
memory requirements. Concerning the other methods, we observe that explicit Runge–Kutta scheme performs poorly in terms of 
wall-clock time. Better performances can be gradually obtained by employing the ETD-RDP-IF method, the ETD2RK scheme and the 
Lawson2b integrator. Overall, the best method turns out to be again ETD2RKds, with an average wall-clock time per time step of 
2.7e−2 seconds.

Then, we repeat the experiment up to final times 𝑇 = 0.8, 𝑇 = 8, and 𝑇 = 80 with again 𝑁 = 803 degrees of freedom in space 
and using as time integrator ETD2RKds with 𝜏 = 8e−3 (i.e., performing 100, 1000 and 10000 time steps, respectively). As already 
observed in the literature (see Reference [7]), the initial condition evolves to a spot-like pattern, as depicted in Fig. 5b. The overall 
simulation times are roughly 3, 28, and 275 seconds for the final times 𝑇 = 0.8, 𝑇 = 8, and 𝑇 = 80, respectively.

4.6. Three-dimensional advective Brusselator system

We consider the advective Brusselator system{
𝜕𝑡𝑢 = 𝛿𝑢Δ𝑢− 𝛼𝑢(𝜕𝑥1𝑢+ 𝜕𝑥2

𝑢+ 𝜕𝑥3
𝑢) + 𝑢2𝑣− (𝑎𝑢1 + 1)𝑢+ 𝑎𝑢2,

(17)
14

𝜕𝑡𝑣 = 𝛿𝑣Δ𝑣− 𝛼𝑣(𝜕𝑥1𝑣+ 𝜕𝑥2
𝑣+ 𝜕𝑥3

𝑣) − 𝑢2𝑣+ 𝑎𝑢1𝑢,



Journal of Computational Physics 498 (2024) 112640M. Caliari and F. Cassini

Fig. 5b. Spot-like pattern (𝑢 component) for 3D advective Schnakenberg model (16) with 𝑁 = 803 space discretization points and ETD2RKds at final time 𝑇 = 0.8
(top left), 𝑇 = 8 (top right) and 𝑇 = 80 (bottom left). The simulation wall-clock time is 3, 28, and 275 seconds, respectively. The time step size employed is 𝜏 = 8e−3, 
and the slices correspond to 𝑥3 = 0.49. The common colorbar is displayed at the top. We report also the isosurface of level 2.8 at 𝑇 = 80 (bottom right plot).

Table 6

Number of time steps (or input tolerance), wall-clock time (in seconds), relative error 
at final time, and observed numerical order of convergence for the solution of 3D 
advective Brusselator model (17) up to 𝑇 = 1 with different integrators. The DIRK23 
method interrupted due to excessive memory requirements with tolerance 1e−1. See 
also Fig. 6a for a graphical representation.

ETD2RKds ETD2RK

steps time (s) error order steps time (s) error order

50 0.48 3.46e−4 — 50 4.76 3.46e−4 —

100 0.94 7.94e−5 2.13 100 7.84 7.93e−5 2.12

150 1.25 3.43e−5 2.07 150 11.38 3.43e−5 2.07

200 1.82 1.90e−5 2.05 200 13.62 1.90e−5 2.05

Lawson2b ETD-RDP-IF

steps time (s) error order steps time (s) error order

50 0.32 3.43e−4 — 50 6.59 3.35e−4 —

100 0.63 7.85e−5 2.13 100 12.91 7.68e−5 2.12

150 0.81 3.40e−5 2.07 150 19.24 3.32e−5 2.07

200 1.31 1.88e−5 2.05 200 25.39 1.84e−5 2.05

RK32

tolerance time (s) error

8e−4 16.08 8.73e−4
6e−4 16.65 1.11e−4
1e−4 16.54 5.48e−5
5e−5 16.64 2.43e−5

presented in Reference [7]. The unknowns 𝑢 and 𝑣 represent the concentration of the activator and inhibitor in the chemical reaction, 
respectively. The spatial domain is Ω = [0, 1]3, the diffusion coefficients are 𝛿𝑢 = 0.01, 𝛿𝑣 = 0.02, the advection coefficients are 𝑎𝑢1 = 1, 
and the remaining parameters are 𝑎𝑢2 = 2, 𝛼𝑢 = 𝛼𝑣 = 0.1. The space discretization is performed using 𝑁 = 643 points, and the initial 
datum is 𝑢0(𝑥1, 𝑥2, 𝑥3) = 1 + sin(2𝜋𝑥1) sin(2𝜋𝑥2) sin(2𝜋𝑥3) and 𝑣0(𝑥1, 𝑥2, 𝑥3) = 3. The number of steps for each integrator is reported 
in Table 6, as well as the detailed outcome of the experiment for final time 𝑇 = 1. Similarly to the previous examples, we also present 
15

the precision diagram in Fig. 6a.



Journal of Computational Physics 498 (2024) 112640M. Caliari and F. Cassini

Fig. 6a. Results for the simulation of 3D advective Brusselator model (17) with 𝑁 = 643 spatial discretization points. The number of time steps (or input tolerance) 
for each integrator is reported in Table 6. The final simulation time is 𝑇 = 1.

Fig. 6b. Equilibrium state of 3D advective Brusselator model (17) obtained at final time 𝑇 = 5 with 𝑁 = 643 space discretization points and ETD2RKds. The time step 
size employed is 𝜏 = 5e−2. The simulation wall-clock time is 1 second. The reported slices correspond to 𝑥3 = 1 for the component 𝑢 (left plot) and the component 𝑣
(right plot).

Again, the plot is split into two parts. Concerning the most efficient schemes, in this experiment the Lawson2b method is slightly 
faster than the ETD2RKds scheme, while reaching the same set of accuracies. The average wall-clock time per time step of ETD2RKds 
is 9.1e−3 seconds. All the remaining methods are almost one order of magnitude slower, with the DIRK23 method not able to produce 
an approximation due to excessive memory requirements.

We then simulate the system up to 𝑇 = 5 with 100 time steps with ETD2RKds (the overall computational time is about 1 second). 
As already observed in Reference [7], the solution approaches the equilibrium state (𝑢e, 𝑣e) = (𝑎𝑢2, 𝑎

𝑢
1∕𝑎

𝑢
2), see Fig. 6b.

5. Conclusions

In this paper, we show how it is possible to effectively exploit the Kronecker sum structure for the time integration of semidis-

cretized two-component systems of coupled advection–diffusion–reaction equations. The proposed second order exponential-type 
time marching scheme, which is based on a directional splitting of the involved matrix functions and named ETD2RKds, is shown 
to outperform well-established techniques on a variety of physically relevant models from the literature, such as two-dimensional 
Schnakenberg, FitzHugh–Nagumo, DIB, and three-dimensional FitzHugh–Nagumo, advective Schnakenberg, and advective Brusse-

lator models. The procedure is able to capture the formation of Turing patterns, easily extends to models with any number of 
components, and can be applied in more than three spatial dimensions. As future work, we plan to investigate and perform simu-

lations at HPC level (i.e., using server multi-core CPUs and GPUs) to further enhance the performances of the directional splitting 
procedure.
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