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Abstract: Background: This study aims to assess the efficacy of combining automated machine
learning (AutoML) and explainable artificial intelligence (XAI) in identifying metabolomic biomarkers
that can differentiate between hepatocellular carcinoma (HCC) and liver cirrhosis in patients with
hepatitis C virus (HCV) infection. Methods: We investigated publicly accessible data encompassing
HCC patients and cirrhotic controls. The TPOT tool, which is an AutoML tool, was used to optimize
the preparation of features and data, as well as to select the most suitable machine learning model.
The TreeSHAP approach, which is a type of XAI, was used to interpret the model by assessing each
metabolite’s individual contribution to the categorization process. Results: TPOT had superior
performance in distinguishing between HCC and cirrhosis compared to other AutoML approaches
AutoSKlearn and H2O AutoML, in addition to traditional machine learning models such as random
forest, support vector machine, and k-nearest neighbor. The TPOT technique attained an AUC
value of 0.81, showcasing superior accuracy, sensitivity, and specificity in comparison to the other
models. Key metabolites, including L-valine, glycine, and DL-isoleucine, were identified as essential
by TPOT and subsequently verified by TreeSHAP analysis. TreeSHAP provided a comprehensive
explanation of the contribution of these metabolites to the model’s predictions, thereby increasing the
interpretability and dependability of the results. This thorough assessment highlights the strength
and reliability of the AutoML framework in the development of clinical biomarkers. Conclusions:
This study shows that AutoML and XAI can be used together to create metabolomic biomarkers
that are specific to HCC. The exceptional performance of TPOT in comparison to traditional models
highlights its capacity to identify biomarkers. Furthermore, TreeSHAP boosted model transparency
by highlighting the relevance of certain metabolites. This comprehensive method has the potential
to enhance the identification of biomarkers and generate precise, easily understandable, AI-driven
solutions for diagnosing HCC.

Keywords: AI-driven diagnostics; AutoML in healthcare; metabolomics biomarkers; hepatocellular
carcinoma detection; TreeSHAP interpretability

1. Introduction

Hepatocellular carcinoma (HCC) is the most common kind of primary liver cancer
with its global prevalence and matching death rates [1,2]. The incidence of HCC is still
quite high in many distinct geographical locations, and it places a significant burden on
public health systems all around the world. Although their causes are not limited, they
include chronic hepatitis B and C infections, non-alcoholic fatty liver disease (NAFLD),
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alcoholic liver disease, and environmental carcinogens such as aflatoxins [3,4] are among
the many contributing factors to their frequency. Moreover, the asymptomatic nature of
early stage HCC often results in late detection, limiting therapeutic options and lowering
the prognosis for affected individuals. As a result, awareness of the complex molecular
mechanisms underlying HCC development and progression determines the progress of
diagnostic approaches, the identification of biomarkers and treatment modalities, and
finally the reduction of HCC-related morbidity and death rates [5,6]. In HCC diagnosis,
biomarkers help with early detection, prognosis evaluation, therapy monitoring, and post-
treatment recurrence surveillance. Although alpha-fetoprotein (AFP) is a well-known
biomarker for HCC, poor sensitivity and specificity resulting from non-secretion by a
considerable fraction of HCC tumor cells reduce its therapeutic utility [7,8]. Therefore,
the continuing need for reliable biomarkers determines whether improving diagnostic
accuracy, refining therapy choices, and allowing effective prognosis assessment of HCC
are important [9,10]. In many human disorders, including cancer, metabolomics has been
widely used in the hunt for biomarkers [11]. Representing the end products of intracellular
activities, metabolites have significant potential as indicators of the overall physiological
status and reactivity to environmental and host variables [12]. Although the enormous
chemical diversity and concentration range of metabolites make measuring the amounts of
all metabolites in a biological system challenging even with a single analytical method, the
awareness of cancer metabolism—above somatic mutation—as a fundamental characteristic
of cancer, originally articulated by Otto Warburg [13], stresses the indispensable relevance
of metabolomics in exploring cancer biology and the development of HCC. Conventional
research techniques face the risk of ignoring maybe better biomarkers during the search for
metabolomics biomarkers, display design errors, and tend to emphasize certain molecules
excessively [14,15].

Automating challenging tasks helps AutoML technologies alter machine learning
(ML), thereby reducing or even eliminating the requirement for expert engagement [16].
From hyperparameter tuning to feature engineering to model selection and data prepara-
tion, ML has always included a series of specialized tasks. From the studies [17–19], several
AutoML approaches have emerged over time to streamline these tasks. Tree-based Pipeline
Optimization Tool (TPOT) automates ML model construction using genetic programming.
TPOT excels at identifying suitable data preparation procedures, feature selection tactics,
and ML approaches [20]. H2O AutoML also simplifies the ML process by employing
supervised learning algorithms, ensemble learning techniques like stacking and boosting,
hyperparameter tuning via random and grid search, and early stopping to increase predic-
tion accuracy [21,22]. Designed on the Scikit-Learn framework, Auto-Sklearn is another
fascinating tool. Auto-Sklearn automatically discovers and optimizes the most suitable ML
algorithms and hyperparameters for specific datasets and workloads. By using Bayesian op-
timization, meta-learning, and ensemble building [23], it produces a powerful and efficient
automated ML solution. These advances in AutoML mark a basic transformation in ML
that will make advanced analysis more readily accessible and successful. Particularly in the
field of biomedicine [24–28], along with ML models and pipelines are in growing demand
alongside the automation of ML processes. This need has driven research into explainable
artificial intelligence (XAI) techniques aimed at elucidating how ML algorithms generate
predictions. One XAI technique, Local Interpretable Model-Agnostic Explanations (LIME),
clarifies the model’s prediction for a specific instance by approximating a complex model
with a simpler one around a given case, thereby providing local interpretation by using
approximations. The local-to-global interpretation disparity is closed by Shapley additive
explanations (SHAP). Combining the concepts of LIME and Shapley values, this whole
framework provides a model-agnostic approach for evaluating predictions across many
ML techniques [29]. Using Shapley values, SHAP explains “black-box” models and gives
feature precedence by using interpretable local surrogate models and a cooperative game
theory method. This method has been quite popular in medical fields like biomedicine and
chemistry [30]. The goal of this study is to accurately find the metabolomics signature that
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separates HCC patients from cirrhotic (CIRR) controls using XAI and an AutoML-based
algorithm. This will help find more biomarkers and learn more about the metabolic path-
ways that are connected to HCC. The results reveal that TPOT outperforms random forest
(RF), support vector machine (SVM), and k-nearest neighbors (k-NN) among traditional
ML models, and other AutoML techniques such as AutoSKlearn and H2O AutoML. This
reflects how TPOT handles difficult ML tasks in terms of performance and efficiency.

2. Materials and Methods

A diagram of the proposed method is provided in Figure 1.
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2.1. Subjects, Data, and Features

In this study, we exploited a freely available dataset to discover metabolomics biomark-
ers capable of discriminating between patients with HCC and CIRR. The Inonu University
Health Sciences Non-Interventional Clinical Research Ethics Committee approved this
study (approval number: 2024/5902). Patients were diagnosed with liver CIRR based on
known clinical, laboratory, and/or imaging criteria. In contrast, cases were recognized as
HCC patients by well-documented diagnostic imaging criteria and/or histology. Control
subjects were instructed to be free of HCC for at least 6 months from the study’s initiation.
Relevant metabolite levels, resulting from gas chromatography coupled with selected ion
monitoring mass spectrometry (GC-SIM-MS) tests performed on plasma samples from
patients, were taken from previously published data sources [31,32]. For metabolomics
analysis, a total of 56 metabolites were measured using GC-SIM-MS. These metabolites
include amino acids (e.g., glycine, L-alanine, L-glutamic acid, L-leucine, L-phenylalanine,
L-proline, L-serine, L-threonine, L-tyrosine, L-valine), sugars (e.g., D-glucose, L-sorbose,
tagatose), organic acids (e.g., citric acid, D-malic acid, glyceric acid, lactic acid, linoleic acid,
oxalic acid, palmitic acid, stearic acid), alcohols (e.g., 2 (3-butanediol, 2-hydroxybenzyl
alcohol), sterols (e.g., cholesterol), vitamins (e.g., alpha-tocopherol), and other compounds
(e.g., creatinine, ethanolamine, urea).

2.2. Automated Machine Learning with TPOT

The TPOT framework, established by Olson and Moore (2016) [20], leverages ge-
netic programming to automatically design and improve ML pipelines. Inspired by the
concept of natural selection, genetic programming exploits a population of candidate
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solutions developed across generations for better performance. Starting with a group
of randomly generated pipelines, each representing a set of steps for data preparation,
feature selection, and model selection, TPOT keeps testing each pipeline’s performance
using cross-validation. We then select pipelines to serve as “parents” for the subsequent
generation. These parent pipelines undergo genetic processes such as crossover, which
merges pipeline segments, and mutation, which randomly transforms sections of a pipeline,
to create “offspring” pipelines. Over several generations, TPOT iteratively improves the
population of pipelines as this process of selection, crossover, and mutation unfolds. TPOT
further mitigates overfitting by adopting a technique analogous to early stopping in ma-
chine learning. It checks pipeline performance improvements and halts the evolutionary
process if no significant progress is noticed over a specific generation’s worth. Moreover,
TPOT’s optimization strategy achieves a compromise between using the most effective
pipelines identified so far and investigating fresh pipeline designs. One of TPOT’s key
benefits is its ability to identify sophisticated pipeline designs that may not be immediately
apparent through human modification. This automated strategy not only saves time but
also augments the possibility of producing highly performing pipelines that successfully
generalize to unknown data. TPOT makes ML pipeline design accessible to users without
extensive knowledge, by automating the end-to-end ML process and providing a robust
and efficient solution approach [33–35].

2.3. Model Explanation Using TreeSHAP

To interpret the model and understand the contributions of individual metabolites to
the classification, we used TreeSHAP. The TreeSHAP framework leverages the hierarchical
structure of tree-based models to provide efficient and consistent explanations for model
predictions [36]. TreeSHAP is designed specifically for decision trees, random forests, and
gradient-boosted trees, exploiting their structure to streamline the computation of Shapley
values, which measure the contribution of each feature to a particular prediction. Shapley
values are formally represented as:

φj(val)= 1
N! ∑S⊆N{j} |S|!(|N|−|S|−1)![val(S∪{j})−val(S)]

TreeSHAP begins by calculating exact Shapley values for each feature in a tree en-
semble model. Cooperative game theory-derived Shapley values represent the average
marginal contribution of a feature across all possible subsets of features. TreeSHAP can
quickly find these values by using the internal structure of tree models. This makes it
much easier on computers than model-agnostic SHAP methods. One of the primary break-
throughs of TreeSHAP is its ability to perform both classification and regression tasks while
preserving consistency and local correctness in its explanations. Consistency assures that
if a model changes such that a specific feature’s contribution to a prediction rises or stays
the same, the Shapley value for that feature will not drop. Local accuracy ensures that the
sum of the Shapley values for all characteristics matches the model’s prediction for a given
occurrence. TreeSHAP’s efficiency and accuracy make it especially beneficial in sectors
where interpretability is critical, such as healthcare, banking, and regulatory contexts. By
giving clear and accurate explanations for individual forecasts, TreeSHAP helps decision
makers understand how characteristics impact model results, identify major drivers of
predictions, and spot possible biases. This degree of openness promotes confidence in the
model and facilitates informed decision-making. Furthermore, TreeSHAP promotes both
local and global interpretability. Locally, it explains individual predictions by assigning
contributions to each feature, whereas globally, it combines these contributions to give
insights into the model’s general behavior. This dual feature makes TreeSHAP a flexible tool
for thorough model interpretation, enabling users to get a deep grasp of both individual
instances and overall patterns in the data [37–39].
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2.4. Machine Learning Pipeline

We randomly divided the data into a training set (80%) and a testing set (20%) to
facilitate model training and assessment. We repeated this process 50 times to ensure the
model’s robustness and to obtain unbiased prediction results. For classification tasks, we
implemented ML models (RF, SVC, and k-NN) from the Scikit-learn package (version 0.24.2)
and AutoML methods using AutoSKlearn, H2O AutoML, and TPOT (version 0.12.2). We
assessed the model performance using the Receiver Operating Characteristic Area under
the Curve (ROC AUC), accuracy, sensitivity, and specificity. We allocated 600 s to the TPOT
to identify suitable ML pipelines for the dataset. We used cross-validation with default
settings and a hold-out method, dividing the training data into 67% for training and 33%
for validation. We performed the ensemble approach, considering up to 50 models for
inclusion. Each model has a runtime restriction of 240 s. We fitted the final ensemble to
the whole training dataset using 5-fold cross-validation. For the XAI study, we employed
SHAP (version 0.41.0) [40].

2.5. Statistical Analysis

Quantitative data are summarized using the median, which is represented by the in-
terquartile range (IQR). The statistical techniques used in the univariate analysis were care-
fully chosen to guarantee the strength and precision of the results. At first, the Shapiro–Wilk
test was used to evaluate the normality of the data distribution, which is an important
step in deciding which statistical tests to use. Due to the data not following a normal
distribution, the Mann–Whitney U test was used since it is a non-parametric test that is
particularly suitable for assessing differences between two independent groups. This test
was especially chosen for its capacity to handle data that are not distributed regularly
and to provide dependable insights on differences in medians across the groups. The use
of the Mann–Whitney U test, in conjunction with the criterion of considering p-values
below 0.05 as statistically significant, highlights the meticulousness employed in examining
the metabolite levels between the HCC and cirrhosis groups. The document attempts
to improve the transparency and interpretability of the statistical analysis by giving this
background. This will ensure that the findings are clear and methodologically sound.
The statistical analyses were conducted using IBM SPSS Statistics for Windows version
26.0 software.

3. Results
3.1. Univariate Analysis Results

In the comparative analysis between CIRR and HCC groups, the following metabolites
show significant differences in their median values and IQR. D-threitol is significantly
lower in the HCC group (median 654203.5, IQR 405024) compared to the CIRR group
(median 1000500, IQR 1225931), indicating a marked reduction. Glycine also shows a
significant decrease in the HCC group (median 7312240, IQR 2826197.5) compared to
the CIRR group (median 9695280.5, IQR 4818167). L-alanine-2,3,3,3-d4 is lower in HCC
(median 663959, IQR 978040) than in CIRR (median 1054093, IQR 1392805.5). Conversely,
L-glutamic acid-2,3,3,4,4-d5 2 is significantly lower in HCC (median 1010110, IQR 421477)
compared to CIRR (median 1178557.5, IQR 414761). L-pyroglutamic acid/glutamic acid
is reduced in the HCC group (median 5370125.5, IQR 2845517.75) compared to CIRR
(median 6786754.5, IQR 2598769). L-valine 1 shows a significant decrease in HCC (median
3654925, IQR 3262877.5) versus CIRR (median 2502653.5, IQR 2499262.75). Linoleic acid
is significantly higher in the HCC group (median 9848396, IQR 9099414.25) compared to
CIRR (median 5677306.5, IQR 7210283.5). Phenylalanine 1 is significantly lower in HCC
(median 1493905.5, IQR 894662.75) than in CIRR (median 2002936, IQR 1742651). Lastly,
tagatose 1 is lower in HCC (median 1204101, IQR 2889017.25) compared to CIRR (median
3312035, IQR 16452131) (Table 1).
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Table 1. Univariate statistical analysis results.

Metabolite Name *
Group

p-Value
CIRR HCC

2,3-butanediol 2 10650000 (5477273.75) 9922545 (6109323.25) 0.519

2-hydroxybenzyl alcohol 548521.5 (175550.5) 539983.5 (132430) 0.547

alpha-tocopherol 1406009 (772343) 1671573.5 (675712) 0.075

alpha-D-glucosamine 1-phosphate 451731 (6850415.25) 1359994 (11365839.25) 0.123

arabitol 378181.5 (390092.75) 355639.5 (258970.75) 0.240

arachidic acid 418434.5 (291183.25) 330568 (430527) 0.745

cholesterol 92450000 (3.9e+07) 93400000 (32175000) 0.554

citric acid 20400000 (11675000) 18900000 (8450000) 0.128

Creatinine 1917199 (2062927) 1211467.5 (1116398.5) 0.053

D-glucose 2 [17,625]/[24,749] D-glucose 1 1.13e+08 (37175000) 111500000 (42125000) 0.785

D-malic acid 467819.5 (255174.25) 378374.5 (348014.25) 0.251

D-threitol 1000500 (1225931) 654203.5 (405024) 0.014

diglycerol 2 221418 (384361) 170021 (201316.25) 0.081

DL-isoleucine 1 1199501.5 (772889) 1433657 (1229352) 0.194

DL-isoleucine 2 1131049 (618355.25) 1424988 (1050869.25) 0.051

ethanolamine 1352473 (958388.25) 1068951 (654469) 0.075

glyceric acid 683817.5 (560978) 625615 (518581.75) 0.577

glycine 9695280.5 (4818167) 7312240 (2826197.5) 0.003

glycine-d5 deuterated 23850000 (10650000) 21500000 (12225000) 0.293

L-sorbose 2 1185333 (1842600.25) 1185925 (1437230.75) 0.596

L-(+) lactic acid 94950000 (48875000) 95500000 (44650000) 0.594

L-alanine-2,3,3,3-d4 1054093 (1392805.5) 663959 (978040) 0.013

L-cystine 3 2434071 (2331622) 2399262.5 (2699936.75) 0.793

L-glutamic acid 2 384084.5 (364430.5) 357128.5 (432405) 0.685

L-glutamic acid-2,3,3,4,4-d5 2 1178557.5 (414761) 1010110 (421477) 0.047

L-glutamic acid-2,3,3,4,4-d5 3 (dehydrated) 1879400 (698975.25) 1539727 (1043167) 0.351

L-homoserine 3 73072.5 (76962.5) 57437 (43002.75) 0.383

L-leucine 1 3958303 (3744917.75) 4579521 (4642521.5) 0.091

L-phenylalanine-phenyl-d5-2,3,3-d3 2 5153990.5 (2038524.25) 4548072 (2141348.5) 0.144

L-proline 2 2773618 (1277443) 2310765 (1221758) 0.209

L-pyroglutamic acid/glutamic acid 6786754.5 (2598769) 5370125.5 (2845517.75) 0.007

L-serine 1 2358091 (1530538.25) 2598062 (1569120.25) 0.380

L-threonine 1 3226459 (1786736.5) 3165103 (1790904) 0.904

L-threonine 2 4140405.5 (2479098.5) 3530755 (2347793.5) 0.365

L-tyrosine-3,3-d2 2 25400000 (9275000) 25950000 (15525000) 0.868

L-valine 1 2502653.5 (2499262.75) 3654925 (3262877.5) 0.008

L-valine 2 2380131.5 (2110335.5) 2615713 (2691378.5) 0.425

lactulose 1 223597 (614729) 186756.5 (535900.75) 0.621

lauric acid 252586.5 (223034.5) 205633.5 (197828.75) 0.170
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Table 1. Cont.

Metabolite Name *
Group

p-Value
CIRR HCC

linoleic acid 5677306.5 (7210283.5) 9848396 (9099414.25) 0.006

myo-inositol 8412012 (10620568.5) 7559708 (5249310) 0.613

Myristic Acid d27 6418506.5 (2757576.75) 6669544 (3364288.5) 0.634

N-acetyl-5-hydroxytryptamine 1 105500000 (21350000) 104500000 (45800000) 0.968

oxalic acid 28250000 (16350000) 31300000 (16975000) 0.322

palmitic acid 27600000 (13550000) 31750000 (16125000) 0.179

Phenylalanine 1 2002936 (1742651) 1493905.5 (894662.75) 0.040

phosphoric acid 84250000 (27750000) 82800000 (39875000) 0.610

putrescine 896244.5 (812358) 672440 (488520.75) 0.342

ribitol 634169 (501046) 487043.5 (320140) 0.097

ribose 77076.5 (78126.25) 43190 (51127.25) 0.165

stearic acid 44650000 (21650000) 49150000 (21050000) 0.182

tagatose 1 3312035 (16452131) 1204101 (2889017.25) 0.006

trans-aconitic acid 112768 (80640.5) 96625 (70570.5) 0.457

tyramine 3083548.5 (3382113.25) 1700785 (2529014) 0.095

tyrosine 2 24800000 (11975000) 24050000 (14600000) 0.872

urea 98800000 (66050000) 99850000 (60625000) 0.788

*: Variables are summarized as median (interquartile range; IQR).

3.2. Model Evaluation and Performance

We compared the performance of the RF, SVM, and k-NN algorithms to AutoML
using TPOT on a test dataset. TPOT significantly outperformed the baseline models,
achieving an AUC score of 0.81, an accuracy score of 0.85, and a sensitivity score of 0.84.
In contrast, the RF model achieved an AUC score of 0.70, an accuracy score of 0.72, and
a sensitivity score of 0.71. The SVM model recorded an AUC score of 0.68, an accuracy
score of 0.70, and a sensitivity score of 0.69. The k-NN model achieved an AUC score of
0.65, an accuracy score of 0.68, and a sensitivity score of 0.67. Overall, TPOT exhibited
significantly superior classification performance across all metrics compared to the baseline
models (Table 2). We compared the performance of TPOT with other AutoML techniques,
including AutoSklearn [41] and H2O AutoML [21], using the same time budget allocated
to TPOT. AutoSklearn uses Bayesian optimization to optimize pipelines built with SCIKIT-
LEARN [42]. It incorporates a warm-start mechanism via meta-learning, initiating pipeline
searches with the best-performing pipelines for similar datasets [43]. After the search,
AutoSklearn constructs an ensemble from the trained pipelines, as described by Caruana
et al. [44,45]. H2O AutoML, built on the H2O platform, performs random searches and
uses custom algorithm configurations with early stopping for efficiency. It allocates more
optimization time to complex algorithms like XGBoost, creates stacked ensembles from
all models or the best models, and employs predefined preprocessing strategies. H2O
AutoML focuses on balancing inference speed and accuracy to produce practical models
for production. The comparison of AutoML techniques reveals that TPOT consistently
outperforms AutoSklearn and H2O AutoML across all metrics. While TPOT maintained
strong accuracy and AUC scores on both the training and test sets, AutoSklearn and H2O
AutoML exhibited slightly lower performance, with a moderate drop in accuracy and
AUC on the test set compared to their training results. Despite this, AutoSklearn still
showed better overall performance than H2O AutoML, which lagged slightly behind in
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most metrics. This suggests that while all three models are effective, TPOT offers a more
robust solution.

Table 2. Comparative performance of ML models and AutoML techniques versus TPOT. Training set
results are presented as scores (±standard deviation). Reported metrics include ROC AUC, accuracy,
sensitivity, and specificity.

Model Train Set
AUC

Test Set
AUC

Train Set
Accuracy

Test Set
Accuracy

Train Set
Sensitivity

Test Set
Sensitivity

Train Set
Specificity

Test Set
Specificity

TPOT 0.80 ± 0.02 0.81 0.85 ± 0.01 0.85 0.84 ± 0.03 0.84 0.85 ± 0.01 0.83

RF 0.72 ± 0.02 0.70 0.74 ± 0.03 0.72 0.72 ± 0.04 0.71 0.75 ± 0.03 0.71

SVM 0.70 ± 0.03 0.68 0.72 ± 0.03 0.70 0.70 ± 0.04 0.69 0.73 ± 0.04 0.70

k-NN 0.66 ± 0.03 0.65 0.70 ± 0.03 0.68 0.68 ± 0.04 0.67 0.72 ± 0.03 0.68

AutoSklearn 0.75 ± 0.01 0.77 0.75 ± 0.02 0.73 0.70 ± 0.02 0.74 0.77 ± 0.01 0.74

H2O AutoML 0.74 ± 0.02 0.75 0.76 ± 0.03 0.75 0.74 ± 0.03 0.73 0.77 ± 0.02 0.73

The Nemenyi test [46] was conducted to evaluate whether there are statistically signifi-
cant differences in performance between TPOT, other AutoML frameworks, and traditional
machine learning models, as shown in Figure 2. The results indicate that TPOT significantly
outperforms the other models across several performance metrics, including AUC, accuracy,
sensitivity, and specificity, with a confidence level greater than 95% (α = 0.05). Additionally,
the differences between AutoSklearn, H2O AutoML, and the traditional machine learning
techniques were also found to be statistically significant at the 95% confidence level. How-
ever, no statistically significant differences were observed between AutoSklearn and H2O
AutoML, nor between SVM and RF.
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3.3. Explaining the AutoML Pipeline Ensemble Using SHAP

Figure 3 presents a bar plot of feature importance based on mean absolute SHAP
values for the test set, where the horizontal axis represents each feature’s average impact
on the model output. The analysis reveals that L-valine 1 is the most influential feature,
followed closely by glycine and DL-isoleucine 2, indicating these features significantly
affect the model’s predictions. Other notable contributors include tagatose 1, L-glutamic
acid 2, and L-serine 1. In contrast, features such as Myristic Acid d27 and alpha-tocopherol
exhibit minimal impact on the model’s output. This ranking of features by SHAP values
underscores their relative importance and enhances our understanding of the model’s
decision-making process (Figure 3).

The SHAP waterfall plots in Figures 4 and 5 illustrate the feature contributions to
the model’s predictions for a representative true positive and a true negative sample,
respectively. In Figure 4, the base value, representing the average model output across
all samples, is −0.857. The final prediction for the true positive sample is 1.932. The plot
shows that features such as glycine and L-valine 1 have substantial positive contributions of
+1.97 and +1.75, respectively, which drive the prediction towards the positive class. Other
features like tagatose 1 and tyramine also positively contribute to the prediction, while
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features like alpha-D-glucosamine 1-phosphate and stearic acid have notable negative
contributions of −1.41 and −1.37, respectively (Figures 4 and 5).
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In Figure 5, for the true negative sample, the base value is again −0.857, with a
final forecast of −0.152. Glycine contributes strongly to the unfavorable prediction with
a SHAP score of −4.06. Despite positive contributions from L-valine 1 and L-serine 1,
which contribute +1.75 and +1.60, respectively, the negative contributions from glycine
and other characteristics exceed these benefits, resulting in the overall negative forecast.
These graphs give a clear insight of how various attributes impact the model’s predictions,
illustrating the relative relevance and direction of each feature’s contribution in the context
of particular cases.

Figure 6 depicts the link between L-valine 1 and its SHAP value, indicating the sig-
nificance of this characteristic on the model’s prediction. The x-axis displays the values
of L-valine 1, while the y-axis shows the associated SHAP values, which reflect the con-
tribution of L-valine 1 to the prediction. Notably, the figure indicates a clear shift from
negative to positive SHAP values when L-valine 1 grows, indicating its dual effect on the
model’s output. Furthermore, the color gradient, which depicts the values of 2,3-butanediol
2, emphasizes an interaction effect where varying amounts of 2,3-butanediol 2 regulate
the effects of L-valine 1. This interaction is present throughout the spectrum of L-valine
1 values, showing a complex interplay between these factors in shaping the prediction.
The strong separation of positive and negative contributions, together with the interac-
tion effect, makes this figure especially illuminating of the underlying dynamics in the
model (Figure 6).
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4. Discussion

This investigation proposes a novel approach that leverages AutoML in conjunction
with XAI techniques. The goal of this combined framework is to find metabolomics
biomarkers that can tell the difference between HCC and liver CIRR in people who have
been infected with HCV. Our findings demonstrate that the synergistic application of
TPOT and TreeSHAP leads to substantial advancements in both the performance and
interpretability of the proposed methodology. This, in turn, underscores the efficacy of the
discovered biomarkers in accurately distinguishing HCC.

4.1. Model Performance and Interpretability Based on Metabolomics Biomarker Discovery

An AutoML-based approach was used along with XAI techniques to improve the
discovery of metabolomics biomarkers that differentiate HCC from liver CIRR in people
who have been infected with HCV. The TPOT demonstrated a significant improvement
in model performance compared to traditional ML models such as RF, SVM, and k-NN.
Specifically, TPOT achieved an AUC of 0.81, significantly outperforming RF, SVM, and k-
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NN, which attained AUC scores of 0.70, 0.68, and 0.65, respectively. This result underscores
the efficacy of AutoML in automating the identification of optimal model configurations and
relevant features, thereby enhancing diagnostic accuracy without necessitating extensive
manual tuning [2,13]. The results show that TPOT achieves significantly better performance
than other models in detecting HCC. We also compared the performance of TPOT with
other AutoML techniques such as AutoSklearn and H2O AutoML. The comparison of
AutoML techniques reveals that TPOT consistently outperforms AutoSklearn and H2O
AutoML in all metrics. However, AutoSklearn showed better overall performance than
H2O AutoML, which was slightly behind in most metrics. This shows that although all
three models are effective, TPOT provides a more robust solution.

These findings are consistent with other studies highlighting the limitations of tra-
ditional biomarkers such as alpha-fetoprotein (AFP), which show low sensitivity and
specificity. The better performance of TPOT shows that AutoML can make diagnostics
more accurate by finding more relevant features and the best model configurations without
a lot of manual tuning. Additionally, TreeSHAP for model interpretability provided de-
tailed insights into the contribution of metabolites to the model’s predictions. This aspect
of our study is particularly important as it addresses the need for XAI in biomedicine and
enables clinicians to understand the rationale behind model predictions. Furthermore, our
study identifies features like L-valine 1 and glycine as significant contributors, aligning
with prior research that emphasizes the significance of amino acids in cancer metabolism.

4.2. Comparison with the Previous Literature

Previous studies have demonstrated the usefulness of metabolomics in cancer biomarker
discovery, but they have often relied on traditional ML models such as RF, SVM, and
k-NN with manual feature selection and model tuning, leading to possible biases and
suboptimal performance. A paper [31] determined metabolomics profiles for HCC using
traditional ML techniques but highlighted limitations due to the complexity and manual
intervention required in the modeling process. In contrast, our study used TPOT, an
AutoML tool that automates the creation of ML pipelines, thus reducing the manual
effort and potential biases found in traditional approaches. TPOT’s genetic programming
approach enables it to explore a wide range of pipeline configurations and optimize the
entire process, including data preprocessing, feature selection, and model selection. This
automated method has been shown to outperform traditional ML models such as RF,
SVM, and k-NN and other AutoML models in terms of multiple performance metrics
(AUC, accuracy, sensitivity, and specificity). The metabolites L-valine, glycine, and DL-
isoleucine have been extensively studied in relation to HCC. Studies have shown that serum
concentrations of L-valine, glycine, L-isoleucine, and D-isoleucine are significantly reduced
in HCC patients compared to healthy individuals [47]. In addition, amino acid profiling in
HCC tumor tissues revealed significant upregulation of essential amino acids, including
leucine, valine, and tryptophan, suggesting their potential as metabolic biomarkers for
HCC [48]. Furthermore, metabolomics analysis of serum samples from HCC patients
identified glycine as one of the upregulated metabolites associated with the disease and
demonstrated its potential role as a biomarker for HCC [49]. These results show that
L-valine, glycine, and DL-isoleucine metabolites have a complex relationship with the
development of HCC. They also show how important these metabolites are in the metabolic
changes that happen in liver cancer. Researchers have studied L-valine, a branched-
chain amino acid, in relation to HCC. In rats with CCl4-induced liver injury, studies have
shown that L-valine treatment can improve liver fibrosis and increase thrombopoiesis.
Furthermore, metabolomics studies have identified L-valine as a significant metabolite in
HCC patients, with higher levels detected in HCC tumor tissues than in non-tumor tissues
and in HCC patients’ serum before hepatectomy. These results point to a possible link
between L-valine levels and HCC, showing that it plays a part in metabolic pathways linked
to the growth and spread of HCC. Further research into the specific mechanisms underlying
death may provide valuable information for developing new therapeutic approaches for
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this challenging cancer [48,50]. Studies have shown that changes in amino acid levels,
including L-glutamine, can affect the proliferation of HCC cell lines, with supplementation
or deprivation of specific amino acids leading to antiproliferative effects and changes in
critical signaling molecules [51].

Previous studies have underscored the utility of metabolomics in cancer biomarker
discovery. However, they have often relied on traditional ML models, which require
extensive manual feature selection and tuning, potentially leading to biases and suboptimal
performance [14,31]. A research paper [31] utilized traditional ML techniques to determine
metabolomics profiles for HCC but faced challenges related to the complexity and manual
intervention required. Our study addresses these limitations by employing TPOT, which
automates the entire ML pipeline, thus reducing manual effort and potential biases [20].
The metabolites identified in this study, such as L-valine, glycine, and DL-isoleucine,
have been previously associated with HCC. Serum concentrations of these amino acids
are significantly reduced in HCC patients compared to healthy individuals, and their
upregulation in HCC tumor tissues suggests their potential as metabolic biomarkers. These
findings are consistent with our results, which highlight the importance of amino acids in
cancer metabolism and their potential role as biomarkers for HCC [5,12,31].

4.3. Clinical Implementation, Potential Contributions, and Future Directions

The identification of L-valine, glycine, and DL-isoleucine as key metabolites offers
promising avenues for clinical application. Clinical workflows can integrate these biomark-
ers to improve the early detection and prognosis of HCC in patients with liver CIRR and
HCV infection. Moreover, TPOT’s capability to process complex datasets and automatically
optimize model pipelines underscores its potential as a valuable tool for ongoing biomarker
discovery efforts. Our study also emphasizes the broader applicability of AutoML and XAI
techniques in medical research. The interpretability provided by TreeSHAP can enhance
trust in AI models among healthcare professionals, facilitating their adoption in clinical
practice. TreeSHAP meets the important need for clarity in biomedical AI applications by
showing how different metabolites affect the model’s predictions [36].

Integrating metabolomics indicators including L-valine, glycine, and DL-isoleucine
into clinical practice shows potential for enhancing the early identification and treatment
of HCC in patients with liver cirrhosis and HCV infection. The biomarkers have shown
promise in differentiating HCC from liver cirrhosis, hence assisting in identifying individ-
uals with a greater likelihood of HCC development [48]. Nevertheless, the transition of
these indicators from the realm of research to practical use in clinical settings requires a
thorough strategy that addresses several obstacles. An essential obstacle is the need for
thorough validation across a wide range of patient groups. The performance of biomarkers
may be influenced by variables such as ethnicity, concomitant diseases, and environmental
effects. Hence, it is essential to conduct extensive, multicenter investigations to authenticate
these biomarkers across diverse demographic and clinical scenarios, hence ensuring their
reliability and applicability. Moreover, the creation of standardized, high-throughput tests
is crucial for facilitating the use of these biomarkers in regular clinical environments. The
assays need to be economically efficient, dependable, and able to work with existing diag-
nostic platforms in order to encourage their extensive use [47]. An additional crucial factor
is the incorporation of these biomarkers into current therapeutic processes. Successful
implementation of this procedure requires cooperation among academic institutions, health-
care providers, and industry partners to create diagnostic tools that can easily integrate
into clinical practice. Moreover, it is important to provide training to healthcare workers
about the analysis and understanding of metabolomics data. Given that metabolomics
is a nascent discipline in clinical diagnostics, it will be imperative to educate doctors on
the optimal use of these biomarkers to ensure their successful integration [50]. It is crucial
to recognize the potential of these biomarkers to not only improve early diagnosis but
also guide treatment options and track therapy responses. The biomarkers might enhance
individualized treatment approaches and enhance patient outcomes by offering a more
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comprehensive knowledge of the metabolic changes linked to HCC. Although there are
difficulties, integrating these metabolomics indicators into clinical practice is a noteworthy
advancement in combating HCC. This has the potential to greatly enhance the prognosis
and survival rates of afflicted patients [12].

Combining genetics and proteomics with metabolomics provides a more thorough
method for comprehending HCC. Using a multi-omics approach, it is possible to uncover re-
lationships between genetic variants, protein expression, and metabolic alterations, thereby
enhancing the identification of reliable biomarkers. Nevertheless, the difficulties lie in
effectively handling extensive and varied information, as well as ensuring interoperabil-
ity across various omics platforms. Although there are challenges to overcome, using a
multi-omics approach has the potential for discovering biomarkers that are more accurate
in predicting outcomes and creating tailored treatment plans.

The new framework in this study combines automated machine learning and XAI to
make it easier to find metabolomics biomarkers that can help diagnose HCC. Our system
differs from previous models by using the TPOT tool to automatically optimize model
selection, feature engineering, and hyperparameter tuning instead of relying on standard
machine learning techniques that need human feature selection. This automated procedure
improves model performance, as evidenced by an improved AUC score of 0.81 compared to
conventional methods, while also mitigating any biases associated with human intervention.
Additionally, our method uses the TreeSHAP method to give clear and understandable
details about how different metabolites, like L-valine, glycine, and DL-isoleucine, help with
the diagnostic process. Our framework stands out from previous models due to its dual
approach, which improves diagnosis accuracy and provides thorough knowledge of the
metabolic pathways associated with HCC. This distinguishes our framework from other
models that do not possess the same level of depth and interpretability. Additionally, the
use of AI and AutoML for biomarker identification in HCC requires addressing key ethical
concerns. Ensuring data privacy through anonymized datasets and mitigating biases in
model predictions are essential to maintain fairness and integrity in clinical diagnostics.

5. Limitation

Although our study demonstrates the advantages of using AutoML and XAI tech-
niques, there are limitations that need to be considered. The specific patient cohort and
metabolomics profiling methods used limit the generalizability of our findings. Future
research should investigate the application of these techniques in different populations and
using a variety of metabolomics technologies. Additionally, combining other omics data,
such as genomics and proteomics, with metabolomics may provide a more comprehensive
understanding of HCC pathogenesis and lead to the discovery of multi-omics biomarkers.
This integrative approach combined with AutoML can further increase the accuracy and
utility of biomarker-based diagnoses. Not only that, but different metabolomics technolo-
gies, like LC-MS/MS or NMR, might produce various sets of biomarkers. This could
affect how easily our results can be repeated in different clinical settings. While this study
focused on optimizing traditional ML models using AutoML integrated with XAI, we plan
to incorporate advanced deep learning models in subsequent work to further validate and
enhance the findings. Additionally, we acknowledge that our exploration of XAI techniques
was limited to TreeSHAP. Future work should consider employing other XAI methods, such
as LIME or DeepSHAP, to provide a broader perspective on model interpretability and to
ensure that the insights gained are consistent across different interpretability frameworks.

6. Conclusions

It may be argued that AutoML and XAI approaches should be implemented within
this study to discover the metabolomics biomarkers for HCC. Thus, the researchers, with
the help of TPOT, a tool for automated, optimal, and efficient model identification, obtained
improved results in comparison with other static models when it came to distinguishing
between patients with HCC and liver CIRR in individuals with HCV infection. This achieve-
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ment suggests that AutoML could be effective at simplifying biomarker identification, as
well as potentially exposing much more lasting diagnostic patterns. Furthermore, the
study used TreeSHAP, an XAI method, to explain the model’s inner workings to analysts.
This also provided insight and an estimate of each metabolite’s contribution to the clas-
sification procedure. Revealing these features improves clinical personnel’s confidence
and acceptance towards AI-driven models, increasing their likelihood of deployment in
clinical settings. Thus, the findings of this research provide very effective evidence of
using AutoML and XAI concurrently for identifying biomarkers of HCC. This approach to
fusion has a lot of potential to enhance the existing methods in AI-powered diagnostics
since, rather than working in isolation, both models will be able to interact and learn from
each other to improve the performance of diagnoses, thereby enhancing the notion of
patient care.
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38. Kopanja, M.; Hačko, S.; Brdar, S.; Savić, M. Cost-sensitive tree SHAP for explaining cost-sensitive tree-based models. Comput.
Intell. 2024, 40, e12651. [CrossRef]

39. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local
explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef] [PubMed]

40. Wojtuch, A.; Jankowski, R.; Podlewska, S. How can SHAP values help to shape metabolic stability of chemical compounds?
J. Cheminform. 2021, 13, 74. [CrossRef] [PubMed]

41. Neutatz, F.; Chen, B.; Alkhatib, Y.; Ye, J.; Abedjan, Z. Data Cleaning and AutoML: Would an optimizer choose to clean? Datenbank
Spektrum 2022, 22, 121–130. [CrossRef]

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

43. Feurer, M.; Springenberg, J.; Hutter, F. Initializing bayesian hyperparameter optimization via meta-learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 29.

44. Caruana, R.; Niculescu-Mizil, A.; Crew, G.; Ksikes, A. Ensemble selection from libraries of models. In Proceedings of the
Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 18.

45. Caruana, R.; Munson, A.; Niculescu-Mizil, A. Getting the most out of ensemble selection. In Proceedings of the Sixth International
Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; IEEE: New York, NY, USA, 2006; pp. 828–833.

46. Nemenyi, P.B. Distribution-Free Multiple Comparisons; Princeton University: Princeton, NJ, USA, 1963.
47. Han, M.; Xie, M.; Han, J.; Yuan, D.; Yang, T.; Xie, Y. Development and validation of a rapid, selective, and sensitive LC–MS/MS

method for simultaneous determination of d-and l-amino acids in human serum: Application to the study of hepatocellular
carcinoma. Anal. Bioanal. Chem. 2018, 410, 2517–2531. [CrossRef]

48. Morine, Y.; Utsunomiya, T.; Yamanaka-Okumura, H.; Saito, Y.; Yamada, S.; Ikemoto, T.; Imura, S.; Kinoshita, S.; Hirayama, A.;
Tanaka, Y. Essential amino acids as diagnostic biomarkers of hepatocellular carcinoma based on metabolic analysis. Oncotarget
2022, 13, 1286–1298. [CrossRef]

49. Du, Y.; Zhu, D.; Zou, L.; Yi, J. Serum metabolomic phenotyping for diagnosis and prognosis of hepatocellular carcinoma. Authorea
Prepr. 2023. [CrossRef]

50. Nakanishi, C.; Doi, H.; Katsura, K.; Satomi, S. Treatment with L-valine ameliorates liver fibrosis and restores thrombopoiesis in
rats exposed to carbon tetrachloride. Tohoku J. Exp. Med. 2010, 221, 151–159. [CrossRef]

51. Hassan, Y.A.; Helmy, M.W.; Ghoneim, A.I. Combinatorial antitumor effects of amino acids and epigenetic modulations in
hepatocellular carcinoma cell lines. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 2245–2257. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/coin.12651
https://doi.org/10.1038/s42256-019-0138-9
https://www.ncbi.nlm.nih.gov/pubmed/32607472
https://doi.org/10.1186/s13321-021-00542-y
https://www.ncbi.nlm.nih.gov/pubmed/34579792
https://doi.org/10.1007/s13222-022-00413-2
https://doi.org/10.1007/s00216-018-0883-3
https://doi.org/10.18632/oncotarget.28306
https://doi.org/10.22541/au.168812692.25097084/v1
https://doi.org/10.1620/tjem.221.151
https://doi.org/10.1007/s00210-021-02140-z

	Introduction 
	Materials and Methods 
	Subjects, Data, and Features 
	Automated Machine Learning with TPOT 
	Model Explanation Using TreeSHAP 
	Machine Learning Pipeline 
	Statistical Analysis 

	Results 
	Univariate Analysis Results 
	Model Evaluation and Performance 
	Explaining the AutoML Pipeline Ensemble Using SHAP 

	Discussion 
	Model Performance and Interpretability Based on Metabolomics Biomarker Discovery 
	Comparison with the Previous Literature 
	Clinical Implementation, Potential Contributions, and Future Directions 

	Limitation 
	Conclusions 
	References

