
Parallel Theorem Proving

Maria Paola Bonacina

Abstract This chapter surveys the research in parallel or distributed strategies for
mechanical theorem proving in first-order logic, and explores some of its connec-
tions with the research in the parallelization of decision procedures for satisfiability
in propositional logic (SAT). We clarify the key role played by the Clause-Diffusion
methodology for distributed deduction in moving parallel reasoning from the par-
allelization of inferences to the parallelization of search, which is the dominating
paradigm today. Since the quest for parallel first-order proof procedures has not
been pursued recently, we endeavour to relate lessons learned from investigations of
parallel theorem proving and parallel SAT-solving with novel advances in theorem
proving, such as SGGS (Semantically-Guided Goal-Sensitive reasoning), a method
that lifts the CDCL (Conflict-Driven Clause Learning) procedure for SAT to first-
order logic.

1 Introduction

Research on parallel theorem proving, meaning automatic theorem proving (ATP)
in first-order logic, began in the mid and late 1980’s, flourished in the 1990’s, and
came pretty much to a halt in the early 2000’s [192, 50, 210, 85, 37]. Research
on parallel satisfiability solving, meaning satisfiability in propositional logic (SAT),
began in the early 1990’s and is still actively pursued today (cf. [163, 114, 1, 158]
and the chapters on Parallel Satisfiability and Cube and Conquer). It is probably
unknown to most authors active in parallel SAT-solving that Hantao Zhang began
work on his parallel SAT solver PSATO [227, 228], that pionereed the divide-and-
conquer approach to parallel SAT-solving, after learning about the Clause-Diffusion

Maria Paola Bonacina
Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134
Verona, Italy, EU. e-mail: mariapaola.bonacina@univr.it

1

2 M. P. Bonacina

methodology for distributed deduction [27, 48, 49, 51] and its implementation in the
Aquarius theorem prover [46, 27, 47, 52].

In previous work, we surveyed parallel theorem proving twice, first at the height
of the interest in this topic [27, 50], and then when the involvement of the scientific
community with this fascinating subject was already decreasing [36, 37]. In this
chapter we revisit parallel theorem proving, in the light of advances in theorem
proving itself and in parallel SAT-solving, with the aim of providing the readers
with material to reflect about the connections between:

• Past work in parallel theorem proving and selected contemporary approaches to
theorem proving;

• Past work in parallel theorem proving and later work in parallel SAT-solving;
• Selected approaches to parallel SAT-solving and potentially new leads for paral-

lel theorem proving.

Since the time of the latest investigations in parallel theorem proving, the field
has witnessed a significant growth of the paradigm of model-based reasoning [44],
where a theorem-proving method is model-based, if the state of a derivation con-
tains a representation of a candidate partial model that unfolds with the derivation.
Traditional model-based first-order methods include subgoal-reduction strategies
based on model elimination and model-elimination tableaux, whose parallelization
received considerable attention [194, 7, 75, 63, 144, 170, 209, 104, 219]. It is there-
fore an interesting question to ask what we may learn from past work on parallel
theorem proving towards the parallelization of more recent or new approaches to
model-based theorem proving.

The growth of model-based reasoning has various motivations. One motivation
is the relevance of models for applications. For instance, an assignment to program
variables is a model from a logical point of view [40]. Thus, models become “moles”
to exercise program paths in testing or examples for example-driven synthesis, and a
reasoner that generates models supports automated test generation and program syn-
thesis [82, 141]. Another motivation is inspiration from the practical successes of
solvers for propositional satisfiability (cf. [157] and the chapter on Parallel Satisfia-
bility) and satisfiability modulo theories (SMT) (cf. [83] and the chapter on Parallel
Satisfiability Modulo Theories), that are model-based because built on the CDCL
(Conflict-Driven Clause Learning) procedure [161, 162, 171, 160], which is inher-
ently model-based. Therefore, another spontaneous question is what we may learn
from past work on both parallel theorem proving and parallel SAT-solving towards
the parallelization of recent model-based first-order methods. Examples of the lat-
ter include DPLL(Γ +T) [81, 56, 57], that integrates an ordering-based strategy
in an SMT solver, and SGGS, for Semantically-Guided Goal-Sensitive reasoning
[60, 59, 61, 62], that generalizes CDCL to first-order logic.

To this end we reconsider and expand our analyses of the parallelization of theo-
rem proving [50, 37], covering subgoal-reduction strategies, ordering-based strate-
gies, and instance-based strategies. Ordering-based strategies are based on ordered
resolution and ordered paramodulation/superposition. They represent the state of
the art for first-order logic with equality and are implemented in top-notch theorem-

Parallel Theorem Proving 3

provers such as SPASS [218], E [190], and Vampire [137]. Although they are not
model-based, their connection with SAT or SMT solvers is a current research topic
[43, 57, 182]. Instance-based strategies integrate instance generation at the first-
order level with deciding satisfiability at the propositional or ground level, by a SAT
or SMT solver [125, 134]. They are model-based, or at least model-driven, in as
much as instance generation is geared to exclude the models proposed by the solver.

We illustrate a selection of methods already covered in our previous surveys
[50, 37], to make this chapter self-contained, give the reader a direct impression of
those methods, and have material for discussion. For example, ROO [154, 155, 156]
illustrates the approach to parallelization by parallel inferences in shared memory
that was the state of the art before Clause-Diffusion, and Team-Work [84, 9, 88, 10,
89, 92, 91, 87, 197] is a forerunner of the portfolio approach.

Then we summarize twelve years of research on the Clause-Diffusion method-
ology [27, 48, 49, 51] to parallelize ordering-based strategies, including Modified
Clause-Diffusion [28, 29], and the Clause-Diffusion provers Aquarius [46, 27, 47,
52], Peers [58, 51], and Peers-mcd [30, 31, 33, 38]. We reflect on the impact of
Clause-Diffusion on subsequent research: Clause-Diffusion played a central role,
because it was the first approach to move from the parallelization of inferences to
the parallelization of search, so that it can be considered a forerunner of all parallel
or distributed search methods in both theorem proving and satisfiability.

In the final discussion we draw connections between parallel theorem proving
and parallel SAT-solving (e.g., [107, 112, 113, 123, 187, 111, 116]), and we discuss
ideas for future work in parallel theorem proving, especially parallel model-based
theorem proving.

This chapter is organized in three parts: Section 2 provides a parallelization-
oriented survey of theorem-proving strategies; Section 3 presents the approaches to
parallel theorem proving; and Section 4 contains the final discussion.

It is our contention that much of the research in parallel and distributed theorem
proving was simply ahead of its time, with respect to both theorem proving and
parallel or distributed computing, and we hope that this chapter will contribute to
maintain its intellectual legacy alive and fruitful for future research.

2 Theorem Proving Strategies

We begin our analysis of the parallelizability of theorem proving with a classifi-
cation of theorem-proving strategies in three categories: subgoal-reduction based,
ordering-based, and instance-based strategies. Ordering-based strategies include
expansion-oriented and contraction-based strategies. In this section we survey these
classes of theorem-proving strategies, covering inference system, search plan, proof
generation, redundancy control, and use of models. The presence of backward con-
traction inferences, the size of the database of clauses generated and kept by the
strategy, and the degree of dynamicity of the database of clauses, are among the
relevant issues for parallelization.

4 M. P. Bonacina

2.1 Subgoal-reduction Strategies

We use ϕ and ψ for clauses, σ for most general unifiers, L and L′ for literals, C
and D for disjunctions of literals, ' for equality, and � for the empty clause, which
represents a contradiction.

In theorem proving subgoal reduction stems from ordered linear resolution
[138]: at each step the strategy resolves the current goal clause ϕi = L∨C with
an input clause ψ = L′∨D, such that Lσ = ¬L′σ . The next goal clause ϕi+1 is the
resolvent (D∨C)σ , where L, seen as a subgoal to be solved, has been replaced by
or reduced to a new bunch of subgoals Dσ . Such a procedure is called linear, be-
cause at every resolution step one of the parents is the previous resolvent; it is called
linear input, if, in addition, the side clause ψ is always an input clause. The ordered
attribute refers to the requirement that the literals in goal clauses be resolved away
in a fixed pre-defined order, determined by the literal-selection rule of the strategy,
also known as AND-rule. A typical example is to select literals in left-to-right order.
Using only input clauses as side clauses is sufficient for problems made of Horn
clauses, or clauses with at most one positive literal [119]. For full first-order logic,
also ancestor goal clauses have to be considered for side clauses, so that ψ may be
a ϕ j with j < i.

Model elimination (ME) can be described as a variant of ordered linear resolution
[153, 71, 54], where L is saved in ϕi+1 as a boxed, or framed, literal [L] (A-literal
in the original ME terminology), so that ϕi+1 has the form (D∨ [L]∨C)σ . The
resulting inference rule is called ME-extension. In this manner, resolution with an
ancestor goal clause can be replaced by ME-reduction, that reduces a goal clause
L′ ∨D∨ [L]∨C to (D∨ [L]∨C)σ when Lσ = ¬L′σ . Thus, ME is a linear input
strategy for full first-order logic.

Independent of resolution, the concept of ME is to prove that the input set S of
clauses is unsatisfiable by eliminating all possible candidate models [152]. In order
to satisfy a set S of first-order clauses, it is necessary to satisfy all its clauses. In
order to satisfy a clause, it is necessary to satisfy all its ground instances. In order to
satisfy a ground instance, it is necessary to satisfy one of its literals. If the current
goal clause ϕi = L∨C and an input clause ψ = L′ ∨D are such that Lσ = ¬L′σ ,
no model can satisfy ϕiσ and ψσ by satisfying Lσ and L′σ . The next goal clause
ϕi+1 = (D∨ [L]∨C)σ generated by ME-extension says precisely this: the literal
Lσ is framed to denote that it has been added to the current candidate model, so
that ϕiσ is satisfied; since a model that satisfies Lσ cannot satisfy L′σ , some other
literal in Dσ must be satisfied to satisfy ψσ . In this sense, the literals of Dσ are
subgoals of Lσ . An ME-reduction step that reduces a goal clause L′∨D∨ [L]∨C to
(D∨ [L]∨C)σ , when Lσ = ¬L′σ , reckons that L′σ cannot be satisfied in a model
that contains L.

ME-tableaux make this model elimination process perspicuous by building a
tableau, that is a tree, whose nodes are labeled by literals, and whose branches rep-
resent candidate models [144, 19, 25, 20, 142, 146, 39]. A branch is closed if it
contains two complementary literals, and it is open otherwise. An open branch rep-
resents a candidate model, whereas a closed branch represents an eliminated model.

Parallel Theorem Proving 5

A tableau is closed if all its branches are, which means that all candidate models
have been eliminated. If Lσ = ¬L′σ for the leaf L of an open branch and an input
clause ψ = L′ ∨D, ME-extension extends the branch with children labeled by the
literals of ψ , applies σ to the tableaux, and closes the branch with the complemen-
tary literals Lσ and L′σ . If a branch contains literals L and L′ such that Lσ = ¬L′σ ,
ME-reduction applies σ to the tableau and closes the branch.

A subgoal-reduction derivation can be described in the form

(S;ϕ0) ` (S;ϕ1) ` . . .(S;ϕi) ` . . .

where S is the input set of clauses, ϕ0 ∈ S is the input clause designated as ini-
tial goal, and ϕ1, . . . ,ϕi, . . . is the succession of proceeding goal clauses. The initial
goal clause ϕ0 = L1∨ . . .∨Lk yields an initial tableau where the root has k children
labeled by L1, . . . ,Lk. Note that the literals L1, . . . ,Lk may share variables, which
means that the branches of the tableau may share variables, which is why substitu-
tions apply to the entire tableau. The literals in the current goal clause ϕi label the
leaves of the open branches of the tableau, and the framed literals in ϕi label the
inner nodes of the tableau.

A derivation is a refutation if ϕk = � for some k, k > 0, or, equivalently, if the
tableau is closed. A subgoal-reduction strategy is refutationally complete if, when-
ever S is unsatisfiable and S\{ϕ0} is satisfiable, there exists a refutation of S by the
strategy starting with (S;ϕ0). If S is unsatisfiable and S\{ϕ0} is satisfiable, it is the
addition of ϕ0 that makes the set unsatisfiable, and this is why ϕ0 is the initial goal
clause. Since all generated clauses descend from the initial goal clause, subgoal-
reduction strategies are goal-sensitive. An unsatisfiable S may contain more than
one clause ϕ0 such that S is unsatisfiable and S \ {ϕ0} is satisfiable, so that there
may be a choice of initial goal clause.

Given a refutation with ϕk = �, the comb shaped resolution tree formed by the
sequence of goal clauses ϕ0, . . . ,ϕk−1,� and their companion side clauses is the
generated proof. The linear shape of the generated proof reveals the linear nature of
the strategy. In ME-tableaux, the closed tableau represents the proof.

In subgoal-reduction strategies, redundancy appears in the form of repeated sub-
goals or subgoal instances, and it is countered by techniques called C-reduction
[195], caching [8, 54], regressive merging [215], folding-up [143, 103] or success
substitutions [146], and tabling or memoing [217]. C-reduction, caching, and re-
gressive merging are used in model elimination, folding-up and success substitu-
tions in tableaux, tabling and memoing in declarative programming. In essence, all
these techniques descend from the idea of lemmatization or lemmaizing [152, 8, 54].
Adopting tableaux parlance, if the strategy manages to close a sub-tableau whose
root is labeled with literal L, it means that no model of the set S of clauses contains
L, that is, S |=¬L. Thus, ¬L can be learned as a lemma, and applied to resolve away,
or close, any future subgoal L′ such that Lσ = L′σ [143, 103, 39]. 1 Lemmatization

1 If the sub-tableau is closed using ME-reductions with ancestors L1, . . . ,Ln of L, no model with
L1, . . . ,Ln contains L; the lemma is ¬L∨¬L1 ∨ . . .∨¬Ln; and ¬L can be applied as a unit lemma
only below L1, . . . ,Ln (cf. Section 2.5 of [39]).

6 M. P. Bonacina

causes the database of clauses to grow, if the lemmas are added to S, but a com-
mon characteristic of caching techniques is to store the information on the learned
lemma ¬L, or dually, on the solved subgoal L, without bothering S. For example, in
folding-up, the information is stored in the tableau, at the node labeled with L.

Subgoal-reduction strategies use depth-first search (DFS) to search for a proof,
with backtracking to get out of the dead-end represented by a ϕi to which no infer-
ence applies (e.g., its leftmost literal can be neither ME-extended nor ME-reduced).
A specific DFS plan is characterized by a literal-selection rule and a clause-selection
rule, also known as OR-rule, that determines the order in which the input clauses are
tried. A typical example is to try clauses in top-down order, that is, in the order they
are written in the input file. Backtracking undoes the latest inference and substitu-
tion application to enable the strategy to try a different inference. For completeness,
DFS is enriched with iterative deepening [133, 206] on the number of resolution
or ME-extension inferences. Thus, subgoal-reduction strategies develop and keep in
memory one proof attempt at a time, and switch to another one by backtracking.

Prolog Technology Theorem Proving (PTTP) is a major paradigm for subgoal-
reduction strategies [202, 203, 205]. PTTP implements ME on top of the Warren
Abstract Machine (WAM), the virtual machine designed for Prolog [216]. The linear
input nature of ME is crucial, because Prolog uses a variant of ordered linear input
resolution. The WAM is a stack machine, with goal clauses stored on the stack,
and input clauses compiled as a Prolog program. A stack machine implements DFS
naturally. For theorem proving, PTTP adds iterative deepening and the occur check
in unification: when computing a most general unifier σ , the substitution σ cannot
include a pair x← t, where x occurs in t. Unification in Prolog omits this check for
the sake of performance, and because Prolog, at least in its basic formulation, is a
relational language with a limited use of function symbols, so that the likelihood of
a pair x← t, where x occurs in t, is deemed low.

2.2 Ordering-based Strategies

Ordering-based strategies have two kinds of inference rules. Expansion inference
rules generate and add clauses:

S
S′

S⊂ S′

where S ⊂ S′ says that the existing set S of clauses is being expanded by adding
something. An expansion inference rule is sound, if whatever is added is a logical
consequence of what pre-existed, that is, if S′ ⊆ T h(S), where T h(S) = {ϕ : S |= ϕ}.
Examples include binary resolution and factoring [185], that add a binary resolvent
or a factor, paramodulation [183, 174], that adds a paramodulant, superposition
[132, 120, 12], which is ordered paramodulation where the literal paramodulated
into is an equality, equational factoring [13], and reflection, which is resolution

Parallel Theorem Proving 7

with x ' x. Together these inference rules build equality into resolution [121, 186,
13, 53, 173].

Contraction inference rules delete clauses or replace them by smaller ones:

S
S′

S 6⊆ S′ S′≺mul S

where S 6⊆ S′ tells that something has been deleted; S′≺mul S says that S′ is smaller
than S in the multiset extension [96] of a well-founded ordering ≺ on terms, lit-
erals, and clauses [93]; and the double inference line [41] emphasizes the diver-
sity of contraction with respect to the traditional notion of inference. Soundness
for contraction is called adequacy [41]: a contraction inference rule is adequate, if
whatever is deleted is a logical consequence of what is kept, that is, if S ⊆ T h(S′).
Since S ⊆ T h(S′) implies T h(S) ⊆ T h(S′), soundness for contraction is also called
monotonicity [35], meaning monotonicity of inferences with respect to theorem-
hood. Examples of contraction inference rules include tautology deletion, subsump-
tion [185, 189], clausal simplification, which is a combination of unit resolution and
subsumption, demodulation [222] or simplification (i.e., simplification by an equa-
tion) [132, 120, 12], functional subsumption (i.e., subsumption between equations)
[120], purity deletion [80, 54], and conditional simplification [42]. Repeated sim-
plification is called normalization or reduction to normal form, meaning a form that
cannot be rewritten further, and normalization can be viewed as a single contraction
step. The normal form of a clause ϕ is denoted ϕ ↓.

These strategies are called ordering-based, because they use the ordering ≺ to
define contraction rules and restrict expansion rules: resolution is ordered resolu-
tion, factoring is ordered factoring, paramodulation is ordered paramodulation, and
superposition is natively ordering-restricted. This means that only maximal liter-
als are resolved upon, factorized, paramodulated or superposed into and from, and
only maximal sides of equations are paramodulated or superposed into and from,
where maximality is tested in the clause instantiated by the most general unifier of
the inference step [120, 12, 121, 186, 13, 53, 173]. Ordering-based strategies search
for the proof by best-first search and do not need backtracking. Best-first search is
implemented by the given-clause algorithm that we shall cover in Section 3.2 be-
cause it is relevant to parallelization approaches. Several presentations, surveys, and
systematizations of ordering-based theorem proving and its orderings are available
[177, 94, 178, 98, 97, 15, 172, 41, 149, 179].

Ordering-based strategies are not model-based: in ordering-based inference sys-
tems models remain implicit, and come to the forefront only in the proofs of refuta-
tional completeness. For example, a proof technique uses transfinite semantic trees
to survey models and show that the inference system excludes them all [121]. An-
other proof technique is based on saturation. A set of clauses is saturated, if any
inference with premises in the set is redundant (cf. Section 2.2.2 for redundancy).
Refutational completeness is established by showing that a saturated set of clauses
that does not contain � is satisfiable [13].

8 M. P. Bonacina

However, ordering-based strategies may use a fixed interpretation for semantic
guidance, as exemplified in semantic resolution [198], hyperresolution [184], and
resolution with set of support [221] (cf. Sections 2.6 in [35] and 2.1 in [44]).

Hyperresolution resolves a clause L1 ∨ . . .∨Lq ∨C, called nucleus, and clauses
L′1 ∨D1, . . . ,L′q ∨Dq, with q ≥ 1, called electrons, such that Liσ = ¬L′iσ for all
i, 1 ≤ i ≤ q, to generate the hyperresolvent (D1 ∨ . . .∨Dq ∨C)σ [184]. Positive
hyperresolution assumes a fixed Herbrand interpretation I that contains all negative
literals, and generates only clauses that are false in I, namely clauses whose literals
are all positive. Such a clause is called positive. The electrons are required to be
positive clauses, and L1∨ . . .∨Lq are required to be all and only negative literals in
the nucleus. Thus, positive electrons are used to resolve away all negative literals
in the nucleus to get a positive hyperresolvent. Negative hyperresolution is defined
dually with all signs exchanged.

In a strategy with set of support, all clauses issued from the negation of the con-
jecture are considered goal clauses. The input set S of clauses is subdivided into the
set of support SOS, that contains the goal clauses, and its complement T = S\SOS.
T is assumed to be satisfiable (e.g., it contains the axioms of a theory), so that if
S is unsatisfiable, the unsatisfiability is caused by SOS. Every expansion inference
is required to be supported, meaning that at least one parent is in SOS. The gen-
erated clauses are added to SOS, and since they all descend from goal clauses, the
strategy is goal-sensitive. A strategy with set of support is compatible with contrac-
tion (tautology deletion, subsumption, clausal simplification), provided also clauses
generated by backward contraction are inserted in SOS [54]. Since T does not get
expanded, a strategy with set of support is complete for problems with equality only
if T is saturated. The interplay of parallelism and semantic guidance in ordering-
based strategies has not been explored thus far, as we shall discuss in Section 4.

2.2.1 Expansion-oriented Strategies

The distinction between expansion-oriented and contraction-based strategies to-
wards analyzing parallelism [50] depends on the distinction between forward and
backward contraction. In forward contraction, a newly generated clause ϕ , called
raw clause [27, 50], is deleted or normalized into ϕ ↓ by previously existing clauses.
In backward contraction, such a ϕ ↓ is applied to contract previously existing
clauses. Expansion-oriented strategies apply at most forward contraction. Accord-
ingly, an expansion-oriented derivation has the form

(S0;N0) ` (S1;N1) ` . . .(Si;Ni) ` . . .

where Si is the set of clauses in the database of clauses, and Ni is the set of raw
clauses. Every clause in Si has an identifier, typically a positive integer generated
progressively by the prover, and is ready to be used as premise. Raw clauses are
clauses that were just generated and still need to undergo forward contraction. Ini-
tially, S0 = S is the input set of clauses and N0 = /0. Expansion takes premises in Si

Parallel Theorem Proving 9

and adds raw clauses to Ni+1. Forward contraction deletes clauses in Ni and adds
their non-trivial normal forms to Si+1. It follows that S0 ⊆ S1 ⊆ . . . ⊆ Si ⊆ . . ., that
is, for an expansion-oriented strategy the database of clauses is monotonically in-
creasing.

A derivation is a refutation if �∈ Sk for some k, k > 0. A strategy is refutationally
complete if, whenever S is unsatisfiable, there exists a refutation of S by the strategy.
Ordering-based strategies develop multiple proof attempts that remain implicit in the
set of clauses Si. Only when � ∈ Sk, the strategy reconstructs the generated proof
in the form of the ancestor-tree of � [29], denoted Π(�). The reconstruction starts
from � and proceeds backward until it reaches the input clauses. For instance, if
ϕ is a resolvent of ϕ1 and ϕ2, Π(ϕ) has root labeled ϕ and subtrees Π(ϕ1) and
Π(ϕ2). If ϕ is generated as the normal form of a pre-existing clause ψ with respect
to equations ϕ1, . . . ,ϕn, Π(ϕ) has root labeled ϕ and subtrees Π(ϕ1), . . . ,Π(ϕn)
and Π(ψ). Every clause has its own variables, and variants, that is, clauses that
are identical up to variable renaming, are treated as distinct clauses. Therefore, no
clause is generated twice, and Π(ϕ) is uniquely defined given ϕ . Since a clause may
be used as premise more than once, Π(ϕ) is an ancestor-tree if we allow the same
clause to label more than one node, an ancestor-graph otherwise.

At the time of our first analysis of parallel theorem proving [27, 50], it was al-
ready understood that backward contraction is indispensable for theorem proving
by ordering-based strategies, especially in the presence of equality. Thus, the class
of expansion-oriented strategies was introduced to cover parallel resolution-based
theorem-proving methods without backward contraction, mostly for first-order logic
without equality [150, 151, 72, 76, 127] or propositional logic [100], and paral-
lelizations [196, 214, 115, 68, 69] of the Buchberger algorithm [64] to compute
Gröbner bases of ideals generated by sets of polynomials. Buchberger algorithm
is a completion procedure like Knuth-Bendix completion [132], with an expansion
inference rule similar to superposition and a contraction rule similar to simplifica-
tion [65]. However, Buchberger algorithm is guaranteed to converge with or with-
out backward contraction, that can be delayed to a post-processing phase. On the
other hand, validity in equational theories, first-order logic, and first-order logic
with equality is a semi-decidable problem, so that theorem-proving methods are
only semi-decision procedures, and backward contraction is crucial in practice to
find a proof and terminate. Since expansion-oriented theorem-proving strategies to-
day have mostly pedagogical and historical interest, and Buchberger algorithm is
not a first-order theorem-proving strategy, we refer the reader interested in their
parallelization to our previous surveys [50, 37].

2.2.2 Contraction-based Strategies

Contraction-based strategies apply both forward and backward contraction eagerly
and as much as possible. A contraction-based derivation has the form

(S0;N0;R0) ` (S1;N1;R1) ` . . .(Si;Ni;Ri) ` . . .

10 M. P. Bonacina

where Si is the set of clauses in the database of clauses, those with an identifier
and ready to be used as premises; Ni is the set of raw clauses, that is, clauses just
generated and still to be subject to forward contraction; and Ri is the set of clauses
deleted by backward contraction. Initially, S0 = S is the input set of clauses and
N0 = R0 = /0. Expansion takes premises in Si and adds raw clauses to Ni+1. Forward
contraction deletes clauses in Ni and adds their non-trivial normal forms to Si+1.
Backward contraction detects which clauses in Si can be contracted, moves them to
Ni+1, and also copies them in Ri+1. In this way, backward and forward contraction
are implemented by the same operations, and clauses generated by backward con-
traction are treated in the same way as clauses generated by expansion. The copy in
the R component is made for the purpose of proof reconstruction. The database Si
of clauses may either expand or shrink, and therefore it is non-monotonic.

Forward contraction applies to a clause before it is established in the database; it
can be seen as part of the process that leads to install a new clause in the database.
With backward contraction, every clause in the database may be subject to contrac-
tion. Thus, the notion of persistent clauses becomes relevant: a clause is persistent,
if it is never deleted after it has entered Si at some stage i, i≥ 0. The set of persistent
clauses, called the limit of the derivation, is defined as S∞ =

⋃
i≥0

⋂
j≥i S j.

The notions of refutation, refutational completeness, and proof reconstruction are
the same as for expansion-oriented strategies. Assume � ∈ Sk: while an expansion-
oriented strategy finds in Sk all ancestors of �, as clauses deleted by forward con-
traction are not premises of other steps, a contraction-based strategy reconstructs the
proof from Sk]Rk. Indeed, clauses deleted by backward contraction may be ances-
tors of �, because they may have been used as premises before being deleted, and
therefore they may be parents of other clauses. Proof reconstruction is the reason
for the Ri component.

If the Ni and Ri components are omitted, the derivation has the form

S0 ` S1 ` . . .Si ` . . .

where S0 = S is the input set, and at every step Si+1 is derived from Si by an inference
that can be either an expansion or a contraction inference.

A key monotonicity property of contraction-based derivations is ρ(S0)⊆ ρ(S1)⊆
. . . ⊆ ρ(Si) ⊆ . . ., where ρ(S) is the set of clauses that are redundant in S. This
monotonicity property means that if a clause is redundant at a certain stage of the
derivation, it will be redundant at all subsequent stages (cf. Lemma 2.6.4 in [27]), a
principle later popularized by the slogan “once redundant, always redundant” [41].
A clause is redundant in S if adding it or removing it from S neither improves nor
worsens minimal proofs, where improving means making smaller, and worsening
means making larger, with respect to a well-founded proof ordering (cf. [53, 41] and
Chapter 2 of [27]). Clauses that are not redundant are called irredundant. Clauses
deleted by contraction rules are redundant, and so are clauses whose generation is
prevented by the ordering-based restrictions of expansion rules.

The notion of redundancy is extended from clauses to inferences: an inference is
redundant if it uses or generates redundant clauses, and irredundant otherwise. In

Parallel Theorem Proving 11

turn, redundancy is connected with fairness: intuitively, the two concepts are dual,
because redundancy aims at capturing which inferences can be ignored, and fairness
aims at capturing which inferences must be considered to find a proof. Refutational
completeness of the inference system ensures that if the input set S is unsatisfiable,
then there exist refutations. Fairness is the complementary property: if refutations
exist, a fair derivation is guaranteed to be a refutation. Similar to redundancy, also
fairness is defined based on proof orderings: whenever a minimal proof of the target
theorem is reducible by inferences, it is reduced eventually [27, 53, 41]. In practice,
a derivation is fair, if all irredundant inferences are considered eventually. A search
plan is fair, if it generates a fair derivation for all inputs. The combination of a
refutationally complete inference system and a fair search plan yields a complete
theorem-proving strategy.

Contraction-based strategies feature a search plan that prioritizes contraction
over expansion, in order to ensure that redundant clauses are deleted prior to be-
ing selected as expansion premises. Such a search plan is called simplification-first
[45], contraction-first [50], or eager-contraction [29] search plan.

2.3 Instance-based Strategies

All first-order clausal theorem-proving strategies can be seen as ways to implement
Herbrand’s theorem, which says that a set S of first-order clauses is unsatisfiable if
and only if there exists a finite set of ground instances of clauses of S that is unsatis-
fiable [71]. The semi-decidability of first-order theorem-proving descends from this
theorem. Instance-based strategies represent the theorem-proving paradigm most
directly inspired by Herbrand’s theorem. The basic idea is to generate ground in-
stances of input clauses, and test them for propositional unsatisfiability. The first
such procedure was Gilmore method [71], followed by SATCHMO [159], and hy-
perlinking [140], the latter at the beginning of the renewed interest for the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [80, 79, 71] for propositional sat-
isfiability.

A clause L1 ∨ . . .∨ Lq, called nucleus, and clauses L′1 ∨D1, . . . ,L′q ∨Dq, with
q≥ 1, called electrons, such that Liσ = ¬L′iσ for all i, 1≤ i≤ q, form a hyperlink.
Hyperlinking generates the instance of the nucleus (L1 ∨ . . .∨ Lq)σ . An instance
generated by hyperlinking is termed hyperinstance. Variants of a same clause may
be used in a hyperlink, and all literals of the nucleus are linked, since the purpose
is not to generate a hyperresolvent (cf. Section 2.2), but to instantiate the nucleus as
much as possible. Since only instances are generated, all contraction is forward con-
traction, limited to unit subsumption and clausal simplification, because unrestricted
subsumption would delete all instances and defeat the purpose of the strategy. An
instance-based derivation has the form

(S0;F0) ` (S1;F1) ` . . .(Si;Fi) ` . . .

12 M. P. Bonacina

where Si is the set of clauses in the database of clauses, those with an identifier
and ready to be used as premises, and Fi is the set of generated instances. Initially,
S0 = S is the input set of clauses and F0 = /0. Instance generation takes premises in
Si and adds new clauses to Fi+1. Forward contraction deletes clauses in Fi and adds
their non-trivial normal forms to Fi+1. If all hyperlinks in Si have been considered,
and contraction has been applied, all clauses in Si∪Fi are made ground by replacing
all variables by a new constant. A SAT solver is applied to the resulting ground
set: if it is unsatisfiable, the procedure halts successfully; otherwise, the next phase
of hyperlinking starts with state (Si+1;Fi+1) where Si+1 = Si ∪Fi and Fi+1 = /0. It
follows that S0 ⊆ S1 ⊆ . . .⊆ Si ⊆ . . ., that is, the database of clauses is monotonically
increasing.

While early instance-based strategies had a generate-and-test flavor, proceeding
ones, such as CLINS-S [73, 74], ordered semantic hyperlinking (OSHL) [181, 180],
Inst-Gen [105, 106, 136, 135], as well as methods that hybridize instance genera-
tion and tableaux, such as the disconnection calculus [26, 145, 147, 148] and hy-
pertableaux [16, 24], progressively emphasized model-driven instance generation,
putting model building in the driver’s seat. The model-building component of the
procedure maintains a candidate model. The instance-generation component gener-
ates ground instances that are false in the model in order to exclude it. The model-
building component updates the model to satisfy those ground instances, and the
game continues until a contradiction arises.

In summary, for subgoal-reduction strategies the database of clauses is fixed and
equal to the input set, hence relatively small; for expansion-oriented and instance-
based strategies it is large and monotonically increasing; for contraction-based
strategies it is large and non-monotonic. Since expansion-oriented strategies today
have mostly pedagogical and historical interest, from now on we use ordering-based
strategies to mean contraction-based strategies.

3 Parallelization of Theorem Proving

We distinguish three types of parallelism for deduction: fine-grain parallelism or
parallelism at the term/literal level, medium-grain parallelism or parallelism at the
clause level, and coarse-grain parallelism or parallelism at the search level.

In parallelism at the term/literal level, the parallelization affects operations be-
low the inference level, as in parallel rewriting, where parallel rewrite steps together
make a normalization inference; or below the clause level, as in AND-parallelism,
where alternative inferences apply in parallel to different literals of a clause. In par-
allelism at the clause level, the parallelization affects operations at the inference
level, so that parallelism at the clause level means parallel inferences. The possibil-
ity of conflicts between parallel inferences, and the impact of backward contraction
on their incidence, emerge as key issues for fine and medium-grain parallelism. This
discovery [27, 50] led to the move from parallelism at the clause level to parallelism
at the search level pionereed by Clause-Diffusion.

Parallel Theorem Proving 13

In parallelism at the search level, the parallelization affects entire derivations, as
multiple processes search in parallel for a proof, so that parallelism at the search
level means parallel search and involves communication among the processes. Par-
allel search yields multi-search, where the parallel processes employ different search
plans, distributed search, where the search space is subdivided among the processes,
and their combination.

3.1 Parallelism at the Term or Literal Level

The classification of types of parallelism is based on the granularity of data accessed
in parallel, leading to a distinction among fine-grain, medium-grain, and coarse-
grain parallelism. Intuitively, the finer the granularity, the higher the possibility that
parallel processes incur into conflicts. For inferences, fine-grain parallelism means
having parallel processes access in parallel distinct terms or literals of a clause, so
that fine-grain parallelism is parallelism at the term or literal level.

3.1.1 Parallelism at the Literal Level for Subgoal-reduction Strategies

For subgoal-reduction strategies, fine-grain parallelism is AND-parallelism, where
parallel processes access and reduce in parallel distinct literals of a goal clause.
However, literals of the same clause may share variables, so that the parallel pro-
cesses may be in conflict, in the sense that they need to instantiate the same variables
by different unifiers.

For example, assume that the goal clause ϕ contains literals ¬P(x) and ¬Q(x,y),
where P and Q are predicate symbols, and x and y are variable symbols. The
two literals share the variable x. Let S include the clauses ψ1 = P(a) ∨C and
ψ2 = Q(f (z),z)∨D, where a is a constant symbol, f is a function symbol, and
z is a variable symbol. A process that resolves upon ¬P(x) and P(a) and a pro-
cess that resolves upon ¬Q(x,y) and Q(f (z),z) are in conflict, because the first one
needs to apply the substitution x← a and the second one needs to apply the substitu-
tion x← f (z). For this reason, already early provers parallelizing subgoal-reduction
strategies, such as PARTHEO [194], METEOR [7], and Parthenon [75, 63], avoided
AND-parallelism.

3.1.2 Parallelism at the Term Level for Ordering-based Strategies

For ordering-based strategies, fine-grain parallelism is parallel term rewriting,
where a term t is rewritten by applying in parallel multiple rewrite rules, or equa-
tions applied according to the ordering �. Given two equations that apply to a term
t, it is well-known that there are three cases [132].

14 M. P. Bonacina

The first possibility is that the two equations rewrite t at disjoint positions. For
example, the equations i(i(x)) ' x and f (x,y) ' f (y,x) match disjoint positions of
the term h(i(i(a)), f (a,b)), where f , h, and i are function symbols, and a and b are
constant symbols. The two steps can be applied in parallel, yielding h(a, f (b,a)),
under an ordering � where a� b.

The second possibility is that the two equations have a variable overlap. For
example, the equations (1) h(x,x) ' x and (2) f (y,b) ' y overlap at a variable po-
sition in f (h(a,a),b), because h(x,x) matches with h(a,a), f (y,b) matches with
f (h(a,a),b), and the position of h(a,a) corresponds to that of the variable y in
f (y,b). The two equations can be applied in any order, because the two rewrit-
ing sequences f (h(a,a),b)→(1) f (a,b)→(2) a and f (h(a,a),b)→(2) h(a,a)→(1) a
yield the same result.

The third possibility is that the two equations overlap at a non-variable posi-
tion. For example, the equations (1) f (z,e)' z and (2) f (l(x,y),y)' x, where e is
another constant symbol and l another function symbol, overlap at a non-variable
position in f (l(a,e),e), as both match the whole term. It is impossible to apply both
equations, because the first one rewrites the term to l(a,e) and the second one to a,
as shown in the peak l(a,e)←(1) f (l(a,e),e)→(2) a. The two rewriting steps are in
conflict, as they aim at replacing the same term by different terms.

An overlap tout court is a non-variable overlap: two equations overlap, if the
left-hand side of one unifies with a non-variable subterm of the other. An over-
lap is a pre-condition to apply superposition. In the above example, the left hand
sides f (z,e) and f (l(x,y),y) of the equations (1) f (z,e)' z and (2) f (l(x,y),y)' x
overlap as they unify with most general unifier {y← e,z← l(x,e)}. Indeed, su-
perposition generates from the two equations the new equation l(x,e) ' x, closing
the peak l(x,e)←(1) f (l(x,e),e)→(2) x, of which the above peak is an instance. A
sufficient and necessary condition to avoid conflicts is to exclude the non-variable
overlap case by requiring the equations to be non-overlapping, which means that
neither left-hand side unifies with a non-variable subterm of the other.

Historically, parallel rewriting [108, 109, 95, 129] allows parallel processes to
apply in parallel equations that match the term at disjoint positions, while concurrent
rewriting [131, 3, 4] allows them to apply equations that match at disjoint positions
or have a variable overlap.

In equational declarative languages for specification or programming, equations
are required to be regular, that is, non-overlapping and left-linear. The latter prop-
erty says that no variable occurs repeated in the left-hand side. Regularity suffices
to ensure uniqueness of normal forms, which means that the set of equations defines
a functional program, in the sense that the output t ↓ is unique for a given input
term t to be reduced [118]. Thus, the study of parallel or concurrent term rewrit-
ing was motivated primarily by the quest for fast implementations of interpreters of
equational declarative languages [108, 109, 95, 129].

In theorem proving it is impossible to restrict the attention to non-overlapping
equations, since this would mean barring superposition, which is the main expansion
inference rule to deduce equations from equations. The same consideration applies
to Knuth-Bendix completion, where superposition first appeared [132]. Neverthe-

Parallel Theorem Proving 15

less, the possibility of implementing Knuth-Bendix completion on top of parallel
[66] or concurrent [130] rewriting, the latter only in the ground case, was explored.
If all equations are ground, superposition collapses to simplification, and all opera-
tions of completion are done by rewriting. In the non-ground case, superposition is
done sequentially, and only normalization can take advantage of parallel rewriting.

3.2 Parallelism at the Clause Level

Medium-grain parallelism for inferences means having parallel processes access in
parallel distinct clauses, and perform one or more inferences with those clauses as
premises. Thus, medium-grain parallelism is parallelism at the clause level.

3.2.1 Parallelism at the Clause Level for Subgoal-reduction and
Instance-based Strategies

For subgoal-reduction strategies parallelism at the clause level is OR-parallelism,
where parallel processes access in parallel distinct goal clauses, and resolve them
with as many side clauses generating new goal clauses. This means trying in parallel
the proof attempts that a sequential strategy tries in sequence by going from one to
the next via backtracking. Each goal clause is seen as a task (ϕ, j,k), where ϕ is
a goal clause, j is the number of ME-extension steps used to generate ϕ , and k is
the limit of iterative deepening. The task consists of reducing ϕ to � by applying
at most k− j ME-extension steps. When a new goal clause ϕi+1 is generated from
a goal clause ϕi, a new task (ϕi+1, j+ 1,k) is generated from task (ϕi, j,k). A task
(ϕ, j,k) is active only if j < k.

Assume that there are n processes, all with initial limit k for iterative deepening.
As soon as there are n active tasks, all processes may be active. A way of initializing
the derivation is to have a sequential preprocessing phase where one process pro-
ceeds sequentially, generating at least n tasks. Then, a parallel subgoal-reduction
derivation, with parallelism at the clause level, has the form

(S;G0) ` (S;G1) ` . . .(S;Gi) ` . . .

where the Gi component represents the set of active tasks.
Each process maintains a queue of its active tasks and the distribution of tasks

among the processes is realized by task stealing. When the queue of a process is
empty, that process steals active tasks from the queues of others. Task stealing is
implemented by representing a task (ϕ, j,k) by an encoding of the WAM opera-
tions (cf. Section 2.1) that generate (ϕ, j,k) from the input set of clauses. When
there are no more active tasks, the search restarts with the initial goal and a higher
limit of iterative deepening. Communication of tasks is achieved by message pass-

16 M. P. Bonacina

ing in PARTHEO [194], in shared memory in Parthenon [75, 63], and either way in
METEOR [7].

For instance-based strategies, parallelism at the clause level means having multi-
ple parallel processes picking different clauses as nuclei and generate in parallel all
their hyperinstances [223]. However, a most natural way to parallelize hyperlink-
ing [140] is to execute in parallel the instance generation and satisfiability testing
phases [223]. This may be an example where parallelization contributed to improve
the underlying theorem-proving method, as the notion of doing in parallel instance
generation and satisfiability testing may have given ammunition to the design of
instance-based strategies with a tighter integration between model building and in-
stance generation (cf. Section 2.3).

3.2.2 Parallelism at the Clause Level for Ordering-based Strategies

ROO [154, 155, 156] is the paradigmatic example of parallelism at the clause level
for ordering-based strategies. ROO is a parallelization of up to version 2.2 of the
OTTER theorem prover [164, 165, 166, 169]. The idea of ROO is to parallelize the
given-clause algorithm at the heart of OTTER. This algorithm was later adopted
by most theorem provers implementing ordering-based strategies, such as SPASS
[218], E [190] and its predecessor DISCOUNT [10, 90], Vampire [137], Gandalf
[211], WALDMEISTER [117], and Zipperposition [77]. In the given-clause algo-
rithm the database of clauses is organized as two lists of clauses, that we call
already-selected and to-be-selected [35, 41]. In OTTER, these lists
were named originally axioms and set-of-support, abbreviated sos; in later
versions axioms was renamed usable. In E these lists are called active and
passive.

The standard initialization is to start with all input clauses in to-be-selected
and empty already-selected. For a strategy with set of support (cf. Sec-
tion 2.2), one starts with already-selected containing the clauses of T and
to-be-selected those of SOS, which explains the original names of the two
lists in OTTER.

The given-clause algorithm prescribes to perform a loop, until either a refutation
is found or the list to-be-selected becomes empty. In the latter case the in-
put set of clauses is recognized to be satisfiable. For a first-order theorem prover,
termination typically occurs either with a refutation or when the prover hits a prede-
fined time or space threshold. At every iteration of the loop, the prover selects from
to-be-selected the best clause according to a heuristic evaluation function
[5, 166, 88, 33, 169, 191]. This clause is the given clause. Thus, the given-clause al-
gorithm realizes a best-first search. The prover performs all applicable expansion in-
ferences having as premises the given clause and clauses in already-selected
and moves the given clause from to-be-selected to already-selected.
Every raw clause ϕ thus generated is subject to forward contraction, so that it is
either deleted or reduced to a normal form ϕ ↓ (where ϕ ↓ and ϕ may be identical),
which gets an identifier and is appended to to-be-selected.

Parallel Theorem Proving 17

For backward contraction, the prover detects which previously existing clause ψ

can be contracted by such a ϕ ↓ and subjects every such ψ to forward contraction.
Any resulting ψ ↓ gets a new identifier, is added to to-be-selected, and will
try in turn to backward-contract other clauses. In the case of backward contraction it
cannot be that ψ and ψ ↓ are identical, because ψ was found reducible to begin with.
The backward contraction phase terminates when the set of clauses S is such that
ρ(S) = /0, which is guaranteed to occur eventually thanks to the well-foundedness
of the ordering �.

The OTTER version [169] of the given-clause algorithm applies backward con-
traction to both lists, so that the set S such that ρ(S) = /0 at the end of every iteration
of the loop is the union of already-selected and to-be-selected. The
E version [188, 190], tried first in DISCOUNT [10, 90], applies backward contrac-
tion only to already-selected, so that the set S such that ρ(S) = /0 at the
end of every iteration of the loop contains the clauses in already-selected.
If a clause in already-selected is backward contracted, its descendants in
to-be-selected are deleted.

The idea of the E version is that it is not necessary to keep to-be-selected
fully reduced, since clauses in to-be-selected are not used as premises of
expansion inferences. Since to-be-selected is allowed to contain redundant
clauses, the given clause is subject to forward contraction as soon as extracted from
to-be-selected and prior to be used as expansion premise. Most contempo-
rary provers implementing ordering-based strategies feature both the OTTER and E
versions of the given-clause algorithm.

At the time of ROO, only the OTTER version of the given-clause algorithm
existed. The concept of ROO is to store the lists already-selected and
to-be-selected in shared memory, and let n parallel processes pick n given
clauses and perform in parallel the ensuing expansion and forward contraction in-
ferences. The expansion and forward contraction phases for a given clause is called
task A. The parallel processes are not allowed to append the clauses thus generated
to to-be-selected, because that could cause conflicts in accessing the shared
list, and more importantly because the clauses generated in parallel are not guar-
anteed to be irredundant. Indeed, if N1 and N2 are the sets of clauses generated by
parallel processes p1 and p2, the clauses in N1 are not forward contracted with re-
spect to those in N2 and vice versa. ROO features an additional list, termed K-list,
and lets the parallel processes append their new clauses to the K-list. A single
process performs contraction within the K-list and then transfers all clauses from
the K-list to to-be-selected. This activity is called task B.

All the more, the parallel processes are not allowed to do backward contraction,
in order to avoid conflicts in deleting or rewriting clauses in already-selected
and to-be-selected in shared memory. They are only allowed to test for
backward contraction: if a parallel process discovers that one of its newly gen-
erated clauses can backward-contract a clause ψ in already-selected or
to-be-selected, it adds the identifier of ψ to a list named to-be-deleted.
The single process in charge of task B then proceeds to backward-contract every
such ψ . All processes follow the same schedule: execute task B, if either K-list

18 M. P. Bonacina

or to-be-deleted is not empty and no other process is doing task B; execute
task A otherwise.

Thus, ROO has to do backward contraction sequentially, as only one process is
allowed to execute task B at any given time. Since an ordering-based prover typi-
cally spends most of its time doing contraction, and especially backward contrac-
tion, ROO incurs in a problem identified as the backward-contraction bottleneck
[27, 50], which manifests itself as follows: the single process executing task B lags
behind, K-list and to-be-deleted grow too long, and the other processes
remain idle waiting for clauses to reach to-be-selected and become available
as given clauses.

The backward-contraction bottleneck affects also the application of the transi-
tion-based approach to parallel programming [224] to Knuth-Bendix completion
[225]. The considered version of Knuth-Bendix completion is the original one [132],
that only handles rewrite rules and fails if it generates an equation that cannot be ori-
ented by the ordering into a rewrite rule. For theorem proving, unfailing or ordered
completion [120, 12], that handles also equations, and therefore does not fail, su-
persedes the original Knuth-Bendix completion [132]. Nevertheless, the transition-
based parallelization of Knuth-Bendix completion [225] is relevant to our analysis
as another instance of parallelism at the clause level. It performs parallel inferences
in shared memory, with locks and critical regions to prevent conflicts between infer-
ence steps that involve the same rewrite rules. Backward contraction causes a write-
bottleneck as all the backward-contraction inferences ask write-access to shared
memory. It is plausible that the difficulty with backward contraction suggested ap-
plying the transition-based approach to Buchberger algorithm [68, 69] instead, since
in Buchberger algorithm backward contraction is not as crucial (cf. Section 2.2.1).

Because of the backward-contraction bottleneck, parallelism at the clause level
was largely abandoned, and an approach à la ROO was never tried in combination
with the E version of the given-clause algorithm.

3.3 The Rise of Parallel Search

The above analysis of parallelism at the term/literal and clause levels reveals that a
key element to understand whether and how theorem proving can be parallelized is
an abstract analysis of the conflicts between parallel inferences [27, 50]. The analy-
sis is abstract in the sense of not being tied to a memory model or an implementation.

Two expansion inferences read their premises and generate and add their con-
sequences. If they add their consequences to a shared data structure, some access
control is required, but two expansion inferences are not in conflict in an essential
way, because they only read their premises. On the other hand, contraction infer-
ences delete or rewrite one of their premises, and therefore determine three types of
conflicts:

1. Write-write conflict between contraction inferences: two contraction steps aim at
rewriting the same clause ϕ;

Parallel Theorem Proving 19

2. Write-read conflict between contraction inferences: a contraction step aims at
rewriting a clause ϕ that another contraction step aims at using as premise to
contract some other clause ψ;

3. Write-read conflict between contraction and expansion inferences: a contraction
step aims at rewriting a clause ϕ that an expansion step aims at using as premise
to generate other clauses.

Conflicts of Type (1) are exemplified by the conflicts in parallel rewriting (cf. Sec-
tion 3.1). Conflicts of Types (2) and (3) are due to backward contraction, because a
raw clause is not used as premise of another inference while it is subject to forward
contraction. A conflict of Type (2) is harmless: the once redundant always redun-
dant principle ensures that no matter which step commits, the other clause, whether
ϕ or ψ , will still be reducible [27]. Conflicts of Type (3) are the most problem-
atic, because ϕ is redundant, a clause generated by ϕ will also be redundant, and
therefore the contraction step should have priority.

Subgoal-reduction strategies have a static database of clauses given by the input
set and no contraction. The absence of contraction means no conflicts among in-
ferences. A static, relatively small, database of clauses represents read-only data
that can be kept in shared memory, and even compiled as done for declarative
programs. Instance-based strategies have a monotonically increasing database of
clauses given by the input set plus instances, and only forward contraction. The
absence of backward contraction means no conflicts among inferences. This ex-
plains why approaches to parallelize subgoal-reduction and instance-based strate-
gies adopted parallelism at the clause level (cf. Section 3.2.1).

The situation is different for ordering-based strategies: the database of generated
clauses is large, and non-monotonic, in fact highly dynamic, due to backward con-
traction, which causes conflicts among inferences. There is no read-only data, as any
clause can be rewritten by proceeding ones. Contraction is essential for equational
reasoning: indeed subgoal-reduction and instance-based strategies as described thus
far are for first-order logic, and ordering-based strategies for first-order logic with
equality. This analysis motivates resorting to coarse-grain parallelism for ordering-
based strategies for first-order logic with equality.

Coarse-grain parallelism in deduction is parallelism at the search level or paral-
lel search: multiple processes p0, . . . , pn−1 search in parallel for a proof, each devel-
oping its own derivation and maintaining its own database of clauses. It is sufficient
that one of the processes succeeds, and as soon as that happens, all may halt. Since
each process has its own database of clauses, the issue of conflicts disappears, and
especially the backward-contraction bottleneck cannot arise. While parallelism at
the term/literal or clause levels aim at speeding up a given search, parallelism at the
search level aims at finding a proof sooner by generating new searches, by searching
in different ways.

The counterpart of allowing every process to build its own database of clauses
is the redundancy of having the same clauses in all or some of these databases.
However, this duplication is not considered redundancy in parallel search, as long
as the clauses are not redundant in the logical sense (cf. Section 2.2.2). Moreover,
as long as contraction inferences are adequate, having ϕ in the database of a pro-

20 M. P. Bonacina

cess and ϕ ↓ in the database of another process is not a correctness issue, unlike in
other distributed applications, where the lack of agreement or coherence may affect
correctness.

A general issue with parallelism at the search level is to differentiate the searches
conducted in parallel by the processes. Intuitively, it is wasteful to have different
processes visit the same search space, performing the same inferences in the same
order. On the other hand, it is unavoidable that their searches have something in
common, given that they are all solving the same problem. The idea is to minimize
the overlap of the searches performed by the parallel processes [27, 50, 51, 30, 31,
32, 34, 38].

One approach to this issue is to differentiate the processes by letting them exe-
cute different search plans on the same data. The dual approach is to differentiate
them by letting them execute the same search plan on different data. A way to dif-
ferentiate data is to subdivide clauses and inferences among the processes, in order
to subdivide the work to be executed. In parallel theorem proving this distinction
was presented first as competition versus cooperation [192, 210, 85]. The analogue
in parallel SAT-solving is the dichotomy between the portfolio approach and the
divide-and-conquer approach. However, these terminologies suggest that the two
parallelization principles may not coexist, while several methods explore their com-
bination. We distinguish between multi-search and distributed search [37, 38].

Both multi-search and distributed search approaches feature communication
among the parallel deductive processes. In the case of distributed search the ra-
tionale for communication is obvious: since the space to be searched is subdivided,
communication is needed for completeness. However, also in the case of multi-
search communication is necessary, otherwise multi-search reduces to running in-
dependent experiments in parallel.

For subgoal-reduction strategies, parallel search is typically multi-search, be-
cause the database of clauses is small and static. On the other hand, the large
database of generated and kept clauses of ordering-based strategies suggests dis-
tributed search, and the notion of subdividing the search space by subdividing
clauses and inferences. Since ordering-based strategies also offers a variety of search
plans, both multi-search and distributed search have been applied to ordering-based
strategies. In the rest of this section, we cover multi-search for subgoal-reduction
strategies, multi-search for ordering-based strategies, and distributed search for
ordering-based strategies.

3.4 Multi-search

A multi-search method is a parallel search method where the parallel deductive pro-
cesses apply different search plans to search for a solution. As a way to differentiate
the searches further, multi-search may also allow the processes to employ different
inference systems. In multi-search with homogeneous systems, the deductive pro-
cesses have different search plans and the same inference system. In multi-search

Parallel Theorem Proving 21

approaches with heterogeneous systems, the deductive processes differ in the infer-
ence system or in both inference system and search plan.

3.4.1 Multi-search for Subgoal-reduction Strategies

For subgoal-reduction strategies, ways of differentiating the search plans include
assigning to the parallel processes different literal-selection rules [207], different
clause-selection rules, different limits for iterative deepening, different choices of
initial goal clause, or any combination thereof. These possibilities have been ex-
plored in the successors of PARTHEO [194], namely SETHEO, E-SETHEO, SPTHEO,
CPTHEO and P-SETHEO [144, 170, 209, 104, 219].

A multi-search subgoal-reduction derivation with n processes p0, . . . , pn−1 takes
the form

(S;G j
0) ` (S;G j

1) ` . . .(S;G j
i) ` . . .

where S is the input set of clauses, and G j
i is the set of active tasks at process p j, 0≤

j ≤ n−1, and stage i, i≥ 0 (cf. Section 3.2.1 for the notion of task). The processes
may communicate tasks, so that each process may have a set of active tasks as an
effect of communication. If the processes start with different limits k0, . . . ,kn−1 for
iterative deepening, a process may have in its set active tasks with different limits,
such as (ϕ,n,k) and (ϕ ′,n′,k′): if k < k′, task (ϕ,n,k) must be given higher priority
by the process, in order to preserve completeness.

An example of heterogeneous system is HPDS [208], with three deductive pro-
cesses and a deduction controller. The three deductive processes execute guided
linear deduction (GLD), which is similar to model elimination (cf. Section 2.1),
hyperresolution (HR) (cf. Section 2.2), and unit-resulting resolution (UR) [204], re-
spectively. The latter inference rule resolves a clause L1∨ . . .∨Lq∨Lq+1, called nu-
cleus, and unit clauses L′1, . . . ,L

′
q, with q≥ 1, called electrons, such that Liσ =¬L′iσ

for all i, 1 ≤ i ≤ q, to generate the unit clause Lq+1σ . If the Lq+1 literal is allowed
to be absent, UR resolution is allowed to generate �. As UR resolution alone does
not form a refutationally complete inference system, its purpose is to accelerate the
generation of unit clauses for other inference rules. For example, UR resolution is
used to generate unit lemmas for a PTTP prover [204].

HPDS implements this concept in a parallel setting. Every process is endowed
with forward and backward subsumption, employs a DFS plan with iterative deep-
ening, and sends the clauses it generates, including subsumed clauses tagged as
such, to the deduction controller. The deduction controller forwards to the GLD and
HR processes the unit clauses generated by the UR process, and feeds the latter
with the clauses generated by the other two. It may also forward to the HR process
clauses generated by GLD, but not vice versa, so that the GLD process only receives
unit lemmas. Furthermore, the deduction controller gives every process information
on clauses subsumed by the other processes.

Another instance of multi-search with heterogeneous systems is CPTHEO [104],
built on top of the model elimination prover SETHEO [144]. SETHEO is equipped

22 M. P. Bonacina

with a resolution-based prover preprocessor, named Delta [193], with the idea of
generating in advance, by resolution, clauses that could be useful as lemmas for the
subgoal-reduction derivation. CPTHEO replaces preprocessing by cooperation in a
parallel setting: it launches SETHEO and Delta in parallel, and lets SETHEO use
the clauses generated by Delta as lemmas, according to different communication
schemes.

For instance, SETHEO sends to Delta goal clauses from tasks that SETHEO can-
not solve in the current limit of iterative deepening. Delta responds with lemmas
that resolve with those goal clauses. SETHEO restarts with its next round of itera-
tive deepening and a database of clauses enriched with the received lemmas.

Alternatively, SETHEO sends to Delta the literals labeling the open leaves in
its current tableau. Delta replies by sending lemmas including similar literals of
opposite sign. Similarity is measured according to various heuristic criteria [103].
In either scheme Delta ranks its generated clauses and selects the best to be sent
as lemmas. The ranking is based on clause size, with small size deemed preferable,
size of Π(ϕ) for clause ϕ , with large size deemed preferable, assuming that a clause
that required more inferences to be generated is more precious, and similarity-based
criteria [103].

3.4.2 Multi-search for Ordering-based Strategies

Multi-search for ordering-based strategies was introduced with the Team-Work
method [84, 9, 88, 10, 89, 91, 92, 87, 197]. Team-Work is devised for purely equa-
tional problems, but its concept applies just as well to first-order logic with equal-
ity. The Team-Work method provides for n deductive processes p0, . . . , pn−1, one
of which also plays the role of supervisor. All processes start with the same in-
put problem, the same inference system, a time period, again the same for all pro-
cesses, but different search plans. For instance, in the context of the given-clause
algorithm, this may mean different evaluation functions to select the given clause
[5, 166, 88, 33, 169, 191]. Every process develops its own derivation and builds its
own database of clauses independently. When the allotted time period expires, ev-
ery process evaluates its current database of clauses, based on a set of heuristic mea-
sures, the same for all processes. For example, the number of generated clauses may
indicate how productive a process has been, while the number of deleted clauses
may suggest whether the process has generated some very effective simplifiers or
subsumers.

Then, every process sends to the supervisor its scores according to the heuristic
measures. The supervisor picks a winner, the one with the best scores, and broad-
casts its identity, say p j. The winner p j becomes the supervisor for the next round,
and all the other processes send to p j their best clauses according to other heuris-
tic criteria, relative to individual clauses [5, 88], rather than the whole database.
For example, an equation that has simplified many other clauses may be deemed
precious. The new supervisor p j broadcasts its database, enriched with these best
clauses received from the others. In this manner, all deductive processes restart with

Parallel Theorem Proving 23

the best database generated thus far and augmented with selected good clauses from
the other derivations.

A multi-search ordering-based derivation with n processes p0, . . . , pn−1 has the
form

S j
0 ` S j

1 ` . . .S
j
i ` . . .

where S j
i is the database of clauses at process p j, 0 ≤ j ≤ n−1, and stage i, i ≥ 0.

Initially, S0
0 = S1

0 = . . . = Sn−1
0 = S is the input set of clauses. Such a derivation is

a refutation if � ∈ S j
i for some i and j. A Team-Work derivation is a multi-search

ordering-based derivation characterized by a series A = i0 < i1 < .. . < ik < ik+1 <
.. . of special stages, where i0 = 0, and for all i∈A , S0

i = S1
i = . . .= Sn−1

i : the stages
in A are those where all the processes restart with the same database.

Fairness of a multi-search derivation does not require that all search plans be
fair. In the context of Team-Work, it is sufficient that at least one of the search plans
is fair, and that a database produced by a fair search plan is selected as the winner
infinitely often [9].

Starting at least with OTTER [164, 165, 166, 169], automatic theorem provers
have many options and parameters that can be set for each problem. A multi-search
à la Team-Work adds even more, including the set of heuristics to evaluate databases,
the set of heuristics to evaluate clauses, and the time period. One may also program
the prover to vary selected parameters during a derivation. For example, the time
period may increase over time, so that the processes cooperate a lot at the beginning
and behave more independently later, or vice versa. The sequential basis for the
implementation of Team-Work is the DISCOUNT theorem prover [10, 90], meaning
that every p j executes an instance of DISCOUNT.

The purpose of Team-Work is to interleave and combine different search plans.
The periodic restart from a common database lets a process apply a search plan to
a database generated by another search plan, realizing the interleaving. The mecha-
nism whereby the database of the winner is enriched with clauses deemed good by
other processes provides the combination. Since different search plans may gener-
ate clauses in different orders, their interleaving and combination may enable one
of the processes to discover a proof sooner than any of the search plans would allow
if applied sequentially. The downsides include the delays imposed by the periodic
synchronizations, and the risk that the heuristics are misleading, so that discarding
the databases with lower scores will make the search longer rather than shorter.

Ingredients of Team-Work appeared also in multi-search approaches with het-
erogeneous systems. For example, requirement-based cooperative theorem proving
[102] prescribes to run SPASS and DISCOUNT in parallel. The two provers commu-
nicate by expansion requests and contraction requests. In an expansion request, a
prover sends to the other a clause ϕ , and the receiver replies by sending all resol-
vents between ϕ and the clauses in its already-selected list. In a contraction
request, a prover sends to the other a clause ϕ , and the receiver replies by sending
all its clauses that contract ϕ .

The TECHS system [86] is even more heterogeneous, as it runs in parallel SPASS,
DISCOUNT, and SETHEO, thereby mixing contraction-based and subgoal-reduction

24 M. P. Bonacina

strategies, a feature that recalls HPDS and CPTHEO (cf. Section 3.4.1). In TECHS,
SPASS and DISCOUNT exchange equations, while SPASS and SETHEO exchange
lemmas, from SPASS to SETHEO, and subgoals, from SETHEO to SPASS. These
heterogeneous systems share with Team-Work the notion of heuristic selection of
good clauses to be shared. For example, short clauses are deemed good, so that unit
clauses and especially unit equations are the best.

The legacy of the Team-Work method is threefold. First, the notion of interleav-
ing search plans migrated into the design of search plans for sequential theorem
provers: the prover is programmed to execute a search plan for a fixed interval of
time, then another one for the next interval, and so on. This feature is available, for
instance, in Vampire [137]. This development is rather natural as interleaving is a
standard way to simulate a parallel computation by a sequential computation. In the
theory of parallel computing, a parallel computation that can be sequentially simu-
lated by interleaving is not regarded as truly concurrent, although we are not aware
of results on sequential derivations simulating multi-search derivations. Second, the
notion of letting a process send to another one its best clauses is connected with
learning, in the sense of learning the results of other derivations starting from the
same problem [90]. This concept is generalized to learning from proofs of similar
problems, as in the approaches that apply machine learning and big data technolo-
gies to theorem proving [99, 213]. Third, Team-Work can be considered a forerunner
of the portfolio approach to parallel SAT-solving (cf. Section 4.1 in this chapter and
the chapter on Parallel Satisfiability).

3.5 Distributed Search

A distributed-search method is a parallel-search method where the search space is
subdivided among the parallel deductive processes, in order to subdivide the work
to be performed, and possibly reach a solution sooner. As a way to differentiate the
searches further, distributed search may also allow the processes to apply different
search plans, leading to methods with both distributed-search and multi-search.

In general, subdividing the work may mean subdividing data, as in data-driven
parallelism, or subdividing operations, as in operation-driven parallelism. In theo-
rem proving, there are typically few inference rules and a huge number of generated
clauses, and therefore the subdivision and the parallelism are naturally data-driven.
However, the subdivision is designed knowing which inferences need to be applied
to the clauses, so that the two aspects are intertwined. This also means that dis-
tributed search is usually coupled with homogeneous systems, where all deductive
processes feature the same inference system, although in principle it could be com-
bined also with heterogeneous systems, where the deductive processes employ dif-
ferent inference systems.

Parallel Theorem Proving 25

3.5.1 Distributed Search for Ordering-based Strategies

Distributed search for ordering-based strategies was introduced with the Clause-
Diffusion methodology [27, 48, 49, 51], implemented in the Aquarius [46, 27, 47,
52] and Peers [58, 51] provers, and then investigated through Modified Clause-
Diffusion [28, 29], the Peers-mcd [30, 31, 33, 38] prover, and a formal analysis
of distributed search for contraction-based proof search [32, 34]. To the best of
our knowledge, Clause-Diffusion was the first parallel-search method for automatic
first-order theorem proving, and many of the elements of the analysis of paral-
lelism for deduction (cf. Section 3.3) were discovered with and around Clause-
Diffusion and its developments. The reason for calling it a methodology is that
Clause-Diffusion came since the start with a choice of solutions for several issues.
In this presentation we cover all issues and the most mature and most successful
solutions, hence Modified Clause-Diffusion, referring the interested readers to the
original articles for other possibilities.

3.5.2 The Basic Clause-Diffusion Mechanisms

Clause-Diffusion provides for n deductive processes p0, . . . , pn−1, that are all peers.
In a Clause-Diffusion prover, n is a parameter set by the user. All processes start with
the same input problem, inference system, and search plan, although different search
plans may be assigned. Every process develops its own derivation and builds its
own database of clauses independently. The processes are asynchronous, as the only
synchronization occurs when one sends all others a halting message. This happens,
for example, when one of the processes finds a proof.

Clause-Diffusion subdivides the search space by subdividing clauses, so that ev-
ery clause is owned by a process. A distributed-search ordering-based derivation,
or distributed derivation for short, has the form

(O0;NO0)
j ` (O1;NO1)

j ` . . .(Oi;NOi)
j ` . . .

where for every process p j, 0 ≤ j ≤ n−1, and stage i, i ≥ 0, S j
i = O j

i]NO j
i is the

local database of clauses at p j; O j
i is the set of clauses owned by p j; NO j

i is the set
of clauses not owned by p j; and

⋃n−1
j=0 S j

i represents the global database at stage i.
Initially, S0

0 = S1
0 = . . . = Sn−1

0 = S is the input set of clauses. In the early Clause-
Diffusion terminology owned clauses are termed residents and the others visitors or
visiting clauses [27, 51]. A distributed derivation is a refutation if � ∈ S j

i for some
i and j.

Since every clause is owned by a process, for every stage i, i ≥ 0, we have⋃n−1
j=0 O j

i =
⋃n−1

j=0 S j
i . This also means that every clause ϕ ∈ NO j

i is owned by some
pk, with k 6= j, so that ϕ ∈Ok

l for some l ≥ 0. Furthermore, under the customary as-
sumptions that every clause has its own variables, and variants are distinct clauses,

26 M. P. Bonacina

every clause is owned by only one process, so that O j
i ∩Ok

i = /0 for all i ≥ 0 and
0≤ j 6= k ≤ n−1.

Assume that a clause ψ is generated by process p j, and that its normal form after
forward contraction ϕ = ψ ↓ is not trivial, so that ϕ is kept. Regardless of whether
ψ was generated by expansion or backward contraction, process p j assigns ϕ to
some pk according to an allocation criterion. The number k becomes part of the
identifier of ϕ: for example, if ϕ is the m-th clause generated and kept by p j, its
identifier includes the fields 〈k,m, j〉. These three components suffice to identify a
clause uniquely across all processes, so that the identifier of a clause is a global
attribute.

If k = j, p j adds ϕ to O j; if k 6= j, p j adds ϕ to NO j. Either way, p j applies
ϕ to backward-contract clauses in S j, and broadcasts it as an inference message
〈ϕ,k,m, j〉 to all other processes. This broadcasting mechanism is the reason for the
name Clause-Diffusion, as clauses are diffused. These messages are called inference
messages, because received clauses will be used for inferences.

Any other process pq, q 6= j, upon receiving the inference message 〈ϕ,k,m, j〉
applies forward contraction to the received clause ϕ . If ϕ is deleted by forward
contraction no other operation is needed. Otherwise, let ϕ ↓ be the normal form of
ϕ with respect to Sq, where ϕ ↓ and ϕ may be identical. If k = q, pq adds ϕ ↓ to
Oq; if k 6= q, pq adds ϕ ↓ to NOq. Either way, pq applies ϕ ↓ to backward-contract
clauses in Sq.

3.5.3 The Subdivision of Clauses in Clause-Diffusion

Allocation criteria to subdivide clauses play an important role in differentiating the
searches and limiting their overlap [32, 34]. The intuition is that different searches,
and searches that differ from a sequential one, may enable one of the processes to
find a proof sooner. A simple option is that each process assigns clauses according
to a round-robin schedule, called alternate-fit [27, 51] or rotate [31]: p j assigns ϕ

to pk for k = (q+1) mod n, if p j assigned the previous clause to pq.
In the half-alternate-fit criterion [27, 51], p j assigns every other clause to itself

and in a round-robin manner otherwise. Let pq1 and pq2 be the two most recently
used destinations; if q1 = j, p j assigns ϕ to pk for k = (q2 +1) mod n; if q1 6= j, p j
assigns ϕ to itself.

Alternatively, every process p j may estimate the work-load of each process as
measured by the number of generated clauses, a criterion named best-fit [27, 51]
or select-min [58]. Clearly, p j knows exactly how many clauses it generated thus
far. For all other processes pq, q 6= j, p j may consider the latest inference message
〈ψ,k,m,q〉 received from pq and take m as an estimate of the number of clauses
generated by pq. Then p j assigns the next ϕ to the process with the smallest es-
timated work-load. However such a criterion may lead the processes to assign too
many clauses to others, since a process may under-estimate the work-load of others
but not its own. Therefore, this criterion may be corrected by letting each process
assign a fixed percentage of clauses to itself as in the half-alternate-fit criterion.

Parallel Theorem Proving 27

A different approach is to determine the owner of a clause based on properties
of the clause itself. For example, assume that every symbol in the signature has an
associated weight. The sum of the weights of the symbols occurring in a clause is
the weight of the clause. This is a feature that the Clause-Diffusion provers inherit
from OTTER, where it is used for deletion by weight, a contraction rule that allows
the prover to delete all clauses whose weight is above a certain threshold [164,
165, 166, 169]. Such a rule is not adequate (cf. Section 2.2), but it may be useful
in practice. A simple weight-based allocation criterion is to assign clause ϕ to pk,
where k =w mod n and w is ϕ’s weight. This criterion was called syntax in the Peers
prover [58, 51].

The next step is to use information from the ancestor-graph Π(ϕ) (cf. Sec-
tion 2.2.1) in order to allocate ϕ . Since theorem provers save anyway the data to
generate Π(ϕ) for every kept clause ϕ in order to be able to build Π(�), storing
this information is no additional burden. This concept is achieved by the ancestor-
graph oriented (AGO) allocation criteria [31]. The general idea is to use information
from the finite portion of the search space that has been generated to assign clauses
to processes and therefore induce a subdivision of the search space that lies ahead.

The AGO criterion parents determines ϕ’s owner by applying a function f to
the identifiers of ϕ’s parents. As the function f may vary, this is actually a family
of criteria. If ϕ was generated from premises ψ1 and ψ2 by a binary expansion
inference rule, such as resolution, paramodulation, or superposition, its parents are
ψ1 and ψ2. If ϕ is a factor of ψ , its parent is ψ . If ϕ was obtained by normalizing
ψ during backward contraction, ψ is considered as the sole parent. Since f is a
function, clauses that have the same parent(s) are assigned to the same process. The
intuition is that clauses that have the same parents are spatially close in the search
space, and therefore should belong to the same process. If they were assigned to
different processes, the effect could be to bring those different processes to be active
in the same region of the search space, increasing their overlap.

The AGO criterion majority considers all ancestors of clause ϕ , that is, all clauses
that occur in its ancestor-graph Π(ϕ). It assigns to every process p j a number of
votes equal to the number of clauses in Π(ϕ) owned by p j. The process, say pk, that
gets the most votes owns ϕ . Ties are broken arbitrarily. The idea is that a process that
owns the most ancestors of ϕ is already most active in the region of the search space
where ϕ is, and therefore should get ϕ as well. Assigning ϕ to another process, say
pq, with q 6= k, could increase the overlap between pk and pq.

It remains what to do with input clauses. One process, say p0, reads the input
file and handles input clauses like raw clauses. Most allocation criteria listed above
apply regardless of whether the clause was read or generated. The select-min crite-
rion does not apply to input clauses, because at the beginning the processes have no
work-load: therefore, select-min assigns input clauses in round-robin fashion. The
AGO criteria do not apply to input clauses, because input clauses do not have an-
cestors. The parents criterion assigns all input clauses to p0. The majority criterion
cannot proceed in this manner, because otherwise all clauses would belong to p0,
as p0 would always have the majority of ancestors. This does not happen with the
parents criterion, because the function f applies to the entire identifiers of parents,

28 M. P. Bonacina

not only to the owners. Thus, also the majority criterion assigns input clauses in
round-robin style.

3.5.4 The Subdivision of Inferences in Clause-Diffusion

In Clause-Diffusion the ownership of clauses induces a subdivision of expansion
inferences as follows. Assume that p j is about resolving clauses ϕ = L∨C and
ψ = ¬L′ ∨D, such that Lσ = L′σ . Clause-Diffusion allows p j to proceed with
the inference if and only if p j owns ψ , that is, the parent with the negative lit-
eral resolved upon. Similarly, assume that p j is about paramodulating or super-
posing clause ϕ = l ' r∨C into clause ψ = L[s]∨D, such that sσ = lσ . Clause-
Diffusion allows p j to proceed with the inference if and only if p j owns ψ , that is,
the clause paramodulated or superposed into. When paramodulating ϕ into ψ , the
prover needs to consider all non-variable subterms of ψ and only l and r in ϕ . In
other words, there is more work connected with the clause paramodulated into. For
superposition, that is, paramodulation into equalities, a prover needs to test for both
superposition of ϕ = l ' r∨C into ψ = s ' t ∨D and superposition of ψ into ϕ .
The owner of ψ will superpose ϕ into ψ and the owner of ϕ will superpose ψ into
ϕ . For factoring, p j is allowed to generate the factors of ψ if and only if it owns
ψ . For hyperresolution and unit-resulting resolution, p j is allowed to proceed if and
only if it owns the nucleus of the inference step.

As far as contraction inferences are concerned, there is no subdivision of forward-
contraction inferences, as every process p j applies all the clauses in its current local
database S j to try to delete or reduce a raw clause it has generated. There is also
no subdivision of backward-contraction inferences that delete clauses, such as sub-
sumption, functional subsumption, or tautology elimination (cf. Section 2.2). Every
process p j is allowed to use any clause in S j to delete any other clause in S j by such
an inference rule, regardless of ownership.

On the other hand, ownership is used to subdivide backward-contraction infer-
ences that generate new clauses, such as clausal simplification and equational sim-
plification or normalization. Assume that process p j detects that clause ϕ ∈ S j can
be backward-simplified by some other clause ψ ∈ S j. If p j owns ϕ , p j is allowed to
generate ϕ ↓. If p j does not own ϕ , p j is allowed to delete ϕ , but it is not allowed
to generate ϕ ↓. Whoever owns ϕ will generate ϕ ↓, give it a new identifier, and
broadcast it as inference message.

3.5.5 Distributed Global Contraction, Distributed Fairness, and Distributed
Proof Reconstruction

Clause-Diffusion led to formulate and solve three general issues in distributed
search for ordering-based strategies: distributed fairness [27, 48, 51, 29], distributed
proof reconstruction [29], and distributed global contraction [27, 51, 29].

Parallel Theorem Proving 29

Distributed fairness, that is, fairness of a distributed derivation, is guaranteed by
two conditions. First, each process must be locally fair, which means it considers
eventually all irredundant inferences. Second, all persistent irredundant clauses must
be broadcast eventually. Clause-Diffusion fulfills the second condition eagerly, by
broadcasting kept clauses right after forward contraction. The reason for this eager
choice is the second property, namely distributed proof reconstruction.

Proof reconstruction requires to save the clauses deleted by backward contraction
(cf. Section 2.2.2). Thus, the distributed derivation takes the form

(O0;NO0;R0)
j ` (O1;NO1;R1)

j ` . . .(Oi;NOi;Ri)
j ` . . .

where for every process p j, 0 ≤ j ≤ n−1, and stage i, i ≥ 0, S j
i = O j

i]NO j
i is the

database of clauses at process p j and stage i, partitioned into owned (O j
i) and not

owned (NO j
i) clauses, while R j

i is the set of clauses that p j deleted by backward
contraction. Distributed proof reconstruction means that if � ∈ Sk

i , process pk can
reconstruct Π(�) by consulting only Sk

i]Rk
i . In order to guarantee distributed proof

reconstruction, it is not sufficient that all persistent irredundant clauses be broadcast
eventually, since clauses deleted by backward contraction, that are redundant and
not persistent, may be needed to reconstruct the proof. A stronger, and sufficient,
condition is that all clauses ever used as premises are broadcast. This is why Clause-
Diffusion lets every process broadcast a clause ϕ after ϕ emerges from forward
contraction, that is, as soon as ϕ is ready to be used as premise [29].

The problem of distributed global contraction is to ensure that notwithstanding
the subdivision of inferences among the parallel processes, if ϕ is globally redun-
dant at some stage i, ϕ is recognized redundant eventually by every process. For-
mally, if ϕ ∈ ρ(

⋃n−1
j=0 S j

i) at some stage i, then for all processes p j, 0 ≤ j ≤ n− 1,

there exists a stage l, l ≥ i, such that ϕ ∈ ρ(S j
l). Assume that ϕ ∈

⋃n−1
j=0 S j

i , and

ϕ ∈ ρ(
⋃n−1

j=0 S j
i), because there is a ψ ∈

⋃n−1
j=0 S j

i such that ψ can delete ϕ by con-
traction. By the broadcasting mechanism of Clause-Diffusion, the two clauses are
guaranteed to meet at every process, so that global redundancy becomes local re-
dundancy. By fairness, every process eventually applies ψ to delete ϕ , so that global
contraction becomes local contraction, unless the derivation succeeds sooner. Fur-
thermore, by the subdivision of backward simplification, distributed global contrac-
tion is achieved while avoiding both the redundancy of letting all processes generate
ϕ ↓ and the redundancy of preventing all processes but the owner from deleting ϕ .

In summary, Clause-Diffusion is a methodology to transform a sequential orde-
ring-based theorem-proving strategy into a distributed one, in the sense that each
parallel process executes the sequential strategy, modified with subdivision of la-
bor and communication according to Clause-Diffusion. If the requirements for dis-
tributed fairness are fulfilled, a complete sequential strategy yields a complete dis-
tributed strategy.

30 M. P. Bonacina

3.5.6 The Clause-Diffusion Provers

At the implementation level, Clause-Diffusion is a methodology to transform a se-
quential ordering-based theorem prover into a distributed one, and indeed all Clause-
Diffusion provers have a pre-existing sequential code base.

The first Clause-Diffusion prototype is Aquarius [46, 27, 47, 52]. Aquarius is
the parallelization of OTTER 2.2 [165], using PCN for communication by message
passing [101, 70]. Aquarius implements the rotate allocation criterion, with variants
such as letting every process p j own the factors of ϕ if p j owns ϕ , or even allowing
every process to own all input clauses. The latter trick violates the principle that
every clause is owned by only one process, and it was tried only to watch its effect
in experiments, especially when the input clauses include the axioms of some the-
ory. Since Otter implements unfailing or ordered completion [120, 12], Aquarius
offers also a Clause-Diffusion parallelization of ordered completion. Aquarius fea-
tures also multi-search, since its options enable the user to shut off the subdivision
of clauses, so that every process assigns all its generated clauses to itself, and attach
different search plans to the processes. For a Clause-Diffusion prover that uses the
given-clause algorithm, different search plans may mean different evaluation func-
tions to select the given clause [164, 5, 165, 166, 88, 33, 169, 191].

While Aquarius, like OTTER, handles first-order logic with equality, the subse-
quent Clause-Diffusion provers focus on equational logic. A reason for this choice
is that a motivation for exploring distributed search is to avoid the backward-
contraction bottleneck, and backward contraction is crucial to solve equational prob-
lems.

The second Clause-Diffusion prototype is Peers [58, 51], whose name, cho-
sen by Bill McCune, emphasizes that the deductive processes in Clause-Diffusion
are peers. Peers is the parallelization of code from the Otter Parts Store (OPS),
for theorem proving in equational theories possibly with associative-commutative
(AC) function symbols, using p4 for communication by message passing [67].
If paramodulation is done modulo AC [175], there are generally so many AC-
paramodulants that generating all AC-paramodulants between the given equation
and all those in already-selected is too much for an iteration of the given-
clause loop (cf. Section 3.2.2). Therefore, Peers employs a variant of the given-
clause algorithm, called pairs algorithm: in every iteration of the loop the prover
selects a pair of equations and performs all expansion inferences from the equa-
tions in the pair, provided at least one of them comes from to-be-selected.
The evaluation function to select the best clause as given clause is replaced by an
evaluation function that selects the best pair of equations.

Peers implements the rotate, syntax, and select-min allocation criteria, with vari-
ants such as allowing every process p j to own ϕ ↓, if p j owns ϕ and ϕ ↓ is generated
by backward contraction. Assume that the input set S is satisfiable. In principle, a
theorem-proving strategy may not terminate, because it is a semi-decision proce-
dure. In practice, a theorem prover terminates on a satisfiable input, because either
it generates a finite saturated set (cf. Section 2.2), or, more likely, because it reaches
a predefined threshold on running time or memory space. For the first kind of situ-

Parallel Theorem Proving 31

ation, Peers implements the Dijkstra-Pnueli global termination detection algorithm
[212] to recognize that all processes are idle. For the second kind of situation, a
process pk that reached a threshold broadcasts a message to inform all others that
it quits the search. Clause-Diffusion allows p0, . . . , pk−1, pk+1, . . . , pn−1 to continue,
but in Peers and its successors, for simplicity, such a message from pk is a halting
message.

The third Clause-Diffusion prototype is Peers-mcd, thus named because it im-
plements Modified Clause-Diffusion. The first version, called Peers-mcd.a [29], is
obtained by modifying Peers to execute Modified Clause-Diffusion, still using code
from OPS as sequential base and p4 for message passing.

The second version, dubbed Peers-mcd.b [30], is the parallelization, according to
Modified Clause-Diffusion, of version 0.9 of the EQP prover [167] for equational
theories possibly with associative-commutative (AC) function symbols. In addition
to ordered paramodulation or superposition (cf. Section 2.2), EQP features blocking
[199, 139, 11, 128] and basic paramodulation [14]. Blocking prevents a paramod-
ulation step whose most general unifier contains at least a pair x← t where t is re-
ducible. Basic paramodulation stipulates that a term is basic, if it is not introduced
by a substitution, and restricts paramodulation and simplification to apply only to
basic terms. The restriction to simplification is not implemented in EQP, renouncing
refutational completeness. In terms of search plan, EQP features both given-clause
algorithm and pairs algorithm. Peers-mcd.b and its successors inherit all these fea-
tures, and adopt the Message Passing Interface (MPI) and its implementation mpich
for message passing [110].

Peers-mcd.b is the first Clause-Diffusion prover to implement the AGO alloca-
tion criteria (cf. Section 3.5.3). The EQP prover made history by proving mechan-
ically that Robbins algebras are Boolean [168, 78], a conjecture remained open
in mathematics since 1933 and considered a challenge in automatic theorem prov-
ing since 1990 [220]. Thanks to the AGO allocation criteria, Peers-mcd.b exhibited
super-linear speedup on several problems, including two lemmas representing two
thirds of the proof of the Robbins theorem [30, 31], and the Levi commutator prob-
lem in group theory [33].

The following version of Peers-mcd is Peers-mcd.c, that features version 0.9d of
EQP as sequential base. Peers-mcd.c maintains the super-linear speedup in the first
two lemmas that form the proof of the Robbins theorem, and adds an almost linear
speedup in the third lemma [37].

Peers-mcd.d [38] still has EQP0.9d as sequential base. It differs from all previous
versions of Peers-mcd, because it offers distributed search, multi-search, and their
combination. It can run in one of three modes: (1) pure distributed-search mode:
the search space is subdivided among the processes; all processes execute the same
search plan; (2) pure multi-search mode: the search space is not subdivided; every
process executes a different search plan; and (3) hybrid mode: the search space is
subdivided, and the processes execute different search plans.

A first way to differentiate the search plans in Peers-mcd.d is to have half the
processes execute the given-clause algorithm and the other half execute the pairs
algorithm. Another way is to let the processes employ different evaluation functions

32 M. P. Bonacina

to select the given clause or pair of equations. The two ways may also be combined,
if the number of processes is sufficiently high.

Peers-mcd.d implements three heuristic evaluation functions to select given
clauses based on their similarity with the target theorem [5, 88, 38]. If multi-search
with similarity-based heuristics is selected, process pk executes the given-clause al-
gorithm with the first heuristic function if k mod 3 = 0, with the second heuristic
function if k mod 3 = 1, and with the third heuristic function if k mod 3 = 2. These
heuristics do not apply to the pairs algorithm.

Peers-mcd.d also turns the pick-given-ratio parameter into a way of
differentiating searches in multi-search. This parameter appeared first in OTTER
[164, 165, 166, 169] and has been adopted by most ordering-based theorem provers
[191]. It allows the prover to mix best-first search and breadth-first search: if the pa-
rameter pick-given-ratio has value x, the given-clause/pair algorithm picks
the oldest, rather than the best, equation/pair once every x + 1 choices. In other
words, it picks the best according to the heuristic evaluation function x times, then
the oldest, and then it repeats. Peers-mcd.d lets each process use a different value of
pick-given-ratio: if multi-search with different ratios is selected, process pk
resets its pick-given-ratio to x+ k.

Prior to the Robbins theorem, another challenge problem for automatic theorem
provers were the Moufang identities in alternative rings [6]. Alternative rings are
rings where the product is not associative. The first automated proofs of these iden-
tities by a sequential prover involve several ingredients [6], including inference rules
that build the cancellation laws in the inference system [122]. Peers-mcd.d proves
the Moufang identities in alternative rings without cancellation laws and exhibit-
ing several instances of super-linear speedup with respect to EQP0.9d [38]. This
finding suggests that parallel search can even compensate for a weaker inference
system. These results are obtained in pure distributed-search mode or hybrid mode,
whereas multi-search alone shows no speedup at all. The best performances arise in
hybrid mode. Thus, distributed search is necessary to conquer these problems, and
the addition of multi-search improves the outcome further.

In summary, super-linear speedup by Clause-Diffusion is possible, precisely be-
cause parallel search, and all the more distributed search, does not mean executing
in parallel the same steps of the sequential search, but generating a different search,
that may visit the search space in a different way. The analysis of the experiments
shows that whenever there is a super-linear speedup, the Clause-Diffusion prover
generates fewer clauses than the sequential prover, retains a higher percentage of
them, and generates a different proof [31, 38]. Generating fewer clauses and retain-
ing more of them suggest better focus and less redundancy. Thus, the interpretation
of the experiments is that an effective subdivision of the search space prevents the
processes from overlapping too much, reduces the amount of redundancy, and al-
lows the winning process to focus on a proof sooner. Since the proof is often not
unique, these differences also reflect in a different proof being found. Note that dif-
ferent proof does not necessarily mean shorter proof: in theorem proving a shorter
proof may require a longer run. The observation of super-linear speedup also indi-
cates that the sequential search plan is not optimal for the problem, which is not

Parallel Theorem Proving 33

surprising, given the generic and still largely syntactic nature of most heuristics in
theorem proving.

While generating a different search may yield a faster proof, up to the point of
a super-linear speedup, it also means that scalability may be irregular. Precisely
because the point is not to use more computers to do the same steps, there is no
guarantee that the performance improves regularly with the number of processes.
For example, it may happen that the performance scales well with up to six pro-
cesses, and becomes worse with seven or eight. A pattern of this type suggests that
the problem may not be hard enough to justify more computing power beyond a
certain point, so that subdividing the search space further is counterproductive.

In other cases, the performance oscillates: two processes do better than one, but
four do worse than two, and six speed up again; or, neither four nor six improve,
but seven or eight do. In these instances, an explanation is that the subdivision of
the search space in Clause-Diffusion depends on the number of processes, as it is
done by dynamic allocation of generated clauses during the derivation. Assume that
we have two processes p0 and p1. When we add a third process p2, the portions of
the search space assigned to p0 and p1 change with respect to what they were with
two processes. The three searches developed by p0, p1, and p2, differ from those
developed by p0 and p1 when running as two processes. Since the result depends on
the subdivision of the search, it may happen that two processes do better than four
on a certain combination of problem and strategy. However, combining distributed
search and multi-search may smooth these oscillations improving scalability [38].

4 Discussion

In this section first we draw connections between parallel theorem proving and par-
allel satisfiability solving. The readers will find more by reading this chapter to-
gether with those on Parallel Satisfiability and Cube and Conquer. Then, we discuss
future directions for research in parallelization of theorem proving in the light of
advances in first-order model-based reasoning [44].

4.1 Parallel Theorem Proving and Parallel Satisfiability

The idea of subdivision of the search space in Clause-Diffusion influenced the de-
sign of the parallel SAT solver PSATO [227, 228], which is considered a forerunner
of the divide-and-conquer approach to parallel SAT-solving. More generally, re-
search in parallel SAT-solving inherited from research in parallel theorem proving
the focus on parallel search. In addition, inferences and data in propositional logic
are simpler than in first-order logic, so that there is no room for parallelism below
or at the inference level. The concepts of distributed search and multi-search apply

34 M. P. Bonacina

with the same meaning also in parallel SAT-solving, corresponding to the divide-
and-conquer and portfolio approaches, respectively.

PSATO is a distributed-search parallelization of SATO [226, 229], that imple-
ments the DPLL procedure [80, 79, 71] for propositional satisfiability. The origi-
nal Davis-Putnam (DP) procedure [80] is for first-order logic, and features propo-
sitional, or ground, resolution. The Davis-Putnam-Logemann-Loveland (DPLL)
procedure [79] replaces propositional resolution with splitting, seen as breaking
disjunctions apart by case analysis, to avoid the growth of clauses and the non-
determinism of resolution. Splitting is understood also as guessing, or deciding, the
truth value of a propositional variable, in order to search for a model of the given set
of clauses. Thus, DPLL is a model-based procedure, where all operations are cen-
tered around a candidate partial model, called context, represented by a sequence,
or trail, of literals.

A PSATO derivation features n+1 processes, with one master process that sub-
divides the work, and n client processes each searching for a model by executing
SATO. The key idea is to subdivide the search space by using guiding paths. The
notion of guiding path is inspired by the view of the search space of a SAT prob-
lem as the tree of recursive calls of the DPLL procedure. In this tree a node has
typically two outgoing arcs, one labeled L and the other labeled ¬L, where L is a
literal occurring in the input problem. The two arcs correspond to the two cases of
the case-splitting on L (either L is true or L is false), and lead to the two ensuing
recursive calls, one where L is asserted and one where ¬L is asserted.

A guiding path is a path in this tree; it is represented as a sequence of pairs
〈(L1,δ1),(L2,δ2), . . . ,(Lk,δk)〉, where, for 1 ≤ i ≤ k, the Li’s are the literals la-
beling the path; δi = 1, if Li is a first child; and δi = 0, if Li is a second child.
A node labeled (L,1) is open, because L is still to be flipped; a node labeled
(L,0) is closed, because L has been already flipped. A job is given by a pair
(S,P), where S is the input set of clauses and P is a guiding path. Given a path
P = 〈(L1,0),(L2,0), . . . ,(Li,1), . . . ,(Lk,δk)〉, where i is the smallest index for which
δi = 1, two new disjoint paths are generated by splitting on Li, yielding P1 =
〈(L1,0),(L2,0), . . . ,(¬Li,0)〉 and P2 = 〈(L1,0),(L2,0), . . . ,(Li,0), . . . ,(Lk,δk)〉.

In PSATO, the master process is responsible for preparing the jobs and assigning
a job and a time limit to each client process. Every client will return either sat with
a model of S; or unsat, meaning that its assigned subtree contains no model; or a
guiding path, representing the search remaining when the time is up. The subtrees
assigned to the clients are disjoint portions of a finite search space, so that the sub-
division has no overlap by definition. In contrast, in first-order theorem proving the
search space is infinite, its representation is far more complex [55, 34, 39], and a
strategy may at most try to limit the overlap of the searches by heuristic subdivision
criteria as done in Clause-Diffusion (cf. Section 3.5.3).

The transition from the DPLL to the CDCL (Conflict-Driven Clause Learning)
procedure [161, 162, 171, 160] is a game changer in parallel SAT-solving like in
sequential SAT-solving. CDCL means conflict-driven SAT: when the current can-
didate model falsifies a clause, called conflict clause, this conflict is explained by
a heuristically controlled series of resolution steps, where every resolvent is also a

Parallel Theorem Proving 35

conflict clause. A resolvent is learned, and the candidate partial model is repaired in
such a way to remove the conflict, by satisfying the learned clause and backjumping
as far away as possible from the conflict.

Learning a conflict clause is a form of lemmatization, as every resolvent is a
lemma, a logical consequence of the input set of clauses. All learned clauses are
former conflict clauses. Similar to other situations (cf. Section 2.1), a purpose of
learning lemmas is to avoid repetitions: in CDCL it prevents the procedure from
falling repeatedly in the same conflicts. In this sense, learning clauses is a way of
pruning the search space.

The CDCL procedure involves several ingredients, in addition to conflict-driven
clause learning and backjumping. Activity-based decision heuristics select the literal
for the next decision by counting how many times a literal appear in learned clauses
and favoring most active literals [230].

Clausal propagation consists of detecting conflict clauses and implied literals. A
conflict clause is a clause whose literals are all false in the current candidate model.
A literal is implied if it is the only unassigned literal of a clause: such a literal
must be added to the trail in order to satisfy the clause, which is the justification
of the implied literal. In the two watched literals scheme for clausal propagation
[230, 126], it is sufficient to watch two non-false (i.e., either true or unassigned)
literals per clause in order to detect conflict clauses and implied literals. Indeed, a
conflict clause has zero non-false literals, and a justification has one non-false literal,
so that a clause with two is neither a conflict clause nor a justification.

The possibility of periodically restarting the search with an empty trail and a set
of clauses augmented with learned clauses may serve the purpose of compacting the
trail or changing dynamically the order with which literals are picked for decision.

From the point of view of our analysis of parallelization of reasoning, clause
learning is a key difference between DPLL and CDCL. Parallelizing DPLL can be
seen as analogous to parallelizing tableau-based subgoal-reduction strategies: the
database of clauses is fixed, equal to the input set, and the strategy searches for a
model by exploring a tree that represents a survey of all possible interpretations.
On the other hand, parallelizing CDCL can be seen as analogous to parallelizing
expansion-oriented strategies, as the database of clauses grows due to learning. In
CDCL learned clauses can be deleted based on heuristics (e.g., delete the oldest,
or the least involved in resolution). These deletions can be considered a kind of
forward contraction, while there is no analogy with backward contraction, since, for
example, input clauses are not subject to deletion.

For CDCL, the definition of guiding path is updated to abandon the reference to
the search space of a recursive DPLL procedure: a guiding path is simply a sequence
of literals, and a node labeled L is open, if L is a decided literal, closed, if L is an
implied literal [187]. Also, the notion of guiding path is replaced by that of cube
[116]. Logically speaking, a cube is a conjunction, or a set, of literals. In practice,
cubes are typically much longer than guiding paths [116].

In keeping with the model-based character of the CDCL procedure, a cube can
be understood as an assignment that assigns true to the literals in the cube. Then, the
SAT problem is generalized to the satisfiability modulo assignment (SMA) problem,

36 M. P. Bonacina

defined as the problem of deciding the satisfiability of S with respect to an assign-
ment J to some of the literals in S. If J is empty, SMA reduces to SAT, while an in-
termediate state of a SAT search is an SMA instance, since during the search a SAT
solver maintains a partial candidate model represented by an assignment of truth
values to propositional variables. Approaches to parallel SAT-solving by distributed
search such as PAMIRAXT [187] and cube and conquer [116] (cf. the dedicated
chapter), attack a SAT problem with input set S, by having n processes p0, . . . , pn−1
working in parallel on n SMA instances with input set S and initial assignments
J0, . . .Jn−1, each containing a distinct cube.

Approaches to parallel SAT-solving by multi-search assign to the processes
p0, . . . , pn−1 different search plans, as in MANYSAT [113]. Similar to ATP systems,
also SAT solvers have many options and parameters that define the search plan and
whose variation may serve the purpose of differentiating the searches. For exam-
ple, the p j’s may employ different heuristics to pick the next literal for decision,
or different heuristics to determine when to restart. Another way to differentiate
the searches is to use randomization as in CL-SDSAT [123]: a randomized SAT
solver makes a certain percentage of its decisions at random, starting from a given
randomized seed, rather than based on a heuristic. Then, the p j’s may use different
percentages or different seeds.

Activity-based decision heuristics and restart heuristics tend to intensify the
search of a process, meaning that the process focuses on a certain region of the
search space. In parallel search, this phenomenon may be useful to reduce the over-
lap between the processes, if each p j focuses on a different region [112, 111].

In both distributed-search and multi-search parallel SAT-solving methods, the
processes may communicate learned clauses [112, 113, 187, 123]. A learned clause
ϕ is not sent to a process whose initial cube satisfies ϕ: indeed, in a model-based
strategy a satisfied clause is redundant [62]. Upon receiving a learned clause, a
process needs to determine its two watched literals for clausal propagation.

Since learned clauses are generated resolvents, communication of learned clauses
in parallel SAT-solving reminds one of Clause-Diffusion (cf. Section 3.5.2). The
possibility of applying heuristics to select for broadcasting only useful learned
clauses is in the spirit of the Team-Work method (cf. Section 3.4.2). A typical heuris-
tic is to broadcast learned clauses whose size is below a certain threshold. This is
similar to what happens in Clause-Diffusion with deletion by weight: a clause whose
weight is above the threshold gets deleted by forward contraction and therefore it is
not broadcast. This kind of heuristic can be made dynamic by varying the threshold
during the search [112]. In propositional logic the size of a clause is the number of
its literals. In a SAT solver the size of a clause is the number of its non-false liter-
als with respect to the current candidate model. Thus, a clause may have different
sizes under different cubes. Therefore, whether a learned clause is communicated
depends on the given cube, as suggested in PMSAT [107].

Since a purpose of learning conflict clauses is to prune the search space, receiving
from process pk a learned conflict clause may help process p j prune its search space.
This is analogous to what happens in parallel search for ordering-based strategies,

Parallel Theorem Proving 37

where receiving from process pk a good simplifier may help process p j prune its
search space. On the other hand, communication is a cost in both contexts.

In parallel SAT-solving, the communication of learned clauses may be at odd
with having low overlap or no overlap: if the processes delve into remote regions
of the search space, sharing learned clauses may become useless [112]. In parallel
search for theorem proving it is much harder to avoid overlapping searches, and
therefore this issue does not arise. The observation of this phenomenon in paral-
lel SAT-solving leads to the notion of subdividing the processes into groups [111].
Processes within a group cooperate, by sharing information such as learned clauses.
Each group is devoted to search a different region of the search space, by letting all
processes in the group start with the same cube, which is distinct from the cubes
given to all other groups.

4.2 Parallelism and First-Order Model-Based Reasoning

Motivations for renewing the quest for parallel first-order theorem-proving methods
are not different from those for injecting parallelism in SAT solvers: problems from
applications get bigger and bigger; it is hard to improve sequential performance; and
parallel hardware is available. In addition, the ATP problem is harder (only semi-
decidable) and still far less understood than the SAT problem. The research of new
approaches to ATP is certainly not over, and there are also approaches that are not
new but never or barely considered for parallelization.

The investigation of ways to combine semantics and parallelism in theorem
proving is still largely an open problem. Semantically-guided strategies assume a
fixed interpretation for semantic guidance. Among ordering-based strategies, a ba-
sic paradigm is that of semantic resolution, with hyperresolution and resolution with
set of support as special cases (cf. Section 2.2). Among instance-based strategies,
ordered semantic hyperlinking (OSHL) enriches hyperlinking with semantic guid-
ance (cf. Section 2.3). A natural idea is to devise multi-search methods where the
processes employ different guiding interpretations for semantic resolution or OSHL.
A simple example is to have two parallel processes, one using positive and the other
negative hyperresolution.

Another possibility is to design a method that combines distributed search as
in Clause-Diffusion (cf. Section 3.5) with a multi-search scheme where the pro-
cesses adopt different guiding interpretations. While Clause-Diffusion is a general
paradigm, it targets especially contraction-based strategies for equational theories
and first-order logic with equality (cf. Section 2.2.2). Thus, the challenge is to com-
bine multi-search with different guiding interpretations with distributed search for a
logic including equality.

Model-based strategies build a candidate partial model and declare unsatisfiabil-
ity when a contradiction arises, showing that no candidate can be completed in a
model of the input set of clauses. Beside model elimination (ME) and ME-tableaux
strategies (cf. Sections 2.1, 3.1.1, 3.2.1, 3.4.1), there are other classes of strategies

38 M. P. Bonacina

that aim at being model-based for first-order logic and have not been considered
for parallelization. This is the case for most model-oriented instance-based strate-
gies and hybrid strategies that combine instance generation with tableaux (cf. Sec-
tion 2.3 and Section 7.3 of [39]), as well as for the model evolution calculus that
lifts the DPLL procedure to first-order logic [17, 18, 22, 23, 21].

Another example are the methods that integrate an ordering-based strategy for
first-order logic with equality with a model-building method. In early approaches
the two engines were loosely coupled and the model-building method was a model
finder enumerating small models [200]. In later approaches the integration is tight
and the model finder is replaced with a CDCL-based SAT [182] or SMT solver
[57]. A straightforward approach to parallelization is to have two parallel processes,
one executing the first-order strategy and one executing the solver. More ambitious
schemes could devote multiple processes to both kinds of reasoning, parallelizing, in
the sense of parallel search, both ordering-based strategy and solver. Such schemes
could combine approaches to parallel search for SAT solvers (cf. Section 4.1 and
the chapters on Parallel Satisfiability and Cube and Conquer), SMT solvers (cf. the
chapter on Parallel Satisfiability Modulo Theories), and ordering-based first-order
provers (cf. Sections 3.4.2 and 3.5).

SGGS (Semantically-Guided Goal-Sensitive reasoning) generalizes CDCL to
first-order logic, and is both model-based and semantically-guided [60, 59, 61, 62].
Other approaches to generalizing CDCL include DPLL(S X) [176] and NRCL [2]
for effectively propositional logic, and conflict resolution [201, 124] for first-order
logic. SGGS searches for a model of the input set S of clauses, starting from a given
initial Herbrand interpretation I, and building interpretations I[Γ1], I[Γ2], I[Γ3] . . .,
represented by SGGS clause sequences Γ1, Γ2, Γ3 An SGGS clause sequence is
a sequence of constrained clauses with selected literals. An SGGS-derivation has
the form Γ0 ` Γ1 ` Γ2 ` Γ3 ` . . ., where Γ0 is empty and I[Γ0] = I. The current SGGS
clause sequence corresponds to the current trail in CDCL. The main SGGS activities
correspond to those of CDCL as follows.

The SGGS analogue of CDCL decision is selection of a literal in any clause
added to the current SGGS clause sequence Γ . Selected literals differentiate I[Γ]
from Γ . SGGS is possibly the first method that features clausal propagation at the
first-order level. Clausal propagation in SGGS relies on the concepts of uniform
falsity and dependence. A literal is uniformly false in an interpretation, if all its
ground instances are false in that interpretation. For I, a literal is I-true if it is true in
I, and I-false if it is uniformly false in I. SGGS requires that all literals in an SGGS
clause sequence are either I-true or I-false. This invariant ensures that all ground
instances of a literal in the sequence are in harmony with respect to I. A literal L
depends on a selected literal M, if M precedes L in Γ , and all ground instances of L
appear negated among the ground instances of M that M contributes to I[Γ], so that
M’s selection makes L uniformly false in I[Γ].

Most SGGS concepts and activities are defined modulo semantic guidance by
I, because the system endeavours to make I[Γ] different from I, since I 6|= S (if
I |= S, the problem is solved). For example, it is the I-false selected literals in Γ

that differentiate I[Γ] from I. Similarly, it is the dependence of I-true literals on

Parallel Theorem Proving 39

I-false selected literals that is recorded by assignments; and it is I-all-true clauses,
or clauses whose literals are all I-true, that are conflict clauses or justifications of
implied literal. When all literals of an I-all-true clause are assigned, it means that
in an attempt to diversify I[Γ] from I to satisfy other clauses, the system made that
I-all-true clause uniformly false in I[Γ]. When all literals of an I-all-true clause but
one are assigned, the non-assigned one must be selected, and it is an implied literal,
as all its ground instances must be true in I[Γ] to satisfy the clause.

The SGGS inference system includes SGGS-extension, SGGS-splitting, SGGS-
resolution, SGGS-move, and SGGS-deletion. SGGS-extension is an instance gener-
ation mechanism. SGGS-extension extends the sequence Γ and the candidate model
I[Γ], by adding to Γ an instance of an input clause which covers ground instances
not satisfied by I[Γ]. The clause is instantiated in a way that enforces the invariant
whereby all literals in Γ are either I-true or I-false.

SGGS-splitting has nothing to do with DPLL splitting. SGGS-splitting of a clause
ϕ by a clause ψ replaces ϕ by a partition, where all ground instances that a speci-
fied literal in ϕ has in common with ψ’s selected literal are confined to one clause of
the partition. This enables SGGS-resolution or SGGS-deletion to remove such in-
tersections between literals, eliminating duplications or contradictions in the repre-
sentation of the candidate model. SGGS-resolution is a restricted form of first-order
resolution, where an implied literal in a justification resolves away a literal that de-
pends on it: for this reason it uses matching rather than unification, and allows the
resolvent to replace the parent that is not a justification. SGGS-deletion removes dis-
posable clauses, that are redundant, because satisfied by the interpretation induced
by the clauses on their left in Γ . In a model-based approach a satisfied clause is
redundant.

If SGGS-extension adds a clause in conflict with I[Γ], the first-order CDCL
mechanism of SGGS applies. It comprises explanation and solving inferences. If
the conflict clause includes I-false literals, SGGS-resolution explains the conflict by
resolving away those I-false literals with implied literals in Γ . An SGGS-extension
adding such a clause makes sure that this is possible by applying an appropriate sub-
stitution. The explanation inferences yield either � or an I-all-true conflict clause,
which is then subject to the solving inferences.

If the conflict clause does not include I-false literals, only the solving inferences
are applied: the conflict clause is moved to the left of the clause which its selected
literal is assigned to. This SGGS-move solves the conflict by flipping the truth value
in I[Γ] of all ground instances of this selected literal. It corresponds to backjumping
in CDCL. The moved clause is learned in the sense that it becomes the justification
of its selected literal. Prior to the move, splitting inferences may apply to make the
selected literal of the clause to be moved so precise, that the move will indeed flip
the truth value of all its ground instances. Every SGGS-extension with a conflict
clause is followed by the explanation and solving inference that solve the conflict.

Because of the novelty of SGGS, its parallelization is a research goal for the
long term. Since SGGS is semantically guided by the initial interpretation I, the
notion of a parallel search with multiple SGGS processes, each using a different
I for semantic guidance, applies here too. Similar to hyperresolution, the simplest

40 M. P. Bonacina

example is to have two parallel SGGS processes, one using an I where all negative
literals are true, and the other using an I where all positive literals are true. Most
excitingly, SGGS opens the possibility of lifting to the first-order level the ideas for
distributed search (e.g., cubes) or multi-search put forth for CDCL.

References

1. Martin Aigner, Armin Biere, Christoph M. Kirsch, Aina Niemetz, and Mathias Preiner. Anal-
ysis of portfolio-style parallel SAT solving on current multi-core architectures. In Daniel Le
Berre and Allen Van Gelder, editors, Notes of the Fourth Workshop on Pragmatics of SAT
(POS), Sixteenth International Conference on Theory and Applications of Satisfiability Test-
ing (SAT), pages 28–40, 2013.

2. Gábor Alagi and Christoph Weidenbach. NRCL – a model building approach to the Bernays-
Schönfinkel fragment. In Carsten Lutz and Silvio Ranise, editors, Proceedings of the Tenth
International Symposium on Frontiers of Combining Systems (FroCoS), volume 9322 of Lec-
ture Notes in Artificial Intelligence, pages 69–84. Springer, 2015.

3. Iliès Alouini. Concurrent garbage collector for concurrent rewriting. In Jieh Hsiang, editor,
Proceedings of the Sixth International Conference on Rewriting Techniques and Applications
(RTA), volume 914 of Lecture Notes in Computer Science, pages 132–146. Springer, 1995.

4. Iliès Alouini. Étude et mise en oeuvre de la réecriture conditionnelle concurrente sur des
machines parallèles à mémoire distribuée. PhD thesis, Université Henri Poincaré Nancy 1,
May 1997.

5. Siva Anantharaman and Nirina Andrianarivelo. Heuristical criteria in refutational theorem
proving. In Alfonso Miola, editor, Proceedings of the First International Symposium on De-
sign and Implementation of Symbolic Computation Systems (DISCO), volume 429 of Lecture
Notes in Computer Science, pages 184–193. Springer, 1990.

6. Siva Anantharaman and Jieh Hsiang. Automated proofs of the Moufang identities in alterna-
tive rings. Journal of Automated Reasoning, 6(1):76–109, 1990.

7. Owen L. Astrachan and Donald W. Loveland. METEORs: high performance theorem provers
using model elimination. In Robert S. Boyer, editor, Automated Reasoning: Essays in Honor
of Woody Bledsoe, pages 31–60. Kluwer Academic Publishers, Amsterdam, The Nether-
lands, 1991.

8. Owen L. Astrachan and Mark E. Stickel. Caching and lemmaizing in model elimination theo-
rem provers. In Deepak Kapur, editor, Proceedings of the Eleventh International Conference
on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 224–238. Springer, 1992.

9. Jürgen Avenhaus and Jörg Denzinger. Distributing equational theorem proving. In Claude
Kirchner, editor, Proceedings of the Fifth International Conference on Rewriting Techniques
and Applications (RTA), volume 690 of Lecture Notes in Computer Science, pages 62–76.
Springer, 1993.

10. Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. DISCOUNT: a system for distributed
equational deduction. In Jieh Hsiang, editor, Proceedings of the Sixth International Con-
ference on Rewriting Techniques and Applications (RTA), volume 914 of Lecture Notes in
Computer Science, pages 397–402. Springer, 1995.

11. Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion. Journal of
Symbolic Computation, 6(1):1–18, 1988.

12. Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without failure. In
Hassam Aı̈t-Kaci and Maurice Nivat, editors, Resolution of Equations in Algebraic Struc-
tures, volume II: Rewriting Techniques, pages 1–30. Academic Press, Cambridge, England,
1989.

Parallel Theorem Proving 41

13. Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selec-
tion and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

14. Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramodu-
lation. Information and Computation, 121(2):172–192, 1995.

15. Leo Bachmair, Harald Ganzinger, David McAllester, and Christopher A. Lynch. Resolution
theorem proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook of Auto-
mated Reasoning, volume 1, chapter 2, pages 19–99. Elsevier, Amsterdam, The Netherlands,
2001.

16. Peter Baumgartner. Hyper tableaux – the next generation. In Harrie de Swart, editor, Pro-
ceedings of the Seventh International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX), volume 1397 of Lecture Notes in Artificial
Intelligence, pages 60–76. Springer, 1998.

17. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the model evolution
calculus. International Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

18. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning in the model
evolution calculus. In Miki Hermann and Andrei Voronkov, editors, Proceedings of the
Thirteenth Conference on Logic, Programming and Automated Reasoning (LPAR), volume
4246 of Lecture Notes in Artificial Intelligence, pages 572–586. Springer, 2006.

19. Peter Baumgartner and Ulrich Furbach. Consolution as a framework for comparing calculi.
Journal of Symbolic Computation, 16(5):445–477, 1993.

20. Peter Baumgartner and Ulrich Furbach. Variants of clausal tableaux. In Wolfgang Bibel
and Peter H. Schmitt, editors, Automated Deduction - A Basis for Applications, volume I:
Foundations - Calculi and Methods, chapter 3, pages 73–102. Kluwer Academic Publishers,
Amsterdam, The Netherlands, 1998.

21. Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model evolution calculus with equality
- revised and implemented. Journal of Symbolic Computation, 47(9):1011–1045, 2012.

22. Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a first-order DPLL
method. Artificial Intelligence, 172(4/5):591–632, 2008.

23. Peter Baumgartner and Uwe Waldmann. Superposition and model evolution combined. In
Renate Schmidt, editor, Proceedings of the Twenty-Second International Conference on Au-
tomated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pages
17–34. Springer, 2009.

24. Markus Bender, Björn Pelzer, and Claudia Schon. E-KRHyper 1.4: extensions for unique
names and description logic. In Maria Paola Bonacina, editor, Proceedings of the Twenty-
Fourth International Conference on Automated Deduction (CADE), volume 7898 of Lecture
Notes in Artificial Intelligence, pages 126–134. Springer, 2013.

25. Wolfgang Bibel and Elmer Eder. Methods and calculi for deduction. In Dov M. Gabbay,
Christopher J. Hogger, and John Alan Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume I: Logical Foundations, pages 68–183. Oxford
University Press, Oxford, England, 1993.

26. Jean-Paul Billon. The disconnection method. In Pierangelo Miglioli, Ugo Moscato, Daniele
Mundici, and Mario Ornaghi, editors, Proceedings of the Fifth International Conference on
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume
1071 of Lecture Notes in Artificial Intelligence, pages 110–126. Springer, 1996.

27. Maria Paola Bonacina. Distributed automated deduction. PhD thesis, Department of Com-
puter Science, State University of New York at Stony Brook, December 1992.

28. Maria Paola Bonacina. On the reconstruction of proofs in distributed theorem proving with
contraction: a modified Clause-Diffusion method. In Hoon Hong, editor, Proceedings of
the First International Symposium on Parallel Symbolic Computation (PASCO), volume 5 of
Lecture Notes Series in Computing, pages 22–33. World Scientific, 1994.

29. Maria Paola Bonacina. On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. Journal of Symbolic Computation, 21(4–6):507–522,
1996.

42 M. P. Bonacina

30. Maria Paola Bonacina. The Clause-Diffusion theorem prover Peers-mcd. In William W. Mc-
Cune, editor, Proceedings of the Fourteenth International Conference on Automated Deduc-
tion (CADE), volume 1249 of Lecture Notes in Artificial Intelligence, pages 53–56. Springer,
1997.

31. Maria Paola Bonacina. Experiments with subdivision of search in distributed theorem prov-
ing. In Markus Hitz and Erich Kaltofen, editors, Proceedings of the Second International
Symposium on Parallel Symbolic Computation (PASCO), pages 88–100. ACM Press, 1997.

32. Maria Paola Bonacina. Analysis of distributed-search contraction-based strategies. In Jürgen
Dix, Luis Fariñas del Cerro, and Ulrich Furbach, editors, Proceedings of the Sixth European
Workshop on Logics in Artificial Intelligence (JELIA), volume 1489 of Lecture Notes in
Artificial Intelligence, pages 107–121. Springer, 1998.

33. Maria Paola Bonacina. Mechanical proofs of the Levi commutator problem. In Peter Baum-
gartner et al., editor, Notes of the Workshop on Problem Solving Methodologies with Au-
tomated Deduction, Fifteenth International Conference on Automated Deduction (CADE),
pages 1–10, 1998.

34. Maria Paola Bonacina. A model and a first analysis of distributed-search contraction-based
strategies. Annals of Mathematics and Artificial Intelligence, 27(1–4):149–199, 1999.

35. Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Michael J. Wooldridge
and Manuela Veloso, editors, Artificial Intelligence Today - Recent Trends and Developments,
volume 1600 of Lecture Notes in Artificial Intelligence, pages 43–84. Springer, Berlin, Ger-
many, 1999.

36. Maria Paola Bonacina. Ten years of parallel theorem proving: a perspective. In Bernhard
Gramlich, Hélène Kirchner, and Frank Pfenning, editors, Notes of the Third Workshop on
Strategies in Automated Deduction (STRATEGIES), Second Federated Logic Conference
(FLoC), pages 3–15, 1999.

37. Maria Paola Bonacina. A taxonomy of parallel strategies for deduction. Annals of Mathe-
matics and Artificial Intelligence, 29(1–4):223–257, 2000.

38. Maria Paola Bonacina. Combination of distributed search and multi-search in Peers-mcd.d.
In Rajeev P. Gore, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the First
International Joint Conference on Automated Reasoning (IJCAR), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 448–452. Springer, 2001.

39. Maria Paola Bonacina. Towards a unified model of search in theorem proving: subgoal-
reduction strategies. Journal of Symbolic Computation, 39(2):209–255, 2005.

40. Maria Paola Bonacina. On theorem proving for program checking – Historical perspective
and recent developments. In Maribel Fernàndez, editor, Proceedings of the Twelfth Interna-
tional Symposium on Principles and Practice of Declarative Programming (PPDP), pages
1–11. ACM Press, 2010.

41. Maria Paola Bonacina and Nachum Dershowitz. Abstract canonical inference. ACM Trans-
actions on Computational Logic, 8(1):180–208, 2007.

42. Maria Paola Bonacina and Nachum Dershowitz. Canonical ground Horn theories. In Andrei
Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in Memory of
Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pages 35–71.
Springer, 2013.

43. Maria Paola Bonacina and Mnacho Echenim. Theory decision by decomposition. Journal of
Symbolic Computation, 45(2):229–260, 2010.

44. Maria Paola Bonacina, Ulrich Furbach, and Viorica Sofronie-Stokkermans. On first-order
model-based reasoning. In Narciso Martı́-Oliet, Peter Olveczky, and Carolyn Talcott, editors,
Logic, Rewriting, and Concurrency: Essays Dedicated to José Meseguer, volume 9200 of
Lecture Notes in Computer Science, pages 181–204. Springer, Berlin, Germany, 2015.

45. Maria Paola Bonacina and Jieh Hsiang. High performance simplification-based automated
deduction. In Transactions of the Ninth U.S. Army Conference on Applied Mathematics and
Computing, number 92-1, pages 321–335. Army Research Office, 1991.

46. Maria Paola Bonacina and Jieh Hsiang. A system for distributed simplification-based theo-
rem proving. In Bertrand Fronhöfer and Graham Wrightson, editors, Proceedings of the First

Parallel Theorem Proving 43

International Workshop on Parallelization in Inference Systems (December 1990), volume
590 of Lecture Notes in Artificial Intelligence, pages 370–370. Springer, Berlin, Germany,
1992.

47. Maria Paola Bonacina and Jieh Hsiang. Distributed deduction by Clause-Diffusion: the
Aquarius prover. In Alfonso Miola, editor, Proceedings of the Third International Sym-
posium on Design and Implementation of Symbolic Computation Systems (DISCO), volume
722 of Lecture Notes in Computer Science, pages 272–287. Springer, 1993.

48. Maria Paola Bonacina and Jieh Hsiang. On fairness in distributed deduction. In Patrice
Enjalbert, Alain Finkel, and Klaus W. Wagner, editors, Proceedings of the Tenth Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 665 of Lecture
Notes in Computer Science, pages 141–152. Springer, 1993.

49. Maria Paola Bonacina and Jieh Hsiang. On subsumption in distributed derivations. Journal
of Automated Reasoning, 12:225–240, 1994.

50. Maria Paola Bonacina and Jieh Hsiang. Parallelization of deduction strategies: an analytical
study. Journal of Automated Reasoning, 13:1–33, 1994.

51. Maria Paola Bonacina and Jieh Hsiang. The Clause-Diffusion methodology for distributed
deduction. Fundamenta Informaticae, 24(1–2):177–207, 1995.

52. Maria Paola Bonacina and Jieh Hsiang. Distributed deduction by Clause-Diffusion: dis-
tributed contraction and the Aquarius prover. Journal of Symbolic Computation, 19:245–267,
1995.

53. Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science, 146:199–242, 1995.

54. Maria Paola Bonacina and Jieh Hsiang. On semantic resolution with lemmaizing and con-
traction and a formal treatment of caching. New Generation Computing, 16(2):163–200,
1998.

55. Maria Paola Bonacina and Jieh Hsiang. On the modelling of search in theorem proving –
towards a theory of strategy analysis. Information and Computation, 147:171–208, 1998.

56. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satis-
fiability by DPLL(Γ +T) and unsound theorem proving. In Renate Schmidt, editor, Pro-
ceedings of the Twenty-second International Conference on Automated Deduction (CADE),
volume 5663 of Lecture Notes in Artificial Intelligence, pages 35–50. Springer, 2009.

57. Maria Paola Bonacina, Christopher A. Lynch, and Leonardo de Moura. On deciding satis-
fiability by theorem proving with speculative inferences. Journal of Automated Reasoning,
47(2):161–189, 2011.

58. Maria Paola Bonacina and William W. McCune. Distributed theorem proving by Peers.
In Alan Bundy, editor, Proceedings of the Twelfth International Conference on Automated
Deduction (CADE), volume 814 of Lecture Notes in Artificial Intelligence, pages 841–845.
Springer, 1994.

59. Maria Paola Bonacina and David A. Plaisted. Constraint manipulation in SGGS. In Temur
Kutsia and Christophe Ringeissen, editors, Proceedings of the Twenty-Eighth Workshop on
Unification (UNIF), Sixth Federated Logic Conference (FLoC), Technical Reports of the
Research Institute for Symbolic Computation, pages 47–54. Johannes Kepler Universität,
2014. Available at http://vsl2014.at/meetings/UNIF-index.html.

60. Maria Paola Bonacina and David A. Plaisted. SGGS theorem proving: an exposition. In
Stephan Schulz, Leonardo De Moura, and Boris Konev, editors, Proceedings of the Fourth
Workshop on Practical Aspects in Automated Reasoning (PAAR), Sixth Federated Logic Con-
ference (FLoC), July 2014, volume 31 of EasyChair Proceedings in Computing (EPiC),
pages 25–38, 2015.

61. Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-sensitive reasoning:
model representation. Journal of Automated Reasoning, 56(2):113–141, 2016.

62. Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-sensitive reason-
ing: inference system and completeness. Journal of Automated Reasoning, in press, 2017.
Published online on 6 August 2016 with DOI: 10.1007/s10817-016-9384-2.

44 M. P. Bonacina

63. Soumitra Bose, Edmund M. Clarke, David E. Long, and Spiro Michaylov. Parthenon: A
parallel theorem prover for non-Horn clauses. Journal of Automated Reasoning, 8(2):153–
182, 1992.

64. Bruno Buchberger. An algorithm for finding a basis for the residue class ring of a zero-
dimensional polynomial ideal (in German). PhD thesis, Department of Mathematics, Uni-
versität Innsbruck, 1965.

65. Bruno Buchberger. History and basic features of the critical-pair/completion procedure.
Journal of Symbolic Computation, 3:3–38, 1987.

66. Reinhard Bündgen, Manfred Göbel, and Wolfgang Küchlin. Strategy-compliant multi-
threaded term completion. Journal of Symbolic Computation, 21(4–6):475–506, 1996.

67. Ralph M. Butler and Ewing L. Lusk. User’s guide to the p4 programming system. Technical
Report 92/17, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, Illinois, October 1992.

68. Soumen Chakrabarti and Katherine A. Yelick. Implementing an irregular application on a
distributed memory multiprocessor. In Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 169–178, 1993.

69. Soumen Chakrabarti and Katherine A. Yelick. On the correctness of a distributed memory
Gröbner basis algorithm. In Claude Kirchner, editor, Proceedings of the Fifth International
Conference on Rewriting Techniques and Applications (RTA), volume 690 of Lecture Notes
in Computer Science, pages 77–91. Springer, 1993.

70. K. Many Chandy and Stephen Taylor. An Introduction to Parallel Programming. Jones and
Bartlett, Burlington, Massachusetts, 1991.

71. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Cambridge, England, 1973.

72. P. Daniel Cheng and J. Y. Juang. A parallel resolution procedure based on connection graph.
In Proceedings of the Sixth Annual Conference of the American Association for Artificial
Intelligence (AAAI), pages 13–17, 1987.

73. Heng Chu and David A. Plaisted. Model finding in semantically guided instance-based the-
orem proving. Fundamenta Informaticae, 21(3):221–235, 1994.

74. Heng Chu and David A. Plaisted. CLINS-S: a semantically guided first-order theorem prover.
Journal of Automated Reasoning, 18(2):183–188, 1997.

75. Edmund M. Clarke, David E. Long, Spiro Michaylov, Stephen A. Schwab, Jean-Philippe Vi-
dal, and Shinji Kimura. Parallel symbolic computation algorithms. Technical Report CMU-
CS-90-182, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, October 1990.

76. Susan E. Conry, Douglas J. MacIntosh, and Robert A. Meyer. DARES: a Distributed Auto-
mated REasoning System. In Proceedings of the Eleventh Annual Conference of the Ameri-
can Association for Artificial Intelligence (AAAI), pages 78–85, 1990.

77. Simon Cruanes. Extending superposition with integer arithmetic, structural induction, and
beyond. PhD thesis, École Polytechnique, Université Paris-Saclay, September 2015.

78. Bernd I. Dahn. Robbins algebras are Boolean: a revision of McCune’s computer-generated
solution of Robbins problem. Journal of Algebra, 208:526–532, 1998.

79. Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

80. Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201–215, 1960.

81. Leonardo de Moura and Nikolaj Bjørner. Engineering DPLL(T) + saturation. In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Proceedings of the Fourth Inter-
national Conference on Automated Reasoning (IJCAR), volume 5195 of Lecture Notes in
Artificial Intelligence, pages 475–490. Springer, 2008.

82. Leonardo de Moura and Nikolaj Bjørner. Bugs, moles and skeletons: Symbolic reasoning for
software development. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings of the Fifth
International Conference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes
in Artificial Intelligence, pages 400–411. Springer, 2010.

Parallel Theorem Proving 45

83. Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and
applications. Communications of the ACM, 54(9):69–77, 2011.

84. Jörg Denzinger. Team-Work: a method to design distributed knowledge based theorem
provers. PhD thesis, Department of Computer Science, Universität Kaiserslautern, 1993.

85. Jörg Denzinger and Bernd Ingo Dahn. Cooperating theorem provers. In Wolfgang Bibel
and Peter H. Schmitt, editors, Automated Deduction – A Basis for Applications, volume II:
Systems and Implementation, chapter 14, pages 383–416. Kluwer Academic Publishers, Am-
sterdam, The Netherlands, 1998.

86. Jörg Denzinger and Dirk Fuchs. Cooperation of heterogeneous provers. In Thomas Dean,
editor, Proceedings of the Sixeenth International Joint Conference on Artificial Intelligence
(IJCAI), pages 10–15. Morgan Kaufmann Publishers, 1999.

87. Jörg Denzinger, Marc Fuchs, and Matthias Fuchs. High performance ATP systems by com-
bining several AI methods. In Martha E. Pollack, editor, Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 102–107. Morgan Kaufmann
Publishers, 1997.

88. Jörg Denzinger and Matthias Fuchs. Goal-oriented equational theorem proving using Team-
Work. In Bernhard Nebel and Leonie Dreschler-Fischer, editors, Proceedings of the Eigh-
teenth German Conference on Artificial Intelligence (KI), volume 861 of Lecture Notes in
Artificial Intelligence, pages 343–354. Springer, 1994.

89. Jörg Denzinger and Martin Kronenburg. Planning for distributed theorem proving: the Team-
Work approach. In Steffen Hölldobler, editor, Proceedings of the Twentieth German Confer-
ence on Artificial Intelligence (KI), volume 1137 of Lecture Notes in Artificial Intelligence,
pages 43–56. Springer, 1996.

90. Jörg Denzinger, Martin Kronenburg, and Stephan Schulz. DISCOUNT: a distributed and
learning equational prover. Journal of Automated Reasoning, 18(2):189–198, 1997.

91. Jörg Denzinger and Jürgen Lind. TWlib: a library for distributed search applications. In Chu-
Sing Yang, editor, Proceedings of the International Conference on Artificial Intelligence,
International Computer Symposium (ICS), pages 101–108. National Sun-Yat Sen University,
1996.

92. Jörg Denzinger and Stephan Schulz. Recording and analyzing knowledge-based distributed
deduction processes. Journal of Symbolic Computation, 21(4–6):523–541, 1996.

93. Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279–301, 1982.

94. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier, Ams-
terdam, The Netherlands, 1990.

95. Nachum Dershowitz and Naomi Lindenstrauss. An abstract concurrent machine for rewrit-
ing. In Hélène Kirchner and W. Wechler, editors, Proceedings of the Second International
Conference on Algebraic and Logic Programming (ALP), volume 463 of Lecture Notes in
Computer Science, pages 318–331. Springer, 1990.

96. Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465–476, 1979.

97. Nachum Dershowitz and David A. Plaisted. Rewriting. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 9, pages 535–610.
Elsevier, Amsterdam, The Netherlands, 2001.

98. Norbert Eisinger and Hans Jürgen Ohlbach. Deduction systems based on resolution. In
Dov M. Gabbay, Christopher J. Hogger, and John Alan Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume I: Logical Foundations, pages 184–
273. Oxford University Press, Oxford, England, 1993.

99. Zachary Ernst and Seth Kurtenbach. Toward a procedure for data mining proofs. In
Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathemat-
ics: Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Artificial
Intelligence, pages 229–239. Springer, 2013.

46 M. P. Bonacina

100. Michael Fisher. An alternative approach to concurrent theorem proving. In James Geller, Hi-
roaki Kitano, and Christian B. Suttner, editors, Parallel Processing for Artificial Intelligence
3, pages 209–230. Elsevier, Amsterdam, The Netherlands, 1997.

101. Ian Foster and Steve Tuecke. Parallel programming with PCN. Technical Report 91/32,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illi-
nois, December 1991.

102. Dirk Fuchs. Requirement-based cooperative theorem proving. In Jürgen Dix, Luis Fariñas del
Cerro, and Ulrich Furbach, editors, Proceedings of the Sixth Joint European Workshop on
Logic in Artificial Intelligence (JELIA), volume 1489 of Lecture Notes in Artificial Intelli-
gence, pages 139–153. Springer, 1998.

103. Marc Fuchs. Controlled use of clausal lemmas in connection tableau calculi. Journal of
Symbolic Computation, 29(2):299–341, 2000.

104. Marc Fuchs and Andreas Wolf. Cooperation in model elimination: CPTHEO. In Claude
Kirchner and Hélène Kirchner, editors, Proceedings of the Fifteenth International Confer-
ence on Automated Deduction (CADE), volume 1421 of Lecture Notes in Artificial Intelli-
gence, pages 42–46. Springer, 1998.

105. Harald Ganzinger and Konstantin Korovin. New directions in instantiation-based theorem
proving. In Proceedings of the Eighteenth IEEE Symposium on Logic in Computer Science
(LICS), pages 55–64. IEEE Computer Society Press, 2003.

106. Harald Ganzinger and Konstantin Korovin. Theory instantiation. In Miki Hermann and
Andrei Voronkov, editors, Proceedings of the Thirteenth Conference on Logic, Programming
and Automated Reasoning (LPAR), volume 4246 of Lecture Notes in Artificial Intelligence,
pages 497–511. Springer, 2006.

107. Luı́s Gil, Paulo F. Flores, and Luis Miguel Silveira. PMSat: a parallel version of Minisat.
Journal on Satisfiability, Boolean Modeling and Computation, 6:71–98, 2008.

108. Joseph A. Goguen, Sany Leinwand, José Meseguer, and Timothy Winkler. The rewrite rule
machine 1988. Technical Report PRG-76, Oxford University Computing Laboratory, Ox-
ford, England, August 1989.

109. Joseph A. Goguen, José Meseguer, Sany Leinwand, Timothy Winkler, and Hitoshi Aida. The
rewrite rule machine. Technical Report SRI-CSL-89-6, Computer Science Laboratory, SRI
International, Menlo Park, California, March 1989.

110. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Program-
ming with the Message Passing Interface. MIT Press, Cambridge, Massachusetts, 1994.

111. Long Guo, Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Diversification and intensifi-
cation in parallel SAT solving. In Dave Cohen, editor, Proceedings of the Sixteenth Inter-
national Conference on Principles and Practice of Constraint Programming (CP), volume
6308 of Lecture Notes in Computer Science, pages 252–265. Springer, 2010.

112. Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Control-based clause sharing in parallel
SAT solving. In Craig Boutilier, editor, Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI), pages 409–504. AAAI Press, 2009.

113. Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel SAT solver. Journal
on Satisfiability, Boolean Modeling and Computation, 6:245–262, 2009.

114. Youssef Hamadi and Christoph M. Wintersteiger. Seven challenges in parallel SAT solving.
AI Magazine, 34(2):99–106, 2013.

115. D. J. Hawley. A Buchberger algorithm for distributed memory multi-processors. In Hans P.
Zima, editor, Proceedings of the First International Conference of the Austrian Center for
Parallel Computation (ACPC), volume 591 of Lecture Notes in Computer Science. Springer,
1991.

116. Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer: guid-
ing CDCL SAT solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn M. Shehory,
editors, Proceedings of the Seventh International Haifa Verification Conference (HVC), vol-
ume 7261 of Lecture Notes in Computer Science, pages 50–65. Springer, 2012.

117. Thomas Hillenbrand. Citius, altius, fortius: lessons learned from the theorem prover WALD-
MEISTER. In Ingo Dahn and Laurent Vigneron, editors, Proceedings of the Fourth Interna-
tional Workshop On First-Order Theorem Proving (FTP), volume 86 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

Parallel Theorem Proving 47

118. Christoph M. Hoffmann and Michael J. O’Donnell. Programming with equations. ACM
Transactions on Programming Languages and Systems, 4(1):83–112, 1982.

119. Alfred Horn. On sentences which are true in direct unions of algebras. Journal of Symbolic
Logic, 16:14–21, 1951.

120. Jieh Hsiang and Michaël Rusinowitch. On word problems in equational theories. In Thomas
Ottman, editor, Proceedings of the Fourteenth International Colloquium on Automta, Lan-
guages, and Programming (ICALP), volume 267 of Lecture Notes in Computer Science,
pages 54–71. Springer, 1987.

121. Jieh Hsiang and Michaël Rusinowitch. Proving refutational completeness of theorem proving
strategies: the transfinite semantic tree method. Journal of the ACM, 38(3):559–587, 1991.

122. Jieh Hsiang, Michaël Rusinowitch, and Ko Sakai. Complete inference rules for the cancella-
tion laws. In John McDermott, editor, Proceedings of the Tenth International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 990–992. Morgan Kaufmann Publishers, 1987.

123. Antti E. J. Hyvärinen, Tommi Junttila, and Ilka Niemelä. Incorporating clause learning in
grid-based randomized SAT solving. Journal on Satisfiability, Boolean Modeling and Com-
putation, 6:223–244, 2009.

124. Daniyar Itegulov, John Slaney, and Bruno Woltzenlogel Paleo. Scavenger 0.1: a theorem
prover based on conflict resolution. In Leonardo de Moura, editor, Proceedings of the Twenty-
Sixth Conference on Automated Deduction (CADE), volume 10395 of Lecture Notes in Arti-
ficial Intelligence, page to appear. Springer, 2017.

125. Swen Jacobs and Uwe Waldmann. Comparing instance generation methods for automated
reasoning. Journal of Automated Reasoning, 38:57–78, 2007.

126. Himanshu Jain. Verification using satisfiability checking, predicate abstraction and Craig in-
terpolation. PhD thesis, School of Computer Science, Carnegie Mellon University, Septem-
ber 2008.

127. Anita Jindal, Ross Overbeek, and Waldo C. Kabat. Exploitation of parallel processing for
implementing high-performance deduction systems. Journal of Automated Reasoning, 8:23–
38, 1992.

128. Deepak Kapur, David Musser, and Paliath Narendran. Only prime superposition need be
considered in the Knuth-Bendix completion procedure. Journal of Symbolic Computation,
6:19–36, 1988.

129. Owen Kaser, Shaunak Pawagi, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. C. Sekar.
Fast parallel implementations of lazy languages – the EQUALS experience. In John L.
White, editor, Proceedings of the ACM Conference on LISP and Functional Programming,
pages 335–344. ACM Press, 1992.

130. Claude Kirchner, Christopher Lynch, and Christelle Scharff. Fine-grained concurrent com-
pletion. In Harald Ganzinger, editor, Proceedings of the Seventh International Conference on
Rewriting Techniques and Applications (RTA), volume 1103 of Lecture Notes in Computer
Science, pages 3–17. Springer, 1996.

131. Claude Kirchner and Patrick Viry. Implementing parallel rewriting. In Bertrand Fronhöfer
and Graham Wrightson, editors, Proceedings of the First International Workshop on Paral-
lelization in Inference Systems (December 1990), volume 590 of Lecture Notes in Artificial
Intelligence, pages 123–138. Springer, Berlin, Germany, 1992.

132. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
John Leech, editor, Proceedings of the Conference on Computational Problems in Abstract
Algebras, pages 263–298. Pergamon Press, Oxford, England, 1970.

133. Richard E. Korf. Depth-first iterative deepening: an optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

134. Konstantin Korovin. An invitation to instantiation-based reasoning: from theory to practice.
In Renate Schmidt, editor, Proceedings of the Twenty-Second International Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Artificial Intelligence, pages
163–166. Springer, 2009.

135. Konstantin Korovin. Inst-Gen: a modular approach to instantiation-based automated reason-
ing. In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays

48 M. P. Bonacina

in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence,
pages 239–270. Springer, 2013.

136. Konstantin Korovin and Christoph Sticksel. iProver-Eq: An instantiation-based theorem
prover with equality. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings of the Fifth
International Conference on Automated Reasoning (IJCAR), volume 6173 of Lecture Notes
in Artificial Intelligence, pages 196–202. Springer, 2010.

137. Laura Kovàcs and Andrei Voronkov. First order theorem proving and Vampire. In Natasha
Sharygina and Helmut Veith, editors, Proceedings of the Twenty-Fifth International Con-
ference on Computer-Aided Verification (CAV), volume 8044 of Lecture Notes in Computer
Science, pages 1–35. Springer, 2013.

138. Robert Kowalski and Donald Kuehner. Linear resolution with selection function. Artificial
Intelligence, 2:227–260, 1971.

139. Dallas S. Lankford and A. M. Ballantyne. The refutation completeness of blocked per-
mutative narrowing and resolution. In William H. Joyner Jr., editor, Proceedings of the
Fourth Conference on Automated Deduction (CADE), pages 168–174, 1979. Available at
http://www.cadeinc.org/.

140. Shie-Jue Lee and David A. Plaisted. Eliminating duplication with the hyperlinking strategy.
Journal of Automated Reasoning, 9:25–42, 1992.

141. K. Rustan M. Leino and Aleksandar Milicevic. Program extrapolation with Jennisys. In
Proceedings of the Twenty-Seventh Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 411–430. ACM, 2012.

142. Reinhold Letz. Clausal tableaux. In Wolfgang Bibel and Peter H. Schmitt, editors, Auto-
mated Deduction - A Basis for Applications, volume I: Foundations - Calculi and Methods,
chapter 2, pages 43–72. Kluwer Academic Publishers, Amsterdam, The Netherlands, 1998.

143. Reinhold Letz, Klaus Mayr, and Christian Goller. Controlled integration of the cut rule into
connection tableau calculi. Journal of Automated Reasoning, 13(3):297–338, 1994.

144. Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: a high
performance theorem prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

145. Reinhold Letz and Gernot Stenz. DCTP - a disconnection calculus theorem prover. In
Rajeev P. Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of the First
International Joint Conference on Automated Reasoning (IJCAR), volume 2083 of Lecture
Notes in Artificial Intelligence, pages 381–385. Springer, 2001.

146. Reinhold Letz and Gernot Stenz. Model elimination and connection tableau procedures.
In John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
chapter 28, pages 2015–2114. Elsevier, Amsterdam, The Netherlands, 2001.

147. Reinhold Letz and Gernot Stenz. Proof and model generation with disconnection tableaux.
In Robert Nieuwenhuis and Andrei Voronkov, editors, Proceedings of the Eighth Interna-
tional Conference on Logic, Programming and Automated Reasoning (LPAR), volume 2250
of Lecture Notes in Artificial Intelligence, pages 142–156. Springer, 2001.

148. Reinhold Letz and Gernot Stenz. Integration of equality reasoning into the disconnection
calculus. In Uwe Egly and Christian G. Fermüller, editors, Proceedings of the Fifteenth
International Conference on Analytic Tableaux and Related Methods (TABLEAUX), volume
2381 of Lecture Notes in Artificial Intelligence, pages 176–190. Springer, 2002.

149. Vladimir Lifschitz, Leora Morgenstern, and David A. Plaisted. Knowledge representation
and classical logic. In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,
Handbook of Knowledge Representation, volume 1, pages 3–88. Elsevier, Amsterdam, The
Netherlands, 2008.

150. Rasiah Loganantharaj. Theoretical and implementational aspects of parallel link resolution
in connection graphs. PhD thesis, Department of Computer Science, Colorado State Univer-
sity, 1985.

151. Rasiah Loganantharaj and Robert A. Müller. Parallel theorem proving with connection
graphs. In Jörg Siekmann, editor, Proceedings of the Eighth International Conference on
Automated Deduction (CADE), volume 230 of Lecture Notes in Computer Science, pages
337–352. Springer, 1986.

Parallel Theorem Proving 49

152. Donald W. Loveland. A simplified format for the model elimination procedure. Journal of
the ACM, 16(3):349–363, 1969.

153. Donald W. Loveland. A unifying view of some linear Herbrand procedures. Journal of the
ACM, 19(2):366–384, 1972.

154. Ewing L. Lusk and William W. McCune. Experiments with ROO: a parallel automated deduc-
tion system. In Bertrand Fronhöfer and Graham Wrightson, editors, Proceedings of the First
International Workshop on Parallelization in Inference Systems (December 1990), volume
590 of Lecture Notes in Artificial Intelligence, pages 139–162. Springer, Berlin, Germany,
1992.

155. Ewing L. Lusk, William W. McCune, and John K. Slaney. Parallel closure-based automated
reasoning. In Bertrand Fronhöfer and Graham Wrightson, editors, Proceedings of the First
International Workshop on Parallelization in Inference Systems (December 1990), volume
590 of Lecture Notes in Artificial Intelligence, pages 347–347. Springer, Berlin, Germany,
1992.

156. Ewing L. Lusk, William W. McCune, and John K. Slaney. ROO: a parallel theorem prover. In
Deepak Kapur, editor, Proceedings of the Eleventh International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 731–734.
Springer, 1992.

157. Sharad Malik and Lintao Zhang. Boolean satisfiability: from theoretical hardness to practical
success. Communications of the ACM, 52(8):76–82, 2009.

158. Norbert Manthey. Towards next generation sequential and parallel SAT solvers. Constraints,
20(4):504–505, 2015.

159. Rainer Manthey and François Bry. SATCHMO: a theorem prover implemented in Prolog. In
Ewing Lusk and Ross Overbeek, editors, Proceedings of the Ninth International Conference
on Automated Deduction (CADE), volume 310 of Lecture Notes in Computer Science, pages
415–434. Springer, 1988.

160. João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Armin Biere, Marjin Heule, Hans Van Maaren, and Toby Walsh, editors, Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 4, pages 131–153. IOS Press, Amsterdam, The Netherlands, 2009.

161. João P. Marques-Silva and Karem A. Sakallah. GRASP: A new search algorithm for satisfia-
bility. In Proceedings of the International Conference on Computer-Aided Design (ICCAD),
pages 220–227, 1997.

162. João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

163. Ruben Martins, Vasco M. Manquinho, and Inês Lynce. An overview of parallel SAT solving.
Constraints, 17(3):304–347, 2012.

164. William W. McCune. OTTER 2.0 users guide. Technical Report 90/9, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Illinois, March 1990.

165. William W. McCune. What’s new in OTTER 2.2. Technical Report TM-153, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, July 1991.

166. William W. McCune. OTTER 3.0 reference manual and guide. Technical Report 94/6, Math-
ematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois,
January 1994. Revised August 1995.

167. William W. McCune. 33 Basic test problems: a practical evaluation of some paramodulation
strategies. In Robert Veroff, editor, Automated Reasoning and its Applications: Essays in
Honor of Larry Wos, pages 71–114. MIT Press, Cambridge, Massachusetts, 1997.

168. William W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19(3):263–276, 1997.

169. William W. McCune. OTTER 3.3 reference manual. Technical Report TM-263, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, August
2003.

170. Max Moser, Ortrun Ibens, Reinhold Letz, Joachim Steinbach, Christoph Goller, Johann
Schumann, and Klaus Mayr. The model elimination provers SETHEO and E-SETHEO. Jour-
nal of Automated Reasoning, 18(2):237–246, 1997.

50 M. P. Bonacina

171. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In David Blaauw and Luciano Lavagno, edi-
tors, Proceedings of the Thirty-Ninth Design Automation Conference (DAC), pages 530–535,
2001.

172. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 1, chapter 7, pages 371–443. Elsevier, Amsterdam, The Netherlands, 2001.

173. Robert Niewenhuis and A. Rubio. Theorem proving with ordering and equality constrained
clauses. Journal of Symbolic Computation, 19(4):321–351, 1995.

174. Gerald E. Peterson. A technique for establishing completeness results in theorem proving
with equality. SIAM Journal of Computing, 12(1):82–100, 1983.

175. Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, 1981.

176. Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. Deciding effectively propositional
logic using DPLL and substitution sets. Journal of Automated Reasoning, 44(4):401–424,
2010.

177. David A. Plaisted. Mechanical theorem proving. In Ranan B. Banerji, editor, Formal
Techniques in Artificial Intelligence, pages 269–320. Elsevier, Amsterdam, The Netherlands,
1990.

178. David A. Plaisted. Equational reasoning and term rewriting systems. In Dov M. Gabbay,
Christopher J. Hogger, and John Alan Robinson, editors, Handbook of Logic in Artificial In-
telligence and Logic Programming, volume I: Logical Foundations, pages 273–364. Oxford
University Press, Oxford, England, 1993.

179. David A. Plaisted. Automated theorem proving. Wiley Interdisciplinary Reviews: Cognitive
Science, 5(2):115–128, 2014.

180. David A. Plaisted and Swaha Miller. The relative power of semantics and unification. In An-
drei Voronkov and Christoph Weidenbach, editors, Programming Logics: Essays in Memory
of Harald Ganzinger, volume 7797 of Lecture Notes in Artificial Intelligence, pages 317–
344. Springer, 2013.

181. David A. Plaisted and Yunshan Zhu. Ordered semantic hyper linking. Journal of Automated
Reasoning, 25:167–217, 2000.

182. Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In Amy P. Felty
and Aart Middeldorp, editors, Proceedings of the Twenty-Fifth International Conference on
Automated Deduction (CADE), volume 9195 of Lecture Notes in Artificial Intelligence, pages
399–415. Springer, 2015.

183. George A. Robinson and Larry Wos. Paramodulation and theorem-proving in first-order
theories with equality. In Donald Michie and Bernard Meltzer, editors, Machine Intelligence,
volume 4, pages 135–150. Edinburgh University Press, Edinburgh, Scotland, 1969.

184. John Alan Robinson. Automatic deduction with hyper-resolution. International Journal of
Computer Mathematics, 1:227–234, 1965.

185. John Alan Robinson. A machine oriented logic based on the resolution principle. Journal of
the ACM, 12(1):23–41, 1965.

186. Michaël Rusinowitch. Theorem-proving with resolution and superposition. Journal of Sym-
bolic Computation, 11(1 & 2):21–50, 1991.

187. Tobias Schubert, Matthew Lewis, and Bernd Becker. PaMiraXT: parallel SAT solving with
threads and message passing. Journal on Satisfiability, Boolean Modeling and Computation,
6:203–222, 2009.

188. Stephan Schulz. E – A brainiac theorem prover. Journal of AI Communications, 15(2–
3):111–126, 2002.

189. Stephan Schulz. Simple and efficient clause subsumption with feature vector indexing. In
Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and Mathemat-
ics: Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Artificial
Intelligence, pages 45–67. Springer, 2013.

Parallel Theorem Proving 51

190. Stephan Schulz. System description: E 1.8. In Ken McMillan, Aart Middeldorp, and An-
drei Voronkov, editors, Proceedings of the Nineteenth International Conference on Logic,
Programming and Automated Reasoning (LPAR), volume 8312 of Lecture Notes in Artificial
Intelligence, pages 735–743. Springer, 2013.

191. Stephan Schulz and Martin Möhrmann. Performance of clause selection heuristics for
saturation-based theorem proving. In Nicola Olivetti and Ashish Tiwari, editors, Proceedings
of the Eighth International Conference on Automated Reasoning (IJCAR), volume 9706 of
Lecture Notes in Artificial Intelligence, pages 330–345. Springer, 2016.

192. Johan Schumann. Parallel theorem provers – an overview. In Bertrand Fronhöfer and Graham
Wrightson, editors, Proceedings of the First International Workshop on Parallelization in
Inference Systems (December 1990), volume 590 of Lecture Notes in Artificial Intelligence,
pages 26–50. Springer, Berlin, Germany, 1992.

193. Johann Schumann. Delta: a bottom-up pre-processor for top-down theorem provers. In Alan
Bundy, editor, Proceedings of the Twelfth International Conference on Automated Deduction
(CADE), volume 814 of Lecture Notes in Artificial Intelligence, pages 774–777. Springer,
1994.

194. Johann Schumann and Reinhold Letz. PARTHEO: a high-performance parallel theorem
prover. In Mark E. Stickel, editor, Proceedings of the Tenth International Conference on
Automated Deduction (CADE), volume 449 of Lecture Notes in Artificial Intelligence, pages
28–39. Springer, 1990.

195. Robert E. Shostak. Refutation graphs. Artificial Intelligence, 7:51–64, 1976.
196. Kurt Siegl. Gröbner bases computation in STRAND: a case study for concurrent symbolic

computation in logic programming languages (Master thesis). Technical Report 90-54.0,
Research Institute for Symbolic Computation (RISC), Linz, Austria, November 1990.

197. Carsten Sinz, Jörg Denzinger, Jürgen Avenhaus, and Wolfgang Küchlin. Combining parallel
and distributed search in automated equational deduction. In Proceedings of the Fourth In-
ternational Conference on Parallel Processing and Applied Mathematics (PPAM) – Revised
Papers, pages 819–832, 2001.

198. James R. Slagle. Automatic theorem proving with renamable and semantic resolution. Jour-
nal of the ACM, 14(4):687–697, 1967.

199. James R. Slagle. Automated theorem proving for theories with simplifiers, commutativity,
and associativity. Journal of the ACM, 21:622–642, 1974.

200. John Slaney, Ewing Lusk, and William W. McCune. SCOTT: Semantically constrained Otter.
In Alan Bundy, editor, Proceedings of the Twelfth International Conference on Automated
Deduction (CADE), volume 814 of Lecture Notes in Artificial Intelligence, pages 764–768.
Springer, 1994.

201. John Slaney and Bruno Woltzenlogel Paleo. Conflict resolution: a first-order resolution cal-
culus with decision literals and conflict-driven clause learning. Journal of Automated Rea-
soning, in press:1–27, 2017.

202. Mark E. Stickel. A Prolog technology theorem prover. New Generation Computing,
2(4):371–383, 1984.

203. Mark E. Stickel. A Prolog technology theorem prover: implementation by an extended Prolog
compiler. Journal of Automated Reasoning, 4:353–380, 1988.

204. Mark E. Stickel. PTTP and linked inference. In Robert S. Boyer, editor, Automated Rea-
soning: Essays in Honor of Woody Bledsoe, pages 283–296. Kluwer Academic Publishers,
Amsterdam, The Netherlands, 1991.

205. Mark E. Stickel. A Prolog technology theorem prover: new exposition and implementation
in Prolog. Theoretical Computer Science, 104:109–128, 1992.

206. Mark E. Stickel and W. Mabry Tyson. An analysis of consecutively bounded depth-first
search with applications in automated deduction. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence (IJCAI), pages 1073–1075. Morgan Kaufmann
Publishers, 1985.

207. David Sturgill and Alberto Maria Segre. Nagging: a distributed, adversarial search-pruning
technique applied to first-order inference. Journal of Automated Reasoning, 19(3):347–376,
1997.

52 M. P. Bonacina

208. Geoff Sutcliffe. A heterogeneous parallel deduction system. In Ryuzo Hasegawa and Mark E.
Stickel, editors, Proceedings of the FGCS Workshop on Automated Deduction: Logic Pro-
gramming and Parallel Computing Approaches, pages 5–13, 1992.

209. Christian B. Suttner. SPTHEO: a parallel theorem prover. Journal of Automated Reasoning,
18(2):253–258, 1997.

210. Christian B. Suttner and Johann Schumann. Parallel automated theorem proving. In
Laveen N. Kanal, Vipin Kumar, Hiroaki Kitano, and Christian B. Suttner, editors, Parallel
Processing for Artificial Intelligence. Elsevier, Amsterdam, The Netherlands, 1994.

211. Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, 1997.
212. Stephen Taylor. Parallel Logic Programming Techniques. Prentice Hall, Upper Saddle River,

New Jersey, 1989.
213. Josef Urban and Jirı́ Vyskocil. Theorem proving in large formal mathematics as an emerging

AI field. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning and
Mathematics: Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in
Artificial Intelligence, pages 240–257. Springer, 2013.

214. Jean-Philippe Vidal. The computation of Gröbner bases on a shared memory multiprocessor.
In Alfonso Miola, editor, Proceedings of the First International Symposium on Design and
Implementation of Symbolic Computation Systems (DISCO), volume 429 of Lecture Notes in
Computer Science, pages 81–90. Springer, 1990.

215. Kevin Wallace and Graham Wrightson. Regressive merging in model elimination tableau-
based theorem provers. Journal of the IGPL, 3(6):921–937, 1995.

216. David H. D. Warren. An abstract Prolog instruction set. Technical Report 309, Artificial
Intelligence Center, SRI International, Menlo Park, California, October 1983.

217. David S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):94–111,
1992.

218. Christoph Weidenbach, Dylana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and
Patrick Wischnewski. SPASS version 3.5. In Renate Schmidt, editor, Proceedings of the
Twenty-Second International Conference on Automated Deduction (CADE), volume 5663 of
Lecture Notes in Artificial Intelligence, pages 140–145. Springer, 2009.

219. Andreas Wolf. P-SETHEO: strategy parallelism in automated theorem proving. In Harrie
de Swart, editor, Proceedings of the Seventh International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX), volume 1397 of Lecture
Notes in Artificial Intelligence, pages 320–324. Springer, 1998.

220. Larry Wos. Searching for open questions. Newsletter of the Association for Automated
Reasoning, 15, May 1990.

221. Larry Wos, Daniel F. Carson, and George A. Robinson. Efficiency and completeness of the
set of support strategy in theorem proving. Journal of the ACM, 12:536–541, 1965.

222. Larry Wos, George A. Robinson, Daniel F. Carson, and Leon Shalla. The concept of demod-
ulation in theorem proving. Journal of the ACM, 14(4):698–709, 1967.

223. Chih-Hung Wu and Shie-Jue Lee. Parallelization of a hyper-linking based theorem prover.
Journal of Automated Reasoning, 26(1):67–106, 2001.

224. Katherine A. Yelick. Using abstraction in explicitly parallel programs. PhD thesis, Labora-
tory for Computer Science, Massachusetts Institute of Technology, July 1991.

225. Katherine A. Yelick and Steven J. Garland. A parallel completion procedure for term rewrit-
ing systems. In Deepak Kapur, editor, Proceedings of the Eleventh International Conference
on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 109–123. Springer, 1992.

226. Hantao Zhang. SATO: an efficient propositional prover. In William W. McCune, editor,
Proceedings of the Fourteenth International Conference on Automated Deduction (CADE),
volume 1249 of Lecture Notes in Artificial Intelligence, pages 272–275. Springer, 1997.

227. Hantao Zhang and Maria Paola Bonacina. Cumulating search in a distributed computing
environment: a case study in parallel satisfiability. In Hoon Hong, editor, Proceedings of
the First International Symposium on Parallel Symbolic Computation (PASCO), volume 5 of
Lecture Notes Series in Computing, pages 422–431. World Scientific, 1994.

Parallel Theorem Proving 53

228. Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a distributed propositional
prover and its application to quasigroup problems. Journal of Symbolic Computation, 21(4–
6):543–560, 1996.

229. Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putnam method. Journal of
Automated Reasoning, 24(1–2):277–296, 2000.

230. Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers. In An-
drei Voronkov, editor, Proceedings of the Eighteenth International Conference on Automated
Deduction (CADE), volume 2392 of Lecture Notes in Artificial Intelligence, pages 295–313.
Springer, 2002.

Index

Aquarius, 2, 3, 25, 30
associative-commutative symbol, 30, 31

backward contraction, 8–10, 12, 17–19, 26–30,
35

backward-contraction bottleneck, 18, 19, 30
blocking, 31

C-reduction, 5
caching, 5, 6
CDCL, 34, 35, 38–40
CL-SDSAT, 36
clausal simplification, 7, 8, 11, 28
Clause-Diffusion, 2, 3, 12, 25–34, 36, 37
completion procedure, 9, 14, 18, 30
concurrent rewriting, 14
contraction-based strategies, 3, 8, 9, 12, 23, 37
CPTHEO, 21, 24
cube, 35–37, 40

distributed fairness, 28, 29
distributed global contraction, 28, 29
distributed proof reconstruction, 28, 29
distributed search, 13, 20, 24, 25, 28, 30–33,

36, 37, 40
DPLL, 11, 34, 35, 38

EQP, 31, 32
expansion-oriented strategies, 3, 8–10, 12, 35

factoring, 6, 7, 27, 28
fairness, 11, 23, 29
folding-up, 5, 6
forward contraction, 8, 10, 11, 16, 17, 19, 26,

28, 29, 35, 36

given-clause algorithm, 7, 16–18, 22, 30–32

guiding path, 34, 35

heterogeneous systems, 21, 23, 24
homogeneous systems, 20, 24
HPDS, 21
hyperresolution, 8, 21, 28, 37, 39

instance-based strategies, 2, 3, 11, 12, 16, 19,
37, 38

lemmatization, 5, 35
linear resolution, 4, 6

ManySAT, 36
METEOR, 13, 16
model elimination, 2, 4, 5, 21, 37
model-based reasoning, 2, 3, 33–36, 38
model-elimination tableaux, 2, 4, 37
Moufang identities, 32
multi-search, 13, 20–24, 30–33, 36, 37, 40

non-variable overlap, 14
normalization, 7, 12, 15, 27, 28

ordering-based strategies, 2, 3, 7–9, 12, 13, 16,
19, 20, 22, 25, 28, 36, 37

OTTER, 16, 17, 23, 27, 30, 32

pairs algorithm, 30–32
PaMiraXT, 36
parallel rewriting, 12, 14, 15, 19
parallelism at the clause level, 12, 15, 16, 18,

19
parallelism at the search level, 12, 19, 20
parallelism at the term/literal level, 12, 13
paramodulation, 2, 6, 7, 27, 28, 30, 31
Parthenon, 13, 16

55

56 Index

PARTHEO, 13, 16, 21
Peers, 3, 25, 27, 30, 31
Peers-mcd, 3, 25, 31, 32
PMSat, 36
portfolio solving, 3, 20, 24, 34
preprocessing, 15
Prolog Technology Theorem Proving, 6, 21
propositional satisfiability, 11, 34
PSATO, 1, 33, 34

redundancy, 3, 5, 10, 19, 29, 32, 36, 39
regressive merging, 5
resolution, 2, 6, 7, 22, 27, 28, 34, 39
Robbins algebras, 31, 32
ROO, 3, 16–18

SAT solver, 1, 3, 12, 33, 36–38
search overlap, 20, 26, 27, 32, 34, 36, 37

semantic guidance, 8, 12, 37, 38
semantic resolution, 8, 37
set of support, 8, 16, 37
SGGS, 2, 38, 39
simplification, 7, 9, 15, 28, 29, 31
SMT, 2
SMT solver, 2, 3, 38
speedup, 31, 32
subgoal-reduction strategies, 2, 3, 5, 6, 12, 13,

15, 19, 20, 24, 35
subsumption, 7, 8, 11, 21, 28
superposition, 6, 7, 9, 14, 15, 27, 28, 31

task stealing, 15
Team-Work, 3, 22–24, 36
TECHS, 23

unit-resulting resolution, 21, 28

