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Abstract. In this paper we consider an approach to improve the performance of exponential
Runge–Kutta integrators and Lawson schemes in cases where the solution of a related, but usually
much simpler, problem can be computed efficiently. While for implicit methods such an approach is
common (e.g. by using preconditioners), for exponential integrators this has proven more challenging.
Here we propose to extract a constant coefficient differential operator from the semilinear advection-
diffusion-reaction equation for which, in many situations, efficient methods are known to compute
the required matrix functions. Both a linear stability analysis and extensive numerical experiments
show that the resulting schemes can be unconditionally stable. In fact, we find that exponential
integrators of Runge–Kutta type and Lawson schemes can have better stability properties than
similarly constructed implicit-explicit schemes. We also derive two new Lawson type integrators that
further improve on these stability properties. The overall effectiveness of the approach is highlighted
by a number of performance comparisons on examples in two and three space dimensions.
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1. Introduction. Solving time dependent Partial Differential Equations (PDEs)
efficiently is important for better understanding many phenomena in science and
engineering. In most cases, in particular for problems which are diffusion dominated,
discretizing such PDEs in space results in a very stiff set of Ordinary Differential
Equations (ODEs) for which explicit integrators have to take extremely small time
steps.

The standard approach to reduce the computational effort for such problems is
to use implicit methods. These kinds of methods, from a theoretical point of view,
can have very attractive properties. In particular, many implicit methods are uncon-
ditionally stable. Since in this paper we are mostly interested in diffusion dominated
problems, we consider methods that are unconditionally stable in the sense that they
do not have a time step restriction when applied to the linear problem

u′(t) = Au(t),

where A is a matrix with negative eigenvalues. That is, the time step size is only
dictated by the prescribed tolerance (i.e., accuracy), but not by stability considera-
tions. However, implicit methods in general require the solution of a nonlinear set
of equations at each time step. This is usually done either by performing Newton
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iteration in combination with some linear solver or by directly using an IMplicit-
EXplicit (IMEX) scheme, which treats implicitly only the linear part of the system.
Thus, using implicit methods shifts all the difficulty into finding an efficient way to
solve dense linear systems of moderate size (such as those coming from pseudospectral
techniques) or large and sparse ones (such as those stemming from finite differences
or finite elements spatial discretizations). When the arising linear system is solved
by a direct method such as LU decomposition the computational complexity of the
obtained algorithm is usually worse than that of an explicit integrator. Otherwise,
Krylov subspace based iterative methods are used, such as the Conjugate Gradient
(CG) method or the Generalized Minimal RESidual method (GMRES) [33]. For
diffusion dominated problems Krylov methods already significantly reduce the com-
putational effort needed. However, for a number of problems preconditioners can be
constructed that further reduce it. Preconditioners transform the linear system in
such a way that the solution of the resulting linear system requires fewer iterations.
While there are preconditioners that, at least in principle, can be applied generically
(e.g. ILU or the celebrated algebraic multi-grid approach [36]), for many challenging
problems purpose-built preconditioners have to be constructed. Often such precondi-
tioners use the solution of a related, but simpler, problem that can be solved efficiently
(see, e.g., physics based preconditioners [11, 32] or block preconditioners [2, 14]).

Exponentials integrators (see [23] for a review) are another way to solve in time
stiff differential equations in which a linear part of the problem is treated exactly,
while the nonlinear remainder is treated in an explicit manner. In this work, we focus
on exponential integrators of Runge–Kutta type [22] and on Lawson schemes [24]
(i.e., methods that just involve matrix exponentials but not related functions). For
example, to solve the equation

∂tu(t) = Au(t) + g(t, u(t))

it is possible to use the exponential Euler method

un+1 = un + τφ1(τA)(Aun + g(tn, u
n))

or the Lawson–Euler scheme

un+1 = eτA(un + τg(tn, u
n)).

Here A is a linear operator/matrix, τ is the time step size, and φ1(z) = (ez − 1)/z is
an entire function (the singularity at 0 is removable). Even for nonlinear problems,
exponential integrators require no Newton iteration, but rather the computation of the
action of matrix functions related to the exponential (such as the φ1 function above) at
each time step. The main difficulty for exponential integrators is the evaluation of such
exponential-like matrix functions. For that purpose Krylov subspace methods [21],
schemes based on Leja interpolation [8, 9], and Taylor methods [1] are commonly
used. It has been shown in a number of studies that Krylov or Leja based exponential
integrators can be superior to implicit schemes for realistic problems, see, e.g., [13,
16, 17, 25]. Unfortunately, however, the aforementioned technique of preconditioning
to further improve performance does not apply to exponential integrators.

Thus, a natural question that arises is whether the solution of a related, but
simpler, problem for which an efficient solution is known can be used in the framework
of exponential integrators in order to improve the performance of the scheme. The
idea that we pursue in this paper is to choose the linear operator A in such a way
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that the corresponding matrix functions can be computed efficiently. In particular,
we are interested in (diffusion dominated) variable coefficients semilinear advection-
diffusion-reaction equations in the following form

∂tu(t,x) = ∇ · (a(x)∇u(t,x)) +∇ · (b(x)u(t,x)) + r(t,x, u(t,x)),

with t ∈ [0, T ], x ∈ Ω ⊂ Rd, and equipped with appropriate initial and boundary
conditions. If we use

Au = ∇ · (a(x)∇u) +∇ · (b(x)u)

then we have to resort to general purpose Krylov or Leja based schemes, for instance,
to compute the actions of eτA and φ1(τA). However, for constant diffusion tensor
and velocity field (i.e., if a and b are independent of x) we can use a fast Poisson
solver, e.g. Fast Fourier Transform (FFT) based methods. This scales linearly (up to
a logarithm) in the number of unknowns. The idea is then to consider the following
equivalent formulation of the equation

∂tu(t,x) = Au(t,x) +∇ · (a(x)∇u(t,x)) +∇ · (b(x)u(t,x))−Au(t,x) + r(t,x, u(t,x))︸ ︷︷ ︸
g(t,x,u(t,x))

,

where now A is a constant coefficient approximation to the original advection-diffusion
operator. The hope is that the actions of eτA and φ1(τA) can stabilize the nonlinear
term g(t,x, u(t,x)) of the exponential integrator. The choice of A is clearly not
uniquely determined and we will consider how to choose it later in the paper. We
remark, however, that A has to be chosen in such a way that we can efficiently compute
the corresponding matrix functions.

Let us note that a related approach to what we pursue in this paper leads to split
or partitioned exponential integrators [27, 28, 31], which has also been applied to non-
diffusive equations [3]. The idea of employing a constant coefficient operator can be
considered in the context of implicit methods as well. In particular, an IMEX scheme
can be used. The approximation operator is treated implicitly (which can be done
efficiently using, e.g., Fourier methods), while the nonlinear term is treated explicitly.
Such schemes, known in the literature as explicit-implicit-null, were considered for
instance in [35]. Clearly, the class of operators for which efficient linear solvers are
known is not equivalent to the class of operators for which the matrix exponential (and
related matrix functions) can be computed efficiently. For example, it is quite involved
to build a linear solver if a matrix has d-dimensional Kronecker sum form [12]. Instead,
this structure can be more easily exploited for the matrix exponential case [4, 7].
Indeed, thanks to the equivalence

eAd⊕Ad−1⊕···⊕A1v = vec
(
V ×1 e

A1 ×2 · · · ×d e
Ad

)
, V ∈ CNx1

×···×Nxd , v = vec(V ),

we are able to compute the action of the exponential of a matrix in Kronecker sum
form just in terms of the small sized matrix exponentials eAµ and tensor-matrix µ-
mode products (here denoted with the symbol ×µ) using d calls to level 3 BLAS. This
idea leads to the so-called µ-mode integrator, with dramatic improvements in terms
of efficiency of computation. On the other hand, if for a specific operator a good
preconditioner is known, an efficient linear solver can be constructed, while the same
is not necessarily true for computing the corresponding matrix functions.

Let us also mention some related work in the context of computing matrix func-
tions. In [10] the fact that the matrix exponential can be written as the solution of a
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linear differential equation is used to decompose the problem into a “preconditioner”
and a correction. An exponential integrator is then used to approximate the result-
ing system. The preconditioners chosen are all purely algebraic in nature (diagonal,
block diagonal, etc.) and are not specifically adapted to the underlying PDE. In [34]
a rational Krylov subspace is constructed. That is, the inverse of the preconditioner
is directly built into the Krylov subspace in order to obtain an approximation space
that is well behaved. This approach was later extended to trigonometric operators
[20].

In this paper we will first perform a linear stability analysis of the proposed
approach. In particular, this will show that exponential integrators can have better
stability properties than their corresponding IMEX counterparts. We will also propose
a class of methods (called stabilized Lawson schemes) that improve on the stability
properties of the classic Lawson schemes. We investigate the choice of the operator A
and show that this can have a drastic influence on performance. We note that in [35],
in the context of IMEX schemes, the authors employ the smallest amount of diffusion
in A that is necessary to guarantee stability. We do observe a similar behavior for
some test examples. However, for different two- and three-dimensional semilinear
advection-diffusion-reaction equations that we investigate this is not the case. In this
context we state our proposal, also based on strong numerical evidence, to select A in
a good way. We then perform a number of numerical investigations with appropriate
techniques for evaluating the matrix functions in order to highlight the efficiency of
the proposed approach. Finally, we show that the investigated accelerated exponential
methods can outperform their IMEX counterparts in a number of situations.

2. Linear stability analysis. As mentioned in the introduction, we investigate
here how to determine the approximation operator A for exponential Runge–Kutta
and Lawson methods by studying a model equation. In particular, we consider the
constant coefficient heat equation

∂tu = ∆u

on the domain Ω = (−π, π)d with periodic boundary conditions, and we equivalently
write

(2.1) ∂tu = λ∆u+ (1− λ)∆u,

with λ ∈ [0, 1]. Note that in this case the approximation operator is simply

A = λ∆.

We note that a similar analysis can be performed for more general operators as long as
the eigenvalues lie on the negative real axis. Then, in order to determine the parameter
λ we perform a linear stability analysis of the temporal exponential integrator in
Fourier space, which appears to be novel in the literature (see [15, Sec. 4.1] for a
similar investigation, in a different context, for the exponential Euler method only).
For the convenience of the reader, all the schemes mentioned and studied in this
section are collected in Appendix A (formulated for a generic abstract semilinear
ODE).

Let us consider the well-known exponential Euler method, which integrates (2.1)
in time as follows

(2.2) un+1 = un + τφ1(τλ∆)∆un,
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where un is the numerical solution at time tn, τ is the time step size and φ1(z) =
(ez − 1)/z. Here and throughout the paper we assume without loss of generality that
τ is constant. Then we have the following result.

Theorem 2.1. The exponential Euler scheme (2.2) is unconditionally stable for
λ ≥ λee = 1/2.

Proof. Let us denote k = (k1, . . . , kd) ∈ Zd, k2 =
∑

µ k
2
µ, and let ûn

k be the kth
Fourier mode of un. Then, in Fourier space we have

Φ(z, λ) :=
ûn+1
k

ûn
k

= 1− φ1(−λτk2)τk2 = 1− 1

λ
+

ezλ

λ
,

where z = −τk2. Thus, we have unconditional stability if the stability function Φ(z, λ)
satisfies

|Φ(z, λ)| ≤ 1 for all z ∈ (−∞, 0].

Since λ ∈ [0, 1] this implies λ ≥ 1/2, as desired.

What Theorem 2.1 tells us is that we still get an unconditionally stable scheme for
the heat equation even if we only put half of the Laplacian into A. This is the key
observation for the numerical methods that we propose in this paper.

Let us now turn our attention to the Lawson–Euler scheme

(2.3) un+1 = eτλ∆(un + τ(1− λ)∆un),

which can alternatively be seen as a Lie splitting where we approximate the second
subflow by explicit Euler, that is

eτλ∆eτ(1−λ)∆un ≈ eτλ∆(un + τ(1− λ)∆un) = un+1.

For this method we obtain the following result.

Theorem 2.2. The Lawson–Euler scheme (2.3) is unconditionally stable for λ ≥
λle = 0.218.

Proof. The stability function satisfies

Φ(z, λ) = eλz(1 + (1− λ)z).

Taking the minimum with respect to z we get

z =
1

λ(λ− 1)
.

Plugging this into the stability function we obtain

1− 1

λ
+ e

1
1−λ ≥ 0.

The result then simply follows by computing the zero of the left-hand side.

This shows that there exist methods which are unconditionally stable for values
of λ smaller than λee = 1/2. This is of interest because it is often the case that the
accuracy of the method increases as λ decreases (see the experiments in sections 4
and 5). In addition, as mentioned in the introduction, the advantage of using schemes
that just employ the exponential function is the following: in certain situations it can
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be more efficient to compute the exponential than the φ functions (e.g., for exploiting
the Kronecker structure or if a semi-Lagrangian scheme is used).

A natural question to ask is if it is possible to construct a numerical method for
which the constraint on λ is further reduced. We propose then the following scheme

(2.4) un+1 = un + τeτλ∆∆un.

We call this first order method the stabilized Lawson–Euler scheme, for which we
obtain the following result.

Theorem 2.3. The stabilized Lawson–Euler scheme (2.4) is unconditionally sta-
ble for λ ≥ λsle = 1/(2e) ≈ 0.184.

Proof. In this case, the stability function is given by

Φ(z, λ) = 1 + zeλz.

The stated result then follows immediately.

Remark 2.4. A similar analysis can be performed also for other classes of schemes.
For example, in [35] some IMEX schemes have been analyzed in a fully discretized
context. In particular, for the well known backward-forward Euler method

(I − τλ∆)un+1 = (I + τ(1− λ)∆)un

the authors obtain the bound λ ≥ λbfe = 1/2 for unconditional stability. Moreover,
they propose the second order method(

I − τ

2
λ∆

)
U =

(
I +

τ

2
(1− λ)∆

)
un,(

I − τ

2
λ∆

)
un+1 =

(
I +

τ

2
λ∆

)
un + τ(1− λ)∆U

which has the same stability bound λ ≥ λimex2 = 1/2.

Let us now consider some examples of second order exponential integrators. In
particular, we start with the following exponential Runge–Kutta type scheme for (2.1)

(2.5)
U = un + c2τφ1(c2τλ∆)∆un,

un+1 = un + τφ1(τλ∆)∆un +
τ

c2
φ2(τλ∆)(1− λ)∆(U − un),

where 0 < c2 ≤ 1 is a free parameter and φ2(z) = (φ1(z)− 1)/z. For this scheme we
have the following result.

Theorem 2.5. The exponential Runge–Kutta scheme (2.5) is unconditionally sta-
ble for λ ≥ 1/(1 + c2).

Proof. The stability function is given by

Φ(z, λ) = 1 + zφ1(λz) + z2(1− λ)φ2(λz)φ1(c2λz).

Then, by imposing |Φ(z, λ)| ≤ 1 for all z ∈ (−∞, 0] we have

1− λ

c2λ
− 1 ≤ 0

from which we obtain λ ≥ 1/(1 + c2) as desired.
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The smallest result, in terms of unconditional stability, is obtained by setting the free
parameter c2 = 1, which yields λ ≥ λerk2p2 = 1/2.

Let us consider now another second order exponential Runge–Kutta integrator,
which requires just the φ1 function. For the model equation (2.1) this yields

(2.6)
U = un + c2τφ1(c2τλ∆)∆un,

un+1 = un + τφ1(τλ∆)∆un +
τ

2c2
φ1(τλ∆)(1− λ)∆(U − un).

We obtain the following unconditional stability result.

Theorem 2.6. The exponential Runge–Kutta scheme (2.6) is unconditionally sta-
ble for λ ≥ 1/(1 + 2c2).

Proof. The stability function is given by

Φ(z, λ) = 1 + zφ1(λz) +
z2

2
(1− λ)φ1(λz)φ1(c2λz)

for which we obtain λ ≥ 1/(1 + 2c2) as desired.

The choice c2 = 1 yields the bound λ ≥ λerk2p1 = 1/3, which is smaller than the
bound obtained for the previous method.

Concerning the second order Lawson type schemes, we consider the Lawson2a
and the Lawson2b integrators, which integrate (2.1) as follows

(2.7)
U = e

τ
2 λ∆

(
un + τ

2 (1− λ)∆un
)
,

un+1 = eτλ∆un + τe
τ
2 λ∆(1− λ)∆U,

and

(2.8)
U = eτλ∆ (un + τ(1− λ)∆un) ,

un+1 = eτλ∆un +
τ

2
eτλ∆(1− λ)∆un +

τ

2
(1− λ)∆U,

respectively. In terms of unconditional stability, we have the following result.

Theorem 2.7. The Lawson2a scheme (2.7) and the Lawson2b scheme (2.8) are
unconditionally stable for λ ≥ λl2a = λl2b = 0.301.

Proof. The stability functions are given by

Φ(z, λ) = eλz
(
1 + z(1− λ)

(
1 +

z(1− λ)

2

))
and

Φ(z, λ) = eλz
(
1 +

z

2
(1− λ) +

z

2
(1− λ)(1 + z(1− λ))

)
for Lawson2a and Lawson2b, respectively. In both cases, a numerical calculation leads
to the restriction λ ≥ 0.301 for unconditional stability.

We now propose a second order variant of the stabilized Lawson–Euler scheme.
Letting 0 < α ≤ 1 be a free parameter, we obtain for the model equation (2.1) the
following method

(2.9)
U = un + ατeατλ∆∆un,

un+1 = un + τe
τ
2 λ∆∆un +

τ

2α
eτλ∆(1− λ)∆(U − un).



8 M. CALIARI, F. CASSINI, L. EINKEMMER, AND A. OSTERMANN

We call this second order integrator the stabilized Lawson2 scheme, for which we have
the following result.

Theorem 2.8. The stabilized Lawson2 scheme (2.9) with α = αsl2 = 0.327 is
unconditionally stable for λ ≥ λsl2 = 0.183.

Proof. The stability function is given by

Φ(z, λ) = 1 + ze
λz
2 +

z2

2
(1− λ)e(1+α)λz.

Then, setting α = αsl2 = 0.327, a numerical calculation leads to the restriction
λ ≥ 0.183 for unconditional stability.

Note that the value αsl2 = 0.327 is chosen such that the corresponding parameter
λsl2 is as small as possible.

In Table 2.1 we have collected, in descending order, the stability lower bounds of
all the methods considered in this section, together with the labels that we will use
throughout the paper. To summarize, we find that the stabilized Lawson schemes can
be operated with the smallest values of λ, followed by the Lawson schemes. Exponen-
tial integrators and IMEX schemes require a larger value of λ to be unconditionally
stable.

Table 2.1
Collection of methods, in descending order in terms of unconditional stability. Floating point

notation means obtained by numerical approximations.

method label order stab. lower bound
backward–forward Euler bfe 1 λbfe = 1/2

implicit–explicit2 imex2 2 λimex2 = 1/2
exponential Euler ee 1 λee = 1/2

exponential RK2 with φ2 (c2 = 1) erk2p2 2 λerk2p2 = 1/2
exponential RK2 with φ1 (c2 = 1) erk2p1 2 λerk2p1 = 1/3

Lawson2a l2a 2 λl2a = 0.301
Lawson2b l2b 2 λl2b = 0.301

Lawson–Euler le 1 λle = 0.218
stabilized Lawson–Euler sle 1 λsle = 1/(2e) ≈ 0.184

stabilized Lawson2 (αsl2 = 0.327) sl2 2 λsl2 = 0.183

Remark 2.9. The stabilized Lawson–Euler and the stabilized Lawson2 schemes
are not exact for linear problems, as opposed to the other exponential integrators.
Moreover, it is straightforward to see that they are not A-stable (see Figure 2.1 for a
plot of the A-stability regions). Nevertheless, the stability regions contain the whole
negative real axis. Therefore, with both schemes we can treat the Laplacian operator
and small perturbations of it without incurring a time step size restriction.

3. Accelerated exponential methods. In this section we use the above analy-
sis to propose a choice for the approximation operator A in a more general context.
We consider in fact the following semilinear advection-diffusion-reaction equation

(3.1) ∂tu(t,x) = ∇ · (a(x)∇u(t,x)) +∇ · (b(x)u(t,x)) + r(t,x, u(t,x)),

where a(x) ∈ Rd×d is the diffusion tensor and b(x) = (bµ(x))µ, for µ = 1, . . . , d, is a
velocity vector field, with appropriate boundary and initial conditions on the domain
Ω ⊂ Rd. We now rewrite (3.1) in the following equivalent form

(3.2a) ∂tu(t,x) = Au(t,x) + g(t,x, u(t,x)),
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Fig. 2.1. A-stability regions (green) of the sle method (left) and of the sl2 scheme (right).

where

(3.2b) Au(t,x) = λ

d∑
µ=1

amax
µµ ∂xµxµu(t,x) + β · ∇u(t,x)

and

g(t,x, u(t,x)) = ∇ ·
(
(a(x)− λamax)∇u(t,x)

)
+∇ · ((b(x)− β)u(t,x))

+ r(t,x, u(t,x)).
(3.2c)

Here λ ∈ [0, 1], while amax and β are the diagonal matrix and the vector with com-
ponents

(3.2d) amax
µµ = max

x
aµµ(x), βµ =

1

|Ω|

∫
Ω

(
bµ(x) + ∂xµ

aµµ(x)
)
dx, µ = 1, . . . , d,

respectively. The idea here is that we extract λamax from the diffusion part of the
equation as described in the previous section. In addition, we move into the linear
operator also a constant part from the advection term, which is in general beneficial
for exponential integrators. We have chosen here to use the average velocity as this
physically represents a good constant coefficient approximation of the advection op-
erator. Moreover, note that we have to take into account not only the advection given
by b(x) but also the advection that is implicitly contained in the diffusion operator.

It is possible now to apply to (3.2a) the methods analysed in section 2 for the linear
homogeneous diffusion case and formulated in Appendix A for the general case. The
required matrix functions/linear solves for A can be efficiently computed in a variety
of ways (e.g. using FFT or µ-mode techniques). More details and an investigation of
the performance of these schemes will be considered in section 5.

Note that in order to obtain an efficient scheme the choice of the parameter λ is
crucial. In [35], in the context of IMEX schemes, the authors obtained satisfactory
performances choosing λ as small as the stability condition permits. By following
this approach, we also observed good results in the numerical validation performed
in section 4. However, additional numerical experiments presented in section 5 show
that this is not necessarily always the best choice. Thus, we wish to determine λ in
such a way that the error of the numerical approximation is as small as possible, while
still retaining efficiency. Based on numerical evidence of many examples conducted,



10 M. CALIARI, F. CASSINI, L. EINKEMMER, AND A. OSTERMANN

we suggest the following approach. First, we perform a simulation where only a small
number of degrees of freedom is used for the space discretization (while still capturing
the overall physical dynamics of the equation). Using this simulation we perform
a parameter scan for the admissible values of λ in order to determine the one that
gives the smallest error. Only this λ is then used in the simulation of the advection-
diffusion-reaction equation. Note that this procedure has negligible computational
cost, since it is performed only for a small-sized problem. Nevertheless, numerical
experiments show that the obtained values for λ still give good approximations to
the optimal ones which correspond to the highest accuracy of the methods (see, for
instance, Figure 5.1).

4. Numerical validation of the stability constraints. In this section we
show that the stability bounds derived for the model equation in section 2 do also
apply to more complicated equations. In particular, we will consider a linear and a
nonlinear one-dimensional diffusion(-reaction) equation with variable coefficients.

4.1. Linear diffusion. We start by considering the following one-dimensional
linear diffusion equation with space dependent coefficients

(4.1)

{
∂tu(t, x) = a(x)∂xxu(t, x), x ∈ (−π, π), t ∈ [0, T ],

u(0, x) = sinx,

subject to periodic boundary conditions. In the experiments we use a(x) = 1 +
10 sin2 x. As described above, we then rewrite (4.1) as

(4.2) ∂tu(t, x) = λamax∂xxu(t, x)︸ ︷︷ ︸
Au(t,x)

+(a(x)− λamax)∂xxu(t, x)︸ ︷︷ ︸
g(x,u(t,x))

,

with λ ∈ [0, 1].
The structure of the equation allows for an effective discretization in space by

means of a Fourier spectral technique. In particular, we denote with N the number
of Fourier modes. Then, the temporal schemes studied in section 2 and resumed
in Appendix A can be applied in a straightforward manner, with the computation of
derivatives and matrix functions by pointwise operations on Fourier coefficients.

Here, we verify that the theoretical lower bounds for λ found in section 2 also
apply to this space dependent coefficients diffusion equation. The actual simulations
have been carried out with N = 212 and T = 1/40, and the achieved errors for
different λ and varying number of time steps m = 2ℓ, with ℓ = 4, 6, 8, . . . , 14, have
been measured at the final time T in the infinity norm, relatively with respect to the
exact solution of (4.1). The results are collected in Figures 4.1 and 4.2. First of all,
we observe that all the considered exponential methods show the expected order of
convergence (in particular also the newly derived stabilized Lawson schemes). Then,
we also clearly see that, as λ decreases, some methods fail to be unconditionally
stable, producing large errors when decreasing the time step size (for visualization
reasons, we restrict the plot to values below 10−1). In particular, if we compare with
the bounds resumed in Table 2.1, we observe that the values found can be applied
sharply also to the case of (4.1). Indeed, up to λ = 1/2 all the methods are stable.
Then, if we further decrease λ, some methods start to blow up when incrementing the
number of time steps, in accordance to what presented in Table 2.1 (for instance, at
λ = 1/3 we clearly see that the exponential Euler scheme and the erk2p2 method are
not unconditionally stable). Finally, as predicted by the linear analysis, for λ < λsl2

all the schemes lose the unconditional stability property.
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Fig. 4.1. Solution of (4.1) rewritten as (4.2), with different schemes, decreasing λ and varying
number of time steps m. The common legend is displayed in the bottom right plot. Missing marks
mean that the error is larger than 10−1, i.e., the method fails to be unconditionally stable.
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Fig. 4.2. Solution of (4.1) rewritten as (4.2), with different schemes, decreasing λ and varying
number of time steps m. The common legend is displayed in the bottom right plot. Missing marks
mean that the error is larger than 10−1, i.e., the method fails to be unconditionally stable.

4.2. Nonlinear diffusion-reaction. We now turn our attention to the follow-
ing one-dimensional nonlinear diffusion-reaction equation

(4.3)

{
∂tu(t, x) = ∂x(a(x)∂xu(t, x)) + r(u(t, x)), x ∈ (−π, π), t ∈ [0, T ],

u(0, x) = sinx,
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in an inhomogeneous medium with periodic boundary conditions, see [30]. Here we
select a(x) = 1+10 sin2 x as the space dependent diffusion coefficient, and the reaction
is of quadratic type r(u) = u(1−u). Similarly to the previous example, we rewrite (4.3)
as

(4.4) ∂tu(t, x) = λamax∂xxu(t, x)︸ ︷︷ ︸
Au(t,x)

+ ∂x ((a(x)− λamax)∂xu(t, x)) + r(u(t, x))︸ ︷︷ ︸
g(x,u(t,x))

.

We first discretize in space with a Fourier spectral method employing N = 210 modes.
Then, as for the previous example, the temporal schemes can be applied straightfor-
wardly with pointwise operations on Fourier coefficients. We simulate until the final
time T = 1/10 with a number of time steps equal to m = 212 for all the methods.
We choose different values of λ and we measure the relative errors in the infinity
norm with respect to a reference solution computed with erk2p2 as time integrator
(applied to original (4.3) semidiscretized in space with spectral finite differences, and
with a sufficiently large number of time steps). We collect the results in Figure 4.3.
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Fig. 4.3. Solution of (4.3) rewritten as (4.4), with different schemes of first order (left), of
second order (right), and varying value λ. The number of time steps is fixed to m = 212 for each
method. Missing marks mean that the error is larger than 10−2.

Also in this nonlinear case, we observe that the linear analysis predicts very
sharply the amount of diffusion that we can consider in the operator A while keeping
unconditional stability. Moreover, it is also clear that each method becomes more
precise as the value λ decreases, with in general a greater gain for second order meth-
ods than the first order ones. For completeness, we added also the results obtained
with the IMEX schemes mentioned in Remark 2.4. Overall, in terms of achieved
accuracy, we observe that the stabilized Lawson–Euler and the stabilized Lawson2
schemes perform best among the methods of first and second order, respectively.

5. Performance comparison. In this section, we present performance results
on two- and three-dimensional semilinear advection-diffusion-reaction equations. All
the experiments have been performed on an Intel Core i7-10750H CPU with six phys-
ical cores and 16GB of RAM, using Matlab R2022a. Moreover, the errors showed in
the plots are always computed in the infinity norm at the final time relatively to a
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reference solution computed with the Lawson2b integrator and sufficiently small time
step size.

For comparison, we perform a “standard” integration of the problem, i.e., we
employ the time integrators summarized in Appendix A putting the entire diffu-
sion and advection operators in the linear part. The remainder g is then equal
to the reaction. For computing the required actions of φ functions, we use the
general purpose kiops method [19], whose Matlab implementation is available at
https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/. While there are many
techniques available to compute the relevant matrix functions [1, 5, 6, 26, 29], kiops
is generally recognized to be among those that perform best. This routine requires
an input tolerance, which we set as τp+1/100, where τ is the time step size and p
is the order of the time integrator. For the IMEX schemes the linear systems are
solved with the biconjugate gradient stabilized iterative method (implemented in the
internal Matlab function bicgstab). Also for this routine we set the input tolerance
as τp+1/100.

5.1. Two-dimensional advection-diffusion-reaction. We start by consider-
ing the following two-dimensional advection-diffusion-reaction equation

(5.1)


∂tu(t, x1, x2) = ∇ · (a(x1, x2)∇u(t, x1, x2)) +∇ · (b(x1, x2)u(t, x1, x2))

+ r(u(t, x1, x2)),

u(0, x1, x2) = exp(−(x2
1 + x2

2))

in an inhomogeneous and anisotropic medium with periodic boundary conditions.
Here (x1, x2) ∈ (−3π, 3π)2, t ∈ [0, T ], the diffusion tensor is given by

a(x1, x2) =

(
a11(x1, x2) 0

0 a22(x1, x2)

)
=

(
1
2 + 1

6 sin
2(x1) sin

2(x2) 0
0 1

2 + 1
6 cos

2(x1) cos
2(x2)

)
,

the velocity field is given by

b1(x1, x2) =
1

5
sin2(x1), b2(x1, x2) =

1

5
sin2(x2),

and the reaction is of quadratic type r(u) = 1
4u(1 − u). For the proposed approach

we then rewrite (5.1) as

(5.2) ∂tu(t, x1, x2) = Au(t, x1, x2) + g(x1, x2, u(t, x1, x2)),

see (3.2). The structure of the equation allows for an effective discretization in space
using a Fourier pseudospectral approach. In particular, we consider N = Nx1 = Nx2

Fourier modes per direction, and we employ the internal Matlab functions fft2 and
ifft2 to perform the direct and inverse transforms, respectively, which are based on
the highly efficient FFTW algorithm [18]. Note that, once in Fourier space, the appli-
cation of the relevant matrix functions is simply performed by pointwise operations
on the Fourier coefficients.

In order to determine the free parameter λ in the operator A, we follow the
approach described in section 3. In fact, we take N = 26 Fourier modes, m = 28 time
steps and as final simulation time T = 4. The results are presented in Figure 5.1. For
comparison, we plot also the results obtained with N = 28. As we can observe the

https://gitlab.com/stephane.gaudreault/kiops/-/tree/master/
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Fig. 5.1. Solution of (5.1) rewritten as (5.2), with different first order schemes (left) and
second order schemes (right), for varying value λ. The number of time steps is fixed to m = 28 for
each method, while the number of degrees of freedom for each spatial variable is N = 26 (top) and
N = 28 (bottom).

two plots are very similar, but the upper ones have been obtained with a negligible
computational time, still guaranteeing a very good guess for the optimal λ.

A summary of the values of λ obtained in this way for all the integrators under
consideration is given in Table 5.1. Remark that, in this example, it is not always the
case that the lower bounds stemming from the linear stability analysis correspond to
the lowest errors, both for the exponential and for the IMEX schemes (cf. Table 2.1).

Table 5.1
Values of λ, for the different schemes that are employed to integrate (5.1) rewritten as (5.2)

(see also Figure 5.1).

method bfe ee le sle erk2p1 imex2 l2a sl2
value of λ 0.50 0.50 0.22 0.23 0.33 0.57 0.53 0.57
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Now, employing for each integrator the corresponding value of λ found, we present
the actual performance results using N = 28 degrees of freedom for every spatial
variable. As a comparison, we consider the original equation (5.1) semidiscretized in
space with spectral finite differences and solved numerically with the same temporal
integrators. In addition, we also perform the time evolution with the exponential
Rosenbrock–Euler scheme (see Appendix A), that we label erbe. This method is of
second order, requires the action of a single φ1 function and employs as linear operator
the Jacobian of the right-hand side of the equation (i.e., it exploits in the linear part
also information coming from the reaction term, which may be beneficial).

The number of time steps is set to 2ℓ1 , with ℓ1 = 9, . . . , 12, for the first order
integrators, while 2ℓ2 , with ℓ2 = 8, . . . , 11, for the second order methods. The final
simulation time is again T = 4. The results are collected in the CPU diagrams
of Figure 5.2. As we can see, overall the proposed approach allows to obtain slightly
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Fig. 5.2. Results for the simulations of (5.1) (dashed lines), rewritten as (5.2) (solid lines),
with different integrators of first order (left, number of time steps m = 2ℓ1 with ℓ1 = 9, . . . , 12) and
of second order (right, number of time steps m = 2ℓ2 with ℓ2 = 8, . . . , 11).

better errors with respect to the results in the original formulation, with the exception
of the Lawson2a scheme. Indeed, the choice of the parameter λ in the acceleration
technique is determined by stability considerations only, and not by accuracy ones.
Hence, a decrease in error is not to be expected, in general. The computational time
of the proposed approach is less than the corresponding integration in the original
formulation. Among the first order schemes the exponential methods perform equally
well, while for the second order methods the implicit-explicit2 scheme is the one
that shows slightly better results. Note also that, when integrating (5.2) with the
proposed approach, the wall-clock time is basically independent of the chosen time
integrators, both for first and second order methods. This is expected, as the most
costly operations in this case are the Fourier and inverse Fourier transforms. In fact
each scheme of order one requires 7 transforms per time step, while we need 13 for
the second order methods. Finally, note that as expected the erbe method requires
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less wall-clock time than the l2a and the erk2p1 scheme (since it requires just a
single action of φ function). However, overall the computational gain of the proposed
approach is still superior.

5.2. Three-dimensional advection-diffusion-reaction. We consider the fol-
lowing three-dimensional advection-diffusion-reaction equation

(5.3)



∂tu(t, x1, x2, x3) = a(x1, x2, x3)∆u(t, x1, x2, x3) + b

3∑
µ=1

∂xµ
u(t, x1, x2, x3)

+ r(u(t, x1, x2, x3)),

u(0, x1, x2, x3) =

(
27

4

)3

x1x2x3(1− x1)
2(1− x2)

2(1− x3)
2,

in the spatial domain Ω = (0, 1)3 and t ∈ [0, T ]. We equip the problem with homo-
geneous Dirichlet boundary conditions on the set {(x1, x2, x3) ∈ ∂Ω : x1x2x3 = 0}
and with homogeneous Neumann boundary conditions elsewhere. We set the diffusion
coefficient to

a(x1, x2, x3) =
1

10
e−(x1−1/2)2−(x2−1/2)2−(x3−1/2)2 ,

while the reaction is of cubic type r(u) = u(1 + u2).
For the proposed approach we rewrite (5.3) as

∂tu(t, x1, x2, x3) = (λamax∆+ b(∂x1
+ ∂x2

+ ∂x3
))u(t, x1, x2, x3)︸ ︷︷ ︸

Au(t,x1,x2,x3)

+ (a(x1, x2, x3)− λamax)∆u(t, x1, x2, x3) + r(u(t, x1, x2, x3))︸ ︷︷ ︸
g(x1,x2,x3,u(t,x1,x2,x3))

,
(5.4)

where

amax = max
x1,x2,x3

a(x1, x2, x3).

We discretize this equation in space with standard second order centered finite dif-
ferences, using N = Nx1

= Nx2
= Nx3

discretization points for each direction. By
doing so, the linear operator A in (5.4) is approximated by a matrix with Kronecker
sum structure A3 ⊕ A2 ⊕ A1, where Aµ ∈ RNxµ×Nxµ is the discretization matrix of
the operator λamax∂xµxµ + b∂xµ . Hence, for those exponential integrators that just
require the exponential function (i.e., the ones of Lawson type), it is possible to em-
ploy µ-mode based techniques in order to efficiently compute the needed actions of
the matrix exponential via Tucker operators exploiting the equivalence

eA3⊕A2⊕A1v = vec
(
V ×1 e

A1 ×2 e
A2 ×3 e

A3
)
, V ∈ RN×N×N , v = vec(V ),

see [4, 7] for more details.
Similarly to the previous example, in order to determine the free parameter λ in A,

we use the technique described in section 3. We set N = 24 and perform a simulation
with m = 28 time steps and final simulation time T = 1/4. The outcome, for two
different choices of advection parameter (b = −0.01 and b = −1), is summarized
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Fig. 5.3. Solution of (5.3) rewritten as (5.4), with various first order schemes (left) and second
order schemes (right), for different values of λ. The number of time steps is fixed to m = 28 for each
method, while the number of degrees of freedom for each spatial variable is N = 24. The advection
parameter is either b = −0.01 (top) or b = −1 (bottom).

Table 5.2
Values of λ for the different schemes that are employed to integrate (5.3) rewritten as (5.4)

(see also Figure 5.3).

b = −0.01 b = −1
le sle l2a sl2 le sle l2a sl2

value of λ 0.36 0.27 0.62 0.53 0.60 0.50 0.50 0.57

in Figure 5.3, and the resulting values of λ actually employed in the experiments are
given in Table 5.2.

For the performance results, we set the number of uni-directional degrees of free-
dom to N = 60. As term of comparison, we consider here the same time inte-
grators but applied to the original equation (5.3) spatially discretized with second
order centered finite differences. In addition, in this formulation, we also present the
results obtained with the exponential Euler scheme, with the second order exponen-
tial Runge–Kutta integrator erk2p1, with the exponential Rosenbrock–Euler method
erbe and with the two IMEX schemes bfe and imex2. We perform the simulations
with a number of time integration steps equal to 2ℓ1 , with ℓ1 = 9, . . . , 12, for the first
order methods, while we consider 2ℓ2 , with ℓ2 = 5, . . . , 8, for the second order schemes.
Again, the final simulation time is set to T = 1/4. The outcome of the experiments
with advection parameter b = −0.01 is collected in a CPU diagram in Figure 5.4.
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Fig. 5.4. Results for the simulations of (5.3) (dashed lines), rewritten as (5.4) (solid lines), with
b = −0.01 and different integrators of first order schemes (left, number of time steps m = 2ℓ1 with
ℓ1 = 9, . . . , 12) and second order schemes (right, number of time steps m = 2ℓ2 with ℓ2 = 5, . . . , 8).

First of all, concerning the schemes of first order, we observe that in the original
formulation (i.e., the dashed lines in the plot) the Lawson–Euler scheme is the one
which performs best. Indeed, comparing it with the other exponential methods, it is
the one which reaches the smallest error, with basically the same computational time.
The backward-forward Euler method performs slightly better in terms of wall-clock
time, but the error is larger than both the exponential Euler method and the Lawson–
Euler scheme. Hence, overall, it is not the preferred method. In any case, we observe
that the proposed approach, i.e., solving instead (5.4) with µ-mode techniques (solid
lines) is effective. Indeed, in this formulation both the Lawson–Euler and the sta-
bilized Lawson–Euler methods perform better than the corresponding counterparts,
both in terms of error and of wall-clock time, with a slight advantage for the former.
Similar considerations can be drawn for the second order schemes. In fact, using the
proposed approach, the Lawson2a scheme performs best, with a considerable advan-
tage in performance in the µ-mode realization.

We then repeat the experiment by increasing the magnitude of advection param-
eter, i.e., setting it to b = −1. The results are collected in Figure 5.5. In this case,
we first of all note that the stabilized schemes applied to (5.4) show errors which
are either comparable (stabilized Lawson–Euler) or even lower (stabilized Lawson2)
with respect to their counterparts in the original formulation. This is not true for
the Lawson–Euler and the Lawson2a schemes, which in fact increase the errors when
employing the proposed approach. Nevertheless, the gain in computational time is so
considerable that overall the µ-mode implementation is the preferred one. In particu-
lar, the methods which perform best are the Lawson–Euler scheme and the Lawson2a
method for first and second order, respectively.

6. Conclusion. In this manuscript, we presented an effective acceleration ap-
proach to numerically solve semilinear advection-diffusion-reaction equations in the
framework of exponential integrators. The technique is based on a reformulation of
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Fig. 5.5. Results for the simulations of (5.3) (dashed lines), eventually rewritten as (5.4) (solid
lines), with b = −1 and different integrators of first order (left, number of time steps m = 2ℓ1 with
ℓ1 = 9, . . . , 12) and second order (right, number of time steps m = 2ℓ2 with ℓ2 = 5, . . . , 8).

the original equation, driven by a linear stability analysis of a simpler model, and
allows for the employment of ad-hoc efficient methods for the time integration (FFT
or µ-mode based, for instance). In this context, we also presented two new schemes of
Lawson type which have improved unconditional stability bounds compared to meth-
ods already available in the literature, and which appear to perform comparably with
respect to well-known integrators in most of the situations.

We conducted numerical examples and performance comparisons on several semi-
linear advection-diffusion-reaction equations in one, two, and three space dimensions.
The outcomes show the superiority of the proposed technique for exponential integra-
tors, always outperforming straightforward implementations (up to a factor of roughly
15 in the three dimensional case) and often obtaining better results with respect to
popular IMEX schemes.

As further developments, we plan to deeply investigate alternative choices for the
approximation operator A (making it vary according to the time evolution of the
solution by relating it to the Jacobian of the equation, for instance) as well as to
consider nonlinear diffusion terms, both from a theoretical and a practical point of
view. Also, we intend to apply the proposed approach to different classes of PDEs
arising from science and engineering problems.

Appendix A. List of integrators. For the convenience of the reader, we list
here the integrators that have been mentioned and studied in the paper. We suppose
that the equation under study is given in the following abstract form

u′(t) = Au(t) + g(t, u(t)) = F (t, u(t)),

where A is a generic linear operator and g is a nonlinear function.
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A.1. Lawson type exponential integrators. The Lawson–Euler scheme is
given by

un+1 = eτA(un + τg(tn, u
n)).

The stabilized Lawson–Euler scheme is given by

un+1 = un + τeτAF (tn, u
n).

The Lawson2a scheme is given by

U = e
τ
2A

(
un +

τ

2
g(tn, u

n)
)
, un+1 = eτAun + τe

τ
2Ag

(
tn +

τ

2
, U

)
.

The Lawson2b scheme is given by

U = eτA (un + τg(tn, u
n)) , un+1 = eτA

(
un +

τ

2
g(tn, u

n)
)
+

τ

2
g(tn + τ, U).

The stabilized Lawson2 scheme is given by

U = un + ατeατAF (tn, u
n),

un+1 = un + τe
τ
2AF (tn, u

n) +
τ

2α
eτA(g(tn + ατ, U)− g(tn, u

n)).

A.2. Classical exponential integrators. The exponential Euler scheme is
given by

un+1 = un + τφ1(τA)F (tn, u
n).

The exponential Runge–Kutta scheme of second order involving the φ2 function is
given by

U = un + c2τφ1(c2τA)F (tn, u
n),

un+1 = un + τφ1(τA)F (tn, u
n) +

τ

c2
φ2(τA)(g(tn + c2τ, U)− g(tn, u

n)).

The exponential Runge–Kutta scheme of second order involving the φ1 function is
given by

U = un + c2τφ1(c2τA)F (tn, u
n),

un+1 = un + τφ1(τA)F (tn, u
n) +

τ

2c2
φ1(τA)(g(tn + c2τ, U)− g(tn, u

n)).

The exponential Rosenbrock–Euler scheme for autonomous problems with F (u(t)) =
Au(t) + g(u(t)) is given by

un+1 = un + τφ1(τJn)F (un), Jn = A+
∂g

∂u
(un).

A.3. IMEX schemes. The backward-forward Euler scheme is given by

(I − τA)un+1 = un + τg(tn, u
n).

The second order implicit-explicit2 scheme proposed in [35] is given by(
I − τ

2
A
)
U = un +

τ

2
g(tn, u

n),
(
I − τ

2
A
)
un+1 = un +

τ

2
Aun + τg

(
tn +

τ

2
, U

)
.
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