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ABSTRACT Active objects are those in contact with the first person in an egocentric video. This paper
addresses the challenge of anticipating the future location of the next active object in relation to a person
within a given egocentric video clip, which is challenging since the contact is poised to happen after the
last observed frame by the model, even before any action takes place. As we aim to estimate the position of
objects, this problem is particularly hard in a scenario where the observed clip and the action segment are
separated by the so-called time-to-contact segment. We term this task Anticipating the Next ACTive Object
(ANACTO) and introduce a transformer-based self-attention framework to tackle it. We compare our model
with the existing anticipation-based methods to establish relevant baseline methods, where our approach
outperforms all of them on three major egocentric datasets: EpicKitchens-100, EGTEA+, and Ego4D. We
also conduct an ablation study to better present the effectiveness of the proposed and baseline methods on
varying conditions. The code as well as the ANACTO task annotations for the aforementioned first two
datasets will be made available upon the acceptance of this paper.

INDEX TERMS Egocentric vision, anticipation, next active object, active object, scene understanding

I. INTRODUCTION

THE widespread use of wearable cameras prompted the
design of egocentric (first-person) systems that can read-

ily support and help humans in their daily activities, by
augmenting their abilities [1]–[3]. In order to assist users, a
fundamental problem is to anticipate what the person will do
in the next few seconds. Among the various potential tasks,
a highly relevant one is to discern, from an egocentric video
stream, which object a user will interact with or manipulate
in the near future. Pirsiavash and Ramanan [4] define active
objects as those currently in contact with a person. In the
context of action anticipation, objects that will come in con-
tact in the future for future action are termed as next-active-
objects (NAO). However, our work extends beyond mere
localization of the NAO; it involves modeling the motion and
Field-of-View (FoV) drift until the actual contact with the
object occurs. This nuanced task provides invaluable insights
into understanding not only the future actions of the person
but also the interaction dynamics with objects. Anticipating
interactable objects presents a significant challenge, as human
interactions with the environment depend on their end goals
and responses from the surroundings. This task provides in-

sights into whether interacting with an object requires further
movement or can be achieved based on the reference from the
last observed frame, incorporating the past motions of both
the object and the person.

In this paper, we refer to the aforementioned task as "An-
ticipating Next ACTive Object" (ANACTO), which aims to
localize the next-active-object’s position for anytime in the
future, where a new action starts using that object. It is cru-
cial to emphasize that ANACTO is distinct from Short-Term
Anticipation (STA) defined in [5]. STA requires localizing
the position of the Next-Active-Object (NAO) in the last
observed frame, without considering how and where the
contact with the object actually occurs. Contrary to this, our
ANACTO task extends this definition by potentially incor-
porating the motion and Field-of-View (FoV) drift of the
interactant to anticipate the NAO at its contact point in that
starting frame(s) of future action (see Fig. 1). In this regard,
our task definition aligns with the action anticipation study
[4], which characterizes active objects as those currently in
contact with the first person. In detail, ANACTO emphasizes
the localization of the NAO at its contact point prior to
the commencement of any interactions. One can utilize past

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3395282

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Thakur et al.: Anticipating Next Active Objects for Egocentric Videos

Model

Next active object anticipation

Starting frame 
of action

Observed segment Action segmentTTC window
(unobserved)

ANACTO setup 

Last observed
frame

STA setup 

FIGURE 1. The goal of ANACTO is to anticipate the next-active-object, i.e.
to localize the object that the person will interact with in the first frame
of an action segment, based on the evidence of video clip of length τo,
located τa seconds (anticipation time) before the beginning of an action
segment at time-step t = τs. Importantly, ANACTO differs from the
Short-Term Anticipation (STA) task [5] in that while STA concentrates on
forecasting the NAO’s position in the final observed frame, ANACTO goes
a step beyond by broadening the objective to precisely identify the NAO’s
location at the outset of a forthcoming action, particularly advantageous
for situations where contact occurs at the initiation of the action.

evidence from the observed video clip segment of length τo,
which precedes the actual action by a time-to-contact window
τa. In other words, it involves predicting the bounding box of
the NAO participating in the action in its initial frame(s) at its
contact point (t = 0). Hence, the ANACTO task encompasses
not only the detection/localization of the NAO in the last
observed frame (as in the case of Ego4D [5] STA) but also
involves anticipating the eventual location of the NAO where
the contact/interaction actually occurs, extending well into
subsequent frames. In contrast, STA in [5] does not seek to
recognize the ultimate interaction with the object. This is
because it assumes the static nature of objects, given that only
the last observed frame is taken into account.

We aim to tackle the ANACTO task by integrating object-
centered cues and scene features, making use of the self-
attention mechanism offered by Vision Transformers (VIT)
[6]. In detail, the proposed method, termed T-ANACTO, ana-
lyzes RGB frames to discern the position andmotion of hands
without relying explicitly on hand-specific information, such
as hand-bounding boxes. Simultaneously, it utilizes an object
detector to incorporate the spatial positioning of objects in
the observed clip. Given that ego-actions primarily involve
interactions between the user’s hands and objects in the scene,
we posit that the self-attention mechanism of Vision Trans-
formers (VIT) is well-suited for capturing these relationships,
both at the frame level and across frames. The validity of
this assertion is supported by quantitative analysis, which
includes comparisons with various relevant methods, as well
as qualitative analysis.

The primary contributions of this work can be summarized
as follows.

• We introduce a novel task in the field of egocentric video
analysis, named Anticipating the Next ACTive Object
(ANACTO).

• We unveil T-ANACTO, a method based on vision trans-
formers that captures interactions between the first-
person and objects while considering the time-to-contact
window to address the ANACTO task.

• To further present baselines for the ANACTO task, we
extended the existing action anticipation methods ac-
cordingly.

• T-ANACTO and the aforementioned baselines are eval-
uated on EpicKitchens-100 [7] (EK-100), EGTEA+
[8], and Ego4D [5] datasets. Performance comparisons
across all methods demonstrate the effectiveness of T-
ANACTO in all cases.

• For the EK-100 [7] and EGTEA+ [8] datasets, we supply
annotations specifically designed for the ANACTO task,
aiming to facilitate further research in this area.

The remainder of this paper is structured as follows. Sec. II
provides a comprehensive review of related works. In Sec. III,
we delineate the ANACTO task. Subsequently, Sec. IV out-
lines the proposed method to address the ANACTO task.
Sec. V covers the datasets used, adaptation of action anticipa-
tion state-of-the-art methods for ANACTO, implementation
details of our proposed method, and the definition of evalu-
ation metrics. The results, both qualitative and quantitative,
are presented in Sec. VI. Finally, Sec. VII concludes the pa-
per, highlighting key findings and proposing potential future
directions.

II. RELATED WORK
Initially, we review research on egocentric action anticipation,
aligning with our task goal as an anticipation problem even
though our emphasis lies in regressing the location of the
NAO. Subsequently, we encapsulate insights from the litera-
ture on active objects, a domain closely associated with NAO.

A. ACTION ANTICIPATION IN EGOCENTRIC VIDEOS
Action anticipation involves predicting future actions before
they occur, and this problem has been extensively explored
in various actions within third-person videos [9], [9]–[13].
The application of action anticipation in first-person videos,
formalized in [14], has gained recent attention [15]–[18],
possibly due to its relevance in wearable computing platforms
[19]. Below, we delve into works related to egocentric action
anticipation, as we focus on first-person scenes, sharing eval-
uation protocols and datasets with these studies.
Liu et al. [15] formulate the egocentric action anticipa-

tion problem as human-object interaction forecasting. They
leverage handmovement as a feature representation to predict
interaction hotspots and anticipate future actions. Dessalene
et al. [18] perform hand-object contact and activity modeling
to anticipate partially observed and/or near-future action. For
hand-object contact modeling, the short-term dynamics are
learned with 3D-Convolutions. The localization of bound-
aries between the hands and objects in contact is performed
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by applying segmentation through a U-Net [20]. The activ-
ity modeling stage embeds the output of contact modeling
throughGraph Convolutional Network (GCN) layers [21] and
then fed to an LSTM, which is followed by a fully connected
layer to make action predictions. On the other side, there
exist methods relying on the aggregation of the information
from the past frames in an observed video clip [16], [17]. For
example, [16] propose RU-LSTM, a method composed of a
‘‘rolling’’ LSTM (R-LSTM) encoding the past observations,
and the ‘‘unrolling’’ LSTM (U-LSTM) taking over the current
hidden and cell states of the R-LSTM and producing hypothe-
ses of future actions. RU-LSTM [16] processes RGB frames,
optical flow and object-based features within an attention
mechanism, which estimates optimal fusion weights across
these three types of inputs. Differently, the model in [17]
uses a predictive model (a CNN) and a transitional model (a
CNNpre-trained on action recognition). The predictivemodel
directly anticipates future action, while the transitional model
is constrained to the output of the currently happening action
that is later used to anticipate future actions. Recently, [19]
presented an architecture based on transformers to encode the
data performed by the backbone and predict the future actions
performed by the head network. That model [19] achieved
superior results compared to [16] and showed the better per-
formance of the transformer backbone with respect to using
many other backbones such as TSN [22] and Faster R-CNN
[23]. Different from [19], our transformer-based architecture
aims to exploit the object-centric features with spatial and
temporal attention along with two losses introduced to model
past observation and learn about the active object(s) to antici-
pate NAO at its contact point using an autoregressive decoder.

Since our ANACTO task is novel, to obtain relevant base-
lines to compare with, we have modified several action an-
ticipation SOTA tested on egocentric videos [15], [16], [19]
and tested on third-person videos [22]. We include [22] due
to its promising results demonstrated in [19] for egocentric
settings. For the baselines [15], [22], we append our decoder
(see Section IV-A for its definition) to aggregate the frame-
level information gathered from their backbone in order to
perform the ANACTO task. In terms of encoder design, as we
propose a transformer-based architecture, our method differs
from [15], [16], [22] which are based on I3D-Res50 [24],
LSTMs [25], and Temporal Segment Networks respectively.

B. ACTIVE OBJECTS
For the first time, [4] defined active and passive objects in an
egocentric setup. Their methodology is based on the appear-
ance differences among the objects (e.g., an opened fridge is
an active object which looks different from a closed fridge
called a passive object), and the location of the active object
(i.e., active objects tend to appear close to the center of an
egocentric image). By definition, active objects are those, that
are currently involved in an interaction, e.g., being touched
by humans, whilst, the passive objects are the background
objects that the human agent is not in interaction with, e.g.,
not manipulating them [4], [26]. Dessalene et al. [18] adapted

these definitions to describe NAO, which stands for the object
that will be contacted with a hand. Their method [18] requires
the detection of objects by an object detector to be able to
localize NAO and the existence of the hands in the current
frames. It was also only tested when some specific action
classes (take, move, cut, and open) were considered. Instead,
our proposed method processes the frames independent of the
hand(s) visibility or presence in the frames. Importantly, we
do not specifically restrict the possible (inter)actions between
the human and the objects, i.e., we use all the verb classes
supplied by the benchmark datasets. Jingjing et al. [27] also
explored NAO prediction using cues from visual attention
and hand position, but by only using a single frame for the
prediction. That approach [27] is not able to differentiate
between the past or future active object, since it does not
account for the temporal information acquired by the videos.
Furnari et al. [28] explored the NAO problem by taking into
account the active/passive objects definition of [4]. Their
method [28] uses an object tracker to extract the object tra-
jectories for a small video clip till the last frame precedes
an action. This trajectory is later used to classify whether
a given object is going to be active or passive in the next
frame. Such methodology [28] is restricted to predicting the
immediate NAO instead of predicting the location of the active
objects in several future frames, as our proposed method can
perform. Moreover, it requires an observation time which
is till the penultimate frame of an action segment, which is
unpredictable in real-life implementations. Very recently, Liu
et al. [29], proposed to forecast hand trajectories to detect the
interaction hotspots on NAO. But that method is confined to
human hands interactions. Instead, our setup is more generic,
e.g., can generalize to the interactions with a tool instead of a
hand, given that we do not explicitly code the hand features,
their trajectories, and/or their bounding box information.

III. ANACTO IN EGOCENTRIC VIDEOS
Given a video clip V , we divide it into three sequential parts:
the observed segment of length τo, the time-to-contact (TTC)
window of length τa, and a given action segment that starts
at timestep t = τs. The objective is to localize the Next
Active Object (NAO) at the beginning of the action segment,
where the contact occurs. The observation of the video seg-
ment spans a duration preceding the action start time τs by
observation duration τo, and it ends τa seconds before τs, with
τa representing the time-to-contact window.
ANACTO can be succinctly defined as predicting the lo-

cation of the NAO in a given observed segment at some
future time, precisely at the commencement of interaction
when contact occurs. It is important to note that this definition
assumes that, for every action, the camera-wearer interacts
with an object, activating it at the action’s starting point. The
problem scope is not limited to "hand"-object interactions;
interactions involving tools are also within the ANACTO
task’s scope. Consequently, our proposedmethod (see Section
IV) does not involve/demand the detection of hands or any
explicit hand-related information.
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IV. PROPOSED METHOD: T-ANACTO
We propose a method to address the ANACTO task, which
analyzes past video frames and incorporates object detections
for the input frames. Object detections include the object
bounding box parameters (xc, yc, w, h) and a confidence
score (cs) produced by the detector. The proposed method is
illustrated in Fig. 2.

The proposed method, called T-ANACTO stands for
Transformer-based Anticipating Next ACTive Object, lever-
ages the self-attention mechanism to construct an encoder
network that operates on individual frames or short clips, fol-
lowed by a transformer decoder. The reliance on transformers
is motivated by their efficient attention mechanisms, which
have shown promising results in predictive video modeling,
as well as in tasks related to anticipation and object detection
[19], [30]–[33]. Our T-ANACTO encoder consists of a VIT
[6] and an object detector [23] which are used to extract
the feature embeddings from each video frame. Our decoder
draws inspiration from [19], leveraging its causal structure
to address a predictive task focused on past observations,
making it autoregressive and well-suited for an egocentric
setting. The decoder consolidates information gathered across
the temporal dimension to comprehensively interpret the first-
person’s movements, ultimately aiming to predict the location
of the NAO. Significantly, we introduce two losses to guide
the model in attending to past active objects, facilitating the
prediction of NAO in future frames based on prior observa-
tions.

Given a video clip V = {X1,X2, . . .XT} with T frames,
where Xt is the RGB image at time step t and an action
segment, recall that we have an observed segment length of
τo, a TTC window (τa) which is before the beginning of the
action segment at t = τs. Frames from the observed segment
are then sampled at a frame rate that is equal to τa to maintain
consistency between frame intervals as described in Fig. 3.
Each frame extracted from the observed segment is an input of
an individual T-ANACTO encoder. Our object detection head
Ho follows a Faster R-CNN [23] architecture and consists of
a region proposal network and a regression head. It takes as
input each RGB frame Xt and generate bounding boxes bi,t
∈ R4 with corresponding confidence score csi,t ∈ (0, 1) such
that:

bi,t , csi,t = Ho(Xt), i ∈ {1, . . .N}, (1)

where N is the total categories of objects for a dataset. We
empirically set a threshold of 0.5 on the confidence score of
each detection to discard noisy detections. Therefore, for each
category of object(s) detected, only those predictions with
confidence scores more than the threshold value are used.

The object detections are performed for the original size of
the image frames,Xt (e.g. 1920×1080) and then the bounding
boxes are scaled to match the resized image size, X r

t of 224×
224 to match with the input size of VIT [6]. The detections are
then reshaped (BS,N , 5) −→ (BS,−1) to be passed through
an MLP, fMLP to convert them to the same dimensions as the
T-ANACTO encoder’s output.

For our video backbone Vb, we adopt ViT-B/16 using
224 × 224 images, where X r

t is an image at time t . We split
each input frame into 16×16 non-overlapping patches, which
are later flattened into a 256-dimensional vector. The vector
representation is then projected to a 768-dimensional vector
to be used as the input for our transformer encoder. The
feature dimensions are kept constant throughout the encoder.
We also append a learnable [cls] token into the patch features,
which can later be used to identify the class of the active
object(s) in the current frame, if any. All the other patches are
also allocated a spatial positional embedding with their patch
embedding. The resulting patch embeddings are then passed
through a standard VIT encoder with pre-norm. Finally, the
feature representations learned for each frame from the visual
backbone are concatenated with the detections obtained from
the object detection head as follows:

zt = Vb(X r
t ) + fMLP(Ho(Xt)). (2)

In the end, we add a temporal position encoding to the ex-
tracted features from the T-ANACTO encoder for each frame,
which are further given to the decoder network.

A. T-ANACTO DECODER
We argue that the past observations can provide a lot of con-
text to produce a hypothesis regarding the NAO in the future.
Therefore, for the decoder network, we take inspiration from
[19], and extend it to make it autoregressive at each step, to
aggregate the features of the past frames and exploit the last
predicted active object location which allows us to perform
ANACTO.
The decoder network D is designed to produce attentive

features corresponding to the future frames: ẑ1, . . . , ẑt to
anticipate the location of the NAO for each input frame as:
ẑt = D(z0, . . . , zt ; ĥ0, . . . , ˆht−1) (see also Fig. 2). Here ẑt
is the predicted features of the future frame at t+1 obtained
after attending to all other encoded features belonging to
the frames before t+1 (i.e., z0, z1..zt ). At each frame, the
decoder takes the previously predicted active object location
ĥt in previous frames along with RGB features to estimate
NAO position, ŷt in future frames. Both these features are
concatenated together and are then fed to the next step. This
helps in aggregating features of the past frames and under-
standing the intention and final goal of the first-person, which
is defined by the action segment ground-truth label. These
features are passed through multiple decoder layers, each
consisting of masked multi-head attention, LayerNorm (LN ),
and a multi-layer perceptron (MLP). The final output is then
passed through another LN to obtain the final embeddings.
For each decoder output ẑt , it is used to regress the NAO in the
corresponding frame at t+1. The predicted features are then
fed to a linear layer θ, to regress the bounding box coordinates
ŷt ∈ R, i.e. ŷt = θ(ẑt). The final prediction yt represents the
model’s output at each frame.
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FIGURE 2. Our T-ANACTO model is an encoder-decoder architecture. Its encoder is composed of an object detector and a Vision Transformer [6]. The
object detector [23] takes an input frame (e.g., size of 1920×1080) and predicts the location of objects in terms of bounding boxes (x , y , w , h) and
detection confidence scores (c). The inputs of VIT are the frame(s), first resized to, 224×224 and then divided into the patches (16×16). The object
detections (x , y , w , h) are also converted to match the scaled size of the frame (i.e., 224×224), reshaped, and are then passed through an MLP to convert
it into the same dimension as the embeddings from the transformer encoder, which are later concatenated together to be given to the decoder. There
exists a linear layer between the decoder and the T-ANACTO encoder, which adjusts the feature dimensions to be fed to the transformer decoder. The
Transformer decoder uses temporal aggregation to predict the next active object. For each frame, the decoder aggregates the features from the encoder
for current and past frames along with the embeddings of the last predicted active objects and then predicts the next active object for the future frames.

FIGURE 3. The observed video segment of length τo is sampled at a frame
rate equal to the TTC time (shown as τa) to maintain consistency in (1) the
frame interval of sampled frames and (2) between the last observed
frame and the starting frame of the action segment, which starts at t = τs.

B. LOSS CALCULATION

To train T-ANACTO, we sample a clip preceding each labeled
action segment in a given dataset, ending τa seconds before
the start of the action. The clip is then sampled with the
same frame rate as τa seconds to remain consistent with
frame intervals as described in Fig. 3. The sampled frames
are then passed through our T-ANACTO model and train the
network in a supervised manner with three loss functions,
described as follows. Lfeat defined in Eq. 3 aims at leveraging
the predictive structure of the model by supervising the future
frame features predicted by the decoder to match the true
future frame features that are extracted as embeddings from

the encoder.

Lfeat =

N∑
t=0

||̂zt − zt+1||22, (3)

where N is the number of frames in training. It is to be noted
that our model does not need the presence of a hand or any
active object to be present in the observed segment. However,
any active object found in the observed segment provides
additional supervision using Lcao, which stands for current ac-
tive object loss, is aMean-Squared Error (MSE) Loss used for
the prediction of active objects in the observed segment of the
video clip. In addition, Lnao, stands for the next-active-object
loss, forces the model to identify the location of the NAO at
the start of an action. It is supported by, Lcao which helps T-
ANACTO to identify and keep track of active object(s) found
at the end of the observed video segment.

Lcao =

N−1∑
t=0

||yt − ŷt ||2,Lnao = ||yn − ŷn||2, (4)

where yt ∈ R and ŷt ∈ R are the ground-truth and predicted
bounding boxes for active objects in the current frame, re-
spectively. Whereas yn ∈ R and ŷn ∈ R are the ground-truth
and predicted bounding box for NAO in the starting frame of
an action after τasec, respectively. The final loss is a linear
combination of the aforementioned three losses:

L = Lfeat + λ1Lcao + λ2Lnao, (5)

where λ1, λ2 are fixed weights.
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V. EXPERIMENTAL ANALYSIS
The experimental analyses were conducted on three major
egocentric video datasets, described in Section V-A. Given
that there is no existingmethod performing theANACTO task
since this is the first time it is introduced and is being bench-
marked, we adapted the SOTA action anticipation methods,
whose details are given in Section V-B to perform compar-
isons against our method T-ANACTO. Throughout this paper,
we refer to such methods as baselines. The implementation
details of T-ANACTO are described in Section V-C.

A. DATASETS
EK-100 [7]. Consists of about 100 hours of recordings with
over 20M frames comprising daily activities in kitchens,
recorded with 37 participants. It includes 90K action seg-
ments, labeled with 97 verbs and 300 nouns (i.e. manipu-
lated objects). It supplies the annotations regarding the hand
and object interactions, which are used for ANACTO. In
detail, the aforementioned annotations are in terms of the
prediction results of a hand-object interaction detector [34],
which provides the hand location, side, contact state, and
a bounding box surrounding the object that the hand is in
contact with. Such detector [34] was trained on EK-55 [14],
EGTEA [8] and CharadesEgo [35] datasets, and applied on
EK-55 [14] dataset to annotate it with respect to the hand-
object interactions. We use the following annotations: the
locations of both hands (i.e., the bounding boxes b ∈ R),
and the locations of the objects along with the contact state
information at each frame of each video and, then curate the
final ground-truth data for ANACTO problem. It is important
to mention that the videos in this dataset were collected with
different frame rates. In order to apply the methods: [15],
[16], [22] requiring frame rates fixed to 30 frames per second,
we converted each video to this constant frame rate, thus the
annotations regarding the hand locations and active objects’
locations are also interpolated accordingly.

EGTEA+ [8]. Includes 28 hours of videos containing 106
action categories, which corresponds to 2.4M frames. There
exist 10325 action segments associated with 19 verbs and 53
nouns (i.e., objects) that were recorded with 32 participants.
It is important to notice that there exists no publicly available
source supplying annotations needed to perform ANACTO
for EGTEA+ [8]. Therefore, we created the hand-object
interaction annotations following the annotation pipeline of
the EK-100 dataset [7]. These include the hand locations
(bounding boxes b ∈ R and the corresponding detection
confidence scores) at each frame, the active object locations,
and their contact state. First, all the videos are converted to
a constant frame rate of 30 fps. Then, each frame is fed to
the hand-object interaction detector model from [34]. The
hand and object threshold is kept at 0.5 to produce better
qualitative results, which is also the same when extracting the
annotations for EK-100 dataset [7]. Additionally, we provide
annotations for the videos with the original frame rate for its
original frame size.

Ego4D [5]. This is the largest first-person dataset recently
released. The dataset is split into 5 different categories, each
focusing on a different task, combining a total of 3,670 hours
of egocentric videos across 74 locations. For this task, we
focus on the forecasting split, containing more than 1000
videos for a total of 960 hours, annotated at 30 fps for the
short-term interaction anticipation task. The annotations are
for the NAO in the last observed frame.

B. BASELINE METHODS
We compare T-ANACTO with SOTA action anticipation
methods, namely AVT [19], RULSTM [16], Liu et al. [15]
and TSN [22]. For RULSTM [16], we used pre-extracted
RGB, flow, and object features as in their paper, for EK-
100 [7] and EGTEA+ dataset [8]. For Ego4D [5], we com-
puted the flow and RGB features by following the same
TSN model mentioned in [16], which were then fed as the
inputs to the RULSTM model. We also tested individual
modalities with TSN [22] (ResNet101) for RGB frames and
RULSTM-object centric path for object modality. Moreover,
we used object detections as well as their confidence score
from the object detector [23] to be used as object features in
RULSTM(fusion) and RULSTM(obj). We modified and re-
trained all these aforementioned methods in order to perform
the ANACTO task. We explored these methods (noticed that
they were used for action anticipation in egocentric videos,
a.k.a. a classification task) because our problem formulation
is very much related to action anticipations, and we claim that
these methods can provide effective learning for ANACTO
regression task by modeling past motion. For each model,
we replace the last classification layer with a regression layer
to predict the bounding boxes ŷn ∈ R regarding the next
active object. Since the TSN [22]method processes individual
frames and not a video clip, for the corresponding exper-
iments, we appended the whole T-ANACTO decoder layer
to the TSN [22]. This allows the aggregation of information
from all frames, i.e., tuning the task from frame-level process-
ing to video processing.

C. IMPLEMENTATION DETAILS OF T-ANACTO
T-ANACTOwas trainedwith an SGDoptimizer for 50 epochs
with a learning rate of 1e− 5. Recall that a linear layer exists
after the output of the decoder to regress the bounding box
coordinates. We fixed the values of λ2 as 1.0 and λ1 as 0.5
(see Eq. 5) respectively, during the training of T-ANACTO.
The weight for feature loss was set to 1.0. For training and
testing, our model takes 10 sampled frames as input and takes
1 second to process a batch of 4 clips during inference. We
kept the required input number of frames for each baseline
method as suggested in their original implementation.
We used annotations from [34] detector for identifying

active objects in the observed segment and to train the model
for all datasets with Lcao loss. Specifically, for EK-100 [7]
and EGTEA+ [8] datasets, during training, we maintained a
lookup window of 10 frames from the starting frame of action
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to look for the first identified location of active objects i.e.,
bounding boxes (if visible) to be labeled as ground truth for
the ANACTO task. It is also possible that for some clips,
the true contact, i.e., the actual interaction with an object
can start sometime later after our lookup window. For such
cases, we do not get bounding box labels for the location of
the active object. This means no object was actually active
during the start of the action segment. We checked whether
this situation leads to any inconsistency, and observed that
an active object is present 94% and 92% of the times in the
first 10 frames of the action segment for the EK-100 [7] and
EGTEA+ [8] dataset, respectively. However, later (in Section
VI-D we demonstrate the effectiveness of our model for those
cases as well. It is important to notice that EK-100 [7] and
EGTEA+ [8] do not supply object detections. As mentioned
before, to obtain this information, we rely on Faster-RCNN
[23] provided by [7] pre-trained on EK-55 [14] to detect the
location of every object in the scene with a confidence score
associated with each prediction b ∈ R5. For both datasets,
we use the training and test splits provided by [16] for the
evaluations of the T-ANACTO and the baseline methods. On
the other hand, for Ego4D, we used the forecasting split for
training and validation provided by [5]. It is important to
notice that the annotations provided for NAO are with respect
to only the last observed frame. As Ego4D [5] is highly big-
scaled, it was not possible to annotate it as we performed for
other datasets. Therefore, we utilized only the supplied data
as the ground truth. On the other hand, this allowed us to show
another utility of the ANACTO task as well as T-ANACTO,
i.e., both work for the model(s) to forecast NAO in the last
observed frame.

D. EVALUATION METRICS
As the evaluation metrics, Average Precision (AP) with var-
ious Intersection over Union (IoU) thresholds: 5, 10, 20,
and 50 as well as their average shown as APavg are utilized.
This choice of metrics is in line with object detection and
localization literature such as [36]–[38].

VI. RESULTS
This section encompasses the outcomes of the ablation study,
examining the impact of losses and backbones (Sec. VI-A),
as well as the anticipation length (Sec. VI-B). Subsequently,
we provide performance comparisons between T-ANACTO
and the baseline methods (Sec. VI-C). Finally, we discuss
the results of T-ANACTO with a qualitative analysis in Sec.
VI-D, and present the failure cases in Sec. VI-E.

A. THE EFFECT OF LOSSES AND THE BACKBONE
We conducted an ablation study to assess the losses outlined
in Eq. 5. Additionally, we experimented with a different back-
bone, namely ResNet101, which is the backbone used in TSN
[22]. All other settings of T-ANACTO remained constant.
The results of these experiments, performed on the EK-100
[7] dataset with an anticipation length of τa = 0.25s, are
presented in Table 1.

Ablation AP5 AP10 AP20 AP50 APavg
ResNet101 31.2 28.1 17.4 2.3 19.75
T-ANACTO w/ Lnao 33.5 29.6 19.3 2.4 21.2
T-ANACTO w/ Lcao+Lnao (FULL) 37.1 32.6 21.1 4.1 23.7

TABLE 1. Ablation study performed on the EK-100 [7] to investigate the
effect of losses and the backbones of T-ANACTO.

As seen in Table 1, employing a transformer backbone
yields better results compared to ResNet101 in all scenarios:
(1) ResNet101 vs. T-ANACTO with Lnao and (2) ResNet101
vs. T-ANACTO with Lcao+Lnao. Furthermore, the inclusion
of Lcao noticeably enhances performance in the ANACTO
task, highlighting the significance of utilizing object-centric
features.

B. EFFECT OF ANTICIPATION LENGTH.
We assess the performance of T-ANACTO and baselinemeth-
ods across different anticipation lengths for the ANACTO
task in unobserved scenes. These experiments were con-
ducted on the EK-100 [7] dataset, and the results are presented
in Table 2. It is noteworthy that, as we maintain a constant
number of sampled frames from a given observed clip across
all experiments, the variation in anticipation time τa also
impacts the observed length τo of the clip. Consequently,
in these experiments, the reduction in anticipation length τa
corresponds to a decrease in the observed length τo of the clip.

The results presented in Table 2 demonstrate that modify-
ing anticipation lengths from higher values to lower values
(e.g., from 1 second to 0.5 seconds or from 0.5 seconds to
0.25 seconds) consistently enhances the performance of both
T-ANACTO and all baseline methods.

C. COMPARISONS AMONG T-ANACTO AND BASELINE
METHODS
Table 2 presents a performance comparison among T-
ANACTO and baseline methods on the EK-100 dataset [7].
As seen, our method T-ANACTO surpasses all the other
methods in all metrics, for all TTC durations, while the
second-best method is chaining for different TTC durations.
We also present comparisons on EGTEA+ [8] and Ego4D
datasets in Tables 3 and 4, respectively, when the TTC dura-
tion τa is 0.25 seconds for EGTEA+ [8] and rate of sampling
frames is 0.25 seconds for Ego4D [5]. To do so, for EGTEA+
[8], we used training and testing splits-1 (see [16] for details)
and for Ego4D [5], the experiments were conducted with the
training and validation splits provided for the forecasting task.
As mentioned in Sec. V-A, the NAO for Ego4D [5] is iden-
tified at the end of the past observed segment. Even for this
setup, we notice that the attention-based mechanism elevated
by object-centric information performs better, compared to
other baselines. The obtained results in the aforementioned
tables are in line with the results obtained for the EK-100
dataset [7], showing that T-ANACTO outperforms the other
baseline methods, while the performance improvement can
be up to 12% in terms of APavg.
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Anticipation time τa = 1.0 s τa = 0.5 s τa = 0.25 s
Models AP5 AP10 AP20 AP50 APavg AP5 AP10 AP20 AP50 APavg AP5 AP10 AP20 AP50 APavg
AVT [19] 25.2 19.1 13.6 1.5 14.9 30.0 26.4 17.2 3.1 19.2 32.3 27.1 18.4 3.3 20.2
RULSTM [16] 27.6 21.3 14.2 2.1 16.3 29.5 24.2 15.5 3.0 18.0 31.6 25.8 16.6 3.1 19.3
TSN(rgb) [22] 17.2 12.1 7.6 0.7 9.4 20.2 16.4 8.6 1.7 11.7 25.6 19.1 11.8 1.8 14.6
RULSTM(obj) [22] 24.4 19.3 11.1 1.7 14.1 24.4 19.1 11.3 1.8 14.1 27.0 20.2 14.7 1.9 16.0
Liu et al. [15] 13.1 9.8 5.2 0.4 7.1 13.4 10.7 5.6 0.6 7.6 14.7 10.4 5.6 0.7 7.9
T-ANACTO 34.4 28.8 18.1 3.2 21.2 35.4 29.7 20.2 3.3 22.1 37.1 32.6 21.1 4.1 23.7

TABLE 2. Results of our T-ANACTO model and other baseline methods for different TTC duration, i.e., 1, 0.5, and 0.25 seconds, tested on the EK-100 [7]
dataset. The best results are given in bold.

Models AP5 AP10 AP20 AP50 APavg
AVT [19] 19.7 16.5 10.2 2.6 12.2
RULSTM [16] 18.8 13.4 7.7 1.4 10.3
TSN(rgb) [22] 14.8 12.1 7.4 1.4 9.0
RULSTM(obj) [16] 15.1 12.4 6.8 1.3 9.0
Liu et al. [15] 11.8 8.5 5.7 1.0 6.8
T-ANACTO 26.6 21.0 14.7 2.8 16.3

TABLE 3. T-ANACTO and the baseline methods’ performances when they
are tested on EGTEA+ dataset [8] with the TTC duration τa = 0.25s. The
best results of each column are given in bold.

Models AP5 AP10 AP20 AP50 APavg
AVT [19] 38.8 28.7 12.9 2.9 20.8
RULSTM [16] 37.6 27.4 10.3 1.7 19.3
TSN(rgb) [22] 35.5 23.2 8.5 1.5 17.1
RULSTM(obj) [16] 34.6 21.3 8.2 1.5 16.4
Liu et al. [15] 15.2 11.1 7.4 1.1 8.7
T-ANACTO 41.2 31.4 18.6 4.6 24.0

TABLE 4. T-ANACTO and the baseline methods’ performances when they
are tested on Ego4D dataset [5] to identify NAO with respect to the last
observed frame. Frames are sampled from the observed segment at 0.25s.
The best results of each column are given in bold.

D. QUALITATIVE ANALYSIS

FIGURE 4. Qualitative results obtained for EK-100 dataset [7]. The top
row shows the ‘‘last observed frame", the middle row shows ‘‘the region
of interest of T-ANACTO", and the bottom row shows ‘‘the starting frame
of an action". The green box(es) in the last row represents the
ground-truth bounding box(es) of NAO in the starting frame(s) of action.

FIGURE 5. Qualitative results obtained for EK-100 dataset [7]. Our
T-ANACTO model also learns to attribute to hand position in an image
frame, even though we do not explicitly provide the hand location in
training and testing. The spatial attention of our model shown in red
identifies the hand positions in addition to possible NAO. The green
boxes depict the ground-truth location of NAO.

We visualize the spatial attention corresponding to our T-
ANACTO encoder on the last observed frame in Fig. 4 for
EK-100 dataset [7]. In that figure, the red regions demonstrate
the regions of interest predicted by our model, which indeed
correspond to human-object interaction in the future frames,
and are related to anticipating the NAO. The results show
that our model learns to focus on objects that are likely to
be contacted by the first person based on observation till the
last observed frame and the inference can even be performed
before the contact happens. In the second column of that
figure, one can observe that, even though the object is not
active in the starting frame, our model is able to focus on a
possible object, which becomes active later on. Additionally,
we observe that our model is able to perform equally well for
different lighting conditions.
For the majority of the time, our model is also able to

identify the hand’s positions and interaction hotspots for cer-
tain objects, although our model does not explicitly require
the hands’ position as an input. The results given in Fig. 5
confirm this. Since our method learns to identify the future (in
that case) hand-object interaction, it focuses on locating the
position of (in that case) hands and respectively locating the
NAO in the consequent starting frame of an action segment.
To qualitatively investigate the performance change of the

model as the τa is reduced from 1.0s to 0.25 seconds, we re-
port a comparison in Fig. 6. It is visible that as themodel is fed
with frames, closer to the beginning of an action segment, i.e.
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FIGURE 6. Results show the diversity of spatial attention for the last observed frame preceding the beginning of an action segment for different setups of
TTC window for τa = 0.25, 0.5, 1.0 seconds. The spatial attention regions tend to appear more assertive as the model examines the frames closer to an
action segment, i.e; as the τa is decreased. This also attributes to a higher accuracy of the model for a shorter time to contact window.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3395282

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Thakur et al.: Anticipating Next Active Objects for Egocentric Videos

lower τa, the model confidence regarding the NAO prediction
increases. This is indeed in line with the quantitative results
we present in Section 2.

FIGURE 7. Results showing the attention map generated by our T-ANACTO
encoder for the last observed frame of video clip with TTC τa = 0.25
seconds before the beginning of the action for EK-100 dataset [7]. The red
regions depict the region of interest to identify the next active object in
the starting frame of the action. The green bounding box for the starting
frame of the action (row) shows the localization of the active object for
that frame. It is interesting to note that for segments in which there is no
active object at the start of the action, our encoder is able to identify the
possible area of interest for the next future frames post the starting
frame of the action.

FIGURE 8. Results showing the attention map generated by our T-ANACTO
encoder for last observed frame of video clip with TTC τa = 0.5 seconds
before the beginning of the action or EK-100 dataset [7].

In addition, we show the effectiveness of our model T-
ANACTO for anticipating next active object task (ANACTO)
for different TTCwindow τa = 0.25 seconds, 0.5 seconds, 1.0
second, as spatial attention of our encoder in additional fig-
ures for both EK-100 [7] and EGTEA+ [8] datasets in Fig. 7,
8, 9 and 10. Through these visualizations, one can understand
how the confidence of the model differs as it analyzes frames
that are temporally distant from the beginning of an action
segment for a different TTC window τa. In other words, we

FIGURE 9. Results showing the attention map generated by our T-ANACTO
encoder for last observed frame of video clip with TTC τa = 1.0 second
before the beginning of the action or EK-100 dataset [7].

FIGURE 10. Results showing the spatial attention map for EGTEA+
dataset [8]. The green bounding box specifies the location of the active
object at the start of an action.

are able to compare the diversity of attention for a different
TTC window, τa v/s observed τo time of video clips for EK-
100 dataset [7].
As described earlier, the change in τa for a video clip also

affects the observed video segment length τo proportionally.
In Fig. 10, we provide the attentionmap for the learning of our
model for EGTEA+ dataset [8] when trained on train split 1
and tested on test split 1. In Fig. 11, we provide the attention
map for the learning of our model for the Ego4D dataset [5]
when trained on a training set of forecasting split to predict
the next active object location wrt. last observed frame. Both
sowing the effectiveness of the proposed method.

E. FAILURE CASES
In this section, we discuss the failure cases for T-ANACTO
for each dataset. We were able to identify two major cases for
EK-100 [7] and EGTEA+ [8] datasets as follows:

Light-colored objects. We noticed that the model might not
be able to confine its attention to those areas in the video
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FIGURE 11. Results shows the spatial attention map for Ego4d [5] dataset
when trained to identify next active object wrt last observed frame. The
green bounding box specifies the location of the object which will
become active in the future. The highlighted region specifies the attention
stress by the model in the last observed frame.

FIGURE 12. Some failure cases of T-ANACTO, collectively for all three
datasets. (a) The model fails to attribute attention to objects that are
light-colored or easily camouflaged with the background, (b) The scene
completely changes at the beginning of action from the past observed
segment.

clips where a light-colored or transparent object is used for
human-object interaction (see Fig. 12(a)). It could perhaps be
a failure of the object detection model, which is not able to
identify items due to the transparent nature of the object and
camouflage with the background of frames(s).

Scene transition. As stated earlier, the next active object

FIGURE 13. Some failure cases of our model for the Ego4D dataset [5]. (a)
The model fails to attribute for higher TTC time for a given next active
object. (b) For objects that are tiny or transparent or scattered around
multiple objects, it is difficult to identify the next active object for larger
TTC.

detection is a challenging task due to the consistent nature
of humans to continuously interact with the environment.
In the process, a person interacts with the objects based on
the activities being performed, which can lead to sudden
changes in scenes from one moment to another. Therefore,
a current scene at the start of an action segment might be
drastically different wrt. past observed frames. In such cases,
it is extremely difficult for the model to locate "interactable"
objects in the scene that have not been observed by the model
(see Fig. 12(b)).
For Ego4D dataset [5], we detected two other cases in

which the proposed method tends to fail (see in Fig. 13).
These are discussed as follow.

Sampling of frames. Since our model takes input frames at
a sampled interval, it is trained to output predictions after the
sampled interval time after the last observed frame. However,
in the Ego4D dataset [5], the TTC for the next active object
varies drastically for each clip, which is one of the main
reasons our model suffers for those objects whose TTC is
much higher than the sampled frame rate for our input frames.

Tiny and clustered objects. We also notice that our model
fails for tiny/transparent objects in the scene or where multi-
ple objects are scattered in the frame.

VII. CONCLUSIONS
We have investigated the problem of anticipating the next
active object localization. First, we discussed the formula-
tion of the ANACTO task. We then presented a new vision
transformer-based model, T-ANACTO which learns to en-
code first-person-object interactions with the help of an object
detector. We proved its effectiveness by comparing it against
relevant strong anticipation methods. The experimental eval-
uation highlights that: (1) the object-centered cues help in
elevating the performance to locate the next possible active
object; (2) the effectiveness of the model increases when the
anticipation time for the prediction before the beginning of
an action is kept short. Besides, we also discuss the effect
of observation length on the performance of model(s). (3)
Our model effectively learns to identify and allocate attention
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to possible action objects in the future, as realized from
qualitative results. (4) Importantly, T-ANACTO is also able to
detect NAO location even in the last observed frame. Finally,
we also supply the ANACTO task annotations for EGTEA+
[8] and EK-100 [7] datasets, i.e., hand and active object
bounding box annotations along with their contact state as
well as providing the object annotations for the entire dataset
using an object detector pre-trained on EK-55 [14].

Broad Impact of ANACTO. Addressing this task is bene-
ficial in real-time robotic and industrial applications where
challenges involve moving objects, dynamic backgrounds,
and the motion of the first person. It is particularly useful for
forecasting motion until the point of interaction, providing
support in human-robot interactions, such as in factories. In
automotive factories, for instance, anticipating interactable
objects enables a robotic system to assist in faster maneu-
vering of industrial parts, reducing assembly time. Given the
repetitive nature of these tasks, an AI system can effectively
anticipate the required action and object(s). Moreover, such
systems contribute to preventing collisions between objects
and humans in a warehouse by analyzing past observations
and estimating the future point of contact.

FutureWork.Weplan to extend theANACTO task to predict
dynamic TTC, nouns, and verbs for the NAO. Additionally,
we aim to explore the potential of leveragingVision Language
Models to enhance the anticipation capabilities of video mod-
els. Our research will also investigate the impact of action
recognition on NAO identification and localization.
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