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checking temporal features of processes is still an open problem in the context of process-aware
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Process-aware information system In this paper, we present and discuss a novel approach to represent flexible temporal constraints
Subprocess in modularized time-aware BPMN process models.

Process modularity To support temporal flexibility, allowed task durations are represented through guarded ranges that
Temporal CO"??‘J‘_im allow a limited (guarded) restriction of task durations during process execution if it is necessary to
Temporal flexibility guarantee the satisfaction of all temporal constraints. We, then, propose how to derive a compact

Controllability representation of the overall temporal behavior of such time-aware BPMN models. Such compact

representation of child processes allows us to check the dynamic controllability (DC) of a parent time-
aware process model without “unfolding” the child process models. Dynamic controllability guarantees
that process models can have process instances (i.e., executions) satisfying all the temporal constraints
for any possible combination of allowed durations of tasks and child processes. Possible approaches
for even more flexibility by solving some kinds of DC violations are then introduced.

We use a real process model from a healthcare domain as a motivating example, and we also
present a proof-of-concept prototype confirming the concrete applicability of the solutions we propose,
followed by an experimental evaluation.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction child processes (i.e., reusable subprocesses or call activities [1]) can
be reused in different parent processes [2][3].!
. . . . Thus, the support of complex parent processes, possibly con-
Modulaqzatlon 1S an 1mporFant Fechmque in many software taining different and nested child processes, is a crucial issue
system design and programming fields. It corresponds to the o process-aware information systems (PAIS) both for the reuse of
widely acknowledged strategy of decomposing a problem into existing process knowledge from a process repository and for the
different subproblems, which are easier to face, and then solv- modular design of business processes.
ing the overall problem by merging the different contributions On the other hand, temporal constraints of processes, such
coming from the solution of the identified subproblems. In the as deadlines, minimum and maximum task duration, and max-
software context, modularization also helps reuse already-found imum allowable delays between task execution, are becoming
solutions applicable in different contexts. Moving closer to the  of interest in many different research and application contexts
context of information systems and, in particular, to the design ~ [4-12]. _
of business processes, such features can also be found in BPMN, In particular, recent research studies have focused on the
where child processes (i.e., subprocesses) can be suitably defined capa}blllty of‘representmg both contmggnt and requirement con-
to allow a more straightforward visual understanding of the straints. While the first ones are specified through a not mod-

. ifiable range of possible durations for tasks and are not under
overall structure of a (parent) business process. Moreover, such .
the control of the process engine, the second ones have to be

managed by the engine, which could, for example, decide about
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the delay in the enactment of some activities, to satisfy all the
other constraints, possibly considering the contingent ones. Re-
cently, to add flexibility to the process design, a new kind of
contingent constraint, specified through guarded link has been
introduced to allow a type of (limited) shrinking of task contin-
gent constraints [9]. The main property considered for such kind
of time-aware process models is that of dynamic controllability
(DC) [4][6]. It guarantees that a process model can be executed
according to any possible allowed duration of all tasks, specified
through guarded links while still satisfying all requirement
constraints. Dynamic controllability guarantees that the process
engine can dynamically manage the satisfaction of the temporal
constraints, by “reacting” to the different task durations that are
revealed during the process execution.

Apparently, process temporal constraints and process mod-
ularity seem disjoint concepts. Indeed they can apparently be
tackled in isolation, as the first ones refer to specific constraints
that have to be satisfied during the execution of the processes,
while the second property refers to the capability of specifying a
process model through already specified child processes. How-
ever, going further with respect to just scratching the surface,
we may discover that modularity, in combination with the reuse
of time-aware process models, requires the ability to represent
the overall temporal behavior of processes [9][13]. Indeed, the
temporal constraints of a process containing time-sensitive child
processes can be evaluated in a truly modular way only if we can
check the overall process without replacing every child process
with its (time-aware) components. Moreover, one may then at-
tach temporal properties of reusable (child) process models when
storing them in a central time-aware process repository.

To the best of our knowledge, the problem of representing
the overall temporal behavior of a reusable and dynamically
controllable child process, having both flexible duration ranges
and different possible execution paths, has not been considered
before. Moreover, the task of verifying the overall dynamic con-
trollability of a parent process without leveraging on a suitable
representation of the temporal behavior of child processes has
not been considered in previous proposals.

e We propose a time extension to (the main constructs of)
BPMN, which allows the representation of flexible contin-
gent durations for tasks named guarded ranges and differ-
ent temporal constraints between tasks named time lags.
Possible different execution paths are represented through
suitable exclusive gateways. In this direction, we complete
here a previous proposal, where only a restricted fragment
of BPMN, mainly considering processes without splitting
gateways, was studied [9].

e We propose a new suitable approach to derive a compact
representation of the overall temporal behavior, named after
prototypal link with contingency, of such time-aware BPMN
models. To do it, we leverage a recently introduced kind of
temporal constraint network [14], by proposing a mapping
of BPMN models to Flexible simple Temporal Networks with
Uncertainty (FTNUs) and then deriving the overall temporal
characterization of a BPMN model.

e We discuss how to verify the dynamic controllability of a
parent time-aware process model without “unfolding” the
child time-aware process models. Indeed, it could be that
the overall DC of the parent process can only be guaranteed
for a specific “tuning” of the temporal properties of the child
processes.

e We discuss different kinds of DC violations and propose
some solutions to make the overall process model more
flexible, allowing the management of some DC violations to
some extent.
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e We introduce a proof-of-concept prototype freely available
on the Web, implementing the different temporal exten-
sions and related algorithms we propose in this paper, and
provide a detailed experimental evaluation of the proposed
algorithms.

In detail, the remainder of this work is organized as follows:
Section 2 recalls the main concepts of FTNUs. Section 3 intro-
duces a clinical guideline for managing Adult Stroke Emergency
as an example of a (parent) process model with child processes
and temporal properties. We use this clinical example through-
out the paper. Section 4 introduces a time-aware BPMN-based
approach where time-aware child processes can be specified. In
turn, Section 5 presents all the technical details of the computa-
tion of temporal features of the child processes. In particular, it
discusses how to characterize time-aware processes by mapping
them to corresponding FTNUs. All relevant concepts are formally
described, and the introduced theorems are proven. Section 6
then discusses how the temporal properties of a child process can
be used to check the controllability of the overall process without
unfolding its child processes. Proper management of DC violations
is then introduced to deal with further flexibility in managing
time-aware processes. Section 7 introduces some tools, freely
available on the Web, which support the design of time-aware
(child) process models and the verification of their DC-related
properties. Section 8 describes the experimental evaluation we
did with respect to the proposed algorithms. Section 9 discusses
the existing work on managing temporal constraints and mod-
ularity in business processes. Finally, Section 10 discusses the
main results and the limitations of our work and sketches future
research lines. The paper ends with Appendix, which contains the
proofs of lemmas we introduced to discuss the DC checking of
modularized temporal BPMN models.

2. Background: Flexible simple temporal networks with un-
certainty

Flexible simple Temporal Network with Uncertainty (FTNU) is a
model of temporal reasoning based on a graph representation of
events and temporal constraints [14]. FINU is an
extension of Conditional Simple Temporal Network with Uncer-
tainty (CSTNU) [15][16] where contingent constraints (called con-
tingent links) are replaced by guarded constraints (called guarded
links) [17] to gain greater flexibility.

An FTNU can be represented as a directed weighted graph
(see Fig. 2) whose nodes represent the time occurrence of events
and whose edges represent temporal constraints between pairs
of events.

The nodes are real-valued variables (also called timepoints)
that have to be assigned. A node is said executed when a real value
(execution time) is set to it. In each FTNU, there is a particular
node, Z, that is executed as the first node at time 0. From the point
of view of execution, there are two kinds of nodes: ordinary, and
contingent. For ordinary nodes, the execution time is decided by
an agent that we call the execution engine, while for contingent
nodes the value is decided by the environment during run time.
The environment can also be viewed as an adversary player with
respect to the execution engine [18][19].

Some ordinary nodes may also be observation timepoints. An
observation timepoint is associated with a proposition (boolean
variable) in a biunique way. If p is a proposition, we usually
denote its observation timepoint by P?. A proposition is set to
true (T) or false (L) by the environment when its observation
timepoint is executed by the execution engine. A complete speci-
fication of all proposition values of a network is called scenario. A
scenario is incrementally revealed as observation timepoints are
executed.
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Given a set P of propositions, a (propositional) label ¢ is any
conjunction of literals, where a literal is either a proposition p €
P or its negation —p. The empty label is denoted by [J. The label
universe of P, denoted by P*, is the set of all finite labels whose
literals are drawn from 7. Two labels ¢1, £, € P* are consistent if
and only if their conjunction ¢ A £, is satisfiable and a consistent
label ¢, entails a consistent label £, (written £; D £;) if and only
if all literals in ¢, appear in £; too.

Each node has a propositional label that determines in which
scenarios the node has to be considered during an execution.
Suppose that a node label becomes | during execution. In that
case, it means that the node and all its incident edges (i.e.,
constraints involving the node) have not to be considered in the
current scenario and, therefore, they can be removed from the
network. Different executions of the same network may deter-
mine different scenarios and, therefore, different sets of nodes to
be executed. We represent the label of a node as a subscript label
enclosed by square brackets. For example, Ajp,—q means that node
A has to be considered in scenarios where p—q is true, i.e., p is
T, and q is L. Node Z has an empty label because it has to be
executed in all scenarios. When a label is empty, it can be omitted.

Regarding edges, they represent binary temporal constraints
between pairs of nodes that must be satisfied when nodes are
executed. There are two kinds of edges. The first one is given
by requirement links. A requirement link, X!“¥:-4Y, represents a
lower and an upper bound constraint on the distance between
the two timepoints it connects: | < Y —X < u. The interval
[1, u] is called the duration range. The label ¢ specifies in which
scenarios the constraint has to be considered (and satisfied). The
other kind is related to contingent timepoints. Each contingent
timepoint has exactly one incoming edge of the kind guarded

link, drawn as a double line. A guarded link AMC specifies
when the contingent timepoint C can occur with respect to A, an
ordinary timepoint also called activation timepoint; the range of
a guarded link consists of a duration range [x, y] augmented with
two guards, the lower guard x' and the upper guard y' that de-
termine the core of the link [17]. Before executing the activation
timepoint, the duration range [x, y] can be modified by the execu-
tion engine. However, any modification has to be accomplished in
a way respecting the corresponding guards, i.e, x<x and y>y'.
When the activation timepoint is executed, the current value
[x*, y*] of the duration range becomes contingent range, i.e., a
range made available to the environment for executing timepoint
C and, therefore, not more modifiable. This means that once A
is executed, C is guaranteed to be executed by the environment
such that C — A € [x*, y*] is held. The specific time at which C is
executed is uncontrollable since the environment decides it (it can
only be observed when it happens). For each guarded link, it is
reasonable to assume that the contingent timepoint occurs in the
same scenarios as the activation timepoint; therefore, we assume
that both nodes have the same label. The label of the guarded
link is omitted because it is implicit by the label of its endpoints
and because between the two endpoints, no other constraints are
possible.

Definition 1 ([14]). A Flexible simple Temporal Network with Un-
certainty (FTNU) is a tuple (7, P, OT, O, L, C, G), where

e 7 is a set of real-valued variables. These variables are the
timepoints of the network. 7 always contains the timepoint
Z that is assumed to be the first timepoint to be executed,
i.e., its value is set by the executing agent;

e P={p,q,r,S, ...} is a finite set of propositional letters.

e OT C T is a set of observation timepoints.

e 0: P — OT is a bijection that, given a propositional
letter, assigns a unique observation timepoint to it. The
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truth value of a proposition is set by the environment when
its observation timepoint is executed. Usually, if q is a
proposition, its observation timepoint has the name Q?.

e L: 7 — P* is a function that assigns a propositional label
to each timepoint X € 7. A (propositional) label is a
conjunction of propositional letters. A true-valued label of
a node indicates that the node has to be executed.

e Cis a set of labeled requirement links. Each requirement link
isdenotedas (u <Y —X <v,a)oras X44Y; X Y e T,
u,v € Rwithu <v,0 < v, and @ € P*. A requirement
link has to be satisfied when its label has (will have) a true
value. In other words, a requirement link can be ignored
only when its label becomes false during execution.

e G is a set of guarded links. Each guarded link is repre-
sented as (A, [[x, x'][y’, y]]. C) or as Al AL e and €
are timepoints, called activation and contingent timepoints,
respectively; x,y € R are the external bounds; ¥,y € R
are the guards. [x, y] is called external range of the guarded
link. It must hold 0 < x < ¥ <y <y < o0, and
L(A) = L(C). Moreover, if (A [[xi, X1y, yil], G;) and (A;,
[[x;, x]f][yjf,yj]], G) are two different guarded links in G, G;
and G will be distinct timepoints.

e For each labeled constraint (u <Y —X <v,a), a DLY)A
L(X). This property is called constraint label coherence [20].

e For each literal g or —q appearing in «, « D L(0(q)). Such a
property is called constraint label honesty [20].

e For each Y € 7, if literal g or —q appears in L(Y), then
L(Y) D L(0(q)), and O(q) has to occur before Y, i.e., (¢ <
Y —0(q) < +o0, [(Y)) € C for some € > 0. Such a property
is called timepoint label honesty [20].

An FTNU is dynamically controllable (DC) if there exists a strat-
egy for executing the timepoints in the network such that all
constraints are guaranteed to be satisfied no matter how the
durations of the guarded links turn out and no matter how the
observations of the various propositions turn out, in real-time—
paying attention to the fact that in any given scenario, only the
timepoints whose labels are true in that scenario need to be
executed, and only the constraints whose labels are meaningful
in that scenario need to be satisfied.

The DC-checking decision problem (DC-checking problem) de-
termines whether the given FTNU instance admits a dynamic
execution strategy. In [14], the authors showed that the DC-
checking decision problem (DC-checking problem) of an FTNU is
PSPACE-complete and proposed a DC-checking algorithm based
on a constraint propagation approach that:

e determines the minimal constraints between Z and any
other timepoints when the instance is DC; such minimal
constraints allow the determination of the minimal range of
allowed execution times for each timepoint of a DC instance.

e can be used by any scheduler to execute a DC instance,
exploiting the dynamic controllability.

Moreover, they provided a proof-of-concept implementation of
the algorithm, showing that it is practical for small-size networks
(up to 150 nodes and 6 observations).

To check the DC property, an FTNU graph is transformed into
an equivalent distance graph D = (T, &) where the nodes are
the same as the original instance. In contrast, the edges are
not labeled by labeled ranges, but by labeled values, as detailed
below.

Distance graph nodes. Nodes in the distance graph have no
propositional labels. Such label removal does not imply loss of
information, and any result determined in a distance graph is
valid also in the original graph [14].
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Distance graph edges. Each link in the FTNU graph is trans-
formed into two or four different edges in the distance graph. In
particular, each requirement link AZ¥:%B is represented as two
ordinary edges in &:

o ALY, B representing constraint (B — A <y, £); and
o A&EXY B for representing constraint (B—A > x, £) =
—X, Z),

(A-B =

where x,y € Rand £ € P.
Each guarded link ABXWYL ¢ is represented in & as:

° two ordinaiy edges for representing the duration range [x, y]:
A%9,C and A28 € where ¢ is the label of node A;

e two new other labeled edges, called lower and upper-case
edges for representing the two guards x’ and y':

- A lower-case edge, A*)LC, expresses that C cannot be
forced to be executed at a time greater than x after A,
i.e., it is not possible to add a constraint A&X-8C, ¥’ <
x* to the network.

- An upper-case edge, A& Yic, expresses that C cannot
be forced to be executed at a time less than y’ after A,
i.e., it is not possible to add a constraint AY-%C, y* <
y' to the network.

The FTNU DC-checking algorithm introduces and modifies or-
dinary edges by suitable propagation rules and can use two
new kinds of edges, named after conjunct-lower-case edges and
conjunct-upper-case edges. Both the conjunct-lower-case edges
and the conjunct-upper-case ones can be viewed as special upper/
lower bounds to execute timepoints.

In particular, a conjunct-lower-case edge is represented as
Z8:9,%  where Z is the origin, X is a generic timepoint, 7 is a
list of contingent timepoint names, v is a nonnegative value, and
£ is a propositional label. Intuitively, given a timepoint X, the
conjunct-lower-case edge Z8%-9,X represents the lowest upper
bound for X that can be set between Z and X in scenarios where
£ is true and must be satisfied when all the contingent timepoints
referenced in 7 are executed at their lower guarded time. Suppose
a requirement constraint Z&2:9X with w > v is added to the
FTNU. In that case, the network cannot be DC because this new
constraint is not satisfied, at least in a possible execution of the
network, i.e., in an execution where the contingent timepoints in
T occur at their lower guarded time in one of the scenarios where
£ is true. Such an execution is possible because all contingent
timepoints can always occur at their lower guarded time.

Analogously, a conjunct-upper-case edge is represented as
Z&=v0x where Z is the origin, X is a generic timepoint, R is
a list of contingent timepoint names, v is a nonnegative value,
and ¢ is a propositional label. Given an X, the conjunct-upper-
case edge Z&=v-9X represents the greatest lower bound of A that
can be set between Z and X, in scenarios where ¢ is true and has
to be satisfied when all the involved contingent timepoints are
executed at their upper guarded time. If an ordinary constraint
79X with w < v is added to the FTNU, then the network
cannot be DC.

A detailed description of the behavior and soundness of the
rules, as well as the completeness of the FTNU DC-checking algo-
rithm, can be found in [14]. Its time complexity is
O(M|T1]43IP12191), where M is the maximum absolute value of any
weight in the network [14,16,21].

3. Motivating example
We consider a high-level specification of an excerpt from a

clinical guideline related to the management of Adult Stroke
Emergency [22] as a motivating scenario. A possible BPMN model
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of this process is depicted in Fig. 1(a) (adapted from [22, page
S819]).

Example 1. The parent process starts with four sequential child
processes: Stroke Recognition (child process Pi: SR), Prehospital
Management (child process P,: PM), General and Neurologic Assess-
ment (child process Psgq: G&NA), Imaging Computed-Tomography
Scan (child process Ps: ICTS). Such child processes correspond to
the first five boxes discussed in [22] to acquire all the information
needed for the following decision-making actions.

After child process Ps, two alternative paths are possible ac-
cording to whether Imaging Computed-Tomography Scan shows
a hemorrhage. If there is a haemorrhage, (yes branch), child
process Consult Neurologist or Neurosurgeon (P;: CN) is performed,
followed by child process Haemorrhage Management (P114: HM)
where the haemorrhage patient is cared for. Otherwise, (branch
labeled by no), child process Consider Fibrinolysis (Pg: CF) is per-
formed to determine if the patient is eligible for fibrinolytic
therapy. Afterward, two different paths are possible according to
the evaluation performed through Pg. If the patient is suitable for
fibrinolysis, drug Recombinant Tissue Plasminogen Activator (rtPA)
is administered to the patient (activity Tqo: rtPA) and, then, Post
rtPA Management (P;5: PrtPAM) must be performed. If the patient
cannot afford fibrinolysis, a therapy based on Aspirin is adminis-
tered (child process Pg: Asp) and, then, a Stroke Management child
process is executed (Pq1p: SM).

Finally, child process Stroke Unit Admission (P13: SUA) is exe-
cuted for any possible previous path.

Among all the child processes present in Fig. 1(a), we consider
the schema of child processes P, and Pg as depicted in Figs. 1(b)
and 1(c), respectively.

P, starts with an initial assessment, considering also symptom
onset (Ty: Initial & Sym Onset Asmt) of the patient. If the patient
is hypoxemic, then the oxygen supply has to be set (task Ti:
SetOxigenSupply). Then, (possibly) four different tasks have to
be executed in any order with possible overlaps, namely setting
the neurological monitoring (task T,: SetNeuroMonitor), checking
the glucose (task Ts: BloodGlucCheck, only if the patient is hy-
poglycemic), doing a prehospital notification (T4: PreHospNotify)
and performing a transfer to hospital (task Ts: TransferToHosp).

Pg consists of checking fibrinolytic exclusion followed by a
fast neurologic exam, represented by the sequential execution
of tasks Typ: Check Fibrin. Exclusion and Tq: ICU NeurologicExam,
respectively.

All the presented schemata have been enriched with temporal
constraints - following the concepts introduced in [9] - that must
be satisfied to guarantee the clinically successful completion of
each process step. The values of such temporal constraints were
set according to the guideline specification and the temporal
constraints - graphically represented in the diagram in [22, page
S$819] - while for the prehospital management, we considered the
temporal ranges discussed in [23].

Such temporal constraints will help clinical stakeholders plan
their work, as they know how long previous steps will take and
how much freedom they have to perform their clinically relevant
tasks.

The time spans of tasks and child processes are not entirely
under the control of the PAIS as clinicians carry out these tasks.
Therefore, task durations are represented as guarded ranges. Such
duration ranges may be partially restricted by the process en-
gine during execution to ensure the successful completion of the
processes.

Example 2. Task T, of child process P, is associated to a guarded
range, represented as [[2, 4][6, 10]]. It means that Ty will have a
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Process Repository

PrehospitalManagement
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Sym Onset

To:
Initial &
t
10]

sm
[2. 46,

Hypoglic.? e

Y

Y
T5:SetNeuro T5:BloodGluc
Monitor Check
[, 1112, 2] [[1,1[2,4]

A,
Ty:PreHosp T:Transfer
Notify ToHosp
[[1,21[3,4]) (10, 12][16, 24])

(a) Parent process

E

. J

(b) Child process P». In this process model,
each delay between the end of an activity
and the start of the following one is a value
in [0,10]. For clearness, all such temporal
constraints are not depicted.

ConsiderFibrinolysis

s[o,1]s E[0,1]S
PRl L == E[0, 1]S
0 ) T: ‘ Y Ty: ICUN o
Check Fibrin. BIoeE
Exclusion

[[1,4][5,10])

i1, 1][5, 10]]
S[0, 20]E )

!
N

(c¢) Child process Ps. In this process model,
each delay between the end of an activity and
the start of the following one is a value in
[0,1].

Fig. 1. Motivating example: The process model for managing Adult Stroke Emergency.

duration (initially set) in a range between 2 and 10 time units.
However, before the execution of the task, such allowed duration
range can be restricted. Still, in any case, the lower bound of
the range must not exceed 4 min while the upper bound cannot
be set below 6 (e.g., a duration range of [3, 5] or [5, 8] is disal-
lowed). Physicians in charge of T, may take between 2 and 10
min to perform it normally. However, the range can be shrunk
to [4, 6] at maximum before enacting Ty if the process engine
determines that it is necessary to guarantee the satisfaction of all
other temporal constraints. In any case, the physician will know
the allowed range before starting the task and, once the task is
started, the range will not be modified anymore. This ensures
that the user who executes the task has sufficient flexibility to
complete the task successfully.

Constraints on gateways constitute standard temporal con-
straints, specifying the possible durations (within a range) that
are under the PAIS’s control. It means that the PAIS has some
time allowed to manage its internal task, such as moving on the
control (and the log) of the execution, managing the resources
for the following tasks, evaluating the chosen execution path, and

so on. Gateway X Haemorr.? has a temporal constraint [1, 3]
on its allowed duration. Before the gateway execution, if the
process engine needs to restrict its duration range to guarantee
the successful execution of the process, it can restrict it even to
a single value like [1, 1] or [3, 3].

Moreover, further temporal constraints, the PAIS has to con-
sider, can be specified between start/end timepoints of different
tasks (through labeled dashed edges). The time distance (i.e.,
duration) between the start of process P; and the start of process
TP3g4 has to be between 20 and 60 min (expressed as S[20, 60]S).

As already discussed, two challenges emerge in this context.

e The first challenge concerns the representation of the overall
temporal behavior of (child-)processes. One must be able
to describe how a child process, for example, Prehospital
Management, behaves temporally if it is reusable within any
time-aware processes. (Prehospital Management is common
to other ICU processes.) In [9], this issue was considered
and solved only for subprocesses without alternative paths.
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Table 1
Time-aware BPMN constructs. Clouds stand as meta-symbols for any component
of the process schema, i.e., task, gateway or child process.

Start/End

@) avent O—’ —»O (g) ORsplit

(b) Task A (h) ORjoin
[(x. ¥y, 1]
Child process P . p P
(c) (subprocess) (i) start-start [M{\ LMF,IND
L _Sltuls
(d) ANDjoin (j) start-end [NAVjJ C::E_%:
\__Slbue ]
e) ANDsplit k) end-start ane
(€) ANDsp — (k) Ca 908
E[t, u]S |
Sequence-
f) Flow - N 1) end-end r ~p
e &

However, the presence of alternative paths poses some chal-
lenges to the compact representation of allowed temporal
ranges for the duration of the subprocess.

e The second challenge is related to the efficient temporal
analysis of the parent process. Ideally, this analysis should
be accomplished without unfolding all considered child pro-
cesses to make it effective and quick. In general, the chal-
lenge is to find the possible temporal configurations of all
child processes that allow the successful execution of the
parent process. Although this problem received some at-
tention in [9] only for single-path child processes and only
single-path parent processes, no algorithms have been pro-
posed in the literature dealing with the above challenge.
Here, we consider more general models where multiple
alternative paths may be present in the parent and child
processes, and we propose an algorithm that discovers all
possible temporal configurations of the child process to use
in the parent process. For example, assuming to have a
temporal representation of all child processes in Fig. 1, the
proposed algorithm discovers that a possible configuration
of P, and Pg with guarded ranges [[16,28][28, 28]] and
[[2, 8][11, 11]], respectively, guarantees a successful execu-
tion of the parent process.

4. Modeling temporal features of BPMN modularized pro-
cesses

In this section, we propose a temporal extension of BPMN
that allows the representation of simple modularized time-aware
BPMN processes. Then, we propose the notion of dynamic con-
trollability for time-aware BPMN processes.

4.1. Extending BPMN constructs with temporal properties and con-
straints

BPMN processes can represent different temporal aspects,
adding a temporal dimension to a relevant subset of BPMN
elements and suitable temporal constraints based on concepts
presented in [4,8,24]. The obtained time-aware BPMN encourages
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the temporal characterization of tasks, gateways, and time lags
between process elements, as depicted in Table 1. The constructs
of such time-aware BPMN extend those introduced in [9], where
conditional branches, represented through OR split/join, were not
considered.

While Table 1 depicts the constructs of time-aware BPMN,

we describe the introduced temporal aspects by considering the
example of Fig. 1 and borrowing the notions of “activity” and
“gateway” from the BPMN standard [1].
- Activities can be distinguished into tasks, which are atomic
(not decomposable), and child processes (or subprocesses), which
can be decomposed into smaller parts, like child processes, tasks,
gateways, etc.

Tasks (see Table 1.b) have a duration attribute represented
as a range [[x, X1y, yl], with0 < x < ¥ <y <y < oo,
where x[y is the minimum/maximum allowed time span for an
activity to go from state “started” to “completed” [25]. Here,
we assume that all given values are represented in a predefined
time unit (e.g., minutes in our example). At run-time, the process
engine can modify the values of x and/or y to ensure successful
execution, but observing the constraint that x < ¥’ and y’ < y,
where x' and y’ represent the lower/upper guard, respectively,
and are fixed by the process designer. Moreover, the process
engine cannot fix the real duration of an activity but only observe
after who is in charge of executing it completes the activity (con-
tingent duration). The process engine considers the real duration
to enact the following elements properly. Who is in charge of
executing the activity must observe the two bounds x and y at
the enacting phase.

The temporal features of child processes are derived from
those of their composing activities, considering all the time con-
straints specified within the processes themselves. As we will see
in detail in Section 5.3, guarded ranges are not enough to specify
the temporal behavior of a child process, and we also need to set
the contingency of the subprocess (see Table 1.c) [9].

- Sequence-Flow Edges enable the execution of the second
component B, when the previous one, A ends. A and B can rep-
resent activities and gateways. While the end of A may be out of
the control of the process engine, when, for example, A is a task
or a child process, the start of B is always under the control of the
process engine. The delay by which B starts is determined by the
process engine considering all the current temporal constraints. A
designer can limit such a delay by setting a E[x, y]S time lag (see
below).

- Gateways also have a duration range of the form [I, u], with
0 < | < u < oo. The process engine plans the actual execution
time for such elements by choosing a suitable value of the range,
according also to the requirements of its internal tasks. If a
designer does not set a duration, it is assumed to be [0, oo].

- Time Lags are depicted in Fig. 1 as dashed edges that connect
any two components of the process [4]. Time lags limit the time
distance between the starting/ending instants of two components
and have the form Is[u, v]lr, where Is is the starting (S)/ending
(E) instant of the first component, while I is the starting/ending
instant of the second one [4].

From now on, we consider only well-structured processes
(i.e., processes where split and join gateways form single coherent
single-entry single-exit (SESE) blocks) as they offer several ad-
vantages in terms of comprehension, modularity, and robustness
[8,26, for a detailed discussion]. Moreover, as for the represented
temporal constraints, we assume that time lags are defined be-
tween components when they belong to the same execution
path.
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4.2. Controllability of a time-aware BPMN process

Considering temporal aspects, executing a time-aware BPMN
process means:

1. to schedule the starting time of all elements,

2. to set the duration of gateways, and

3. to determine which are the (alternative) paths to follow
during the execution, according to the conditions checked
in XOR split gateways.

The duration of a gateway within the given time range is set by
the engine and represents the duration the process engine uses to
suitably coordinate and move forwards the execution. The values
of split conditions (see P? in Table 1) are not known in advance as
they are incrementally revealed over time as corresponding tasks
are executed. Similarly, the durations of activities are only known
as the activities complete. Therefore, a dynamic execution of the
process must react to conditions and contingent durations in real
time.

The reaction consists in

1. adjusting all the duration ranges of future activities consid-
ering the execution times of already finished activities,

2. evaluating which components to execute (or to enact in
case of tasks or child processes), and

3. choosing an execution time for the gateways that must be
executed as decided in the previous item.

For enacted tasks/child processes, the process engine can only
observe the execution time after that the tasks/child processes
are finished.

A viable execution guarantees that all relevant constraints —
those holding in the paths being executed - will be satisfied
no matter which condition outcomes and durations are revealed
over time. A time-aware BPMN process with a dynamic and viable
strategy is called dynamically controllable (DC).

Checking the dynamic controllability of processes will be the
main focus of this paper. More precisely, we first need to be able
to

e represent the overall temporal behavior of a (child) process;
e check the overall controllability of processes possibly con-
taining child processes.

5. A computational approach to time-aware processes con-
taining alternative execution paths

The scope of this section is to show how to computationally
derive the temporal features of a (child-)process. For this purpose,
we consider a process model P with a single start and a single end
node.

In Section 5.1, we show how to represent a process model P
as an FTNU instance. Sections 5.2 to 5.4 introduce the concepts
of prototypal links, contingency, and prototypal links with con-
tingency, to compactly represent the temporal properties of a
process model.

5.1. FINU representation of a process model

The dynamic controllability of a process model P can be ver-
ified by converting P into an equivalent FTNU instance Sp using
the transformation rules depicted in Tables 2 and 3, and, then,
checking the DC property of S using the DC checking algorithm
for FTNUs [14].

Tables 2 and 3 show the mapping between the time-aware el-
ements we considered (i.e., tasks, child processes, sequence flow
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edges, AND gateways, OR gateways, and temporal constraints)
and “equivalent” FTNU fragments.

Before showing each element mapping, let us specify how a
propositional label for an element in Sp is built considering OR
gateways and paths in P.

5.1.1. Label determination

Since a time-aware process may contain OR gateways, dif-
ferent execution scenarios are possible according to which OR
branches are executed. Combining all OR gateways execution
values, i.e., the truth value of the corresponding proposition de-
termines an execution scenario.

A propositional label £ may specify only some literals. In such
a case, the label represents all scenarios where such literals are T.
For example, in a process model having three OR gateways that
determine the values of propositions p, q, and r, the label £ = p—q
represents scenarios p—~qr and p—q—r.

To determine the right propositional label ¢ for an element
A’ in Sp corresponding to an element A in P, it is sufficient to
consider the (possible) OR gateways that are present in the path,
I1, from the Start event to A in P:

(i) At Start Event, set £ = [J;

(ii) For each (possible) OR Split X,- in IT associated with
proposition p, add p or —p to £ according to the branch
present in IT;

(iii) For each (possible) OR Join Xi in IT associated with propo-
sition p, remove p literal from £.

Since we considered only well-structured process schemata, it
is not possible that A should be considered in scenarios not
represented by the propositional label £. Indeed, a scenario not
represented by ¢, ¢/, has to contain at least one literal that is
negated in £. Let us suppose that £ contains g, while ¢ contains
—q. If —q is in ¢, by construction, A is present in the | branch
of OR Split associated with gq. Therefore, it is not possible that A
has to be also executed in the T branch of the same OR Split as
dictated by ¢'.

5.1.2. BPMN mapping to FTINU

Theorem 1. Given a time-aware process schema P, there exists
one and only one FINU Sp derived by the mapping rules depicted
in Tables 2 and 3. Sp can be determined in quadratic time with re-
spect to the number of time-aware-process elements. Moreover, P is
dynamically controllable if and only if Sp is dynamically controllable.

Proof. Now, let us consider the mapping from each time-aware
BPMN element to the corresponding FTNU fragments.

- Start/End event. These elements are transformed into two
FINU timepoints, Z and E, respectively, connected to the rest
of the nodes by an outgoing/incoming requirement link. Such
requirement links must have an empty propositional label.

- Task. Each task A is transformed into two FTNU timepoints,
As and Ag, representing its start- and end-instants. The duration
attribute of A, [[x, X'][y’, y1], is converted to the guarded link (As,
[[x, x’][y’,y]],AE). A guarded link does not have a propositional
label by definition.

- Child process. The conversion is analogous to the one of
Task. The main difference is that the temporal representation
of a child process is made by an extended contingent duration,
which we introduce in Sections 5.2 to 5.4. Given such an extended
duration, by a simple rule, it is possible to determine a (standard)
task duration attribute and, therefore, to transform it as done
for a task. The rule is summarized in Table 2 and explained in
Section 5.4.
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Table 2
FTNU transformation rules for business process constructs.
Process Model FTNU fragments

Start/End event

Task A
[x, ¥y, y1
P
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o, ], ¢
=
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[0, oo], ¢ [x,y], ¢
'X5+p 'XHP
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Elements in gray represent complementary information corresponding to elements that must be fixed when fragments are used. ¢ is the scenario in which the

fragment is considered.

- ANDsplit/ANDjoin gateways. The conversion process is anal-
ogous to the one of a task. However, the duration [x, y] is con-
verted to a requirement link =+ %¥-4= for the i-AND split,
and +iSjM+1Ej for the i-AND join as the process engine
executes control connectors.

- ORSplit/ORJoin gateways. The conversion is analogous to the
one of an ANDSplit/ANDJoin as regards its duration
attribute. As for propositional labels, as discussed already, OR-
Split/ORJoin are the only constructs where labels are modi-
fied.

- Sequence-Flow Edge. A sequence-flow edge connects two
elements of a time-aware process. It states a precedence relation
in the execution of the connected elements. It is always converted
to a requirement link having [0, co] duration. The label ¢ rep-
resents the scenario where the two elements are present and is
determined according to the approach discussed previously.

- Time Lags (see Table 3). Consider a time lag (Ig)[t, ul{ls)
between tasks A and B, where Iz and Is represent the kind of
instants to be considered, i.e.,, S for the start instant and E for
the end instant, respectively. Such time lag is converted to a
requirement link between the timepoints associated with instants
Aj. and Bj; of A and B, respectively. According to the previous
label determination, the resulting requirement link has the same
duration range [t, u] and label ¢.

Considering the definitions of time-aware process dynamic
controllability (see Section 4.2) and of FTNU dynamic controllabil-
ity (see Section 2), the dynamic controllability of a process model
P implies dynamic controllability of the corresponding FTNU Sp,
and vice versa.

Furthermore, the mapping of a process model P into the cor-
responding FTNU Sp may be calculated considering each element
(Activity/Gateway/Sequence Flow/Time Lag) in P making a depth-
first visit from the Start Event element. In this way, the mapping
can be performed in quadratic time order with respect to the
number of P components. Indeed, a process model P corresponds
to a graph where nodes are either activities or gateways, while

Table 3

FTNU transformation rules for time lags. Elements in gray represent complemen-
tary information corresponding to elements that must be fixed when fragments
are used.

Process model FTNU fragments

Time lag

start-start

F/? /? As Ag Bs ™\~ Bg
Los[tuls [t.ul, €
start-end
B L ! [t,ul. €
end-start

3 A Af——B B,
“A*’\E[t,u]s@ SO e T e
end-end PO
LA B AN A BB

| Elt, ulE ! [t,ul, ¢

sequence flows and time lags are directed edges. Thus, a depth-
first visit can be performed in O(|N| + |E|) = O(|N|?), where N is
the set of nodes and E is the set of edges. O

Example 3. Fig. 2 shows the conversions of the child process P,
and Pg presented in Fig. 1. Regarding the child process P,, the
proposition associated with the Hypoxemic check is p, while the
proposition associated with the Hypoglycemic check is g.

5.2. Prototypal links as an extension of guarded links

Suppose an FTNU Sp associated with the time-aware BPMN
process P is DC.
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(b) FTNU corresponding to Ps.

Fig. 2. FTNUs corresponding to subprocesses P, and Pg in Fig. 1. The shadow regions are added only to emphasize nodes relative to tasks.

Table 4

Constraints between Z and E of Sp,, derived by the DC-checking algorithm.
Lower bounds Z&ESDE 7S E
Conjunct AR Iy AL L

Zt285 —p) E Ztﬂngnp E
anfz91P E ZrDr. 91, p) E
Zr092p E z[|[296p E
7, 7,
7LD, 7090 p

Zh=8p | ZTD —20.p)
zdu=2up) g7 ZZﬁp)E

ZTOT. ZZpE Z 23pE
Z(T5 24pE ZT0T5 26ﬁp)E

lower-case bounds

Conjunct
upper-case bounds

Z{LTs=27.p) 7 [ToTiT5:28, p)E'

Upper bounds 788 p,p - 798P

The considered DC checking algorithm on Sp [14] returns a
positive answer and a modified Sp. The returned Sp is a dis-
tance graph.? containing the minimal ordinary constraints be-
tween Z and any other timepoint (i.e.,, the minimal and the
maximal temporal distance of all reachable timepoints from Z),
and possible new constraints, conjunct-lower/upper-case edges
(such kinds of constraint are discussed in Section 2), between Z
and some timepoint, representing the minimal and the maximal
temporal distance of such timepoints from Z according to the
minimum/maximum duration of one or more guarded links.
Therefore, considering Z and the ending point E of Sp, the de-
termined constraints between the two nodes represent the min-
imum and maximum durations of the process P according to
different contingencies/conditions.

Example 4. Considering the FTNU Sp, represented in Fig. 2(a), the
DC checking algorithm derives the constraints between Z and E
in the corresponding FTNU distance graph, as depicted in Table 4.

2 A distance graph is an equivalent representation of an FTNU, suitable for
having the possible distances between pairs of nodes, as detailed in Section 2.

The ordinary edge Z{=%=2'E represents the minimal duration,

i.e., 16 time units, of P in all scenarios where —p is T, and all
requirement/guarded links last their lower bound, i.e., the value
x in XP22LX[ A; [ 9] e \where —p entails £. The ordinary
edge Z&ILRE states that the analogous minimal duration of P is
17 when p is true, i.e., in the two scenarios pq and p—q.

The ordinary edge Z%:2LE represents the upper bound to
the duration of P in scenarios where p is T while Z&&-=2LE js
the upper bound in scenarios where —p is T. Such maximum
values, 86 and 98, are the maximum durations among all possible
executions when the delays among timepoints and the duration
of guarded links are maximum.

Regarding conjunct-lower-case constraints, each value repre-
sents the upper bound to the minimal process duration when
one or more contingent links last their lower-guard duration, i.e.,
the x’ value. As an example, the value (tyt(t,:90, p) represents
the fact that in the case of the Hypoxemic scenario, if the task
To, T; and T, last their lower-guard duration (i.e., 4,1, and 1,
respectively), then P can be forced to last at least 90 time-units
without constraints violations. If P is forced to last at least 91
time-units by a further constraint, for sure at least one execution
will violate such a constraint.

As regards the conjunct-upper-case constraints, each value
represents the lower bound to the maximal process duration that
one can force without constraint violations when one or more
contingent links last their upper-guard duration, i.e., the y’ value.
As an example, the value (ToT;Ts:—28, p) represents the fact that
in the case of the Hypoxemic scenario, if the task Ty, T; and Ts last
their upper-guard duration (i.e., 6, 2, and 16, respectively), then
P can be forced to last 28 time-units at most without constraint
violations.

Since we want to offer the possibility to consider a process P as
a module that can be inserted into other processes, it is important
to represent the temporal behavior of a process compactly to
make easier the evaluation of whether it can be added to a parent
process without violating any temporal constraint of P or of the
host process.
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We propose to represent the temporal behavior of a process
using a prototypal link between its starting timepoint and the
ending one.

Definition 2 (Prototypal Link). Given two timepoints A and B, a
prototypal link is a generalization of a guarded link where the
two bounds, x and y, are limited by two guards, X' and y'. It is

represented as AME, where x,y € R are the (external)
bounds, X', ¥y’ € R are the guards, and it holds that x <y, x < ¥/,
and y' <y.

A prototypal link has no label because its goal is to represent
the temporal behavior of the considered child process viewed as
a black box where only the starting and the ending timepoint
of the subprocess are known. The value X’ represents the max-
imum lower-bound that can be set between A and B without
violating any other process constraint. In contrast, y’ represents
the minimum upper-bound that can be set without violating any
constraint. A prototypal link generalizes a guarded link because x’
can be greater than y’, and timepoint B has not to be a contingent
timepoint.

A prototypal link cannot be used directly in an FTNU as a con-
straint. Instead, it is only useful for describing the global temporal
behavior of an FTNU compactly. In the following section, after
introducing the contingency span, we will show how a prototypal
link can be converted into a proper constraint for being used in
an FTNU.

A process P may have different execution scenarios, each with
different temporal durations according to (possible) guarded link
durations. The prototypal link between its starting timepoint Z
and ending one E, ZME, can be determined considering
the values among the existing edge values between Z and E
in the corresponding FTNU distance graph after a successful DC
checking. We propose to set the prototypal link values as follows:

X min{|v|: Z&-9 E)

x = min{v:Z8wF 70-9,F)
y = max{|v]: Z&2YE 78O F)
y = max{v:Z%9%E)

The lower bound x is the minimum absolute value among the
ordinary edges Z{-YE, for any value of ¢, because it represents
the minimum possible duration of P in any possible execution.
Analogously, the upper bound y is the maximum value among
the ordinary edges Z“-%F because it represents the maximum
possible duration of P in any possible execution.

If Sp has one or more conjunct-lower-case edges ZJ:U-9.F
(discussed in Section 2), then the minimum duration x cannot
be forced to be greater than the minimum of the determined
conjunct-lower-case values. This can be represented by setting
the lower-guard x’ to such a minimum value. However, this is
not sufficient. Indeed, since there could exist different scenar-
ios in P having non-overlapping duration ranges like ([l, u], p)
and ([I',u'], —-p) with u < I, it is necessary also to guarantee
that the lower bound x cannot be forced to be greater than
the upper bound of any possible execution. In the above ex-
ample, ¥ < min{u, v'}. Hence, the lower-guard x' has to be
set to the minimum among the conjunct-lower-case values and
the upper bounds of the duration of the process, i.e., X'
min{v: Z8LE 700y

Analogous analysis can be done for the upper-guard y’ setting.

Example 5. Moving to the child process P, let us consider the
constraints determined by Sp, DC checking as depicted in Table 4.
The temporal behavior of Sp, can be represented by the prototypal

link ZME . This prototypal link means that it is possible

10
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o “force” some restriction of process duration like adding a
new constraint ZB%BLEFE but restrictions like ZUS:2L8F for
example, are not allowed.

Definition 3 (Lower and Upper Guards of Timepoint). In general,

given an FTNU S and the prototypal link ZM»B determined
as previously described, we denote x’ also as 1Gs(B) calling it lower
guard of timepoint Bin S, and the y’ as uGs(B) calling it upper guard
of Bin S.

This representation of the global temporal behavior of a pro-
cess as a prototypal link is a generalization of the proposal made
in [9]. In [9], authors proposed a definition of lower-guard and
upper-guard for a process without conditions and, then, an al-
gorithm that determines such values making a breath-first visit
of the corresponding graph. Here, we generalize the definition
of lower-/upper-guard, considering all possible process scenarios
and exploiting the results obtained by the DC checking algorithm
for determining the values without further computation.

Example 6. Considering the child process Ps, whose FINU Sp, is
in Fig. 2(b), the DC checking algorithm determines the following
new constraints (compact representation) in the FTNU distance

graph associated with Sp;:
7z (=2, 0), (To:=6, O), (T1:=6, O), (ToT1:—10, ) E, and
7 (20, 0), (tot1:8, ), (to:14, ), (t;:17, 1) E.

Therefore, the prototypal link representing the Pg temporal

. . 2,8][10,20
behavior is ZI28! I E.

5.3. Contingency span

Given the range [[x, X1y, y]] of a prototypal link associated
with a DC process, if we want to apply a restriction on the
duration of the process, we can limit the lower/upper bound or
both. While limiting one bound (lower or upper) only according
to its guards always does not affect the dynamic controllability of
the process, limiting both bounds can raise an over-constrained
situation, i.e., the process may result in no more DC.

Example 7. Consider the FTNU from Fig. 2(b), which corresponds
to child process Ps. In the previous section, we have shown
that the global temporal behavior can be represented by the

prototypal link ZME. If the duration is forced to be 8 at
the minimum and 10 at the maximum adding the requirement
link ZBL8F (8 = IGp,(E), 10 = uGp,(E)), then the process
is no more DC. Indeed, the guarded link between timepoints To,
and Ty, (representing task To) has a duration variability of 5 time-
units (i.e., from 1 to 5), which can be “mitigated” by the following
delay by only one time-unit. Therefore, even considering only T,
it is impossible to require that the global duration of the overall
process has to vary in a range of 2 time-units only.

Thus, as proposed in [9], it is necessary to consider the con-
tingency span of the process, an additional value that represents
the minimal span to be guaranteed for the duration range. In [9],
contingency span was defined for temporal constraint networks
without conditions.

Here, we extend the above concept contingency span and its
correlated ones, i.e., link contingency span, and path contingency
span, for applying to FTNUs.

Such concepts are meaningful only for networks that are (dy-
namically) controllable, i.e., all constraints can be satisfied during
any possible execution. Moreover, the determination of the con-
tingency span of timepoints (or of a network) requires restricting
the constraint ranges to contain only admissible values. Indeed,
controllable FTNUs processed by the proposed DC-checking algo-
rithm have already derived such restricted constraints between
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(a) A DC FTNU (represented as
distance graph) where only con-
straint to/from Z are minimised
(thick ones).

Fig. 3. Exampe of a simple DC FTNU

Z and any timepoint and between any activation and the corre-
sponding contingent timepoint, but not between any possible pair
of timepoints. Thus, we need to update the constraints between
any pairs of timepoints suitably, propagating the restricted con-
straints of such timepoints from/to Z. To this end, we introduce
the concept of complete FTNUSs.

Definition 4 (Complete DC FINU). Given a DC FINU S = (7,
P,0O0T,0,L,C,G), its corresponding complete DC FTNU S’
(T,P,OT,0,L,C’, G') contains the minimized version of guarded
and requirement links, i.e., C’ contains requirement links of ¢/,
each with the minimal range each, while G’ contains the guarded
links of G, each with the minimal guarded range. A minimal
(guarded) range is composed by all and only the admissible values
guaranteeing the FTNU DC.

Taking into account the FTNU derived by our DC check algo-
rithm, the corresponding complete DC FTNU can be obtained by
propagating the minimal links between each timepoint X; and Z
to each X;-neighbor X; i.e., a pair (X;, X;), for which there exists a
requirement link in C.

Example 8. Fig. 3 depicts a DC FTNU (represented as a distance
graph) where the constraints between A and B are not minimized
on the left and the corresponding Complete DC FTNU on the
right, where the constraints between A and B are minimized
considering the minimum constraints from/to Z.

The determination of all minimum constraints can be per-
formed in O(|7|%2!7!) time in the worst case because for each
timepoint (|77), all possible neighbors must be considered (|77)
and each edge can have up to 2!P! labeled values.

We are now ready to introduce the concept of contingency
span.

Definition 5 (Labeled Link Contingency Span). A positive labeled
link contingency span A is the span that needs to be guaranteed
for a guarded link to ensure the DC of an FTNU. A negative labeled
link contingency span A is the maximum span provided by a link
that can be used to reduce the contingency span of an earlier
guarded link. They are defined as follows:

(a) Given AMB, the link contingency span Agp, is de-
fined as App, = b —d'.

(b) Given A“2:-4B, the link contingency span Agp, is defined
as App, =a—b.

App, relative to a guarded link is always nonnegative and
always has the empty label (2) because guarded links do not have
labels.

Agg, relative to a requirement link is usually negative and has
the same label (£) as the associated requirement link.
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(b) Complete DC FTNU (distance
graph) of Figure 3a (thick edges
are the ones minimised propagat-
ing the other ones).

and its corresponding Complete DC FTNU.
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The contingency span of a path is based on the labeled link
contingency span of its links, and it is defined only when all links
have consistent labels. .

In particular, when a guarded link AMB is followed by
a requirement link B-4:-4C, then the contingency span required
by the guarded link can be partially or fully compensated by the
following requirement link, as the latter’s duration can be decided
based on the actual duration of the former. Thus, the contingency
of the path from A to C is given by Agg, + Apc,-

When a requirement link A%2:¢B is followed by a guarded

link BMC, then the requirement link cannot be used to
compensate for the contingency span of the guarded link because
the duration of the requirement link has to be decided before
executing the guarded link. Hence, the contingency span of the
path from A to C is given by Agc..

The contingency of the sequence of two guarded links is the
sum of the contingency spans of the two guarded links.

The contingency of the sequence of two requirement links,
Aledlg g BICdLA € s the contingency Anc, = Anp, + Apc, When
y afB is consistent, i.e., y € P*. When y is not consistent,
the contingency span of the path does not exist because the two
links belong to different scenarios that cannot occur in the same
execution.

For example, suppose A48 B and BL:4L7RC belong to an
FTNU that has the three conditions p, g, and r. In that case, the
first constraint must be considered in four of eight scenarios,
i.e., pgr, pq—r, p—qr, p—~q—r, while the second constraint in the
other four scenarios, i.e., —pqr, —=pgq—r, —p—qr, =p—q—r. There
is no scenario in which the two constraints have to be both
considered; therefore, no significant path can be made using the
two constraints.

Finally, since there may be different requirement links (having
different labeled values) between two timepoints, the contin-
gency span of a path involving the two considered timepoints
(and requirement links) may be defined as a set of different
labeled values.

Example 9. Consider the guarded link AL00.12016. 24 g o6 wed
by two different requirement links to timepoint C, B%2:2.C and
B9 22 C In scenarios where p is T, C has to occur within 2
time-units after B, while in scenarios where p is L, C has to occur
within 10 units after B. In scenarios where p is T, the contingency
span of the path (A, B, C) is Aac, = (16 —12)+(0—2) = 2, while
in scenarios where p is L, Aac, = (16 — 12) + (0 — 10) = —6.

A path of two or more links connecting two nodes determines
an implicit constraint between the two nodes. Such a constraint
can also be explicitly represented (usually as a requirement link)
or not. Given a path, the labeled link contingency spans that can
be defined in such a path need to be combined incrementally
to determine the labeled contingency span between the first
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timepoint and the last one. It is meaningful to consider Z as
the first timepoint. Since there may be more paths connecting
Z to a timepoint X, more distinct labeled contingency spans
are possible. The largest span among such labeled contingency
spans represents the most demanding contingency span that can
occur during executions. This maximum labeled contingency span
is called path contingency span of X, which is an extension of
the path-contingency-span concept presented in [9]. Here, we
redefine it because it depends on the labeled link contingency
span concept.

Definition 6 (Labeled Path Contingency Span). Let S be a DC com-
plete FTNU. The labeled path contingency span of Z is conts(Zy) =
0. The labeled path contingency span conts(C,) of any other time-
point C in scenario ¢ is defined as

conts(Cy)
‘= max {0, max {conts(B,) + Agc, | @B are consistent with Z}}
BeT

Once all possible conts(C,) are determined, we define as path
contingency span of timepoint C the value

conts(C) == ?61%>§{cont5(cg)}

The labeled path contingency span of any timepoint is always
greater or equal to zero, i.e., conts(C) > 0. Thus, the problem of
determining the value of conts(C) can be reduced to the problem
of finding the minimal distance(s) between Z and C in a labeled
weighted graph where each edge (A, B) has a set of values given
by the negated labeled link contingency spans —Agg, of the edge
(A, B) in the network.

Definition 7 (Labeled Contingency Graph). Let S = (7, P, OT,
O0,L,C,G) be a DC complete FTNU. The corresponding labeled
Contingency Graph for S has the form CGs = (T, &cgs), where
the nodes are the same of S and &q¢ is a set of weighted edges
having:

(a) For each guarded link AMB € G, a single edge
AlZAuBlp,

(b) For each requirement link ARNGB < ¢ two edges,
ALAuedp and pltmedlig,

(c) For each timepoint T € 7, a single edge Z:%2LT.

It is straightforward to observe that, according to this defini-
tion, the determination of a labeled contingency graph requires a
O(|T| + Ic| + |6]) time.

In a labeled Contingency Graph, a labeled path is a sequence
(Xo, €0, X1, €1, ..., Xk), where

(i) X;eTfori=0,...,k
(ii) ej € Ecgg forj=0,...,k—1,
(iii) the conjunction of all propositional labels associated with
the considered edges is consistent, i.e., £ol1---fy_1 € P,
where ¢; is the label associated with e;, forj =0, ..., k—1.

The path contingency span of any timepoint X € 7 in scenario
£ corresponds to the negative value of the shortest path from the
initial timepoint Z to X in the corresponding labeled contingency
graph considering only edge values having labels consistent with
L.

Once all possible path contingency spans of a timepoint X
have been determined, the minimum value among such path
contingency spans represents the negated value of the labeled
path contingency span of X.

Since a requirement link may connect two-non sequential
timepoints, its link contingency span can be combined with
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Algorithm 1: ContingencyDistances(CGs)

Input: CGs = (T, Ecgg), the labeled Contingency Graph associated with a
DC FINU §
Output: [conts(Xq), conts(Xa), ..., contg(Xy)], the path contingency span of
each node in CGgs
1 foreach v € 7 do
2 L v.d := {{o0, &)}

3 Z.d:= {(0,O)}
4 foreach 1 <i<|7|—1do

/I Initialization

/I Each node has a set of labeled distances
I'Z=Xp

/I Distance propagation

5 foreach (X;, (e, @), Xj) € Ecgs do

6 foreach (u, B) € X;.d do /I Relax phase
7 if @B ¢ P* then continue next cycle // Not consistent label
8 useless := L

9 foreach (v, y) € X;.d do /I Check if the new value can be

added
10 if p Dy and v < u + e then
/I (v, y) is stricter, u + e is not useful

11 useless :== T

12 break

13 if useless then continue next cycle

14 Xj.d :=X;.dU {(u+e, ap)} // Add the new labeled distance
15 foreach (v, y) € X;.d do // Remove looser distances
16 if y Dap and v > u + e then

17 L Xj.d = Xj.d \ {{v, y)}

/* Negative cycle check is not necessary */

18 contg :=[] /I empty solution array
19 foreach 0 <i < |7| do

20 | conts[i] := max{|v| | (v, £) € X;.d}

21 return contg

the contingency coming from any of its endpoints. Therefore,
Definition 7 considers these two mutually-exclusive options by
adding two edgesA Cow. g Bt A in gog .

The edges Z%,T added in Item (c) of Definition 7 guarantee
that the length of any shortest path to a timepoint X from the
starting timepoint Z is always non-positive, i.e., the corresponding
labeled path contingency is always positive.

Given a DC complete FTNU S, the labeled contingency graph
CGs cannot contain any negative cycles because a negative cycle
in CGs could be easily translated into a negative cycle in S, a
contradiction because a DC FTNU cannot contain negative cycles.

As an example, Fig. 4 depicts the labeled contingency graphs
of the two child processes P, and Pg.

As an original contribution, here we propose algorithm Con-
tingencyDistances (see Algorithm 1), which calculates the
path contingency span conts(X) for each X € 7 of a given labeled
contingency graph. ContingencyDistances is an adaptation of
the Bellman-Ford algorithm to determine the minimum distances
of all nodes from a single source node [27].

After initialization (Lines 1 to 3), the algorithm executes for
|T|—1 time the relaxation phase (Lines 6 to 17) for each edge [27,
page 648]. Since each node can have more distances (already
determined) from Z, each having a different propositional label,
the “relax” action of an edge must be done for each possible
distance from Z of the source node of the edge (foreach on line
6). Each combination of source node distance and edge labeled
value determines a possible new distance for the destination node
of the edge when the propositional labels are consistent (Line
7). Once a new distance for the destination node is possible, it
has to be compared with all stored distances of the destination
node. If any stored distance of the destination node is stricter
than the new one, then the new one is discarded, and the al-
gorithm jumps to the next distance of the source node (Lines 9
to 13). For example, if the new distance is (—3, pg) and X; has
distance (—4, p), then (—3, pq) is useless because in scenarios
where p is T, the distance has to be 4 at minimum. If the new
distance has not been discarded, then it is added, and all already
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(a) Contingency Graph corresponding to Ps.

(b) Contingency Graph corresponding to Ps.

Fig. 4. Contingency graph of the FTNUs in Fig. 2 showing values determined by the ContingencyDistances. For clarity, only non-0 contingency span values are

shown (node bracketed values).

stored distances are checked if they are looser than the new one
(Lines 14 to 17). For example, if the new distance is (—3, pq) and
X; has (=2, pqr) as a stored distance, then (—2, pqr) is useless
because, in scenarios where pq is T, the distance has to be three
at minimum. After the main cycle is finished, all nodes contain
the labeled minimal distances from Z. The path contingency span
of a node is the maximum absolute value of such distances
(Lines 18 to 21). The algorithm executes |7| main cycles. In each
main cycle, it relaxes each edge (|€¢¢g| relax phases); since each
timepoint can have up to 2 different distances in the worst case,
each “relax” phase requires 0(2¥) time, where k is the number of
observation timepoints in the FTNU S. Therefore, the algorithm
requires O(2"|7’||8cgs |) time to determine all minimal distances.

Example 10. Fig. 4 shows the two path contingency graphs
corresponding to the FTNUs depicted in Fig. 2. Applying the
ContingencyDistances to each graph, the contingency span
values are determined for each node. The figure shows only non-
0 contingency span values in brackets near their corresponding
nodes.

The result is that

° contspz(E ) =0, and
° contSPG(E) =3.

It confirms our observation in Example 7 about the impossibility
of setting a constraint with a duration variability of just two
time-units for Pg.

13

Based on Definition 6, it becomes possible to describe the
admissible duration ranges between two timepoints in an FTNU.

Lemma 1 (Contingency Span Necessity). Let S be a DC complete
FINU, Z be its initial timepoint, X be any other timepoint, and
ZMX the prototypal link between Z and X determined as
shown in Section 5.2.

To guarantee S to be dynamically controllable for any restriction
ZMVLX (x < u* < X,y < v* <y) of the distance between Z and
X, it has to hold that v* — u* > conts(X) holds.

Now, we prove some important relationships between the
1Gs(X), uGs(X), and contg(X) values:

Lemma 2 (Contingency Span Sufficiency for Upper Guard). Let S be
a complete DC FINU, X be a timepoint, and ZAZSEINGX). )]

the prototypal link between Z and X. Let T a copy of S where the
lower bound of the distance between Z and X is set to the value
u*, where x < u* < 1Gs(X). Then, the prototypal link between
Z and X in T becomes ZM»X, where uGr(X) =
min {uGs(X), u* + conts(X)} to guarantee that any constraint de-
rived from it can be satisfied in T.

Lemma 3 (Contingency Span Sufficiency for Lower Guard). Let S be
a complete DC FTNU, X be a timepoint, and ZMM»X be
the prototypal link between Z and X. Let T a copy of S where the
upper bound of the distance between Z and X is set to the value
v*, where uGs(X) < v* < y. Then, the prototypal link between
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Z and X in T becomes ZAZSOMCGEOVI, v \here 1Gr(X) =
min {IGs(X), v* — conts(X)} to guarantee that any constraint de-
rived from it can be satisfied in T.

5.4. Prototypal Links with Contingency (PLCs) for the overall tempo-
ral representation of a process

Now it is possible to give a complete description of how a
prototypal link representing the overall temporal properties of a
process can be used.

Let us start by introducing the concept of prototypal link with
contingency.

Definition 8 (Prototypal Link with Contingency (PLC)). Let Z and E
be the single initial timepoint and the single end timepoint of an
FTNU S, respectively.

A prototypal link with contingency (PLC) between Z and E is an
extension of a prototypal link, where the two bounds x and y are
limited by two guards, ¥’ and y’, and by a contingency span c. It is
represented as ZM»E, where x,y € R are the (external)
bounds, ¥, y’ € R are the guards, c is a contingency span, and it
holds thatx <y,x <x,and y <y.

A PLC ZME may correspond to any requirement
link with a duration in a range [x*, y*] between Z and E, i.e.,
ZX VLR E with x* < y*, where x < x* < X,y < y* <y, and
y*—x*>c.

Theorem 2 (Overall Temporal Properties of a Process). Consider a
dynamically-controllable process P and its corresponding FINU Sp
(completed with all the constraints determined by the DC checking
algorithm). Let Z and E be the single initial timepoint and the single
end timepoint of Sp, respectively. The overall temporal properties

of P can be described by a PLC ZA2X VIS E ypere

e x is the minimal bound of the all possible Z¥Y:4F between Z
and E in S derived by the DC checking algorithm,

e y is the maximal bound of the all possible Z*Y-4E between Z
and E in S derived by the DC checking algorithm,

o ¥ = IGs(E) = min{v : ZE2E 70 0F)

e y = UGs(E) = max{|v| : Z&-YE 7&Y9E) and

e ¢ = contg(E).

Proof. The overall temporal properties of a process allow one to
decide how to constrain the duration range of a process without
making the process not dynamically controllable.

In particular, given a PLC ZI2XVYIC £ of 3 process P,

e it is possible to restrict the duration range of P in a range
[u*, v*] setting a requirement link between Z and E, i.e,
ZMYLOF observing that u* < v, x < u* < ¥ and y <
v* <y, and that v* — u* > c to preserve the DC of P.

e it is possible to represent P inside another process M as
a black box having a duration in a range [u*, v*], setting a
guarded link X MY in M between two timepoint X
and Y representing the starting timepoint and the ending
timepoint of P in M observing that u* < v*, x < u* < x’ and
y <v* <y, and that v* — u* > c to preserve the DC of P.

Lemmas 1 to 3 show how to use the path contingency span
conts(E) c to ensure that any possible restriction of the
duration range [[x, X1, y]] of the process preserves its DC. O

Example 11. Considering the child process P, in Fig. 1 and its
corresponding FTNU in Fig. 2, the PLC range may describe its
overall temporal properties [[16,79][28, 98]] 4 0. Therefore, it
is possible to restrict the overall duration range of the process
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to [16, 28] or [30, 30], for example, while still preserving its DC.
For process Pg (cf. Figs. 1 and 2), its temporal behavior can be
described by the PLC range [[2, 8][10,20]] ¢ 3. Therefore, for
example, the duration range of the process can be restricted to
[7, 10], or [8, 11], while it is not possible to restrict to [8, 10] as
already shown in the previous section.

6. Checking the dynamic controllability of modularized time-
aware processes

As previously addressed in [9] for a simple fragment of BPMN
constructs, and now suitably extended to deal with possibly alter-
native execution paths, we can represent each (child-)process by
a prototypal link with contingency (PLC). In particular, a PLC spec-
ifies the allowed spans of the process as well as the permissible
restrictions that may be applied without violating the DC of the
process.

In this section, we propose and discuss new aspects, focusing
on

e how we can use such PLCs to manage the temporal proper-
ties of a parent process, in the presence of (possibly) many
child processes taken from a library. Indeed, not all the
possible guarded ranges, compatible with PLCs for different
child processes, are fine concerning the controllability of the
parent process.

o different kinds of DC violations. Indeed, it could be that (i) a
child process exceeds the maximum allowed duration inside
the parent process, or (ii) a child process is too fast concern-
ing the allowed time within the parent process. While we
can do nothing to solve the first kind of DC violation, in the
second case, we can restore the DC if we were allowed to
“wait” during the execution of the parent process.

e a different way of managing the second kind of DC viola-
tion modifying the child process specification. Intuitively,
we may put the above-mentioned “wait” inside the child
process to make it even more flexible and, thus, reusable.

6.1. Configuring child processes

The following approach, when a designer has to build a parent
process using a repository of process schemata, is similar to the
one proposed in [9].

First, such a repository contains processes (each with schemata
and possibly instantiations) that a designer can use in a parent
process as child processes (BPMN subprocesses). Each process has
a PLC representing its temporal behavior.

Second, when a designer wants to use a child process P;, he/
she has to select a guarded range allowed by the P; PLC and sets
it as temporal property of P; in the parent process. In this way, P;
in the parent process is represented as a guarded link that can be
only partially modified by the parent process during runtime.

However, such a “selecting guarded range” task can be long
and tedious because not all the guarded ranges allowed by a PLC
for a child process may be compatible with the guarded ranges
of all other child processes/tasks and with all possible temporal
constraints in the parent process.

Example 12. Fig. 5 depicts the modularized process from Fig. 1.

Let us consider a simple case involving only child process P,.
A designer can insert the child process P, from the repository
setting the allowed guarded range [[65, 65](65, 65]] because P;
PLC allows it. With such a temporal property, P, will be DC while
the parent process will be not DC. Indeed, P, duration will be
65 time-units exactly, and such a value violates the constraint
that limits to 60 the maximal span between the start of child
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Fig. 5. Modularized process.

process P; (predecessor of P,) and the start of child process Psg4
(successor of P,). Things become more complicated when the
designer has to “insert” child processes Pi, P, P3g4, Ps, and Pg
choosing guarded ranges for them that satisfy time lag constraints
among such child processes and task Tyo.

To simplify such a selecting activity, we propose here the
novel algorithm ConfigureSubProcesses (see Algorithm 2)
that, given a parent process, a set of child processes (each de-
scribed by a PLC), and the number n of desired possible solutions,
determines n combinations of guarded ranges for child processes
that guarantee the DC of the parent process. If there is no possible
solution o fewer than n possible solutions, ConfigureSubPro-
cesses returns a diagnostic message.

The algorithm uses the FTNU DC-checking algorithm for check-
ing the DC of the parent process [14]. Since the FTNU DC-checking
algorithm does not return details about violated constraints when
the given network is not DC, the proposed algorithm finds suc-
cessful combinations of guarded ranges through an exhaustive
search.

The algorithm works only when temporal constraint values are
in the integer domain and the temporal unit is 1.

Let M be the parent process, and P;,i = 1, ..., k, the child pro-
cesses to use into M. By Sy, we denote the FTNU corresponding
to M that has some nodes representing the placeholders where to
“insert” the child processes. Each process P; is DC and has a PLC,
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ANV - ¢hat describes its temporal behavior. Nodes A;

and G are also the name of nodes in Sy where to insert the
subprocess P;.

In general, the set P of P;, i = 1,...,k, can be divided into
three distinct subsets.

The first set, that we call P!, is made of P; having
ALXV ARG, o ith ) — x> ;. Such a kind of PLC is possible
when P; has more alternative paths with different contingent con-
straints on them. For such a kind of P;, there is only one guarded
link representing its behavior in a parent process: AiMG.
Therefore, the algorithm will insert such a guarded link into the
parent network for each P; of this set.

The second set, that we call P, is made of P; having
A2 YIS, ¢ with ¢ > 0 and y, — x| < . For such a kind of
P;, there exist different guarded links that represent its behavior
in a parent process: ALYl o for each integer b such that
xi < b < xand y; < b+ ¢ < y;. The algorithm will select
which of such guarded links allow the controllability of the parent
network.

The third set, that we call P° is made of P; having
AL Xoyillbe, o it ¢ 0. For such a kind of P, y, < X
and there exist different guarded links that could represent its
behavior: A,-MQ for each integer b such that y; < b < x|.
Each of these guarded constraints represents a constraint where
the core consists of only one value, b. This means that the child
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Algorithm 2: ConfigureSubProcesses(M, P=[P,. .., Py],n)

Input: M is the parent process with placeholders for child processes in
P =[Pq,...,Pg]; nis the number of desired solutions.
Output: SOL, set of all possible guarded-range combinations for child
processes that guarantee the DC of M, with [SOL| < n, if M admits
SOL, an error message otherwise.

/* Assumptions: 1) Spy is the FTNU associated to M; 2) A;, Cj € Spy represent the
placeholders for the child process Pj, for i=1,..., k; A; is the starting node; G is
the end one; 3) Each P; is DC and its PLC is AiMLC,‘: 4) Temporal values
are in the domain of integers. */

1 Pt = @, PO = @ I/ Pt is the set of P; having ¢j > 0 that must be managed, PO is
the set of P; having ¢; =0

2 foreach AWV e qocociated to Py € P do // Find bounds in Sy for P

3 if0<¢ < y; — X; then Y x;,yl{ are relative to child process P;j

4 Set and freeze the guarded link A,-Mq in Spp // Pj can be
represented by only one guarded link. No other possible ranges are possible.

5 else

6 Set the requirement link A;%-Y.C; in Sy // x;,y; are relative to P;

7 if ci > 0 then Add P; to PT

s else Add P; to P°

9 dc := FTNU-DC-Check(Sy)
10 if —dc then return “M is not DC even relaxing all bounds of all child

processes.”
/* Let xfwyfw the new bounds for the requirement link Ailx‘—'ylei determined by the
DC-checking algorithm; DC-checking algorithm guarantees that —oo < x?/',yf.w < 400

*/

M M
11 foreach Aiulci € Sy relative to P; € ptuP? do /I Necessary conditions

12 if (M >x)voM <y)vi>0aM —xM) <) then

13 return “P; cannot be insert into M: the available time-span is
insufficient.”

14 if X, == oo v >yM then x :=yM

15 foreach 1 <i< |[PT|do R;:={}
ranges for Pi € pt

16 foreach A;WNq o gocociated to Py € P do /f Calc. all allowed guarded
ranges

17 if x; < x?" then Xx; :=x

/I R; is the ordered set of possible guarded

M

1

18 if y; > y?" then y; := yIM

19 foreach x; < b < x| do

20 L if yj <b+¢ <y; then Add [[x;, bl[b + ¢;. yi]] to R;

21 R* = 1'1]<i<“,+|R,» /I Cartesian product of all possible guarded ranges of all P; € pt

/I Let R,’f the r-th row of R*. R;k‘i = [[xy,x;]u;,yy]]r the guarded range of the i-th
child process in the r-th row

22 SOL:=0
23 foreach r-th row in R* do

/I The set of solutions
/I Check each possible combination

24 Sy = a copy of Sy
25 foreach 1 <i < |P*| do
M M My WM
26 In S/, replace A“20Lc; with AL, e using guarded
range RY;
27 dc :=FTNU-DC-Check(Sy,/)
28 if dc A for each Py € PO, xM yM in s, satisfy xM < x] and yM >y,
then
29 Add the r-th row of S* to SOL
30 if |SOL| == n then break

31 if |[SOL| == 0 then return “No child process configuration possible.”
32 if [SOL| < n then return “M admits fewer solutions:”, SOL
33 return SOL

process is guaranteed to run without error also using b time
unit exactly. Therefore, it is not necessary to check each of such
guarded ranges for different values of b against all those of the
other threads because it is possible to decide at run-time which
one to select. It is sufficient to verify that the outer bounds respect
the guards, ie, x; < xj and y; < y; for each P; € PO, after
the setting of all other guarded-ranges relative P; € P™ and a
controllability check of all parent process because only in this
case it is guarantee to select a suitable b at run-time.

Considering such analysis, the algorithm has been subdivided
into different and successive phases.
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In the first phase, the algorithm checks if the given child
processes can be embedded into the parent process without not-
admissible restrictions on the ranges. In detail, in Lines 1 to 8, the
algorithm adds the guarded range associated with child processes
in P! to the parent process, while for all the others it sets a
requirement link for each of them using the outer bound values
of the prototypal links. This is necessary for finding which outer
bound values the parent process needs to restrict to guarantee
controllability. In this phase, it also “subdivides” subprocesses
into two different sets, P* and P°.

In Line 9, it checks the DC property of Sy. If the network Sy
is not DC, then it means that at least one child process has a
minimum or maximum duration that violates some constraints
in the parent process.

For example, if a child process P, has the upper guard equals
to 16, but the parent process allows only 15 as the maximum
duration, then the network is not DC. In this case, P, cannot
be considered and, therefore, the list P of child processes is
incompatible with M; the algorithm has to stop the execution.

If Sy is DC, it contains the new bounds x; < xM, y¥ < y; in the
requirement link A;%:%LC;; DC-checking algorithm guarantees
that —oo < xM, yM < 400 because it guarantees that each node
has a finite time window. Such bounds are the ones that the DC
property of the parent process dictates to child processes.

For example, if a child process Py has a proper maximal du-
ration of 98, i.e, y, = 98, but the DC checking of the parent
process finds that the maximum allowed duration for Py is 65,
ie., ykM = 65, then, y, has to be updated to 65.

Since it is possible that the limitation is too restrictive, in Lines
11 to 14, the algorithm verifies that xM, y¥ do not violate the
guards of the relative PLC and that their span y?” - xf"' contains
the contingency c;. If any guard of a process P; is violated, then P;
cannot be considered, and the algorithm has to stop.

Line 14 adjusts the lower guard for PLC associated with pro-
cesses with no upper bound to their durations, i.e., processes

having PLC with format ZiM»E,—. In the parent process,
any P; has a limited duration because the DC checking algorithm
imposes it. Therefore, the lower guard of any P; must be smaller
than or equal to the determined y?” .

In the second phase, the algorithm determines the possible
guarded ranges for each child process P; € P* and stores them in
the ordered set R; (Lines 15 to 20). In detail, for each subprocess
P; € P*, it may adjust the outer bounds of the ith PLC with
the determined values xM, y¥ and, then, it determines all the
allowed guarded ranges for the considered process by an internal
for cycle.

In the third phase, the algorithm finds which combinations
of guarded ranges for all child processes in P™ guarantee the
dynamic controllability of the parent process. In detail, once all
R; are determined, the algorithm builds the Cartesian product R*
of all possible guarded ranges in line 21. Each row r of S* has the
form
(o s AT [ 60 8 [ Xy D,
where [[xM, x{1[y;, yM ]r is the rth element in the ordered set
Si,i = 1,..., k. In other words, each row r of R* is a complete
specification of the guarded ranges for all child processes in the
set P,

Then, in Lines 22 to 30, it checks the DC property of the parent
process using each complete specification of guarded ranges in
S§* to accumulate n successful checks. Given the rth row in r*,

the algorithm replace each requirement link AiMLCi in Sy; with

the guarded link AiMCi using the ith element of the
rth row in R*. In this way, the obtained FTNU represents the
parent process having all child processes in P! U P* configured
from the repository. If DC checking determines that the obtained
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network is DC and no bounds xﬁ"’,yf.‘” in Sy, violate the guards of
P; € PY, then the configuration of the child process is good and
added to the set of solutions SOL. The child process configuration
is discarded if the DC checking returns a negative answer or
at least for one i, xX or yM in Sy violates the guards of P; €
P°. There are three possible outcomes of the third phase. First,
there is no good configuration; the algorithm has to check all
the possible configurations before returning a negative message.
This represents a worst-case running. Second, there are fewer
than n good configurations; the algorithm checks all possible
configurations and returns the good ones. It is another worst-
case running. Third, there are n good configurations, at least;
the algorithm checks and returns the first n that represent the
configurations with the smallest execution times.

As regards computational complexity, the algorithm imple-
ments a brute-force technique for finding good child-process
configurations.  Therefore, the time complexity is
O(|R*|M|T|*3/P12191), where O(M|T|*3P12/91) is the time com-
plexity of a single DC checking (see [14]), and M is the maximum
absolute value of any weight in the network.

6.2. Managing DC-violations

Let us now focus on DC violations induced by some child
process. Two possible situations are determining DC violations.

e The first one is related to the fact that child processes may
have an overall duration exceeding the maximal duration
allowed by the parent process.

e A second case is when the duration of a child process is less
than the minimum duration required by the parent process.

While in the first case, we cannot use all the selected child
processes within the parent process, in the second case, we may
have some real-world domain that allows the parent process to
“wait” for the end of a (too fast) child process. This waiting behav-
ior could be implemented by introducing a time lag E[0, +o0]S
between the child process component and the first subsequent in
the parent process.

Example 13. Let us consider the process fragment depicted in
Fig. 6(a). It is an excerpt of the process discussed in Section 3,
where real-world guarded ranges are considered for child pro-
cesses P34 and Ps, and the shortest guarded range is considered
for child process Pg, having as derived prototypal link range
[[2.8][10, 20]]4 3. It also has a further time lag E[9, 15]S between
the end of P and the start of Tyo, to simulate an observed
constant delay in the process. Consider now the sum of the
guaranteed maximum contingent durations of child processes,
Viea = 20,5 = 20, yg = 11, the minimum duration 1 of the X,
and the minimum delay of 9 time units between Pg and Tyo. Such
a time span is possible because the upper guard values of child
processes are always possible. The value of such a time span is 61
and violates the upper bound 60 of the time lag between P3g4 and
T, 0. In this case, if we need to use all the specified child processes,
it would be necessary to modify the overall structure/constraints
of the parent process.

On the other hand, Fig. 6(b) depicts a case in which it is im-
possible to satisfy a minimum duration requirement. The purpose
of this excerpt is to ensure that the hemorrhagic test check must
be done within one time-unit after the end of Ps (see the time lag
constraint between Ps and Xl) and, when the test is negative, the
process Pg has to be started within one time-unit (see time lag
constraint between Xl and Pg). Moreover, a guideline requires
that the time span between the end of Ps and the end of Ps has
to be in the range [28, 35].
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Since Pg can last 20 at maximum, X1 can last three time-units
at maximum, and the delays between Ps and Xl, X1 and Pg are
one time-units each at maximum, the minimal span 28 between
the end of Ps and the end of Pg cannot be satisfied and, therefore,
the parent process is not DC. In this case, we can guarantee the DC
of the parent process if we allow the parent process to wait until
after the end of a child process. In general, the wait “activity” is
implemented by

1. adding a new dummy task DT having 0 duration® after the
considered child process,

2. connecting the child process to DT by a new sequence flow
(edge) (this edge realizes a customizable delay [0, co]),

3. moving the existing outgoing sequence flow edge from the
child process to DT, and

4. moving all possible time lag constraints incident to the end
of the child process to DT, as depicted in Fig. 6(c).

In some schemata, it is possible to simulate a delay exploiting
the already present sequence flow edge after the child process.
For example, in Fig. 6(b), it is sufficient to change the time
lag PsEZ3E poto psE28355 X, for having the necessary delay
without significantly modifying the parent process.

6.3. Making child processes even more flexible

In the previous section (Section 6.2), we show that allowing a
[0, oo] delay after a child process is possible to satisfy minimum
duration constraints involving it when its PLC is not sufficient.

If such a delay is added inside the child process before its end
event, we obtain the same result, but its PLC changes its values
and characteristics. Indeed, it loses the contingency value and
allows single-value contingent cores.

To add a final delay inside a child process, we can similarly
operate as explained in Section 6.2 for the parent process:

1. a dummy task DT replaces the end event E,

2. a new end event E is created, and

3. a sequence flow edge connecting DT to E is added (it
represents a delay [0, co]) to complete the schema of the
child process.

Let us now consider the original PLC ZXXW YRS E rapre.

senting the temporal behavior of the considered child process.
After adding delay [0, oo], the original upper bound y becomes
y = oo as well as the lower guard X' = oo because the lower
guard represents the maximum duration of the process when all
possible guarded links last their lower guard value. Moreover,
the presence of the final delay allows the compensation of a
possible contingency of the processes (see Section 5.3). Therefore,
the PLC of the augmented child process always becomes a PLC

At IO, b \yhere x' = y = 0o and ¢ = 0.

Example 14. Process Pg (see Fig. 1(c)) can be represented as a
prototypal link with contingency having range [[2, 8][10, 20]]¢ 3.
Fig. 7 depicts Ps augmented by an [0, oc] delay after its origi-
nal end event that becomes a generic event.
The PLC of the augmented Pg becomes a PLC where X' =y =

oo and contingency is 0: ZME.

In general, given a PLC ZME, it is necessary to select

two values x*,y* such that x < x* < ¥,y < y* < y, and
y* — x* > c to have an appropriate guarded range [[x, x*1ly*, y]]

3 Such dummy task represents a zero-duration requirement constraint. Even
though it is not correct according to the formal model we introduced, it is used
to simplify the notation.
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Fig. 7. Child process Pg augmented by an unlimited delay.

that can be used to represent the behavior of the child process in
the parent one.

A temporal constraint given by the contingent range [x*, y*] is
satisfiable when all other time constraints are satisfiable for each
value in [x*, y*]. Consequently, the smaller the range [x*, y*], the
easier it is to determine solutions for the network.

The singular aspect of a PLC like ZME is that it al-

ways admits contingent range of a single value like [[x, b][b, oo]],

where y’ < b < oo (In fact, as we have in Algorithm 2, embedding
a child process into a parent always forces y to be a finite value,
the horizon of the parent process in the worst case).

In this way, it is possible to insert the child process into
the parent, requiring all constraints in the parent process to be
satisfied with respect to the value b only.

This solution is appropriate only when it is necessary to guar-
antee a minimal duration b that the original child process cannot
provide. Otherwise, the downside of this configuration is that the
child process is always assumed to last b time units, even though
all internal activities end before.
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7. Proof-of-concept prototype

As a proof-of-concept, we implemented the algorithm for de-
termining the PLC of a process. In particular, such an algorithm
determines the contingency graph associated with the complete
FTNU of the process, then the labeled distances of each node from
Z in the contingency graph (see Algorithm 1), and, then, the PLC
using the values on the complete FTNU and the path contingency
span of the last node. This algorithm is a core function to de-
termine the overall behavior of a process in a more high-level
application.

The implementation was realized by expanding the CSTNU-
Tool [28]. CSTNU-Tool is a Java library (with a simple GUI applica-
tion to use the main functions) that implements many algorithms
related to Simple Temporal Networks (STN) [29], Simple Tem-
poral Networks with Uncertainty (STNU) [30-32], Conditional
Simple Temporal Problem (CSTN) [20,33,34], Conditional Simple
Temporal Problem with Uncertainty (CSTNU) [15,16,35], Flexible
Temporal Network with Uncertainty (FTNU) [14], and others.
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Fig. 8. CSTNU-Tool screenshots.

Class FTNU. java contains the implementation of some algo-
rithms for checking the DC controllability and determining the
minimized version of the FTNU instance. We extended such a
class by adding three methods:

e getContingencyGraph for determining the path contin-
gency graph of an FTNU instance;

e getEMaxDistanceInContingencyGraph for determining
the labeled path consistency span of the last node of an
FTNU instance;

e getPrototypallink for determining the PLC of an FTNU
instance;
e configureSubNetworks for determining all possible tem-

poral configurations of child processes in a parent one (see
Algorithm 2).

Then, we extended the GUI application TNEditor to allow
users to use such new methods in a simple environment.

Fig. 8 depicts the screenshots of TNEditor after the computa-
tion of the prototypal link with the contingency of two different
inputs, the FTNU representing the process P, (Fig. 2(a)) and the
FTNU representing the process Ps (Fig. 2(b)).
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The application window can be divided into three main parts.
Let us describe these main parts considering Fig. 8(b). Frame
(A) depicts the input FTNU instance loaded or created inside the
application, while frame (B) shows the result of any elaboration
on the input instance made using the commands and options
present in frame (C).

In particular, in frame (C):

e the option Propagate only to Z allows a fast DC checking
(when selected) or a (slower) complete DC checking.

e the CSTNPSU/FTNU Check button activates the DC check-
ing; once the DC checking algorithm finishes its computa-
tion, the resulting network is shown in frame (B) with a
comment in frame (D).

the Contingency Graph button allows the determination
of the contingency graph of a DC instance; it activates a DC
checking and, then, the determination of the contingency
graph if the instance is DC.

the Prototypal Link button allows the determination of
the PLC of the process. When clicked, it shows the complete
FTNU instance in frame (B) and the determined PLC in frame
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(D) if the instance is DC; otherwise, it shows the partially
checked instance in frame (B) and an error message in frame

(D).

The computation time of each procedure for the shown pro-
cesses is a few milliseconds. In the next section, we provide an
experimental evaluation of computation time for instances of
greater size.

Version 4.9 of the CSTNU-Tool [28] containing the implemen-
tation of the above algorithm is freely available at https://profs.
scienze.univr.it/~posenato/software/cstnu.

8. Empirical performance evaluation

This section presents an empirical evaluation of the perfor-
mance of the FTNU DC-checking algorithm and of the getPro-
totypallink procedure presented in Section 7.

We recall that the getPrototypalLink procedure, given a
DC instance as input, has to determine the completion of the
instance (Definition 4) and the path contingency span of each
node (Algorithm 1) to calculate the prototypal link.

The comparison of the two algorithm performances should
give an idea of the computational cost for having a compact
representation of a (sub)process versus the cost of determining
its controllability only.

The tests were executed using a Java Virtual Machine 17 on
an Apple PowerBook (M1 Pro processor) configured to use 8 GB
memory as heap space. The source code and benchmarks are
freely available [28].

For testing, we considered and expanded the benchmarks
presented in [16] for evaluating the performance of CSTNU DC-
checking algorithms. In particular, in [16] the authors proposed
three benchmarks (B3, B4, and B5), each having 250 DC CST-
NUs and 250 non-DC CSTNUs. Such CSTNU instances were ob-
tained from random workflow schemata generated by the AT-
APIS toolset [36]. Benchmark B3 contains instances derived from
random workflows, having N = 10 activities (represented as
contingent links) and k = 3 XOR gateways (represented as
observation timepoints). Benchmark B4 and B5 are similar to
B3, but B4 instances contain 4 XOR gateways each, while B5
instances contain 5 XOR gateways each. Each benchmark, B3,
B4, and B5, is subdivided into five sub-benchmarks, Bj; with
j=3,45and i 0, 1, 2, 3, 4, each one having 50 instances,
generated by also fixing the number of AND gateways to value 0,
1, 2, 3, and 4, respectively to evaluate the impact of the parallel
components (AND gateways). It is shown that given a workflow
instance having N tasks, k XOR connectors, and j AND gateways,
the corresponding CSTNU instance has 5 + 2N + 6k + 6j nodes, N
contingent links, and k observations.

Starting from B3, B4, and B5, we built a new set of 3 bench-
marks (limited to DC instances) where each CSTNU instance was
transformed into an FTNU one converting each contingent link
to a guarded one. The conversion consisted of adding two outer
bounds (lower and upper) to each contingent link. In particular,
each contingent link (A, x,y, C) was replaced by the guarded
link (A, [[x", X[y, y"]], C), where x” was set to (1 — r)x while
y” was set to (1 + r)y, for a suitable r. In this way, it is guar-
anteed that every CSTNU controllable instance is converted into
an FTNU controllable one. We tested different values of r, and
we noted no significant changes in the execution time of the
algorithms. Therefore, we fixed r to 10% of the given duration of
the contingent link, to build the final benchmarks.

Fig. 9 displays the average execution times of the two algo-
rithms over all five sub-benchmarks in B3, B4, and B5.

Each data point value is the sample average Xso =
of average execution times X; obtained considering the fifty in-
stances of the relative sub benchmark. Indeed, each X; is the av-
erage execution time obtained executing five times the algorithm

50
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on instance having index i in the considered sub benchmark. The
error bar represents a 95% confidence interval for the average
execution time of the algorithm on instances of the considered
sub-benchmark.

As concerns the FTNU DC checking performance, from the data
in Fig. 9, it results that the performance is similar to the one ob-
tained for the CSTNU DC checking algorithm in [16] although here
the average times are one-order of magnitude smaller (thanks
to the M1 processor). The more difficult instances are associated
with workflows without parallel gateways (i.e., instances in the
first sub-benchmark of each main benchmark) and the algorithm
performs better as the number of AND gateways increases, but
in B5. As stated in [37], such behavior is due to how the ATAPIS
random generator works when the number of AND gateways is
small (i.e., less than 5). Increasing the number of AND gateways
(till 5), fewer XOR gateways are set in sequence and, therefore,
there are fewer possible scenarios. In B5,4, where the number of
AND gateways is 4, this pattern did not occur. The sub-benchmark
contains many instances with three-four observation timepoints
over five in sequence, determining a greater number of possible
scenarios and, hence, a greater execution time for the checking.

As concerns the getPrototypalLink procedure, its execu-
tion times are much lower than those of the DC checking algo-
rithm (see Fig. 9). Fig. 10 shows the average execution time of
getPrototypalLink of Fig. 9 in linear y-scale. Once a network
is checked DC, the completion phase updates the values of the
original guarded and requirements links in the network while
the building of the path contingency span graph creates and fills
a vector of labeled distances from Z to each node. Such phases
require visiting each original edge of the network two times,
each time considering all the labeled values associated with the
edge. We verified that the average node degree is less than 5 in
all benchmarks, hence the instances are sparse graphs. In these
benchmarks, the quantity of labeled values present in each edge
is not relevant as the number of edges/nodes in the determination
of the computation time. Therefore, the getPrototypalLink-
performance results to be quasi-linear with respect to the number
of nodes.

8.1. Composition of two FTNUs

In this section, we want to show a practical example of how
our methodology can help to study networks composed of sub-
networks even when a composition is simple.

Let us consider two of the most difficult (from the point
of DC determination time) instances of B3: template_006 and
template_021. Table 5 shows the main structural and temporal
characteristics of the two instances: n is the number of nodes, m
is the number of edges, g is the number of guarded links, k is
the number of propositions, and Time is the execution time for
DC-checking and prototypal link determination.

Now, let us suppose to want to verify if it is possible to
compose the two networks in a sequential way such that the
duration of the whole process is within a given bound. More
precisely, we want to verify the DC controllability of a network,
called template_006_021, where there are:

all nodes and edges of template_006,

all nodes and edges of template_021 (renamed properly),
e a constraint that forces the starting node of template_021
to be a one-time unit after the ending node of
template_006,

a constraint that limits the global duration of the network
to 500 time-units.
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Table 5

Structural and Temporal Characteristics of instances template_006 and template_021.

Name n m g k Prototypal link Time [s]
template_006 43 126 10 3 [119, 818][230, 1070]]$ 0 61.66 + 0.68
template_021 43 130 10 3 [92, 856][219, 1033]]¢ 0 42.13+£1.63

Network template_006_021 has 88 nodes (43*2 + starting
and ending nodes), 260 edges, 20 guarded links, and 6 propo-
sitions. It results that checking the DC controllability of tem-
plate_006_021 requires more than 1200 s (time out) making
impossible the evaluation of its controllability in a reasonable
time.

Now, let us consider another network, template_parent_
006_021, where there is a sequence of two guarded links rep-
resenting the two sub-networks (see Fig. 11). The values for the
two guarded links in Fig. 11 have been determined as the first
solution (combination) by Algorithm 2.

The execution of Algorithm 2 (limited to determine only one
solution) required ~ 0.00065 s. The resulting prototypal link
of the parent process resulted to be [[214, 500][452, 500]] $ 0,
while the guarded link representing template_006 was up-
dated to [[119, 230][230, 278]] and the guarded link representing

template_021 was updated [[92, 219][219, 267]].

Since the guarded links determined for the two sub-networks
are more restrictive than the relative prototypal links, is neces-
sary to propagate such restrictions to the sub-networks before
the execution for having the two sub-networks ready.

The propagation of each of such determined guarded links is
obtained by

e setting a constraint link between the starting node and the
end one of the sub-network with values equal to the outer
values of the guarded link, and

21

e propagating such a new constraint by executing a DC check-
ing of the sub-network.

Such updates can be done in less than 120 s (see the DC checking
times in the previous table).

Therefore, in less than 120 s it is possible to check the DC
controllability and to configure the sub-networks if they are
managed in a composite way, while it is necessary more than
1200 s to check the network if it contains all nodes and edges
of the two subnetworks.

In summary, we verified experimentally that the computa-
tional cost of the prototypal link of an FTNU is negligible with
respect to the DC-checking computational one. Therefore, sub-
dividing a complex process into smaller subprocesses (requiring
smaller DC checking costs) and checking the overall controlla-
bility using our proposed approach can help limit the overall
computational cost of determining the overall dynamic control-
lability.

9. Related work
9.1. Time and business processes

The management and the representation of temporal features
of business processes have been considered for some years from
different perspectives: from conceptual modeling to checking
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temporal consistency and/or controllability, to temporal agree-
ments among different organizations, to run-time verification
of temporal properties, to temporal constraints and dynamic
changes in business process schemata [6,8,10-12,25,38,39]. To
summarize all the different approaches, we may say that most of
them adopt some expressive (diagrammatic) models/languages
to represent tasks, subprocesses, routing behaviors, and control
flows, suitably extended also to consider temporal properties.
BPMN is widely adopted in these contexts. Then, suitable map-
pings of such expressive models are proposed for lower-level
models, where different temporal properties can be checked
through suitable algorithms. Different kinds of temporal con-
straint networks, Petri nets, queuing models, etc., are used for
this purpose.

Regarding the checked temporal properties, temporal control-
lability was originally studied for temporal constraint networks.
In [4], the authors proposed dynamic controllability of time-
aware process schemata. In [8], in turn, the authors extended
their work, analyzing the computational complexity of the dy-
namic controllability problem, proposing a general algorithm for
checking the dynamic controllability of a time-aware process
schema.

No one of these proposals allows the representation of flexible
contingent durations for tasks and moreover, no one focuses on
the issue of representing in a compact way the overall temporal
behavior of a (child) process. Thus, DC-checking of such tem-
porally flexible business (child) processes is beyond the scope
of these proposals. It is also worth noting that, at the lower
level of network-based representation, DC-checking of temporal
constraint networks with guarded links has been introduced quite
recently [14] and no other approaches were at the disposal to
analyze such kinds of networks.

9.2. Process modularity

Process modularity is an important issue because of its
consequences in the reuse, sharing, management, and main-
tainability of business process schemata. Different aspects and
approaches are presented in the literature, e.g., focusing on iden-
tifying reusable tasks [40]; applying Aspect-Oriented concepts
to design modular business processes [41]; discovering complex
data-intensive BPMN subprocesses [42]; identifying parts and
patterns of use of business processes and building a catalog of
reusable components [40].

Despite such different research directions toward modularity
for business processes, the problem of modularity concerning
temporal behaviors of processes has not yet received the at-
tention it deserves. Among the past contributions dealing with
this issue, we mention here the work of Lanz and colleagues.
Although they did not directly face the problem of temporal
features of subprocesses, they dealt with the specification of
common time patterns in time-aware processes. According to a
software-engineering perspective, it can be considered a comple-
mentary research direction toward reusing well-known solutions
in process design.

More specifically, Lanz et al. [7][43] discussed 10 time pat-
terns. Such patterns represent common temporal constraints of
time-aware processes and are provided with formal semantics,
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allowing their reuse without ambiguities. The need for sophisti-
cated run-time support for the time patterns is discussed in [7].

Moving to the issue of modularity and time-aware subpro-
cesses, a “dual” approach concerning the one discussed in this
paper is proposed in [44], where the authors use the modu-
larity capabilities of BPMN to manage temporal constraints for
single tasks or overall single-entry single-exit (SESE) process re-
gions. Subprocesses are used to “envelope” specific tasks (or
SESE regions) with time-based events and signal events, which
allow the management of temporal constraints, expressed as
minimum and maximum time distance between two different
(starting and ending) timepoints. This way, complex temporal
constraints are expressed in BPMN and, at the same time, are
hidden from the external stakeholders, who are interested in
application-oriented features like deadlines and so on, and not
in how they are represented and checked in the process model.

Finally, in [45], the concept of “action refinement” is proposed,
which replaces atomic actions with subprocesses. Here, the au-
thors extend timed Dynamic Condition Response (DCR) graphs to
contain subprocesses resulting from stepwise refinement. They
specify when substituting an event (a task, in our terminology)
with a subprocess is feasible without any issue in the resulting
overall process. As DCR graphs can represent deadlines and tem-
poral constraints, we may consider such a proposal the closest
one to the proposal we make in this paper. However, different
modeling choices make this approach only partially comparable
with our proposal. Indeed, in DCR graphs, events are atomic
concepts that occur in a time unit. Thus, contingent durations are
not representable in that context. Moreover, structured process
models cannot be specified as gateways are not considered. On
the other hand, exclusion/inclusion relationships allow for differ-
ent possible runs of a graph, which are not directly considered in
BPMN-based models.

Such contributions towards modularity and temporal issues
for business processes do not consider any kind of controllability.
Indeed, temporal constraints and (guarded) contingent durations
cannot be completely represented and the problem of checking
temporal constraints without “unfolding” child processes is not
in their specific focus.

10. Discussion and conclusions

In this paper, we proposed a novel approach for determining
and representing the overall temporal behavior of a process,
called prototypal link with contingency. A prototypal link with
contingency allows the determination of all possible durations
of a (child-)process and any permissible restriction that may
be applied to them while still ensuring the executability of the
process.

Some specific aspects of our research deserve some discussion,
in order to identify limitations and specific research foci that
characterize our proposal.

XOR split. Our proposal considers only XOR gateways with a
binary condition. Gateways with multiple exclusive conditions
require to be modeled through a cascade of binary XOR gate-
ways. On the other hand, inclusive OR gateways have not been
considered and should be represented through an AND gateway
containing many parallel suitable XOR binary conditions. In gen-
eral such complex OR behaviors would require further research
efforts and suitable mappings to many simpler constructs.
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Cycles and isolated tasks. We did not explicitly consider cycles
and isolated tasks in our proposal. As for isolated tasks, not having
any order of execution with respect to other tasks of a busi-
ness process, they can be suitably represented and possible time
lags with respect to other tasks can be managed. Checking the
temporal features of cycles is a challenging feature. While cycles
without any predefined limitation on the number of iterations
cannot be checked, cycles with a limited number of iterations
(or an overall maximum duration) may be accommodated in
our proposal by “unfolding” them and explicitly representing
all the possible cycle executions connected through nested XOR
gateways. Such, possibly complicated, “unfolding” would be done
internally, after the specification of the cycle by the user.

Declarative process languages. In this paper, we explicitly fo-
cused on the imperative process language BPMN. Declarative
process languages, where the order of execution of tasks not
given a priori and strongly depends on the knowledge and the
decisions of participants [46], would benefit from our proposal,
which adds some kind of temporal flexibility. However, the rep-
resentation of temporal features (task durations and temporal
constraints) should be carefully considered, to analyze and rep-
resent how such temporalities are intertwined with other kinds
of dependencies among tasks.

Main results and future work. To summarize the main contribu-
tions of this paper:

1. We showed that prototypal links with contingency can
provide a compact representation of the temporal behavior
of processes where the set of executed activities can change
according to some runtime conditions (and it extends a
previous contribution [9], where XOR splits, i.e., multiple
execution paths, were not allowed.)

2. We proposed an efficient method for determining proto-
typal links with contingency based on the FTNU model, a
temporal constraint network model that allows the repre-
sentation of enriched contingent constraints and admits a
compact checking and execution algorithm.

3. We proposed an algorithm for determining all possible
configurations of prototypal links with the contingency of
all (child-)processes that guarantee a successful execution
(i.e., dynamic controllability) of the global process.

4, We discussed when and how it is possible to adjust the
parent/(child-) processes structure to guarantee a success-
ful execution when there are no successful configurations
of prototypal links with contingency.

5. As a proof-of-concept, we provided the algorithm imple-
mentation that determines the prototypal link with the
contingency of a process with conditions inside the CSTNU
Tool library. We performed an extended empirical evalu-
ation of the proposed algorithms, showing their practical
applicability.

In future work, we want to study the integration of time-
aware processes in PAISs, specifically focusing on aspects like
scalability and usability, even in the presence of data-intensive
and decision-intensive processes.
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Appendix. Proofs of Lemmas 1 and 3

In this appendix, we introduce proofs of lemmas we used
to prove Theorem 2. Such proofs use some propagation rules
for determining if a network is dynamically controllable [14].
For completeness, we report such propagation rules, Table A.6,
without explaining them; a complete description of the rules can
be found in [14].

A.1. Proof of Lemma 1
Proof. Let us assume that X has a positive path contingency span,

conts(X) > 0, and y' — X' < contg(X).
By the definition of conts(), there is a sequence of timepoints

Yo, ..., Y with Y, = X such that
conts(C) = COntS(YOZO)-’- AYOYIE + -+ Ayk_lykgk
where

1. Lol; --- £, € P* is a consistent label,

2. conts(Y%) =0,
3. V]E {1""’k}ZiE{1 YYYY j )Ayi—lyk[i > 0.

By item 3 and A definition,
Yo [x1, X410y5, vl Y;.

Let us assume that path Yy, ..., Y, is made by alternating
guarded and requirement links. Indeed, suppose there are more
consecutive requirement links. In that case, we can replace such
a sequence with a single requirement link having as range the
sum of the ranges and label the conjunction of labels. At the
same time, if there are more consecutive guarded links, we can
be separated each pair of them by a requirement link having
range [0, 0], 0J; if the path ends with a guarded link, we can add
a requirement one with [0, 0], & range.

Therefore, we can assume that the sequence of timepoints
Yo, ..., Yx always has the following pattern:

Z“'[&'MPYO [x1, X]1ly7, y1l Y1|xz,yz],1z% Y, [x3, X310¥5, y31 Y3|x4,y4|£’,1 Ya...

[(xi-1. X J¥j . Y]] qu[xk.yk],zkyk =X

link YoY; is s guarded link

where ZMYO is the requirement link derived by the DC

checking algorithm.

It is possible to show, by induction, that it is not possible to
restrict Z&Y:-4Y, to [u*, v*] where v* — u* < conts(X) and ¢ is
consistent with £olq - - - £y.

Let us assume that v* — u* = conts(X) — €, ¢ > 0. Then,
we show that at least one link inside path Z, Yy, ..., Y; has to
be restricted beyond its bounds/guards.

Base. Path of three timepoints Yy, Y, and Y5:

ZMYO [x1, X1y}, y1l Y, [x2.¥21. & Y,

—Ya)
= loly. Assume ZILtlGy,
restricted to Z%YZ where v* — u* conts(Yzz) —€ =
(y; —X})+ (x2 —y2) —€, € > 0 and ¢’ is consistent with £*.

Let us consider the corresponding distance graph where we
determine some new constraints from the given ones.

Rule rG; and rGs (cf. Table A.6) allow the determination of
ordinary edges Z& —*:.tbly, apd z&W =92 Ch)ly) petween Z
and Y;.

Rule rG, derives an ordinary edge Z& =W =y Uh) Yo.

Rule rG; derives an ordinary edge ZMY

In this case, conts(Y3,.) = conts(Yo, ) + ) — X))+ (x2
where COl‘lts(Yo[ ) = 0 and ¢*
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As the network is DC, there can be no negative circuit between
Zand Y, ie, (v —x —y)) + (X —u* +y,) > 0.

Now, (v* —x; —¥7) + (x; — u* +y2) > 0 implies v* — u* >
(¥} —x})+(x2 —y>), that contradicts the hypothesis that v* —u* =
) =X+ (x2—y2)— e The network can no longer be DC as the
requirement link Z%%:-5, is restricted too much.

Inductive step. Let us consider a path consisting of k + 3 time-
points Y, eg, Y1, €1, ..., Yiio as depicted below

fa,b. fo

(i1 %44 I i1 1] 2, Vit iz
VA Yo eSS Y Y1 » Y2

[U* = Yieg2. 0% — Xeg2 ], £F

[u*, v*], e

where £* = £yl - - - €442 is the consistent label that characterizes

the path.
Let us assume the path Z, Yy, ..., Yy, is the path that has the
maximum path contingency path, ie.,

conts(Yy2,. ) = conts(Yi42). By construction, each node in such a
path has the path contingency path equal to its maximum. Then,

let us assume that the Z&%-5Y, ., is restricted to Zt~1-5y,
with v* — u* = conts(Yiy2) — €, where € > 0. Note that it is

possible to consider any propositional label entailed by £* instead
of £*. Without loss of generality, we consider £* to simplify the
notation.

Table A.6
Edge generation rules of the FTNU-DC-Check algorithm.
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Considering the representation of the subpath Y, 1Yj.2Z in the
associated distance graph, it is possible to apply rule rG; and rGs
(cf. Table A.6) to derive the two ordinary edges Z%Ykﬁ
and z&EW w2l Oy, o between Z and Yy 1.

(U — yit2)

Rule rG, derives the ordinary edge 7 & Z W~ Yua) ) Y, while
rule rG, derives the ordinary edge z W =% Vi Oy,

Such new edge constraints determine in the FTNU graph a
requirement link Z-" =) =Y (”*_X*“)_"/k“hY

Thus the requirement link Z%2:-5Y, between Z and Yy derived
by the DC-checking algorithm has a span:

b—a< (v —x42) —J/;<+1 —((U" = Yk2) — X;«H)
= (V" = U") = Wiy — K1) — Kz — Yig2)
= conts(Yiy2) — € — AYkYkJrl[* - AYk+1Yk+2[*

/ /v —u*=conts(¥je42)—€ by hypothesis
= conts(Yy) + AYkaHl* + Ayk+1yk+2/z*
—€— A4y,

Yirrpse — AV/<+1VI<+2M
//by Definition 6
= conts(Yy) — €
Thus, the range is restricted such that b —a < contg(Yy) — € <

conts(Yy) holds. By induction, this last result implies that the
network is not DC. O

Rule Conditions Pre-existing and Generated Edges
R:i—v, s
Gy u—v <0 apfepP* Z < > ) Y w. o) X
(N:iu — v, af)
N:i—v, c:x, [
G, x—v<0C¢gRn, Bep* z v, F) C < ) A
(Nix — v, B)
N:—v, C:—y, 0
rGs B e P* 7 ( B) A ( Y, ) c
(CR:—y — v, B)
- C N8 p (CR:—v, B) (Ry:—w, y)A (y, 0); (e, ) c
= —v, —w — X}, , ,y € Q%
G} m=max{—v,—w —x}, C € X8Ry, and B,y € Q NNy, Bay) X0 (C—y.0)
v, R
Gs u+v>0uap€P* Z (v B) Y fu, o) X
(T +u, ap)
T, cx', B
rGg cg z (v ) A { ) C
(€X' + v, B)
v, C:—y, 0
Gy vy 20, c¢gT z— 0P D,
(v =y, B)
(N, a) (v =, 0) ; (X, )
rGg C ¢ R, c ¢7,8 and 7 have no common names, [(«8 € P*) or Z———————A - C
(¢ € ©*\ P*, B € P* and « contains B.)]. (—x,0); (C:—y', O)
(T, B)
(v, B) (v, B); (c:x', B)
Gy C ¢ R, c ¢ 71,8 and 7 have no common names, [(¢f € P*) or I—A C
(¢ € ©*\ P*, B € P* and « contains B.)]. (v—1/,0) ; (C:—y, @)
(W=, )
o (R:—w, Bp)
M *, , P, ?, 2é—————F—P?
™ B € Q" peip,—p, 7} N—w. B)
N:—v, Bp Ni:—w,
M, m = max{—v, —w} B,y € Q% p € {p, —p, ?p} Y <;N]:mU7 ﬁf;) Z iy d P?

v>0w>00>00<x<X<y <y -oo<u<ooZACX,YeT,;C is contingent; P? € OT; each of X and R; is a conjunction of one or more upper-case
names of contingent nodes, possibly empty; each of 7 and T; is a conjunction of one or more lower-case names of contingent nodes, possibly empty.
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A.2. Proof of Lemmas 2 and 3

Since the proofs of Lemmas 2 and 3 are very similar, we only
prove Lemma 3.

Proof. The thesis to prove is that it is sufficient that the lower
guard of a prototypal link is smaller, at least the path contingent
span conts(X), to guarantee that any constraint derived from the
prototypal link is satisfied in the network.

By definition, the lower guard of a prototypal link is always
the minimum value among all possible conjunct-lower-case con-
straints and all upper-bound durations of all possible scenarios.

The thesis says that if the upper-bound of a prototypal link is
restricted to v*—where uGs(X) < v* < y—then the lower guard
has to be updated to min {IGs(X), v* — conts(X)}.

If the value of 1Gs(X) is smaller than v* — conts(X), it means
that there is a stronger constraint in the network than the pres-
ence of guarded links.

Here we want to show that, on the contrary, if 1Gs(X) is
greater than v* — conts(X), it is sufficient to lower IGr(X) to
v* — conts(X) to guarantee that it is possible to execute the
network without constraint violations. The proof is given show-
ing that v* — conts(X) is a safe execution timepoint for X. In
particular, we show, by induction, that if v* uGs(X) (the
minimum possible v*), then X can be executed at IGy(X)
min {IGs(X), uGs(X) — conts(X)}.

Since an FTNU is DC if its core is DC [21], in the following we
restrict the attention to FTNUs where guarded links have outer
bounds equal to their core bounds.

Base. The network comprises only two nodes, Z and X. There are
two cases.

Case requirement link.

If the constraint between Z and X is the requirement link
Z%¥ X, then the prototypal link representing the network has
1Gs(X) = y, uGs(X) = x, and the conts(X) = 0, i.e., ALSILS] §'g

If the upper bound is set to uGs(X) = x, then IGr(X) has to
be set to x, the only possible value, i.e., the prototypal link be-
comes ZMX. The proposed expression min {IGs(X), uGs(X)
— contg(X)} = min{y, x — 0} = x determines it.

Case guarded link.

If the constraint between Z and X is a guarded link
ZMX, then the prototypal link representing the network
is the same, and the conts(X) = uGs(X) — 1Gs(X). In a guarded
link, both guards cannot be changed by definition: T = S. Thus,
the proposed expression
IGr(X) = min {IGg(X), uGs(X) — conts(X)}
min{IGs(X), uGs(X) — uGs(X) + 1Gs(X)}
= 1G5(X)

determines the right value.

Inductive step. Let us assume that the induction hypothesis holds
for Z and a set of timepoints Yy, ..., Y, and that such timepoints
have been executed at times ¥(Z) = 0, ¥(Yp), ..., ¥(Yk). Let
£ the current partial scenario, i.e., the propositional label com-
posed by the true literals associated with the already executed
observation timepoints, and that the timepoint X can be executed,
i.e,, all predecessor timepoints of X have been already executed.
Its execution time has to be ¥ (X) < uGs(X) by hypothesis.
From the definition of conjunct-lower-case constraint, used for
determining the 1Gs(X), it is possible to derived that

1GH(Y)) +y;,  if Y2 x ¢/ entails ¢
1G¢(X) = min () Yir i

i l1Gr(Y) 4, if v el el
T

25

Information Systems 118 (2023) 102257

where Y;,i =1, ..., k, are the executed timepoints, and bounds
with ir subscript are bounds determined by the DC checking
algorithm after the set of the upper bound v* = uGg(X) between
Zand X in T.

By definition, x;;, < x;, and, by hypothesis, y§s = yl/.T.

Moreover, it is possible to show that conts() contr() [47].
We excluded Z because it has no lower/higher guards. Apply-
ing the inductive hypothesis and the above equivalences, and
considering the most significative case where the 1Gr(Y;)
min {IGs(Y;), uGs(Y;) — conts(Y;)} = uGs(Y;) — conts(Y;). It holds
that

1Gr(X) =

uGs(Y:)—conts(Y:)+yi, +Xi if y;Xeyel- S x - and
¢’ entails £
UGs(¥;)—conts(Yy)+x, +y, —y, if v lEetlherill

Now, in the case of the requirement link, it holds that

p— x'T
min
Yi

o uGs(Y;) + xi; > uGs(X) by definition of conjunct-upper-case
constraint

o contr(Y;) + (xi; — ¥i;) < contr(X) by definition of labeled-
path-contingency span.

In the case of guarded link, analogously, it holds that uGs(Y;) +
¥j; = uGs(X), and contr(Y;) +y; — x; < contr(X) = conts(X).
Therefore,
1Gy(x) > | 1Cst) = conts(X) if y ekl ¢ entails ¢
T - X X ’ ’
uGs(X) — conts(X) if v; el Yl

The choice 1Gr(X)
one. O

uGs(X) — contg(X) is the conservative
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