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Abstract: Given a d-dimensional random vector X = (X1, ..., X,), if the standard uniform vector U obtained
by the component-wise probability integral transform (PIT) of X has the same distribution of its point reflec-
tion through the center of the unit hypercube, then X is said to have copula radial symmetry. We generalize to
higher dimensions the bivariate test introduced in [11], using three different possibilities for estimating cop-
ula derivatives under the null. In a comprehensive simulation study, we assess the finite-sample properties
of the resulting tests, comparing them with the finite-sample performance of the multivariate competitors
introduced in [17] and [1].
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1 Introduction

LetX = (X4, ..., X ) be a continuous random vector with marginal cumulative distribution functions (CDFs)
Fi(x),i = 1,...,d. Let U be the standard uniform random vector obtained by using the component-wise
probability integral transform on X:

U=U,...,Up)=(F1(X1),..., Fa(Xp).

Let 1, be the d-dimensional vector with all components equal to one. The hypothesis of copula radial sym-
metry is equivalent to the following distributional identity:

Ho:U%1,-U .1

This relationship was introduced, in the bivariate context, by [20] and [21], under the name of radial symmetry
of the copula function. Under copula radial symmetry, U has the same distribution of its point reflection
through the center of the unit hypercube, and [26] and [16] call it copula reflection symmetry.

As the name suggests, the symmetry can be framed in the copula context. Following [28], the joint CDF
F (%) of X could be expressed at each x € R as:

F(x1,...,%xq) =C(F1(x1), ..., Fq(xq))
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in terms of the unique copula C. C is the joint CDF of U. Analogously, let F; (x;) = 1 - F; (x;),i=1,...,dbe
the marginal survival functions of X. The joint survival function of X could be expressed at each x € R? as:

F(X1,...,Xd)=C(Fl(Xl),...,Fd(Xd))

The survival copula C is then the CDF of the random vector 1, - U.
With these definitions, equation (1.1) is equivalent to the following identity:

9{0:C(ul,...,ud)=C(ul,...,ud) (12)

Using equation (1.2) the test of Hy, becomes a test of distributional identity based on a measure of their
distance. Empirical distribution functions allow a non-parametric consistent estimation of their distance. Let
d
{{X ij}?: L } = {X;}; be an independent sample of size n from d-dimensional random vector X. Let I (4)
j=
be the indicator for the set A. Moreover, let us define the pseudo-observations f]ij = ﬁ > ker L (X Kj < Xi]-) R
i=1,...,nandj=1,...,d.Then, the empirical copula and the empirical survival copula are:

Cn(u)=%zn:]l<fj,~su), Cn(u)=%zn:]l(1d—f]isu).
i-1

i=1

Any measure of the distance between Cy, and C, leads to a possible test statistic of the hypothesis 3, : C = C.
We focus on a Cramér—von Mises statistic under the random measure generated by the empirical copula:

Sn = / (Cn - Cn)? dCn = %i (cn (0:) -2 (7)) (13)

©,1) '

In the bivariate case, this statistic was introduced in [2] and investigated in [6] and [11]. In particular, according
to [11], the measure in equation (1.3) is the most powerful statistic for a random vector of dimension two.
Different investigations of the same problem by other bivariate non-parametric approaches are in [26] and
[19]. [23] proposes a general framework for testing the homogeneity hypothesis of a copula. In the latter paper,
the asymptotic theory covers multivariate radial symmetry tests, but it lacks a simulation study of the finite
sample properties of testing this symmetry. [17] and [1] are the only two papers, to our knowledge, that propose
a multivariate non-parametric radial test and include an investigation of its finite sample properties.

[17] studies a statistic linear in the difference between the copula and the survival copula. The difference
is weighted using the following probability density, which gives more weight to the tails:

k+d T
hy (u) = (z_d)d (k ;!d)! max (; - lrou, O> . (1.4)

Denoting with Hy, the distribution coming from the density hy, their statistic is:

k+d
G- [ (c-0)am - CD kg ||l 13U ign (11 1.5)
k= K=k dl |27 d 11274 '
1)
The null hypothesis
fHoo H Gk = O, (16)

is strictly weaker than the hypothesis of radial symmetry H for, at least, two reasons. First, as remarked
by the author, due to linearity, the difference between the copula and the survival copula can change sign
on the support of H; and, in principle, G could be null for asymmetric models. Second, due to the weight-
ing scheme, copulas with support in the null set of H; have G; = 0. In particular, strict d-CM Copulas (as
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introduced in [18]) that have support on the hyperplane with constant sum lgu = g have G = 0. An asym-
metric 3-CM copula is introduced in example 7 of [22]. This copula distributes probability mass uniformly on
the edges of the equilateral triangle in [0, 1]> with vertices (0, 1/2, 1), (1/2, 1,0) and (1, 0, 1/2). The corre-
sponding survival copula has probability mass distributed uniformly on the edges of the reflected triangle
with vertices (1, 1/2,0),(1/2,0, 1) and (0, 1, 1/2).

The empirical version uses an asymptotically equivalent transformation of pseudo-observations:

n+1 1 .
V; = n i_ﬁ’ i=1,...,n
k+d
s afve| (1 1]y
G = (k+d)!n,21: 27 a | 27 a ) .
1=

On the other side, linearity and a fixed weighting scheme lead to the advantage of a normal asymptotic dis-
tribution for the empirical version.
The authors of [1] use an approach based on the characteristic function. They introduce the random vector

W=U- %ld, marginally distributed as U [-1/2, 1/2], and rephrase (1.1) as:
Ho: W=-W, (1.8)
Using the characteristic function of W, ¢ (t) = E (exp (itWT) ), they write (1.8) in a different form :

Ho:Le®=Yc®)-hc(-t)=0 (1.9)

The empirical versions are given by

~

W,- = ﬁi_%ld i=1,...,n
1 n
HZ:sm (twi),

i=1

leading to a family of test statistics indexed by the weighting function w : R? — R

Ln (1)

Rn,w = n/Ln ® w(t)dt. (1.10)
R4
Both [17] and [1] propose, in the bivariate case, a simulation-based comparison of finite sample properties
with the test of [11]. A comparison beyond the bivariate case is missing, even if the asymptotic theory behind
a higher-dimensional generalization was in [23]. The purpose of this paper is to fill this gap by investigating
the finite sample properties of the test statistic S, in equation (1.3) using the multiplier Bootstrap under three
different specifications of the multiplier empirical process, comparing its performance to the procedures pro-
posed in [17] and [1]. Even if our methodological contribution is limited to an alternative proof of proposition
1in [23], we hope that the breadth of our simulation study, covering also recent asymmetric copulas proposed
by [24] and [10], can safely, guide the reader in most of the practical applications of the tests to i.i.d. data.
The paper is structured as follows: Section 2 studies the Sy-based test’s asymptotic properties. Section 3
presents a simulation study of the finite sample properties of the test and a comparison with the procedure
proposed in [17] and [1]. Section 4 summarizes our findings and proposes further developments.

2 Asymptotic Behavior of S,, Under Copula Radial Symmetry

The asymptotic null distribution of Sy, relies on the limiting behavior of the empirical copula process and the
empirical survival copula processes:

Cn=VN(Ch(w)-CW), Cn=vn(Cr(u)-Cw). 1)
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[27] obtains the following weak convergence result for the empirical copula process:

d
Cono C-Be@- Y 2 D Bac ), @2)
d=1

where B is a d-dimensional Brownian sheet with covariance function
Cov (B¢ (u),Bc(v)) = C(uAv)-C(u)C (V) (2.3)

where A is the component-wise minimum.
Let us introduce an assumption on copula derivatives, analogous to the one introduced in [27]:

A1 Foreachje {1,...,d}, thejth first-order partial derivative g—uc exists and is continuous on the set V4 ji=
j

{ue[O,l]d:O<u,~<1}.

The weak convergence of the survival copula empirical process is not covered by proposition 3.1 in [27], con-
trary to what is stated in [17]. It is, instead, a corollary of proposition 1 in [23]. The latter paper develops a
general class of shape hypotheses by comparing the copula C of the random vector U to the copula associ-
ated to a transformation of U. The transformations considered are coordinate-wise reflections, permutation
and marginalization of the random vector U ~ C. More formally, the coupled action of a marginalization
of cardinality p and a permutation of the components of U is equivalent to taking a subset of cardinality p,
I={iy,...,ip} C{1,...,d}, and extracting the sub-vector U; = (U, ..., Ul-p). Considering the subset of
cardinality r, ] = {j1,...,jr} C I, the action of r reflections with respect to hyperplanes of constant j.-th
coordinate k € {1, ..., r}, passing through the center of the unit hypercube is coordinate-wise equivalent to:

) U; if jeJ
[RJ(UI)];"{ 1-U; if jel\J

This transformation is decreasing for j € J, and increasing for coordinates in its complement, j € I\ J. We
define the copula Cj; of the transformed vector its empirical version, and its empirical process as:

CI,] (V) = P (R] (UI) < V)
Crry® = 33 IR V)
i-1
Criy (V) = Vn(Cnry(v)-Cry(v))

[23] obtains the weak convergence of the empirical process based on the copula of the transformed vector:

d

Proposition 1 ([23]). Let {{Xij},il}. = {X;}L, be an independent sample of size n from d-dimensional
]:

random vector X ~ C. Suppose that assumption A 1 is satisfied for Cyj, then the empirical copula process

Cury = VN (Cp 1,5 (V) = Cp 5 (V) weakly converges towards a Gaussian field:

oCrj(u . o
(Cn’[’] ~r (C],] = BC!,I (ll) - Z]'EI 5,71{(]-()31.’(:"] (uj) in ¢ [O, 1]d

In the appendix, we propose an alternative proof of proposition 1, whose main line of reasoning, based on
the functional delta method, was independently developed in the 2014 Ph.D. thesis of one of the authors.
The weak convergence of the survival empirical process is obtained from proposition 1, considering I = J =

1,...,d}.
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2.1 Derivative Estimators and Multiplier Bootstraps

The dependence of the limiting processes from the unknown copula and survival copula forbids a closed-form
inference. The use of multiplier central limit theorem solves this issue by obtaining the distribution of the
limiting process through sampling. We will use the version of the multiplier central limit theorem introduced
in [25] for i.i.d. random vectors. Given a function f : [0, 1]d ~ [0, 1], let h = 1/+/n and e; be the vector
corresponding to the i-th column of the d dimensional identity matrix. The partial finite difference derivative
operator of step h, @f’ introduced by [25] in the consistent estimation of copula derivatives is:

( f(u + EIz(ih B ui)) if U; < h
DIf (w) = fu+eh)-fu-eh if h<uj<l-h @4

2h

flu-e(-1)-fu-e@-(1-2h) .
\ 2h
We define a multiplier sequence {{; .}, , as an i.id. sequence {{ .}, , With E(§,n) = O, E (&) =
1 and independent from the available sample. Given M independent copies of the multiplier sequence

u;21-h

{{l[lrl }ieZ yeues { 1[1':1” }ieZ we can define the new processes:
n
. 1 .
By = N 3 &m (11 (Ui < u) - C(u)) (2.5)
i=1
= [m] 1 @ N -
Bw - 3 g (11 (1d -0 < u) - C(u)) 2.6)
i=1
d
Cw = B - Drca B ) @7)
i=1
d
: ; = [m] R
Elmptein gy = B, ) - 7 DI ) Bin () (2.8)

i=1

Results in [25] then imply:

(@n, e, @E{‘“) ~ (cc, ch,. .., c[Ml) 2.9)
_ =[1].plai ~ [M],plai . )
((Cn, (CE] R (C[n b am) ~ ((C, cH ., (C[M]) . (2.10)
Here, C1Y, ..., C™! are M independent copies of C and C!, ..., CM of C.

Furthermore, as remarked in [23], under the null we have different possibilities for consistent estimators of
the derivatives, leading to the following multiplier processes:

d

BN )~ By ) - S DICa () Bim () (241)
i=1

~ [m], mid = m] d DECy () + DI Cn (W)

M@ = B -) 5 B () (2.12)
d=1

&, mid siml N DICy () + DTy (w) z1m)

Cyt i) = B, - = 5 Bin (1)) (2.13)

i=1
In the multiplier process of the empirical survival copula, equation (2.11) uses the numerical derivative of the
empirical copula and corresponds to the version of the multiplier used in [11]. Equations (2.12) and (2.13) use
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the midpoint between derivatives as the estimator of the derivatives in both processes. Under the null, all the
proposed derivatives estimators are consistent, implying the convergence of the different multiplier bootstrap
processes to independent copies of the empirical copula process:

((Cn, ¢ (C[M]) ~ ((C, cl ... ,(C[M]) .14)
(c clibmid @M, ”"d) (C, ch, ... ,(C[M]) (2.15)
(Cn, (éhll’plain’ [M] plam) = (C, e C[M]) (2.16)
(cn, ghben e GN) ~ (e, ) (217)

_ ~[1],mid = id _ - _
((Cn, (ngl] mi [M] mi ) - ((C, (C[l], i (C[M]) (2.18)

We expect that the use of both derivatives, under the null, will reduce the asymptotic variance and make
the size closer to the nominal one. Under the alternative, in the plain estimator case, the survival copula
derivative is estimated without bias, while in the Genest and NeSlehova approach, it has a bias equal to the
difference between the derivatives of the copula and the survival copula. The mid-estimator, instead, removes
part of the bias from the survival copula derivative estimator but adds it back to the copula derivative esti-
mator. The overall benefit of the latter estimator is difficult to determine a priori. The random vectors U and
1, - U are pairwise antithetical. Then, under the null, our strategy coincides with applying the antithetic
variates method [12] to reduce the copula derivative estimator’s variance.

2.2 Test Statistics

Following what previously said, we want to test the null hypothesis

Ho: C(ui,...,ug)=Cui,...,uy (2.19)
against the alternative
Hy: C(up,...,ug)#Cug,...,uy). (2.20)
Under the null, equation (1.3) becomes:
nSy = nSSN = nsyid - / (Cn - Ca)? dCn. 2.21)
0,1

The multiplier copies in the three different versions ver € {plain, GN, mid} are:

nSLm],ver _ / ((C[m] (Cm] ver) d(A:n, (2.22)
0,1)¢

In the following proposition, we obtain the weak limits under the null:

d
Proposition 2. Let {{XU}?A} = {X;}, an independent sample of size n from d-dimensional random
]:

vector X having copula C. If C is a copula symmetric under reflection, i.e. C = C, under A 1, we have, as n — oo,
the following weak convergence results, for the three versions of the statistic, ver = {plain, GN, mid}:

(nSn, nSibver nSLM]’V‘—”) .. (S, st S[M])

s = /(C—C)zdc,

(0,14
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where S, . .., SMI are independent copies of S.

It follows from proposition 2, the proof of which is postponed to the appendix, that approximate P-values for
the tests of Hy based on Sy, are given by:

1.
Prer = v ZH (S%m],ver S Sn) )

m=1

where ver = {plain, GN, mid}.

3 Simulation Study

This section studies the finite sample behavior of the different tests of multivariate copula radial symmetry.
Throughout the section, the number of bootstrap replicates is M = 1000, and the estimated probabilities of
rejection come from 1000 Monte Carlo repetitions.

We compare the tests S5/@", smid SGN G, and RY. The test statistic G, , is the statistic proposed in
equation (1.7) in the case k = 4, as suggested in [17]. Under the assumption A1 for the derivatives of the cop-
ula and the derivatives of the survival copula, using proposition 3.1 in [27] and Proposition 1, G4, is normally
distributed with an asymptotic variance that can be consistently estimated with the standard bootstrap. RY
[1] is the statistic introduced in equation (1.10), with the kernel w chosen as the product of standard normal
densities. We set the smoothing parameter ¢ to 1 because, to our understanding, it is the best compromise
across different dimensions and copula models. We refer to the original paper for the interesting V-statistics
asymptotics and the actual implementation details of the multiplier bootstrap used in the procedure. Details
on random sampling from the different copulas are in Appendix B. Before discussing the statistical perfor-
mance of the different procedures, we investigate their computational performance by reporting in table 1 the
running times for a large sample (n = 500) and high dimension (d = 10) under the Frank copula model, using
Matlab on a Windows 10 laptop with an intel i7-6500U CPU and 8 GB of RAM. Similar results were obtained
under other specifications of copula models.

Table 1: Running Times of S£'", smid SN RN and G, , , as estimated from 1000 replicates, inthen = 500,d = 10 case,
under the Frank copula model.

‘Mean(sec) Max (sec) Min (sec)

splain 0.90 2.20 0.80
Smid 0.96 2.00 0.85
SGN 0.89 2.61 0.78
RY 35.58 40.57 34.08
Gin 3.52 14.13 3.03

The fastest procedures are based on the Cramér—von Mises statistics, with an average time of about 1
second. SGV slightly over-performs, the other two due to the evaluation of only one derivative. G4,n comes
after, with an average running time of 3.5 seconds. For this test, we relied on the Matlab Statistic and Machine
learning toolbox function bootstrp. It is possible that the running time could be lowered with a dedicated
bootstrap procedure. The slowest approach is RY. In our understanding, this is due to the need to evaluate a
d x d x n x n tensor of second derivatives.
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Table 2: Percentages of rejection at 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl"i",
smid gGN_ RN and G, , under the Pearson Type Il copula.

d=2 | n=125 | n=250 | n=500

T [025 05 075]/025 05 075|025 05 075

splain | 50 37 11 | 48 49 3.2 | 61 49 42
smd | 47 36 1.2 | 44 51 3.4 | 57 50 44
SeN | 28 22 06 |32 34 1.7 | 47 3.9 3.0
RY 5.9 4.5 1.9 | 6.2 6.1 43 | 6.0 6.3 5.6
Gyn | 47 43 20| 56 57 25|53 47 33

d=5 | n=125 | n=250 | n=500

r [025 05 075]/025 05 075|025 05 075
splain | 52 29 03 | 24 41 1.8 | 3.9 49 2.6
smd | 23 29 04 | 26 40 2.1 | 42 47 3.0
SSN 1 0.5 0.6 0.0 | 1.3 2.3 0.9 | 2.5 3.5 0.8

RY | 4.1 5.0 3.0 | 4.8 5.4 3.1 | 4.6 6.1 3.3
Gon | 4.1 68 2.1 | 56 60 2.6 | 50 56 3.6

d=10 | n=125 | n=250 | n=500
r 025 05 075]/025 05 075|025 05 075

splain | 94 17 01 | 12 24 05 | 22 32 11
smid | 1.3 1.8 0.1 | 1.1 22 0.6 | 2.4 33 1.0
SSN 1 0.0 0.0 0.0 | 0.0 0.4 0.1 | 0.3 0.9 0.1
RY | 3.5 4.0 2.7 | 3.3 4.2 3.0 | 4.5 5.0 2.8
Gsn | 25 97 47 | 40 78 43 | 43 7.7 47

3.1 Eliptical Family and Related Asymmetric Copulas

We first investigate the different procedures’ success in replicating the distribution of the test statistics under
the null hypothesis. We report in table 2, as a representative example, results for the test’s size under the
radially symmetric elliptical family of Pearson Type II copula. Similar results for Normal, t-student withv = 4
degrees of freedom and Laplace copulas are available upon request.

The table presents different sample sizes n € {125, 250, 500}, different dimensions of the copula d €
{2, 5, 10} and different levels of dependence. In particular, we use as a dependence measure Kendall’s 7 on
pairs of random variables imposing values in set {.25, .50, .75}.

Most procedures are close to their 5% nominal level in every set-up, excluding G4, ,. This statistic is often
above the nominal level. Its size is almost doubled for a low number of observations, high dimension and
average dependence.

SN is the most conservative, followed by Sﬁl“i" and $74 RN appears slightly more liberal. Conservatism
decreases with sample size and increases with dependence and dimension.

To study the power of the tests based on Sp, SP9, SG¥ and RY we consider the radially asymmetric
squared elliptical family, whose most notable members are the y? and Fisher copula [24]. Given a random
vector U ~ C, the stochastic representation of a random vector V, distributed according to squared copula

associated to C, is V = /(1,4 — 2U)?, where the square root is taken elementwise. Squared normal copula and
squared t copula are the copula of random vectors distributed as y? and Fisher distributions. We use the same
simulated samples used for the elliptical family experiments, obtaining results for y? (table 3), Fisher (table
4), squared Laplace (table 5) and squared Pearson Type II (table 6) copulas. For this reason, Kendall’s T for
this set of experiments is that of the associated elliptical random vector. We refer to [24] for the relationship
among the Kendall’s T of the squared and original copula.

In the bivariate case, the most powerful test is usually G4 n, excluding T = 0.5 in the Pearson Type II
case. Instead, for a higher number of dimensions, G4,, is among the worst ones, with S ﬁN .RY Sﬁl“i" and SZ"d
are close in performance for the y? and Fisher copula. RY is, usually, the most powerful test in the squared
Pearson Type II case, while Sﬁlai" and S are better in the squared Laplace case.

In the squared elliptic family, the monotone behavior of dependence with power suggests a non-
decreasing relationship between asymmetry and dependence. To disentangle the interaction of asymmetry
and dependence, we close the section by introducing another asymmetric variant of the Student t copula.
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Table 3: Percentages of rejection at 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl“i",
smid SGN RN and G, , under the 2 copula (*Kendall’r refers to the associated normal copula).

d=2 | n=125 | n=250 | n=500

v 025 05 075|025 05 075 ]025 05 075

splain | 57 428 732 | 9.7 781 97.0 | 17.4 98.0 100.0
spid | 58 429 731 | 93 780 969 |17.1 983 100.0
SSN | 35 348 60.5 | 84 752 965 | 156 98.1 100.0
RY | 95 582 834 |150 881 98.6 | 27.4 99.7 100.0
Gun | 115 66.0 954 |207 923 100.0 | 37.9 99.8 100.0

d=5 | n=125 | n=250 | n=500
025 05 075|025 05 075025 05 075

T

splain | 79 940 94.8 | 25.4 100.0 100.0 | 70.8 100.0 100.0
smid | 77 940 951 | 255 100.0 100.0 | 71.3 100.0 100.0
SSN | 1.6 811 820 | 163 100.0 99.9 | 63.8 100.0 100.0
RY | 195 98.6 959 |50.2 100.0 100.0 | 88.8 100.0 100.0
Gsn | 5.5 93.4 100.0 | 35.2 100.0 100.0 | 77.0 100.0 100.0

d=10

n=125 | n=250 | n=500
025 05 075|025 05 075 ]025 05 0.75

splain | 16 955 93.0 | 13.7 100.0 100.0 | 74.6 100.0 100.0
spid | 16 955 937 | 141 100.0 100.0 | 75.2 100.0 100.0
SSN 1 0.0 626 57.6 | 2.1 99.9 99.8 | 47.5 100.0 100.0

RY |29.1 100.0 949 |845 100.0 100.0 | 99.9 100.0 100.0
Gun | 0.1 59.6 999 | 57 97.1 100.0 | 32.9 100.0 100.0

T

Table 4: Percentages of rejection at 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl“i",
smid GGN RN and G, , under the Fisher copula (*Kendall’r refers to the associated Student-t copula).

d=2 | n=125 \ n=250 \ n=500

r o025 05 075] 025 05 075|025 05 075

sklain | 200 51.6 741 | 43.3 850 97.8 | 77.6  99.9 100.0
Smid | 196 517 747 | 43.8 855 97.8 | 77.6  99.9  100.0
SN | 144 428 607 | 40.4 835 97.1 | 76.4  99.9 100.0
RY |28.6 622 80.0 | 569 91.0 984 | 86.2 100.0 100.0
Gan | 40.4 754 934 | 715 969 100.0 | 93.2 100.0 100.0

d=5 n=125 n=250 n=500
T 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

sklain | 643 952  97.4 | 97.8 100.0 100.0 | 100.0 100.0 100.0
smid | 646 956 97.5 | 97.8 100.0 100.0 | 100.0 100.0 100.0
SSN 1356 849 856 | 950 100.0 100.0 | 100.0 100.0 100.0
RY | 701 953 959 | 981 100.0 100.0 | 100.0 100.0 100.0
Gan | 291 923 100.0 | 79.4 100.0 100.0 | 99.1 100.0 100.0

d=10

n=125 | n=250 | n=500

r 025 05 075|025 05 075|025 05 075

splain | 547 98.8 963 | 98.7 100.0 100.0 | 100.0 100.0 100.0
Smid 1532 988 97.1 | 98.7 100.0 100.0 | 100.0 100.0 100.0
SV | 6.0 756 617 | 77.1 100.0 100.0 | 100.0 100.0 100.0
RY | 927 995 94.6 | 100.0 100.0 100.0 | 100.0 100.0 100.0
Gon | 28 687 99.8 | 259 988 100.0 | 71.6 100.0 100.0
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Table 5: Percentages of rejection at 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁ,’l“i”,

smid gGN_ RN and G, , under the Squared Laplace copula (*Kendall’r refers to the associated Laplace copula).

d=2 | n=125 | n=250 | n=500

T ]025 05 075|025 05 075|025 05 075
splain | 69 27.6 59.6 | 12.6 565 93.6 | 252 881  99.9
smid | 71 28.0 60.8 | 11.9 57.6 93.9 | 252 884  99.9
SGN | 3.8 202 46.5| 10.8 547 93.0 | 23.0 863  99.9
RY | 9.6 383 724 | 181 66.4 963 | 32.7 927  99.9
Gyn | 128 485 87.1| 26,1 80.3 99.6 | 43.0 97.6 100.0
d=5 | n=125 | n=250 | n=500

T 025 05 075|025 05 075025 05 075
splain | 69.4  82.0 92.4 | 97.5 99.1 100.0 | 100.0 100.0 100.0
smid | 688 820 92.6 | 97.2 991 100.0 | 100.0 100.0 100.0
SGN | 358 555 73.5| 940 988 100.0 | 100.0 100.0 100.0
RY | 185 61.8 92.8| 554 92.8 99.8 | 96.8  99.9 100.0
Gyn | 5.4 500 97.9| 49 812 100.0| 65  97.7 100.0
d=10 | n=125 | n=250 | n=500

t 025 05 075|025 05 075|025 05 075
splain | 974 96.4  92.6 | 100.0 100.0 100.0 | 100.0 100.0 100.0
spid | 96.4  96.4 93.8 | 100.0 100.0 100.0 | 100.0 100.0 100.0
SV | 142 404 446 | 100.0 100.0 99.9 | 100.0 100.0 100.0
RY [363 699 921|973 981 99.9 | 100.0 100.0 100.0
Gyn | 127 313 952 | 124 607 100.0 | 11.9 888  100.0

Table 6: Percentages of rejection at 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁlai",
Sﬁ"d, SSN_ RN and Gy, under the Squared Pearson Type Il copula (*Kendall’r refers to the associated Pearson Type Il copula).

d=2 | n=125 | n=250 | n=500

t ]025 05 075]025 05 075|025 05 075
splain | 87 465 502 | 154 81.2 877 | 350 99.2 99.8
smid | 82 457 514 | 165 823 87.2 | 37.0 993  99.9
SSN | 6.8 337 377 | 124 793 850 | 340 99.1  99.7
RY | 93 483 61.4 |19.5 783 91.0 | 40.1  97.3  99.5
Gyn | 338 20.6 80.0 | 753 359 98.0 | 98.8 584 100.0
=5 | n=125 | n=250 | n=500

t 025 05 075|025 05 075|025 05 075
splain | 124 975 91.4 | 74.8 100.0 99.8 | 100.0 100.0 100.0
smid 1113  97.8 91.2 | 748 1000 99.8 | 99.9 100.0 100.0
SN | 6.0 90.6 744 | 68.5 100.0 99.7 | 99.8 100.0 100.0
RY |27.9 99.9 934 | 769 100.0 99.8 | 99.6 100.0 100.0
Gyn | 253  99.0 100.0 | 65.6 100.0 100.0 | 89.7 100.0 100.0
d=10 | n=125 | n=250 | n=500

r 025 05 075|025 05 075|025 05 075
splain | 04 97.0 907 | 148 100.0 99.9 | 942 100.0 100.0
spid | 03 972 91.6 | 147 100.0 99.9 | 943 100.0 100.0
S¢¥ | 0.0 631 482 | 1.7 1000 99.7 | 70.6 100.0 100.0
RY | 20.6 100.0 93.4 | 825 100.0 100.0 | 99.9 100.0 100.0
Gyn | 42 855 100.0 | 20.5 99.3 100.0 | 47.2 100.0 100.0
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The skew-t family has a degree of asymmetry governed by the vector of parameters ~. We focus on the case
~v = v14. We detail the tests’ performance under a Skew-t family, with v = 4 degrees of freedom under different
degrees of dependence as a function of the asymmetry parameter ~ taking values in {-1, -0.5, 0}. Experi-
ments with v = 0.5, 1 were also conducted but not reported because they show a behavior similar to their
negative counterparts. We show results for dimension 2 in table 7 and dimension 10 in table 8. As expected,
the power increases with asymmetry for all the procedures. With constant asymmetry, power decreases if we
increase dependence. Power decreases with dimension. In dimension 2, the test based on G4, prevails, while
the SSN based test has the worst performance. The same results carry over in the d = 10 case, if we do not
consider the case n = 250, 7 = 0.25 and v = -0.5, in which the best performing tests appear to be the ones
based on S’n’lai" and S, In general, for moderate asymmetry and high dependence, all procedures fail to
deliver adequate power even with n = 500.

Table 7: Percentages of rejection at a 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl“i",
smid SGN RN and G, , under the Skew t-student copula with v = 4 degrees of freedom, in dimension 2.

n=125 | 7=0.25 | 7=0.5 | 7=0.75

vl 0.5 0| -1 0.5 0| 1 0.5 0

splain | 594 272 47349 151 35]11.6 67 2.1
Spid 58.3 26.5  4.5(357 150 3.2 | 11.9 7.0 3.0
S§N 56.1 257 3.8 |31.0 13.4 22| 78 4.4 0.6
RY 60.9 29.0 45365 152 3.3 | 9.2 4.2 1.8
Gun 76.3 40.5 6.0 | 45.5 20.3 3.9 | 3.6 2.4 0.9

n=250

7=0.25 7=0.5 7=0.75

vyl 0.5 0| -1 0.5 0| 1 0.5 0

splain | 878  47.9 4.5|63.8 28.4 3.6 |31.4 124 3.3
Spid 87.3 48.1 4.4 | 642 282 4.1 (336 131 3.6
S§N 86.9 46.4 4.1 | 61.0 26.6 3.3 263 9.0 2.3
RY 89.7 523 4.4 | 67.8 304 3.7 | 41.0 142 2.1
Gun 96.4 67.6 4.8 (840 41.8 53501 177 1.0

n=500 | 7=0.25 | 7=0.5 | 7=0.75
vl 0.5 0| -1 0.5 0| 1 0.5 0

splain | 994 803 2.7|944 507 3.6|693 242 3.8
smid | 994 795 3.1 |945 506 3.9|69.1 256 4.6
SEN 99.4  79.4 2.6 | 93.7 488 3.3|635 21.0 2.7

RN 99.7 840 3.3 |948 560 4.1 |77.8 315 4.1
Gun | 100.0 941 49997 73.9 49 |943 468 3.0

3.2 Archimedean Family

We include Archimedean copulas in the study, focusing on the non-symmetric Clayton and Gumbel families
(tables 9 and 10, respectively), and on the Frank family (table 11), which is symmetric in two dimensions and
mildly asymmetric beyond dimension two.

In the Clayton case, asymmetry is strong, and all tests deliver adequate power in most cases with some
difficulties for n = 125 and low or high dependence. G4,, is again the champion in the bivariate case, while
for higher dimensions, different procedures deliver the best performance in other cases. For this family, the
overall relationship between power and dimension and between power and dependence is blurry.

In the Gumbel case, achieving sufficient power is more challenging and appears possible only for big
samples in high dimensions. In this case, increasing dimension helps. The relationship with dependence is
increasing for d = 2 and decreasing in the higher dimensional cases. In the vast majority of cases, the G4,
statistic outperforms the others if we neglect the case n = 125,d = 10 and 7 = 0.25, in which the best
procedures are those based on S2!*™ and S,

In table 11, we study the Frank family, which is symmetric in two dimensions and mildly asymmetric
beyond dimension two. In dimension 2, we reproduce the situation discussed for the elliptic family. In the
non-symmetric cases, instead, we see that Cramér von Mises based tests generally outperform G, , and the
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Table 8: Percentages of rejection at a 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁlai",

smid §GN_ RN and G, under the Skew t-student copula with v = 4 degrees of freedom, in dimension 10.

n=125 | T=0.25 | =05 | 7=0.75

v | 0.5 0] 4 05 0 | -1 0.5 0
splain 90.8 48.8 2.6 | 31.2 11.8 0.9 | 0.0 0.1 0.0
spid | 90,9 473 2.4 | 327 125 0.9 0.0 0.1 0.0
N 67.6 144 0.0 | 4.6 1.8 0.0 0.0 0.0 0.0
RY 91.0 613 22| 523 226 3.5]|17.9 7.9 3.1
Guyn 96.3  69.7 62| 781 47.8 73 |157 92 2.2
n=250 | 7=0.25 | 7=0.5 | 7=0.75

SO 0.5 0| -1 0.5 0| 1 0.5 0
splain 1100.0 96.8 3.3| 93.4 50.6 2.6 7.4 3.9 0.4
smid 1100.0 96.8 29| 939 505 26| 89 4.4 0.4
SgN 99.9 86.8 0.1| 79.9 311 0.2 | 0.1 0.3 0.0
RY 100.0 93.7 2.5| 86.0 46.6 3.4 | 454  17.2 3.3
Gyn |1000 885 7.4| 988 716 6.9 |71.6 33.0 3.4
n=500 | 7=0.25 | 7=0.5 | 7=0.75

S 0.5 0| -1 05 0 | 1 0.5 0
sPlain 1100.0  100.0 3.7 | 100.0 90.1 2.4 | 687 244 1.0
smid 1100.0 100.0 3.6 | 100.0 90.0 2.6 |71.3 261 1.2
s¢¥ | 100.0 1000 0.8 |100.0 831 1.2[355 9.9 0.0
RY 100.0 100.0 3.1 | 993 79.1 3.2|787 338 43
Gyn | 1000 989 6.1 |100.0 941 5.6 |99.6 757 4.0

Table 9: Percentages of rejection at a 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl”i",
smid gGN_ RN and Gy, under the Clayton copula.

d=2 | n=125 \ n=250 \ n=500

t |025 05 075]025 05 075|025 05 075
splain | 437  89.2  97.0 | 72.9 99.7 100.0 | 95.2 100.0 100.0
smid | 43,0 883 97.0 | 72.5 99.8 100.0 | 953 100.0 100.0
S§N | 40.9 86.8 958 | 70.6 99.7 100.0 | 94.9 100.0 100.0
RY | 450 902 973 | 77.0 99.8 100.0 | 96.2 100.0 100.0
Gyn | 61.6 965 99.3 | 87.9 100.0 100.0 | 99.1 100.0 100.0
d=5 | n=125 \ n=250 \ n=500

t |025 05 075]025 05 075|025 05 075
splain 1 90,1 99.4  93.5 | 100.0 100.0 100.0 | 100.0 100.0  100.0
smid | 892 993 940 |100.0 100.0 100.0 | 100.0 100.0 100.0
SGN | 81.6 98.4 72,9 | 100.0 100.0 100.0 | 100.0 100.0 100.0
RY |859 982 988 | 99.7 100.0 100.0 | 100.0 100.0 100.0
Gyn | 8.8 100.0 100.0 | 97.0 100.0 100.0 | 100.0 100.0 100.0
d=10 | n=125 \ n=250 \ n=500

t |025 05 075]025 05 075|025 05 075
splain | 889 99,9  50.4 | 100.0 100.0 100.0 | 100.0 100.0 100.0
smid | 87,3 100.0 61.3 | 100.0 100.0 100.0 | 100.0 100.0 100.0
SN | 45.0 98.2 6.1 | 99.8 100.0 100.0 | 100.0 100.0 100.0
RY |97.4 993 989 | 100.0 100.0 100.0 | 100.0 100.0 100.0
Gyn | 76.4 100.0 100.0 | 93.2 100.0 100.0 | 100.0 100.0 100.0
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Table 10: Percentages of rejection at a 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁl“i",
Smid GGN RN and G, , under the Gumbel copula.

d=2 | n=125 | n=250 | n=500

r 025 05 075]025 05 075|025 05 075

splain | 994 19.8 151 | 248 457 41.0| 503 79.6  80.2
spid 110.8  19.9 16.0 | 25.1  46.7 43.2| 51.0 79.3 811
SGN | 78 13.0 6.0 | 22.8 42.4 357 | 489 769 767
RY | 167 279 267 | 327 556 57.6| 59.8 840 87.7
Gyn | 237 419 299 | 46.1 73.7 756 | 781 955  97.7

d=5 | n=125 | n=250 | n=500

t 025 05 075]025 05 075|025 05 075

splain | 569 594 89 | 973 988 7421000 1000 99.7
smid | 570  60.9 9.7 | 97.4  98.9 77.4 | 100.0 100.0  99.7
SN 1383 335 0.4 | 962 97.3 481 | 100.0 100.0  99.2

RY | 775 789 477 | 97.8 979 829 |100.0 100.0 99.2
Gan | 797 935 749 | 987 99.9 988 |100.0 100.0 100.0

d=10 | n=125 | n=250 | n=500
T 025 05 075

splain | 969 926 1.0 | 100.0 100.0 94.0 | 100.0 100.0 100.0
smid | 97,0 932 1.7 | 100.0 100.0 95.7 | 100.0 100.0 100.0
SGN | 73.4  46.6 0.0 | 100.0 100.0 43.8 | 100.0 100.0 100.0

RY | 933 857 4451000 99.8 82.0|100.0 100.0 99.3
Gyn | 65.6 96.4 85.0| 98.2 100.0 99.9 | 100.0 100.0 100.0

0.25 0.5 0.75 | 0.25 0.5 0.75

characteristic function test, with differences increasing with the number of observations and dimensions.
Again SP!*" and S™Md have the same behavior and are comparatively better than SSV . Power deteriorates
with dependence.

Table 11: Percentages of rejection at a 5% significance level, as estimated from 1000 replicates, for the tests based on Sﬁlai",
Smid GGN_ RN and G, under the Frank copula.

d=2 | n=125 | n=250 | n=500

t 025 05 075|025 0.5 0.75] 0.25 0.5 0.75

splain | 46 46 3.6 | 4.9 47 3.6 | 47 40 3.6
spid |\ 47 46 3.8 | 5.1 47 42 | 51 42 3.9
SGN | 3.0 2.4 1.8 4.1 3.6 2.2 3.9 3.2 2.4
RY | 52 43 3.0 | 57 48 47 | 49 48 3.9
Gun | 54 60 1.8 | 5.9 5.1 43 | 5.4 46 3.9

da=5

n=125 | n=250 | n=500

T

025 05 075|025 05 075|025 05 075

splain | 192 69 0.4 | 788 428 2.6 | 99.9 97.4 16.0
smid | 185 7.1 0.3 | 79.0 441 2.9 | 99.9 97.4 17.1
SSN 1 9.2 2.1 0.0 | 70.7 309 0.7 | 99.7 956 6.1

RY | 259 13.4 4.6 | 653 211 58 | 981 46.4 6.7
Gun | 172 181 7.1 | 448 316 133 | 729 56.6 18.2

d=10 | n=125 | n=250 | n=500
025 05 075 025 05 0.75] 0.25 0.5 0.75

T

sPlain | 927 460 0.1 | 100.0 99.9 7.4 | 100.0 100.0 99.4
spid | 916 487 0.1 | 100.0 99.9 87 | 100.0 100.0 99.6
SSN | 641 106 0.0 | 100.0 99.6 0.4 | 100.0 100.0 82.5
RY [583 121 3.0 | 987 319 4.0 | 1000 849 6.9
Gan | 93 311 116 | 654 707 23.4 | 96.9 962 43.7

4 Conclusions

This article extends the bivariate test of copula radial symmetry introduced in [11] to more than two dimen-
sions. Additionally, it refines the inference procedure by proposing two new estimators of copula derivatives
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under the null. These refinements bring the Cramér von Mises test to a performance comparable to the major
competitors based on a linear statistic [17] and the characteristic function [1]. In fact, in our extensive simula-
tion study, including the recently proposed squared elliptic copulas [10] among other models, SV is always
worse than or equal to the two other new procedures, that are overall equivalents in terms of performance. The
new methods based on the Cramér von Mises statistic and the test based on characteristic function, proposed
in [1], are comparable in retaining the nominal level under the null and have overall similar power under the
alternative. In particular, RY shows more power under the squared Pearson Type II copula, while Sﬁ’,lai" and
SMid perform better in the squared Laplace and Frank cases. These procedures are more or less equivalent
under the symmetric models and the other asymmetric models studied. The hypothesis tested by Gy, is dif-
ferent from copula radial symmetry, and the interpretation of the test requires additional care. Nevertheless,
the test based on G4, is the best performer for d = 2 for the copula model considered in the simulation study,
even if slightly too liberal under the null. In higher dimensions, the discrepancy between the empirical size
and the nominal one increases, and the size becomes almost twice the nominal in the worst cases. Under the
alternative, beyond dimension 2, G4, is the most powerful under the skew-t and Gumbel copula. Taking into
account running times (table 1), a relevant aspect in the high dimensional domain, Sﬁl"i" and S appear
the best trade-off between statistical and computational performance.

Overall, the simulation study shows how all the inference procedures studied appear reliable in high
dimensions with low and moderate levels of dependence and high asymmetry, using a sample size of 500,
and often of 250, observations. High dependence and medium or low asymmetry require an increase of the
sample size beyond 500 observations. The relation between power and dimension depends on the underlying
copula model.

The investigation of copula radial symmetry tests in the context of time series is left for future research.
However, we remark that the use of continuous mapping theorem in [23] or the functional delta method, in
the present paper, in deriving the asymptotic properties of the test based on the Cramér von Mises statistic
allows an easy extension to strongly mixing data along the lines of [3], covering most of the known stationary
parametric models. Similar comments apply to G, j if we introduce the use of circulant bootstrap or other
dependent bootstraps, while the extension of RY appears more challenging.
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A Proofs

The pseudo-observations f],-j = nTll Zzzl I (Xk]- < Xi]-), i=1,...,nandj = 1,...,d are asymptotically

. 1 . . . ..
equivalent to o Sk I (X Ij S Xij),i=1,...,nandj=1,..., d. Since the weak convergence of the empirical
copula process is derived in [27] using the latter expression for pseudo-observation, in the proof we follow
this convention and we call it, with a slight abuse of notation, Ui]- = % 22:1 I (Xk]- < Xi]-), i=1,...,nand
j=1,...,d.Inthe n — oo limit, results obtained in this way are equivalent to the ones obtainable using the
main text’s convention. The use of the alternative convention in the main text is due to better finite sample
behavior.
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A.1 Proof of Proposition 1

The proof obtains a relationship between Cy ;; and the empirical distribution function of V;; = Ty (Uii)’
whose empirical process is known. The relationship requires introducing an auxiliary function equivalent to
a particular expected value of a product of indicators and the empirical version of this expected value. This
relationship is the map studied in [4], which derives its Hadamard differentiability. The result follows from
an application of the functional delta method to the map.

We define the function F; ; : RP — R,

Fijx) = E HH(X]->XJ-)H]I(XI~SX}~) ,

jeJ jeI
Foreachj € I, we defineas Fy ; ; (x;) the limits of F; ; (x), letting x;; — —eo forall j’ € J\j and letting x;; — oo
forallj/ e I'\ (J\j):
Frpj(x) = ;
Fj(Xj) if ]GI\]

For each j € I, we define the generalized inverse of F; j ;:

sup{xeR:Fyj;(x)<su},uec(0,1] if jeJ
Frpi)=
inf{xeR:Fy;j(x)2u},uecl0,1] if jeI\J

The copula of the transformed vector Cj,; can be expressed as a function of F; yand of F ; ;,j € I,

CI,] (V) = E H]I F V]') H I (F] (X}) < Vj)
)E/ jel\J
- E|[J1(x>F (v) []1(x vj))
Lj€J jelg
= FI’] (F;,],il (Vil) s e ’F;,/,ip (Vip)) (A.l)

The empirical versions of F; y and Fy j ; with j € I, are defined as follows:

Forj(x) = fZH]I X > x) [T 1(X5<x

i=1 jeJ je
1 n
Ezl]l(XU>X]) if jel
i
Frpp(x) =

—Z]I Xj<x;) if jelI\J

The empirical counterpart of equation (A.1) is:

U T (R (8) <)

i=1 jeI

= FY[,I,] (F;,I,],il (Vil) gesey ;,I,],l.p (Vip)) (A.Z)

Cn,1y (V)



58 —— Monica Billio, Lorenzo Frattarolo, and Dominique Guégan DE GRUYTER

We introduce the empirical distribution function of V; = T; (Uy):
1 n
Ga(v) = o ;H(Vi <vV)
i

Using the results in [8], the multivariate empirical process on [0, 1JP, G, = v/n (Gn -C, ]) has weak conver-
gence limit:

Gn(m) ~ Bc, (w)
Cov (BCLJ (ll) , BC!J (V)) = CI’] (uAv)-— C]J (ll) CI’] (v).

In what follows, we derive the relationship between G, and Cj, ; ; using F,, ; ; and equation (A.3). We have
the following expression for Gp:

Gn(v) = 7ZHH Xl]>FI]] V] HH Xl]_FI]} V}))
i=1 jxe] jel\J
= Fuiy (Fig (vi) seoes Fig, (%)) (A3)

For each j € I, letting vy — 1 forallj’ € I'\;j in equation (A.3), we obtain the following relationship
between the marginals of Gn , F1; ; and Fy 1y withj € I:

Gj (V) = Furzj (Frp,i (v;))
Then, using the composition properties of the generalized inverses, it follows that:
Gy (vi) = Fryj (Fu1; (v)) - (A.4)

Substituting (A.4) in equation (A.3) and using equation (A.2), we obtain the following alternative representa-
tion of Cp 1 j:

Gn (G;,-l (Vi) s--- s G, (vip)) = Cpry(v).
We now introduce the map [4]

_ Dg — [0, 17
Hw—H(H{',...,H;') ~’

where Dg denotes the set of all distribution functions H on [0, 1], whose marginal CDFs H; satisfy H; (0) =
0,j € {1,...,p}. Using this map, the empirical copula process of the transformation can be expressed as
follows:

Crl,I,] = \/ﬁ ((D(Gn) -0 (C]J)) . (A.5)

Theorem 2.4 in [4] implies that, under A 1, @ is Hadamard differentiable at C; ;, and the application of the
functional delta method to (A.5) yields the result.

A.2 Proof of Proposition 2

LetCJO, l]d be the space of functionf : [0, 1]d — Rthatare continuous D [0, 1]d; the space of cadlag function
on [0, 1]d; and BV1]0, 1]d the subspace of D [0, 1]d consisting of the functions with total variation bounded
by one. For notational convenience, we consider only one multiplier replicate the generalization to M repli-
cates being straightforward. Under the null and assumption A1, (2.14)-(2.18) hold. We can write:

((Cn _ @n)z ’ (@Ll],ver B @Ll]’Ver>2 ’ Cn) _ Jn <(An, Ag],ver’ Cn) _ (A, Alllver C))
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_ ~ - ~ 2
where An, = /1 (Cn-Cn)®, AV - 1 (((CL”"’”—(CL”’V”) ) A = Al = 0 and ver €

N
{plain, GN, mid} .
From continuous mapping theorem, we get:

— ~ ~ 2 _ _ 2
((Cn _ Cn>2 , (CE]’VW _ C%l],ver) , Cn) ~ <((C _ C)Z ’ (C[l],ver _ (C[l],ver) ’ @)

4
on [z‘” [, 1]"} .
Let us introduce the map ¥ : ¢ [0, 1]d x £ [0, 1]d x BV1]O0, 1]d — R?, defined by

¥ (a, & p) - / adp, / adp | . (A6)

0,1)¢ (0,1)4

We have, then,

(mr,,, nﬂ}]) -vn (‘P (An, Allbver cn) —y (A, Altbver, c)) .
We state the Hadamard differentiability of ¥ tangentially to C [0, 1]d x CJ[O, 1]d x d|0, 1]d at each (a, &, f)
in ¢[0, 1] x [0, 1]% x BV1[0, 1]%, such that [ |da| < eo and [ |d@| < oo in the lemma 1 below. Then, an
application of the functional delta method gives

N ~ _ _ 2

(nTn, nTLl],VEr) ~ WA,A[l],veryC ((C _ (C)Z , (C[I],Ver _ (C[l]’ver) , C)

with

_ _ 2
lp,/4,A[1].ver,(: (((C _ (C)Z ’ (C[l],ver _ (C[l],ver) , (C)

= _ 2
- /Ad@+ / (C—C)ch, / A[ll,verdC+ / (C[l],ver_(c[l],ver) dc

0,1]¢ (0,14 (0,114 (0,14
_ / ((C _ C)Z dc, / (C[l],ver _ C[l],ver)2 dc | - (T, T[l],ver) )
0,1]4 0,114

Lemma 1. The map ¥ defined in (A.6) is Hadamard differentiable tangentially to C [0, 1]¢x C [0, 1]?xd [0, 1]%
at each (a, &, ) in £ [0, 1] x £°[0, 1] x BV1[0, 1]%, such that [ |da| < oo and [ |d@| < oo with derivative
given by

¥, (@& B) = /Adﬂ+ / adB, / Adp + / adB

0,1]4 0,114 0,114 0,114

where if B is not of bounded variation, [ adp, [ &dp are defined via the d-dimensional integration by parts
formula exemplified for 2 dimensions in Theorem 8.8 of [13].

Lemma 1 is a vectorized d-dimensional version of lemma 3.9.17 in [29] (see, also, lemma 4.3 of [5]) and, since
the proof is similar, it will be omitted.
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B Random Sampling

We report procedures and software used to simulate the different copula models included in the simulation
study.

We start with the elliptical family. Normal copula and t-student samples come from the R copula package
[15] and are based on the random sampling from the multivariate distribution and a component-wise proba-
bility integral transform of the obtained vector. We implemented in Matlab the same procedure for Laplace
and Pearson Type II copulas. In particular, we used the general stochastic representation for elliptic multi-
variate distributions introduced in [9] for generation of the Pearson type II base random vector:

X =RCS

S is uniformly distributed on the d-dimensional sphere and can be easily obtained by generating a d-
dimensional independent multivariate normal random vector N and dividing each component by its #2 norm.
R is independent of S and can be obtained in the Pearson Type II case by simulating its square R* as a
B (d /2,1/ 2) random variable and taking the square root. C is the Cholesky decomposition of the correlation
matrix. The marginal distribution of X has the following expression:

X

~ r(d-1)/2) )\ d/2-1
F(x) = \/Frl"(d/Z)/(l_y> dy,

where I'(x) is the Euler gamma function, We report the expressions for U in the cases d = 2, 3, 4, 5, 10 (func-
tions of vectors are taken component-wise):

d=2 U=(X+1)/2
XV/1 - X2 - arccos (X)
VT
d=4 U=-(X+1)(X-2)/4
_ 3m+2X(5 - 2X?)v/1 - X2 + 6arcsin(X)

d=3 U=1+

d=5 U
6mr
5 _ _
d=10 U~ (1+X)°(128 + 5X(X2(562 +7(X -5)X)) - 65)

The stochastic representation for Laplace random vectors uses an independent normal random vector N:

X = RCN
U 1/2 + 1/2sign(X)(1 - exp(-|X)));

where R? = 2E with E ~ Exp (1).

As already recalled in the main text, the squared elliptical copulas are obtained starting from an elliptic
U and computing /(14 — 2U).

The skew-t copula comes from the skew-t multivariate distribution, i.e. from the following stochastic rep-
resentation :

X = yW + VIWCN;

where, again, N is a vector of normal independent random variables, C is the Cholesky decomposition of the
correlation matrix, and W ~ Ig (v /2,v/ 2). This is a particular case of the multivariate generalized hyperbolic
distribution [7]. For the sampling of X and the numerical integration of the CDF required for the PIT, we relied
on the R package ghyp [30].

Finally, an exchangeable Archimedean copula with generator 1 has the following stochastic representa-
tion:

U = p(E/W);
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where E is a random vector of independent Exp (1) random variables and W is distributed as the inverse
Laplace—Stieltjes transform of i). We refer to [14] for the distribution and random generation of W in the Frank,
Clayton and Gumbel cases. The R copula package from which we obtained the samples uses this methodology.
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