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Abstract: Given a d-dimensional random vector X = (X1, . . . , Xd), if the standard uniform vector U obtained
by the component-wise probability integral transform (PIT) of X has the same distribution of its point re�ec-
tion through the center of the unit hypercube, thenX is said to have copula radial symmetry.We generalize to
higher dimensions the bivariate test introduced in [11], using three di�erent possibilities for estimating cop-
ula derivatives under the null. In a comprehensive simulation study, we assess the �nite-sample properties
of the resulting tests, comparing them with the �nite-sample performance of the multivariate competitors
introduced in [17] and [1].
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1 Introduction
Let X = (X1, . . . , Xd) be a continuous random vector with marginal cumulative distribution functions (CDFs)
Fi (x), i = 1, . . . , d. Let U be the standard uniform random vector obtained by using the component-wise
probability integral transform on X:

U = (U1, . . . , Ud) = (F1 (X1) , . . . , Fd (Xd)) .

Let 1d be the d-dimensional vector with all components equal to one. The hypothesis of copula radial sym-
metry is equivalent to the following distributional identity:

H0 : Ud=1d − U (1.1)

This relationshipwas introduced, in the bivariate context, by [20] and [21], under the nameof radial symmetry
of the copula function. Under copula radial symmetry, U has the same distribution of its point re�ection
through the center of the unit hypercube, and [26] and [16] call it copula re�ection symmetry.

As the name suggests, the symmetry can be framed in the copula context. Following [28], the joint CDF
F (x) of X could be expressed at each x ∈ Rd as:

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd))

*Corresponding Author: Monica Billio: University Ca’ Foscari of Venice, Department of Economics, Venice, Italy,
E-mail: billio@unive.it
Lorenzo Frattarolo: European Commission, Joint Research Centre (JRC), Ispra, Italy, E-mail:lorenzo.frattarolo@ec.europa.eu
Dominique Guégan: University Paris-1 Panthéon-Sorbonne, Paris, France and University Ca’ Foscari of Venice, Department of
Economics, Venice, Italy, E-mail: dominique.guegan@univ-paris1.fr

https://doi.org/10.1515/demo-2021-0102


44 | Monica Billio, Lorenzo Frattarolo, and Dominique Guégan

in terms of the unique copula C. C is the joint CDF of U. Analogously, let F̄i (xi) = 1 − Fi (xi), i = 1, . . . , d be
the marginal survival functions of X. The joint survival function of X could be expressed at each x ∈ Rd as:

F̄ (x1, . . . , xd) = C̄
(
F̄1 (x1) , . . . , F̄d (xd)

)
The survival copula C̄ is then the CDF of the random vector 1d − U.

With these de�nitions, equation (1.1) is equivalent to the following identity:

H0 : C (u1, . . . , ud) = C̄ (u1, . . . , ud) (1.2)

Using equation (1.2) the test ofH0, becomes a test of distributional identity based on a measure of their
distance. Empirical distribution functions allow a non-parametric consistent estimation of their distance. Let{{
Xij
}n
i=1

}d
j=1
≡ {Xi}ni=1 be an independent sample of size n from d-dimensional random vector X. Let I (A)

be the indicator for the set A. Moreover, let us de�ne the pseudo-observations Ûij = 1
n + 1

∑n
k=1 I

(
Xkj ≤ Xij

)
,

i = 1, . . . , n and j = 1, . . . , d . Then, the empirical copula and the empirical survival copula are:

Cn (u) = 1
n

n∑
i=1

I
(
Ûi ≤ u

)
, C̄n (u) = 1

n

n∑
i=1

I
(
1d − Ûi ≤ u

)
.

Anymeasure of the distance between Cn and C̄n leads to a possible test statistic of the hypothesisH0 : C = C̄.
We focus on a Cramér–von Mises statistic under the randommeasure generated by the empirical copula:

Sn =
∫

(0,1]d

(
Cn − C̄n

)2 dCn = 1
n

n∑
i=1

(
Cn
(
Ûi
)
− C̄n

(
Ûi
))2

. (1.3)

In thebivariate case, this statisticwas introduced in [2] and investigated in [6] and [11]. In particular, according
to [11], the measure in equation (1.3) is the most powerful statistic for a random vector of dimension two.
Di�erent investigations of the same problem by other bivariate non-parametric approaches are in [26] and
[19]. [23] proposes a general framework for testing the homogeneity hypothesis of a copula. In the latter paper,
the asymptotic theory covers multivariate radial symmetry tests, but it lacks a simulation study of the �nite
sample properties of testing this symmetry. [17] and [1] are the only twopapers, to our knowledge, that propose
a multivariate non-parametric radial test and include an investigation of its �nite sample properties.

[17] studies a statistic linear in the di�erence between the copula and the survival copula. The di�erence
is weighted using the following probability density, which gives more weight to the tails:

hk (u) = 2k+d

(−d)d
(k + d)!
k! max

(
1
2 −

1Tdu
d , 0

)
. (1.4)

Denoting with Hk the distribution coming from the density hk, their statistic is:

Gk =
∫

(0,1]d

(
C − C̄

)
dHk = (−d)d k!

(k + d)!
E

∣∣∣∣∣12 − 1TdU
d

∣∣∣∣∣
k+d

sign
(

1
2 −

1TdU
d

) (1.5)

The null hypothesis

H00 : Gk = 0, (1.6)

is strictly weaker than the hypothesis of radial symmetry H0 for, at least, two reasons. First, as remarked
by the author, due to linearity, the di�erence between the copula and the survival copula can change sign
on the support of Hk and, in principle, Gk could be null for asymmetric models. Second, due to the weight-
ing scheme, copulas with support in the null set of Hk have Gk = 0. In particular, strict d-CM Copulas (as
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introduced in [18]) that have support on the hyperplane with constant sum 1Tdu = d
2 have Gk = 0. An asym-

metric 3-CM copula is introduced in example 7 of [22]. This copula distributes probability mass uniformly on
the edges of the equilateral triangle in [0, 1]3 with vertices (0, 1/2, 1), (1/2, 1, 0) and (1, 0, 1/2). The corre-
sponding survival copula has probability mass distributed uniformly on the edges of the re�ected triangle
with vertices (1, 1/2, 0), (1/2, 0, 1) and (0, 1, 1/2).

The empirical version uses an asymptotically equivalent transformation of pseudo-observations:

Vi = n + 1
n Ui −

1d
2n , i = 1, . . . , n

Gk,n = (−d)d k!
(k + d)!

1
n

n∑
i=1

∣∣∣∣∣12 − 1TdVi
d

∣∣∣∣∣
k+d

sign
(

1
2 −

1TdVi
d

)
. (1.7)

On the other side, linearity and a �xed weighting scheme lead to the advantage of a normal asymptotic dis-
tribution for the empirical version.

The authors of [1] use anapproachbasedon the characteristic function. They introduce the randomvector
W = U − 1

21d, marginally distributed as U
[
−1/2, 1/2

]
, and rephrase (1.1) as:

H0 : W = −W. (1.8)

Using the characteristic function ofW, ψC (t) = E
(

exp
(
itWT

))
, they write (1.8) in a di�erent form :

H0 : LC (t) = ψC (t) − ψC (−t) = 0 (1.9)

The empirical versions are given by

Ŵi = Ûi −
1
21d i = 1, . . . , n

Ln (t) = 1
n

n∑
i=1

sin
(
tŴi

)
,

leading to a family of test statistics indexed by the weighting function ω : Rd 7→ R

Rn,ω = n
∫
Rd

Ln (t)ω (t) dt. (1.10)

Both [17] and [1] propose, in the bivariate case, a simulation-based comparison of �nite sample properties
with the test of [11]. A comparison beyond the bivariate case is missing, even if the asymptotic theory behind
a higher-dimensional generalization was in [23]. The purpose of this paper is to �ll this gap by investigating
the �nite sample properties of the test statistic Sn in equation (1.3) using themultiplier Bootstrap under three
di�erent speci�cations of themultiplier empirical process, comparing its performance to the procedures pro-
posed in [17] and [1]. Even if our methodological contribution is limited to an alternative proof of proposition
1 in [23], we hope that the breadth of our simulation study, covering also recent asymmetric copulas proposed
by [24] and [10], can safely, guide the reader in most of the practical applications of the tests to i.i.d. data.

The paper is structured as follows: Section 2 studies the Sn-based test’s asymptotic properties. Section 3
presents a simulation study of the �nite sample properties of the test and a comparison with the procedure
proposed in [17] and [1]. Section 4 summarizes our �ndings and proposes further developments.

2 Asymptotic Behavior of Sn Under Copula Radial Symmetry
The asymptotic null distribution of Sn relies on the limiting behavior of the empirical copula process and the
empirical survival copula processes:

Cn =
√
n (Cn (u) − C (u)) , C̄n =

√
n
(
C̄n (u) − C̄ (u)

)
. (2.1)
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[27] obtains the following weak convergence result for the empirical copula process:

Cn ; C = BC (u) −
d∑
d=1

∂C (u)
∂ud

Bd,C (ud) , (2.2)

where BC is a d-dimensional Brownian sheet with covariance function

Cov (BC (u) ,BC (v)) = C (u ∧ v) − C (u) C (v) (2.3)

where ∧ is the component-wise minimum.

Let us introduce an assumption on copula derivatives, analogous to the one introduced in [27]:

A 1. For each j ∈ {1, . . . , d}, the jth �rst-order partial derivative ∂C∂uj
exists and is continuous on the set Vd,j :={

u ∈ [0, 1]d : 0 < uj < 1
}
.

The weak convergence of the survival copula empirical process is not covered by proposition 3.1 in [27], con-
trary to what is stated in [17]. It is, instead, a corollary of proposition 1 in [23]. The latter paper develops a
general class of shape hypotheses by comparing the copula C of the random vector U to the copula associ-
ated to a transformation of U. The transformations considered are coordinate-wise re�ections, permutation
and marginalization of the random vector U ∼ C. More formally, the coupled action of a marginalization
of cardinality p and a permutation of the components of U is equivalent to taking a subset of cardinality p,
I = {i1, . . . , ip} ⊆ {1, . . . , d}, and extracting the sub-vector UI =

(
Ui1 , . . . , Uip

)
. Considering the subset of

cardinality r, J = {j1, . . . , jr} ⊆ I, the action of r re�ections with respect to hyperplanes of constant jk-th
coordinate k ∈ {1, . . . , r}, passing through the center of the unit hypercube is coordinate-wise equivalent to:

[
RJ(UI)

]
j =
{

Uj if j ∈ J
1 − Uj if j ∈ I \ J

.

This transformation is decreasing for j ∈ J, and increasing for coordinates in its complement, j ∈ I \ J. We
de�ne the copula CI,J of the transformed vector its empirical version, and its empirical process as:

CI,J (v) = P
(
RJ (UI) ≤ v

)
Cn,I,J (v) = 1

n

n∑
i=1

I(RJ(ÛIi) ≤ v)

Cn,I,J (v) =
√
n
(
Cn,I,J (v) − CI,J (v)

)
[23] obtains the weak convergence of the empirical process based on the copula of the transformed vector:

Proposition 1 ([23]). Let
{{
Xij
}n
i=1

}d
j=1
≡ {Xi}ni=1 be an independent sample of size n from d-dimensional

random vector X ∼ C. Suppose that assumption A 1 is satis�ed for CI,J , then the empirical copula process
CnI,J =

√
n
(
Cn,I,J (v) − CI,J (v)

)
weakly converges towards a Gaussian �eld:

Cn,I,J ; CI,J = BCI,J (u) −
∑

j∈I
∂CI,J (u)
∂uj

Bj,CI,J
(
uj
)

in `∞ [0, 1]d

In the appendix, we propose an alternative proof of proposition 1, whose main line of reasoning, based on
the functional delta method, was independently developed in the 2014 Ph.D. thesis of one of the authors.
The weak convergence of the survival empirical process is obtained from proposition 1, considering I = J =
{1, . . . , d}.
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2.1 Derivative Estimators and Multiplier Bootstraps

Thedependence of the limitingprocesses from theunknowncopula and survival copula forbids a closed-form
inference. The use of multiplier central limit theorem solves this issue by obtaining the distribution of the
limiting process through sampling. We will use the version of the multiplier central limit theorem introduced
in [25] for i.i.d. random vectors. Given a function f : [0, 1]d 7→ [0, 1], let h = 1/

√
n and ei be the vector

corresponding to the i-th column of the d dimensional identity matrix. The partial �nite di�erence derivative
operator of step h,Dh

i introduced by [25] in the consistent estimation of copula derivatives is:

Dh
i f (u) =



f (u + ei (2h − ui))
2h if ui ≤ h

f (u + eih) − f (u − eih)
2h if h < ui ≤ 1 − h

f (u − ei (ui − 1)) − f (u − ei (ui − (1 − 2h)))
2h if ui ≥ 1 − h

(2.4)

We de�ne a multiplier sequence
{
ξi,n
}
i∈Z as an i.i.d. sequence

{
ξi,n
}
i∈Z with E (ξ0,n) = 0, E

(
ξ2

0,n
)

=
1 and independent from the available sample. Given M independent copies of the multiplier sequence{
ξ [1]
i,n

}
i∈Z

, . . . ,
{
ξ [M]
i,n

}
i∈Z

we can de�ne the new processes:

B̃[m]
n (u) = 1√

n

n∑
i=1

ξ (m)
i,n

(
I
(
Ûi ≤ u

)
− C (u)

)
(2.5)

˜̄B
[m]
n (u) = 1√

n

n∑
i=1

ξ (m)
i,n

(
I
(
1d − Ûi ≤ u

)
− C̄ (u)

)
(2.6)

C̃[m]
n (u) = B̃[m]

n (u) −
d∑
i=1

Dh
i Cn (u) B̃[m]

i,n (ui) (2.7)

˜̄C[m],plain
n (u) = ˜̄B

[m]
n (u) −

d∑
i=1

Dh
i C̄n (u) ˜̄B

[m]
i,n (ui) (2.8)

Results in [25] then imply: (
Cn , C̃[1]

n , . . . , C̃[M]
n

)
;

(
C,C[1], . . . ,C[M]

)
(2.9)(

C̄n , ˜̄C
[1],plain
n , . . . , ˜̄C

[M],plain
n

)
;

(
C̄, C̄[1], . . . , C̄[M]

)
. (2.10)

Here, C[1], . . . ,C[M] are M independent copies of C and C̄[1], . . . , C̄[M] of C̄.
Furthermore, as remarked in [23], under the null we have di�erent possibilities for consistent estimators of
the derivatives, leading to the following multiplier processes:

˜̄C[m]GN
n (u) = ˜̄B

[m]
n (u) −

d∑
i=1

Dh
i Cn (u) ˜̄B

[m]
i,n (ui) (2.11)

C̃[m],mid
n (u) = B̃[m]

n (u) −
d∑
d=1

Dh
i Cn (u) + Dh

i C̄n (u)
2 B̃[m]

i,n (ui) (2.12)

˜̄C[m],mid
n (u) = ˜̄B

[m]
n (u) −

d∑
i=1

Dh
i Cn (u) + Dh

i C̄n (u)
2

˜̄B
[m]
i,n (ui) (2.13)

In the multiplier process of the empirical survival copula, equation (2.11) uses the numerical derivative of the
empirical copula and corresponds to the version of the multiplier used in [11]. Equations (2.12) and (2.13) use
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the midpoint between derivatives as the estimator of the derivatives in both processes. Under the null, all the
proposed derivatives estimators are consistent, implying the convergence of the di�erentmultiplier bootstrap
processes to independent copies of the empirical copula process:

(
Cn , C̃[1]

n , . . . , C̃[M]
n

)
;

(
C,C[1], . . . ,C[M]

)
(2.14)(

Cn , C̃[1],mid
n , . . . , C̃[M],mid

n

)
;

(
C,C[1], . . . ,C[M]

)
(2.15)(

C̄n , ˜̄C
[1],plain
n , . . . , ˜̄C

[M],plain
n

)
;

(
C̄, C̄[1], . . . , C̄[M]

)
(2.16)(

C̄n , ˜̄C
[1],GN
n , . . . , ˜̄C

[M],GN
n

)
;

(
C̄, C̄[1], . . . , C̄[M]

)
(2.17)(

C̄n , ˜̄C
[1],mid
n , . . . , ˜̄C

[M],mid
n

)
;

(
C̄, C̄[1], . . . , C̄[M]

)
(2.18)

We expect that the use of both derivatives, under the null, will reduce the asymptotic variance and make
the size closer to the nominal one. Under the alternative, in the plain estimator case, the survival copula
derivative is estimated without bias, while in the Genest and Nešlehová approach, it has a bias equal to the
di�erence between the derivatives of the copula and the survival copula. Themid-estimator, instead, removes
part of the bias from the survival copula derivative estimator but adds it back to the copula derivative esti-
mator. The overall bene�t of the latter estimator is di�cult to determine a priori. The random vectors U and
1d − U are pairwise antithetical. Then, under the null, our strategy coincides with applying the antithetic
variates method [12] to reduce the copula derivative estimator’s variance.

2.2 Test Statistics

Following what previously said, we want to test the null hypothesis

H0 : C (u1, . . . , ud) = C̄ (u1, . . . , ud) (2.19)

against the alternative

H1 : C (u1, . . . , ud) ≠ C̄ (u1, . . . , ud) . (2.20)

Under the null, equation (1.3) becomes:

nSn = nSGNn = nSmidn =
∫

(0,1]d

(
Cn − C̄n

)2 dĈn . (2.21)

The multiplier copies in the three di�erent versions ver ∈ {plain, GN,mid} are:

nS̃[m],ver
n =

∫
(0,1]d

(
C̃[m]
n − ˜̄C[m],ver

n

)2
dĈn , (2.22)

In the following proposition, we obtain the weak limits under the null:

Proposition 2. Let
{{
Xij
}n
i=1

}d
j=1
≡ {Xi}ni=1 an independent sample of size n from d-dimensional random

vector X having copula C. If C is a copula symmetric under re�ection, i.e. C = C̄, under A 1, we have, as n →∞,
the following weak convergence results, for the three versions of the statistic, ver = {plain, GN,mid}:(

nSn , nS̃[1],ver
n , . . . , nS̃[M],ver

n

)
;

(
S, S[1], . . . , S[M]

)
S =

∫
(0,1]d

(
C − C̄

)2 dC,
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where S[1], . . . , S[M] are independent copies of S.

It follows from proposition 2, the proof of which is postponed to the appendix, that approximate P-values for
the tests of H0 based on Sn are given by:

P̂ver = 1
M

M∑
m=1

I
(
S̃[m],ver
n > Sn

)
,

where ver = {plain, GN,mid}.

3 Simulation Study
This section studies the �nite sample behavior of the di�erent tests of multivariate copula radial symmetry.
Throughout the section, the number of bootstrap replicates is M = 1000, and the estimated probabilities of
rejection come from 1000 Monte Carlo repetitions.

We compare the tests Splainn , Smidn , SGNn , G4,n and RNn . The test statistic G4,n is the statistic proposed in
equation (1.7) in the case k = 4, as suggested in [17]. Under the assumption A1 for the derivatives of the cop-
ula and the derivatives of the survival copula, using proposition 3.1 in [27] and Proposition 1, G4n is normally
distributed with an asymptotic variance that can be consistently estimated with the standard bootstrap. RNn
[1] is the statistic introduced in equation (1.10), with the kernel ω chosen as the product of standard normal
densities. We set the smoothing parameter σ to 1 because, to our understanding, it is the best compromise
across di�erent dimensions and copula models. We refer to the original paper for the interesting V-statistics
asymptotics and the actual implementation details of the multiplier bootstrap used in the procedure. Details
on random sampling from the di�erent copulas are in Appendix B. Before discussing the statistical perfor-
mance of the di�erent procedures, we investigate their computational performance by reporting in table 1 the
running times for a large sample (n = 500) and high dimension (d = 10) under the Frank copulamodel, using
Matlab on a Windows 10 laptop with an intel i7-6500U CPU and 8 GB of RAM. Similar results were obtained
under other speci�cations of copula models.

Table 1: Running Times of Splainn , Smidn , SGNn , RNn and G4,n , as estimated from 1000 replicates, in the n = 500, d = 10 case,
under the Frank copula model.

Mean (sec) Max (sec) Min (sec)

Splainn 0.90 2.20 0.80
Smidn 0.96 2.00 0.85
SGNn 0.89 2.61 0.78
RNn 35.58 40.57 34.08
G4,n 3.52 14.13 3.03

The fastest procedures are based on the Cramér–von Mises statistics, with an average time of about 1
second. SGNn slightly over-performs, the other two due to the evaluation of only one derivative. G4,n comes
after, with an average running time of 3.5 seconds. For this test, we relied on theMatlab Statistic andMachine
learning toolbox function bootstrp. It is possible that the running time could be lowered with a dedicated
bootstrap procedure. The slowest approach is RNn . In our understanding, this is due to the need to evaluate a
d × d × n × n tensor of second derivatives.



50 | Monica Billio, Lorenzo Frattarolo, and Dominique Guégan

Table 2: Percentages of rejection at 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Pearson Type II copula.

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 5.0 3.7 1.1 4.8 4.9 3.2 6.1 4.9 4.2
Smidn 4.7 3.6 1.2 4.4 5.1 3.4 5.7 5.0 4.4
SGNn 2.8 2.2 0.6 3.2 3.4 1.7 4.7 3.9 3.0
RNn 5.9 4.5 1.9 6.2 6.1 4.3 6.0 6.3 5.6
G4,n 4.7 4.3 2.0 5.6 5.7 2.5 5.3 4.7 3.3

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 2.2 2.9 0.3 2.4 4.1 1.8 3.9 4.9 2.6
Smidn 2.3 2.9 0.4 2.6 4.0 2.1 4.2 4.7 3.0
SGNn 0.5 0.6 0.0 1.3 2.3 0.9 2.5 3.5 0.8
RNn 4.1 5.0 3.0 4.8 5.4 3.1 4.6 6.1 3.3
G4,n 4.1 6.8 2.1 5.6 6.0 2.6 5.0 5.6 3.6

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 1.4 1.7 0.1 1.2 2.4 0.5 2.2 3.2 1.1
Smidn 1.3 1.8 0.1 1.1 2.2 0.6 2.4 3.3 1.0
SGNn 0.0 0.0 0.0 0.0 0.4 0.1 0.3 0.9 0.1
RNn 3.5 4.0 2.7 3.3 4.2 3.0 4.5 5.0 2.8
G5,n 2.5 9.7 4.7 4.0 7.8 4.3 4.3 7.7 4.7

3.1 Eliptical Family and Related Asymmetric Copulas

We �rst investigate the di�erent procedures’ success in replicating the distribution of the test statistics under
the null hypothesis. We report in table 2 , as a representative example, results for the test’s size under the
radially symmetric elliptical family of Pearson Type II copula. Similar results for Normal, t-student with ν = 4
degrees of freedom and Laplace copulas are available upon request.

The table presents di�erent sample sizes n ∈ {125, 250, 500}, di�erent dimensions of the copula d ∈
{2, 5, 10} and di�erent levels of dependence. In particular, we use as a dependence measure Kendall’s τ on
pairs of random variables imposing values in set {.25, .50, .75}.

Most procedures are close to their 5% nominal level in every set-up, excluding G4,n. This statistic is often
above the nominal level. Its size is almost doubled for a low number of observations, high dimension and
average dependence.

SGNn is themost conservative, followedby Splainn and Smidn . RNn , appears slightlymore liberal. Conservatism
decreases with sample size and increases with dependence and dimension.

To study the power of the tests based on Sn, Smidn , SGNn and RNn we consider the radially asymmetric
squared elliptical family, whose most notable members are the χ2 and Fisher copula [24]. Given a random
vector U ∼ C, the stochastic representation of a random vector V, distributed according to squared copula
associated to C, isV =

√
(1d − 2U)2, where the square root is taken elementwise. Squared normal copula and

squared t copula are the copula of random vectors distributed as χ2 and Fisher distributions.We use the same
simulated samples used for the elliptical family experiments, obtaining results for χ2 (table 3), Fisher (table
4), squared Laplace (table 5) and squared Pearson Type II (table 6) copulas. For this reason, Kendall’s τ for
this set of experiments is that of the associated elliptical random vector. We refer to [24] for the relationship
among the Kendall’s τ of the squared and original copula.

In the bivariate case, the most powerful test is usually G4,n, excluding τ = 0.5 in the Pearson Type II
case. Instead, for a higher number of dimensions, G4,n is among theworst ones, with SGNn . RNn , Splainn and Smidn
are close in performance for the χ2 and Fisher copula. RNn is, usually, the most powerful test in the squared
Pearson Type II case, while Splainn and Smidn are better in the squared Laplace case.

In the squared elliptic family, the monotone behavior of dependence with power suggests a non-
decreasing relationship between asymmetry and dependence. To disentangle the interaction of asymmetry
and dependence, we close the section by introducing another asymmetric variant of the Student t copula.
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Table 3: Percentages of rejection at 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the χ2 copula (*Kendall’τ refers to the associated normal copula).

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 5.7 42.8 73.2 9.7 78.1 97.0 17.4 98.0 100.0
Smidn 5.8 42.9 73.1 9.3 78.0 96.9 17.1 98.3 100.0
SGNn 3.5 34.8 60.5 8.4 75.2 96.5 15.6 98.1 100.0
RNn 9.5 58.2 83.4 15.0 88.1 98.6 27.4 99.7 100.0
G4,n 11.5 66.0 95.4 20.7 92.3 100.0 37.9 99.8 100.0

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 7.9 94.0 94.8 25.4 100.0 100.0 70.8 100.0 100.0
Smidn 7.7 94.0 95.1 25.5 100.0 100.0 71.3 100.0 100.0
SGNn 1.6 81.1 82.0 16.3 100.0 99.9 63.8 100.0 100.0
RNn 19.5 98.6 95.9 50.2 100.0 100.0 88.8 100.0 100.0
G4,n 5.5 93.4 100.0 35.2 100.0 100.0 77.0 100.0 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 1.6 95.5 93.0 13.7 100.0 100.0 74.6 100.0 100.0
Smidn 1.6 95.5 93.7 14.1 100.0 100.0 75.2 100.0 100.0
SGNn 0.0 62.6 57.6 2.1 99.9 99.8 47.5 100.0 100.0
RNn 29.1 100.0 94.9 84.5 100.0 100.0 99.9 100.0 100.0
G4,n 0.1 59.6 99.9 5.7 97.1 100.0 32.9 100.0 100.0

Table 4: Percentages of rejection at 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Fisher copula (*Kendall’τ refers to the associated Student-t copula).

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 20.0 51.6 74.1 43.3 85.0 97.8 77.6 99.9 100.0
Smidn 19.6 51.7 74.7 43.8 85.5 97.8 77.6 99.9 100.0
SGNn 14.4 42.8 60.7 40.4 83.5 97.1 76.4 99.9 100.0
RNn 28.6 62.2 80.0 56.9 91.0 98.4 86.2 100.0 100.0
G4,n 40.4 75.4 93.4 71.5 96.9 100.0 93.2 100.0 100.0

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 64.3 95.2 97.4 97.8 100.0 100.0 100.0 100.0 100.0
Smidn 64.6 95.6 97.5 97.8 100.0 100.0 100.0 100.0 100.0
SGNn 35.6 84.9 85.6 95.0 100.0 100.0 100.0 100.0 100.0
RNn 70.1 95.3 95.9 98.1 100.0 100.0 100.0 100.0 100.0
G4,n 29.1 92.3 100.0 79.4 100.0 100.0 99.1 100.0 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 54.7 98.8 96.3 98.7 100.0 100.0 100.0 100.0 100.0
Smidn 53.2 98.8 97.1 98.7 100.0 100.0 100.0 100.0 100.0
SGNn 6.0 75.6 61.7 77.1 100.0 100.0 100.0 100.0 100.0
RNn 92.7 99.5 94.6 100.0 100.0 100.0 100.0 100.0 100.0
G4,n 2.8 68.7 99.8 25.9 98.8 100.0 71.6 100.0 100.0
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Table 5: Percentages of rejection at 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Squared Laplace copula (*Kendall’τ refers to the associated Laplace copula).

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 6.9 27.6 59.6 12.6 56.5 93.6 25.2 88.1 99.9
Smidn 7.1 28.0 60.8 11.9 57.6 93.9 25.2 88.4 99.9
SGNn 3.8 20.2 46.5 10.8 54.7 93.0 23.0 86.3 99.9
RNn 9.6 38.3 72.4 18.1 66.4 96.3 32.7 92.7 99.9
G4,n 12.8 48.5 87.1 26.1 80.3 99.6 43.0 97.6 100.0

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 69.4 82.0 92.4 97.5 99.1 100.0 100.0 100.0 100.0
Smidn 68.8 82.0 92.6 97.2 99.1 100.0 100.0 100.0 100.0
SGNn 35.8 55.5 73.5 94.0 98.8 100.0 100.0 100.0 100.0
RNn 18.5 61.8 92.8 55.4 92.8 99.8 96.8 99.9 100.0
G4,n 5.4 50.0 97.9 4.9 81.2 100.0 6.5 97.7 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 97.4 96.4 92.6 100.0 100.0 100.0 100.0 100.0 100.0
Smidn 96.4 96.4 93.8 100.0 100.0 100.0 100.0 100.0 100.0
SGNn 14.2 40.4 44.6 100.0 100.0 99.9 100.0 100.0 100.0
RNn 36.3 69.9 92.1 97.3 98.1 99.9 100.0 100.0 100.0
G4,n 12.7 31.3 95.2 12.4 60.7 100.0 11.9 88.8 100.0

Table 6: Percentages of rejection at 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Squared Pearson Type II copula (*Kendall’τ refers to the associated Pearson Type II copula).

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 8.7 46.5 50.2 15.4 81.2 87.7 35.0 99.2 99.8
Smidn 8.2 45.7 51.4 16.5 82.3 87.2 37.0 99.3 99.9
SGNn 6.8 33.7 37.7 12.4 79.3 85.0 34.0 99.1 99.7
RNn 9.3 48.3 61.4 19.5 78.3 91.0 40.1 97.3 99.5
G4,n 33.8 20.6 80.0 75.3 35.9 98.0 98.8 58.4 100.0

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 12.4 97.5 91.4 74.8 100.0 99.8 100.0 100.0 100.0
Smidn 11.3 97.8 91.2 74.8 100.0 99.8 99.9 100.0 100.0
SGNn 6.0 90.6 74.4 68.5 100.0 99.7 99.8 100.0 100.0
RNn 27.9 99.9 93.4 76.9 100.0 99.8 99.6 100.0 100.0
G4,n 25.3 99.0 100.0 65.6 100.0 100.0 89.7 100.0 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 0.4 97.0 90.7 14.8 100.0 99.9 94.2 100.0 100.0
Smidn 0.3 97.2 91.6 14.7 100.0 99.9 94.3 100.0 100.0
SGNn 0.0 63.1 48.2 1.7 100.0 99.7 70.6 100.0 100.0
RNn 20.6 100.0 93.4 82.5 100.0 100.0 99.9 100.0 100.0
G4,n 4.2 85.5 100.0 20.5 99.3 100.0 47.2 100.0 100.0
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The skew-t family has a degree of asymmetry governed by the vector of parameters γ. We focus on the case
γ = γ1d.We detail the tests’ performance under a Skew-t family,with ν = 4degrees of freedomunder di�erent
degrees of dependence as a function of the asymmetry parameter γ taking values in {−1, −0.5, 0}. Experi-
ments with γ = 0.5, 1 were also conducted but not reported because they show a behavior similar to their
negative counterparts. We show results for dimension 2 in table 7 and dimension 10 in table 8. As expected,
the power increases with asymmetry for all the procedures. With constant asymmetry, power decreases if we
increase dependence. Power decreaseswith dimension. In dimension 2, the test based on G4,n prevails, while
the SGNn based test has the worst performance. The same results carry over in the d = 10 case, if we do not
consider the case n = 250, τ = 0.25 and γ = −0.5 , in which the best performing tests appear to be the ones
based on Splainn and Smidn . In general, for moderate asymmetry and high dependence, all procedures fail to
deliver adequate power even with n = 500.

Table 7: Percentages of rejection at a 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Skew t-student copula with ν = 4 degrees of freedom, in dimension 2.

n=125 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 59.4 27.2 4.7 34.9 15.1 3.5 11.6 6.7 2.1
Smidn 58.3 26.5 4.5 35.7 15.0 3.2 11.9 7.0 3.0
SGNn 56.1 25.7 3.8 31.0 13.4 2.2 7.8 4.4 0.6
RNn 60.9 29.0 4.5 36.5 15.2 3.3 9.2 4.2 1.8
G4,n 76.3 40.5 6.0 45.5 20.3 3.9 3.6 2.4 0.9

n=250 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 87.8 47.9 4.5 63.8 28.4 3.6 31.4 12.4 3.3
Smidn 87.3 48.1 4.4 64.2 28.2 4.1 33.6 13.1 3.6
SGNn 86.9 46.4 4.1 61.0 26.6 3.3 26.3 9.0 2.3
RNn 89.7 52.3 4.4 67.8 30.4 3.7 41.0 14.2 2.1
G4,n 96.4 67.6 4.8 84.0 41.8 5.3 50.1 17.7 1.0

n=500 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 99.4 80.3 2.7 94.4 50.7 3.6 69.3 24.2 3.8
Smidn 99.4 79.5 3.1 94.5 50.6 3.9 69.1 25.6 4.6
SGNn 99.4 79.4 2.6 93.7 48.8 3.3 63.5 21.0 2.7
RNn 99.7 84.0 3.3 94.8 56.0 4.1 77.8 31.5 4.1
G4,n 100.0 94.1 4.9 99.7 73.9 4.9 94.3 46.8 3.0

3.2 Archimedean Family

We include Archimedean copulas in the study, focusing on the non-symmetric Clayton and Gumbel families
(tables 9 and 10, respectively), and on the Frank family (table 11), which is symmetric in two dimensions and
mildly asymmetric beyond dimension two.

In the Clayton case, asymmetry is strong, and all tests deliver adequate power in most cases with some
di�culties for n = 125 and low or high dependence. G4,n is again the champion in the bivariate case, while
for higher dimensions, di�erent procedures deliver the best performance in other cases. For this family, the
overall relationship between power and dimension and between power and dependence is blurry.

In the Gumbel case, achieving su�cient power is more challenging and appears possible only for big
samples in high dimensions. In this case, increasing dimension helps. The relationship with dependence is
increasing for d = 2 and decreasing in the higher dimensional cases. In the vast majority of cases, the G4,n
statistic outperforms the others if we neglect the case n = 125, d = 10 and τ = 0.25, in which the best
procedures are those based on Splainn and Smidn .

In table 11, we study the Frank family, which is symmetric in two dimensions and mildly asymmetric
beyond dimension two. In dimension 2, we reproduce the situation discussed for the elliptic family. In the
non-symmetric cases, instead, we see that Cramér von Mises based tests generally outperform G4,n and the
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Table 8: Percentages of rejection at a 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Skew t-student copula with ν = 4 degrees of freedom, in dimension 10.

n=125 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 90.8 48.8 2.6 31.2 11.8 0.9 0.0 0.1 0.0
Smidn 90.9 47.3 2.4 32.7 12.5 0.9 0.0 0.1 0.0
SGNn 67.6 14.4 0.0 4.6 1.8 0.0 0.0 0.0 0.0
RNn 91.0 61.3 2.2 52.3 22.6 3.5 17.9 7.9 3.1
G4,n 96.3 69.7 6.2 78.1 47.8 7.3 15.7 9.2 2.2

n=250 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 100.0 96.8 3.3 93.4 50.6 2.6 7.4 3.9 0.4
Smidn 100.0 96.8 2.9 93.9 50.5 2.6 8.9 4.4 0.4
SGNn 99.9 86.8 0.1 79.9 31.1 0.2 0.1 0.3 0.0
RNn 100.0 93.7 2.5 86.0 46.6 3.4 45.4 17.2 3.3
G4,n 100.0 88.5 7.4 98.8 71.6 6.9 71.6 33.0 3.4

n=500 τ = 0.25 τ = 0.5 τ = 0.75

γ -1 0.5 0 -1 0.5 0 -1 0.5 0

Splainn 100.0 100.0 3.7 100.0 90.1 2.4 68.7 24.4 1.0
Smidn 100.0 100.0 3.6 100.0 90.0 2.6 71.3 26.1 1.2
SGNn 100.0 100.0 0.8 100.0 83.1 1.2 35.5 9.9 0.0
RNn 100.0 100.0 3.1 99.3 79.1 3.2 78.7 33.8 4.3
G4,n 100.0 98.9 6.1 100.0 94.1 5.6 99.6 75.7 4.0

Table 9: Percentages of rejection at a 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Clayton copula.

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 43.7 89.2 97.0 72.9 99.7 100.0 95.2 100.0 100.0
Smidn 43.0 88.3 97.0 72.5 99.8 100.0 95.3 100.0 100.0
SGNn 40.9 86.8 95.8 70.6 99.7 100.0 94.9 100.0 100.0
RNn 45.0 90.2 97.3 77.0 99.8 100.0 96.2 100.0 100.0
G4,n 61.6 96.5 99.3 87.9 100.0 100.0 99.1 100.0 100.0

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 90.1 99.4 93.5 100.0 100.0 100.0 100.0 100.0 100.0
Smidn 89.2 99.3 94.0 100.0 100.0 100.0 100.0 100.0 100.0
SGNn 81.6 98.4 72.9 100.0 100.0 100.0 100.0 100.0 100.0
RNn 85.9 98.2 98.8 99.7 100.0 100.0 100.0 100.0 100.0
G4,n 81.8 100.0 100.0 97.0 100.0 100.0 100.0 100.0 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 88.9 99.9 50.4 100.0 100.0 100.0 100.0 100.0 100.0
Smidn 87.3 100.0 61.3 100.0 100.0 100.0 100.0 100.0 100.0
SGNn 45.0 98.2 6.1 99.8 100.0 100.0 100.0 100.0 100.0
RNn 97.4 99.3 98.9 100.0 100.0 100.0 100.0 100.0 100.0
G4,n 76.4 100.0 100.0 93.2 100.0 100.0 100.0 100.0 100.0
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Table 10: Percentages of rejection at a 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Gumbel copula.

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 11.4 19.8 15.1 24.8 45.7 41.0 50.3 79.6 80.2
Smidn 10.8 19.9 16.0 25.1 46.7 43.2 51.0 79.3 81.1
SGNn 7.8 13.0 6.0 22.8 42.4 35.7 48.9 76.9 76.7
RNn 16.7 27.9 26.7 32.7 55.6 57.6 59.8 84.0 87.7
G4,n 23.7 41.9 29.9 46.1 73.7 75.6 78.1 95.5 97.7

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 56.9 59.4 8.9 97.3 98.8 74.2 100.0 100.0 99.7
Smidn 57.0 60.9 9.7 97.4 98.9 77.4 100.0 100.0 99.7
SGNn 38.3 33.5 0.4 96.2 97.3 48.1 100.0 100.0 99.2
RNn 77.5 78.9 47.7 97.8 97.9 82.9 100.0 100.0 99.2
G4,n 79.7 93.5 74.9 98.7 99.9 98.8 100.0 100.0 100.0

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 96.9 92.6 1.0 100.0 100.0 94.0 100.0 100.0 100.0
Smidn 97.0 93.2 1.7 100.0 100.0 95.7 100.0 100.0 100.0
SGNn 73.4 46.6 0.0 100.0 100.0 43.8 100.0 100.0 100.0
RNn 93.3 85.7 44.5 100.0 99.8 82.0 100.0 100.0 99.3
G4,n 65.6 96.4 85.0 98.2 100.0 99.9 100.0 100.0 100.0

characteristic function test, with di�erences increasing with the number of observations and dimensions.
Again Splainn and Smidn have the same behavior and are comparatively better than SGNn . Power deteriorates
with dependence.

Table 11: Percentages of rejection at a 5% signi�cance level, as estimated from 1000 replicates, for the tests based on Splainn ,
Smidn , SGNn , RNn and G4,n under the Frank copula.

d=2 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 4.6 4.6 3.6 4.9 4.7 3.6 4.7 4.0 3.6
Smidn 4.7 4.6 3.8 5.1 4.7 4.2 5.1 4.2 3.9
SGNn 3.0 2.4 1.8 4.1 3.6 2.2 3.9 3.2 2.4
RNn 5.2 4.3 3.0 5.7 4.8 4.7 4.9 4.8 3.9
G4,n 5.4 6.0 1.8 5.9 5.1 4.3 5.4 4.6 3.9

d=5 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 19.2 6.9 0.4 78.8 42.8 2.6 99.9 97.4 16.0
Smidn 18.5 7.1 0.3 79.0 44.1 2.9 99.9 97.4 17.1
SGNn 9.2 2.1 0.0 70.7 30.9 0.7 99.7 95.6 6.1
RNn 25.9 13.4 4.6 65.3 21.1 5.8 98.1 46.4 6.7
G4,n 17.2 18.1 7.1 44.8 31.6 13.3 72.9 56.6 18.2

d=10 n=125 n=250 n=500

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Splainn 92.7 46.0 0.1 100.0 99.9 7.4 100.0 100.0 99.4
Smidn 91.6 48.7 0.1 100.0 99.9 8.7 100.0 100.0 99.6
SGNn 64.1 10.6 0.0 100.0 99.6 0.4 100.0 100.0 82.5
RNn 58.3 12.1 3.0 98.7 31.9 4.0 100.0 84.9 6.9
G4,n 9.3 31.1 11.6 65.4 70.7 23.4 96.9 96.2 43.7

4 Conclusions
This article extends the bivariate test of copula radial symmetry introduced in [11] to more than two dimen-
sions. Additionally, it re�nes the inference procedure by proposing two new estimators of copula derivatives
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under the null. These re�nements bring the Cramér von Mises test to a performance comparable to the major
competitors based on a linear statistic [17] and the characteristic function [1]. In fact, in our extensive simula-
tion study, including the recently proposed squared elliptic copulas [10] among other models, SGNn is always
worse thanor equal to the twoother newprocedures, that are overall equivalents in termsof performance. The
newmethods based on the Cramér vonMises statistic and the test based on characteristic function, proposed
in [1], are comparable in retaining the nominal level under the null and have overall similar power under the
alternative. In particular, RNn shows more power under the squared Pearson Type II copula, while Splainn and
Smidn perform better in the squared Laplace and Frank cases. These procedures are more or less equivalent
under the symmetric models and the other asymmetric models studied. The hypothesis tested by Gk,n is dif-
ferent from copula radial symmetry, and the interpretation of the test requires additional care. Nevertheless,
the test based on G4,n is the best performer for d = 2 for the copulamodel considered in the simulation study,
even if slightly too liberal under the null. In higher dimensions, the discrepancy between the empirical size
and the nominal one increases, and the size becomes almost twice the nominal in the worst cases. Under the
alternative, beyond dimension 2, G4,n is themost powerful under the skew-t and Gumbel copula. Taking into
account running times (table 1), a relevant aspect in the high dimensional domain, Splainn and Smidn appear
the best trade-o� between statistical and computational performance.

Overall, the simulation study shows how all the inference procedures studied appear reliable in high
dimensions with low and moderate levels of dependence and high asymmetry, using a sample size of 500,
and often of 250, observations. High dependence and medium or low asymmetry require an increase of the
sample size beyond 500 observations. The relation between power and dimension depends on the underlying
copula model.

The investigation of copula radial symmetry tests in the context of time series is left for future research.
However, we remark that the use of continuous mapping theorem in [23] or the functional delta method, in
the present paper, in deriving the asymptotic properties of the test based on the Cramér von Mises statistic
allows an easy extension to stronglymixing data along the lines of [3], coveringmost of the known stationary
parametric models. Similar comments apply to G4,k if we introduce the use of circulant bootstrap or other
dependent bootstraps, while the extension of RNn appears more challenging.
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A Proofs
The pseudo-observations Ûij = 1

n + 1
∑n

k=1 I
(
Xkj ≤ Xij

)
, i = 1, . . . , n and j = 1, . . . , d are asymptotically

equivalent to 1
n
∑n

k=1 I
(
Xkj ≤ Xij

)
, i = 1, . . . , n and j = 1, . . . , d. Since the weak convergence of the empirical

copula process is derived in [27] using the latter expression for pseudo-observation, in the proof we follow
this convention and we call it, with a slight abuse of notation, Ûij = 1

n
∑n

k=1 I
(
Xkj ≤ Xij

)
, i = 1, . . . , n and

j = 1, . . . , d. In the n →∞ limit, results obtained in this way are equivalent to the ones obtainable using the
main text’s convention. The use of the alternative convention in the main text is due to better �nite sample
behavior.
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A.1 Proof of Proposition 1

The proof obtains a relationship between Cn,I,J and the empirical distribution function of Vij = TJ
(
Uij
)
,

whose empirical process is known. The relationship requires introducing an auxiliary function equivalent to
a particular expected value of a product of indicators and the empirical version of this expected value. This
relationship is the map studied in [4], which derives its Hadamard di�erentiability. The result follows from
an application of the functional delta method to the map.

We de�ne the function FI,J : Rp 7→ R,

FI,J (x) = E

∏
j∈J

I
(
Xj > xj

) ∏
j∈I\J

I
(
Xj ≤ xj

) ,
For each j ∈ I, we de�ne as FI,J,j

(
xj
)
the limits of FI,J (x), letting xj′ → −∞ for all j′ ∈ J \ j and letting xj′ →∞

for all j′ ∈ I \
(
J \ j
)
:

FI,J,j
(
xj
)

=


F̄j
(
xj
)

if j ∈ J

Fj
(
xj
)

if j ∈ I \ J
,

For each j ∈ I, we de�ne the generalized inverse of FI,J,j:

F−I,J,j (u) =


sup

{
x ∈ R : FI,J,j (x) ≤ u

}
, u ∈ [0, 1] if j ∈ J

inf
{
x ∈ R : FI,J,j (x) ≥ u

}
, u ∈ [0, 1] if j ∈ I \ J

.

The copula of the transformed vector CI,J can be expressed as a function of FI,J and of F−I,J,j , j ∈ I,

CI,J (v) = E

∏
j∈J

I
(
F̄j
(
Xj
)
≤ vj
) ∏
j∈I\J

I
(
Fj
(
Xj
)
≤ vj
)

= E

∏
j∈J

I
(
Xj > F̄−j

(
vj
)) ∏

j∈I\J

I
(
Xj ≤ F−j

(
vj
))

= FI,J
(
F−I,J,i1

(
vi1
)
, . . . , F−I,J,ip

(
vip
))

(A.1)

The empirical versions of FI,J and FI,J,j with j ∈ I, are de�ned as follows:

Fn,I,J (x) = 1
n

n∑
i=1

∏
j∈J

I
(
Xij > xj

) ∏
j∈I\J

I
(
Xij ≤ xj

)

Fn,I,J,j
(
xj
)

=



1
n

n∑
i=1

I
(
Xij > xj

)
if j ∈ J

1
n

n∑
i=1

I
(
Xij ≤ xj

)
if j ∈ I \ J

The empirical counterpart of equation (A.1) is:

Cn,I,J (v) = 1
n

n∑
i=1

∏
j∈I

I
(
RJ
(
Ûji
)
≤ vj
)

= Fn,I,J
(
F−n,I,J,i1

(
vi1
)
, . . . , F−n,I,J,ip

(
vip
))

(A.2)
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We introduce the empirical distribution function of Vij = TJ
(
Uij
)
:

Gn (v) = 1
n

n∑
i=1

I (Vi ≤ v)

Using the results in [8], the multivariate empirical process on [0, 1]p, Gn =
√
n
(
Gn − CI,J

)
has weak conver-

gence limit:

Gn (u) ; BCI,J (u)
Cov

(
BCI,J (u) ,BCI,J (v)

)
= CI,J (u ∧ v) − CI,J (u) CI,J (v) .

Inwhat follows, we derive the relationship between Gn and Cn,I,J using Fn,I,J and equation (A.3).We have
the following expression for Gn:

Gn (v) = 1
n

n∑
i=1

∏
jk∈J

I
(
Xij > F−I,J,j

(
vj
)) ∏

j∈I\J

I
(
Xij ≤ F−I,J,j

(
vj
))

= Fn,I,J
(
F−I,J,i1

(
vi1
)
, . . . , F−I,J,ip

(
vip
))

. (A.3)

For each j ∈ I, letting vj′ → 1 for all j′ ∈ I \ j in equation (A.3), we obtain the following relationship
between the marginals of Gn , F−I,J,j and Fn,I,J,j with j ∈ I :

Gnj
(
vj
)

= Fn,I,J,j
(
F−I,J,j

(
vj
))

Then, using the composition properties of the generalized inverses, it follows that:

G−nj
(
vj
)

= FI,J,j
(
F−n,I,J,j

(
vj
))
. (A.4)

Substituting (A.4) in equation (A.3) and using equation (A.2), we obtain the following alternative representa-
tion of Cn,I,J:

Gn
(
G−ni1

(
vi1
)
, . . . , G−nip

(
vip
))

= Cn,I,J (v) .

We now introduce the map [4]

Φ :
{

DΦ 7→ `∞ [0, 1]p

H 7→ H
(
H−1

1 , . . . , H−1
p
) ,

where DΦ denotes the set of all distribution functions H on [0, 1]p, whose marginal CDFs Hj satisfy Hj (0) =
0, j ∈ {1, . . . , p}. Using this map, the empirical copula process of the transformation can be expressed as
follows:

Cn,I,J =
√
n
(
Φ (Gn) − Φ

(
CI,J
))
. (A.5)

Theorem 2.4 in [4] implies that, under A 1, Φ is Hadamard di�erentiable at CI,J, and the application of the
functional delta method to (A.5) yields the result.

A.2 Proof of Proposition 2

Let C [0, 1]d be the space of function f : [0, 1]d → R that are continuousD [0, 1]d; the space of cadlag function
on [0, 1]d; and BV1 [0, 1]d the subspace of D [0, 1]d consisting of the functions with total variation bounded
by one. For notational convenience, we consider only one multiplier replicate the generalization to M repli-
cates being straightforward. Under the null and assumption A1, (2.14)-(2.18) hold. We can write:((

Cn − C̄n
)2 ,

(
C̃[1],ver
n − ˜̄C[1],ver

n

)2
,Cn

)
=
√
n
((

An ,A[1],ver
n , Ĉn

)
−
(
A,A[1],ver , C

))
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where An =
√
n
(
Cn − C̄n

)2, Â[1],ver
n = 1√

n

((
C̃[1],ver
n − ˜̄C[1],ver

n

)2
)
, A = A[1] = 0 and ver ∈

{plain, GN,mid} .
From continuous mapping theorem, we get:((
Cn − C̄n

)2 ,
(
C̃[1],ver
n − ˜̄C[1],ver

n

)2
,Cn

)
;

((
C − C̄

)2 ,
(
C[1],ver − C̄[1],ver

)2
,C
)

on
[
`∞ [0, 1]d

]4
.

Let us introduce the map Ψ : `∞ [0, 1]d × `∞ [0, 1]d × BV1 [0, 1]d −→ R2, de�ned by

Ψ (α, α̃, β) =

 ∫
(0,1]d

αdβ,
∫

(0,1]d

α̃dβ

 . (A.6)

We have, then, (
nTn , nT̃[1]

n

)
=
√
n
(
Ψ
(
An , Â[1],ver

n , Cn
)
− Ψ

(
A,A[1],ver , C

))
.

We state the Hadamard di�erentiability of Ψ tangentially to C [0, 1]d × C [0, 1]d × d [0, 1]d at each (α, α̃, β)
in `∞ [0, 1]d × `∞ [0, 1]d × BV1 [0, 1]d, such that

∫
|dα| < ∞ and

∫
|dα̃| < ∞ in the lemma 1 below. Then, an

application of the functional delta method gives(
nT̂n , nT̃[1],ver

n

)
; Ψ ′

A,A[1],ver ,C

((
C − C̄

)2 ,
(
C[1],ver − C̄[1],ver

)2
,C
)

with

Ψ ′
A,A[1],ver ,C

((
C − C̄

)2 ,
(
C[1],ver − C̄[1],ver

)2
,C
)

=

 ∫
(0,1]d

AdC +
∫

(0,1]d

(
C − C̄

)2 dC,
∫

(0,1]d

A[1],verdC +
∫

(0,1]d

(
C[1],ver − C̄[1],ver

)2
dC


=

 ∫
(0,1]d

(
C − C̄

)2 dC,
∫

(0,1]d

(
C[1],ver − C̄[1],ver

)2
dC

 =
(
T,T[1],ver

)
.

Lemma 1. Themap Ψ de�ned in (A.6) is Hadamard di�erentiable tangentially to C [0, 1]d ×C [0, 1]d ×d [0, 1]d

at each (α, α̃, β) in `∞ [0, 1]d × `∞ [0, 1]d × BV1 [0, 1]d, such that
∫
|dα| < ∞ and

∫
|dα̃| < ∞ with derivative

given by

Ψ ′
A,Ã,B (α, α̃, β) =

 ∫
(0,1]d

Adβ +
∫

(0,1]d

αdB,
∫

(0,1]d

Ãdβ +
∫

(0,1]d

α̃dB


where if β is not of bounded variation,

∫
αdβ,

∫
α̃dβ are de�ned via the d-dimensional integration by parts

formula exempli�ed for 2 dimensions in Theorem 8.8 of [13].

Lemma 1 is a vectorized d-dimensional version of lemma 3.9.17 in [29] (see, also, lemma 4.3 of [5]) and, since
the proof is similar, it will be omitted.



60 | Monica Billio, Lorenzo Frattarolo, and Dominique Guégan

B Random Sampling
We report procedures and software used to simulate the di�erent copula models included in the simulation
study.

We start with the elliptical family. Normal copula and t-student samples come from the R copula package
[15] and are based on the random sampling from the multivariate distribution and a component-wise proba-
bility integral transform of the obtained vector. We implemented in Matlab the same procedure for Laplace
and Pearson Type II copulas. In particular, we used the general stochastic representation for elliptic multi-
variate distributions introduced in [9] for generation of the Pearson type II base random vector:

X = RCS

S is uniformly distributed on the d-dimensional sphere and can be easily obtained by generating a d-
dimensional independentmultivariate normal random vectorN and dividing each component by its `2 norm.
R is independent of S and can be obtained in the Pearson Type II case by simulating its square R2 as a
β
(
d/2, 1/2

)
random variable and taking the square root. C is the Cholesky decomposition of the correlation

matrix. The marginal distribution of X has the following expression:

F (x) =
Γ
(

(d − 1)/2
)

√
πΓ
(
d/2

) x∫
−1

(
1 − y2

)d/2−1
dy,

where Γ(x) is the Euler gamma function, We report the expressions for U in the cases d = 2, 3, 4, 5, 10 (func-
tions of vectors are taken component-wise):

d = 2 U = (X + 1) /2

d = 3 U = 1 + X
√

1 − X2 − arccos (X)√
π

d = 4 U = − (X + 1) (X − 2) /4

d = 5 U = 3π + 2X(5 − 2X2)
√

1 − X2 + 6arcsin(X)
6π

d = 10 U = (1 + X)5(128 + 5X(X(69 + 7(X − 5)X)) − 65)
256

The stochastic representation for Laplace random vectors uses an independent normal random vector N:

X = RCN
U = 1/2 + 1/2sign(X)(1 − exp(−|X|));

where R2 = 2E with E ∼ Exp (1).
As already recalled in the main text, the squared elliptical copulas are obtained starting from an elliptic

U and computing
√

(1d − 2U).
The skew-t copula comes from the skew-t multivariate distribution, i.e. from the following stochastic rep-

resentation :

X = γW +
√
WCN;

where, again, N is a vector of normal independent random variables, C is the Cholesky decomposition of the
correlationmatrix, andW ∼ Ig

(
ν/2, ν/2

)
. This is a particular case of themultivariate generalized hyperbolic

distribution [7]. For the sampling ofX and the numerical integration of the CDF required for the PIT, we relied
on the R package ghyp [30].

Finally, an exchangeable Archimedean copula with generator ψ has the following stochastic representa-
tion:

U = ψ(E/W);
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where E is a random vector of independent Exp (1) random variables and W is distributed as the inverse
Laplace–Stieltjes transformofψ.We refer to [14] for thedistributionand randomgenerationofW in theFrank,
Clayton andGumbel cases. TheR copulapackage fromwhichweobtained the samples uses thismethodology.
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