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Abstract
Aim  The aim of this study was to examine the associations between the injury risk and the acute (AL) to chronic (CL) 
workload ratio (ACWR) by substituting the original CL with contrived values to assess the role of CL (i.e., the presence and 
implications of statistical artefacts).
Methods  Using previously published data, we generated a contrived ACWR by dividing the AL by fixed and randomly 
generated CLs, and we compared these results to real data. We also reproduced previously reported subgroup analyses, 
including dichotomising players’ data above and below the median CL. Our analyses follow the same, previously published 
modelling approach.
Results  The analyses with original data showed effects compatible with higher injury risk for ACWR only (odd ratios, 
OR: 2.45, 95% CI 1.28–4.71). However, we observed similar effects by dividing AL by the “contrived” fixed and randomly 
generated CLs: OR 1.95 (1.18–3.52) dividing by 1510 (average CL); and OR ranging from 1.16 to 2.07, using random CL 
1.53 (mean). Random ACWRs reduced the variance relative to the original AL and further inflated the ORs (mean OR 1.89, 
from 1.42 to 2.70). ACWR causes artificial reclassification of players compared to AL alone. Finally, neither ACWR nor 
AL alone confer a meaningful predictive advantage to an intercept-only model, even within the training sample (c-statistic 
0.574/0.544 vs. 0.5 in both ACWR/AL and intercept-only models, respectively).
Discussion  ACWR is a rescaling of the explanatory variable (AL, numerator), in turn magnifying its effect estimates and 
decreasing its variance despite conferring no predictive advantage. Other ratio-related transformations (e.g., reducing the 
variance of the explanatory variable and unjustified reclassifications) further inflate the OR of AL alone with injury risk. 
These results also disprove the etiological theory behind this ratio and its components. We suggest ACWR be dismissed as 
a framework and model, and in line with this, injury frameworks, recommendations, and consensus be updated to reflect the 
lack of predictive value of and statistical artefacts inherent in ACWR models.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4027​9-020-01378​-6) contains 
supplementary material, which is available to authorized users.
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Key Points 

ACWR is a rescaling of the explanatory variable, in turn 
magnifying its effect estimates and decreasing its vari-
ance despite conferring no predictive advantage.

Other ratio-related transformations (e.g., reducing the 
variance of the explanatory variable and unjustified 
reclassifications) further inflate the effect estimates.

These results also disprove the etiological theory behind 
this ratio and its components.

The ACWR as metric related to injuries should be disre-
garded and international recommendations updated and 
corrected.

1  Introduction

The number of studies examining the relation between train-
ing load and injuries in athletic populations has grown in 
recent years, and at present, there are over 100 studies on the 
topic [1–4]. To find an association between training load and 
injuries, various measures of training exposure have been 
created. The most popular metric, commonly used as a gold 
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standard reference “model” for several international guide-
lines, is the acute:chronic workload ratio (ACWR) [1, 5–9]. 
This ratio is obtained by dividing a ‘fatigue’ component by 
a ‘fitness’ component. The ‘fatigue’ component is repre-
sented by the acute workload (AL), commonly calculated 
using the workload of the week preceding the injury, while 
the ‘fitness’ component is represented by the chronic work-
load (CL), which is the average workload of the four weeks 
preceding the injury [6, 7]. The AL compared to the CL as 
measured using this ratio is widely considered to reflect the 
risk of injury in athletic populations.

ACWR has recently taken sports science and medicine 
by storm. It has consistently been claimed that the ACWR 
is associated with injury risk [1, 5, 7, 10–13], making it a 
useful metric to reduce the injury risk or prevent injury [7]. 
This metric has been popularised by several editorials and 
consensus in high impact factor sport science and medicine 
journals [5, 7, 10–13]. Speaking to their influence, these 
papers are amongst the most highly cited in the field. The 
rise in the attention received by “load management” in pro-
fessional practice has also been fuelled by these studies. The 
influence of ACWR has even bled into the international cir-
cuit; it is being used in the development of international 
guidelines and consensus statements by leading organisa-
tions such as the International Olympic Committee (IOC) 
[12]. ACWR is ubiquitous and is included in national athlete 
management systems and commercially available software 
under the assumption that it is related to injury risk and can 
help (in isolation or in combination with other metrics) to 
reduce injuries.

Adaptations of ACWR have been proposed using differ-
ent ways to calculate the AL and CL, such as the exponen-
tially weighted moving average (EWMA) [14, 15], coupled 
or uncoupled (AL included or not in the CL calculation) 
[16], and different time windows [17, 18]. Regardless of the 
method, all have been suggested to work (i.e., are associated 
with injury); yet, all have conserved a common characteris-
tic: they are all ratios.

Researchers have warned about the use of the ACWR 
because of a ratio’s failure to normalise the numerator by 
the denominator and the risk of artefacts (i.e. it adds unnec-
essary noise) [19]. However, not only did these warnings 
not gain traction [2], they have been largely ignored, and in 
doing so, ignore issues that have been highlighted by statisti-
cians for decades [19–21].

The aim of this study is to explicate the ratio effects of the 
ACWR. Using a previously published dataset from profes-
sional football players, where originally, a relation between 
ACWR and injury was reported, we demonstrate the arte-
facts introduced through the use of a ratio.

2 � Methods

2.1 � Dataset

Although this demonstration could also be achieved with 
simulated data, we used a previously published dataset to 
show the impact on real-world data and results. Data reuse 
and publication of the results were approved by the authors 
of the previous publication and the management of the 
respective team. The details of the data collection can be 
found in the original manuscript that has been made freely 
accessible online by the publisher. The manuscript does not 
comply with the Strengthening the Reporting of Observa-
tional Studies in Epidemiology or Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
or Diagnosis recommendations for reporting since it is a 
methodological study [22, 23].

2.2 � Participants

Briefly, the players’ individual training load was collected 
on a professional Italian Serie A team, on 34 players [mean 
(SD), age: 26 (5) years; height: 182 (5) cm; body mass: 78 
(4) kg] over 3 competitive seasons (2013/2014, 2014/2015, 
and 2015/2016). The dataset was the same used by Fanchini 
et al. [24], but we deleted the individual player loads with 
missing data to allow better comparisons between analyses 
and to avoid any missing data imputation potential influ-
ence. 36 weekly loads were excluded out of 1955 (1.8%) 
and two injuries out of 72. The final dataset included 1919 
individual weekly sessions and 70 injuries. Descriptive data 
are presented in Table 1.

2.3 � Training load and injury

Internal training load was quantified using the session Rating 
of Perceived Exertion (RPE) method; that is, by multiply-
ing the training session duration by the corresponding RPE 
value determined using the Borg’s CR10 scale [25]. Using 
these training loads, we calculated:

1.	 AL, training load of 1 week (for injured the week pre-
ceding the injury);

2.	 CL, rolling averages of 4, 3 and 2 weeks (for injured 
those preceding the injury) including the AL in the cal-
culation of CL (i.e., coupled) as in the original study;

3.	 CL, rolling averages as above without including the AL 
in the calculation of CL (i.e., uncoupled) for the calcula-
tion of #7:

4.	 ACWR, ratio between AL and CL;
5.	 Contrived ACWR, ratios between AL and fixed and ran-

domly generated values of CL;
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6.	 Week-to-week change, difference between ALs the 
2 weeks preceding the injury;

7.	 AL-CL difference, absolute AL-CL difference (coupled 
and uncoupled);

Data were also categorised using quartiles, and two 
groups based on the median CL value were also determined. 
Injuries were classified according to international guidelines 
[26], and recorded by medical staff. Only non-contact, time 
loss injuries were used for the analysis.

2.4 � ACWR variations

To test the hypothesis that the ACWR is just a rescaling of 
the numerator and it is not related to a supposed physiologi-
cal rationale attributed to the CL, we generated contrived 
ACWR values by using fixed and randomly generated CLs.

We, therefore, created contrived ACWRs using fixed CLs: 
500, 1000, 1510 (corresponding to the average CL of the 
sample), 2000, and 2500. These represent the effect of a 
simple linear rescaling of the AL, as no variance is contrib-
uted by the CLs.

In addition to fixed CLs, we also calculated ACWR val-
ues using independently and identically distributed ran-
domly generated data (from a normal distribution). First, 
we generated samples having (1) the same mean and stand-
ard deviation (SD) of the original sample, (2) a lower SD 
(SD original 282/2 = 141 AU), and (3) a higher SD (SD 
original 282 + 141 = 423 AU) than the original sample. We 
generated 25, 20, and 20 ACWR values for each of the 3 
aforementioned conditions, respectively. Second, we per-
formed these simulations (100/condition) for a range of 
mean chronic workloads (500 through 2500, step size = 100; 
original mean = 1510) and coefficients of variation (CV) (5% 
through 50%, step size = 5%; original CV ≈ 20%). In doing 
so, we covered a large sampling space and investigated the 
effects of different magnitudes and spreads of CLs, which 

were independent of time, individual, and thus true CL. 
Estimates from these random models were calculated using 
trimmed mean, excluding the top and bottom 10% of simu-
lated estimates; otherwise, there were instances of massive 
outliers which shifted the mean by greater than one order 
of magnitude.

2.5 � Statistical analysis

Our primary analyses were performed in a way that was 
consistent with that of the previously published study: gen-
eralised estimating equations (GEE) with a logistic link 
function, robust variance estimation, and an exchangeable 
working correlation matrix. We note that GEEs were not 
chosen because we considered them the best way to analyse 
these kinds of observational studies, but rather, to illustrate 
the potential for artefacts in a way that is congruent with 
the analytical approaches present in the literature. Because 
variable temporal autoregression (AR) was not modelled in 
the original study, we also modelled these data using a GEE 
with an AR(1) structure. Although not used in the original 
study, the AR(1) model is preferable since it does not assume 
all points are equally correlated, but rather, that points are 
“locally” correlated in time.

We assessed the models and their parameters via the 
resulting odds ratios (OR), proper scoring rules (Brier), 
c-statistics (equivalent to the area under the receiving opera-
tor characteristic curve), and the estimated probabilities of 
injury. If the parameter estimate is statistically significant 
but the model itself does not fit the data well, the overall 
value of the parameter is unclear. We contend that, ulti-
mately, we are interested in modelling injury risk, and as 
such, the model should fit the outcome well, statistically 
significant parameter or otherwise. Given the low sample 
size and injury prevalence [27], absolute Brier scores were 
not interpreted; instead, the Brier scores were calculated for 
comparison purposes (i.e., compared to the intercept-only 

Table 1   Descriptive data of the explanatory variables used in the analyses

Mean Median SD Range Minimum Maximum Percentiles

25 50 75

Acute load 1526 1542 442 2977 120 3097 1261 1542 1851
Chronic load (4 weeks) 1510 1523 282 1820 437 2257 1328 1523 1718
Chronic load (3 weeks) 1511 1524 299 1843 518 2362 1304 1524 1727
Chronic load (2 weeks) 1516 1532 333 2366 280 2646 1287 1532 1752
Week to week difference 20 1 620 4187 − 1990 2197 − 355 1 377
Acute–chronic load (coupled) 15 26 362 2566 − 1257 1309 − 203 26 249
Acute–chronic load (uncoupled) 22 42 457 3405 − 1594 1811 − 246 42 315
ACWR 4 weeks 1.016 1.017 0.270 2.841 0.129 2.970 0.867 1.017 1.166
ACWR 3 weeks 1.014 1.012 0.257 2.473 0.140 2.612 0.871 1.012 1.151
ACWR 2 weeks 1.010 1.000 0.243 1.842 0.158 2.000 0.886 1.000 1.129
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model’s Brier score). Calibrations were visually inspected 
using LOESS curves. Finally, although not shown, similar 
results were obtained with other traditionally used analy-
ses and variations (e.g. GEE using Poisson and changing 
working correlation matrix, or logistic regression without 
accounting for repeated measures, etc.).

Mean difference and 95% confidence intervals (95% CI) 
were also calculated for comparing injured and non-injured 
players.

3 � Results

Descriptive data of the explanatory variables used in this 
study are presented in Table 1, including the quartiles used 
for categorising. Depictions of injuries as a function of AL, 
CL, and ACWRs are presented in Figure S1.

The results of the GEE using the original data but with-
out using the ACWR, are presented in Table 2. Importantly, 
the results of the original model (ACWR, 4 weeks) indicate 
ACWR as a predictor confers no predictive advantage to an 
intercept-only model, even within the training sample (Brier 
score = 0.035 vs. 0.035 (ratio = 0.998); c-statistic = 0.574 
vs. 0.5 in ACWR and intercept-only models, respectively); 
AL alone was similar to ACWR. Despite this, we investi-
gated and quantified the role of different workloads in other 
models.

Some associations are “statistically significant” (p < 0.05) 
with confidence intervals ranging from 1.000 to 1.001. Their 
Brier scores and c-statistics were comparable to an inter-
cept-only model. These results are similar to the ones of 
the original publication [24] and directly follow from the 
distributions of the raw data, which indicate that injuries are 
relatively evenly dispersed across AL, CL, and ACWR (Fig-
ure S1). The results using the original ACWR, the ACWR 
created using fixed values of CL and dichotomising the play-
ers’ data in high and low CL are presented in Table 3. All 
of the ORs from the association between injury and ACWR 
values were in the direction of increased injury risk, with 
the exclusion of the analysis of the high CL group. Table S1 
presents the same results but modelled with an AR(1) error 
structure.

Average point estimates (ORs) obtained by generating 
random CL for the calculation of the ACWRs are presented 
in Fig. 1b (simulated over a large parameter space) and 
Table S2 (simulated over a small parameter space, relative 
to original sample). The direction of association was gener-
ally consistent across random models, but the magnitude 
was a function of the mean CL and the coefficient of varia-
tion of the CL. In all cases, the models had poor predictive 
performance, much like the original model, despite statisti-
cally significant ORs arising from the information contained 
within the AL. The ORs obtained from GEE using ACWR 

calculated from random CL with the same SD (282 AU) 
ranged from 1.16 to 2.07. Using half of the original SD (141 
AU), the ORs ranged from 1.41 to 2.70. Increasing the SD to 
423 AU, the ORs ranged from 0.89 to 1.31. Details (p values 
and CIs) of this analysis are presented in Table S2.

In Table 4, we presented the comparison between injured 
and uninjured players’ data for AL, AL divided by a fixed 
value corresponding to the average original CL (1510 AU), 
ACWR from 4 to 2 weeks and AL or ACWR for the two 
groups classified according to the median CL values. Differ-
ences between groups are presented with the corresponding 
95% CI.

Crosstab showing the classification of the players’ data 
point according to four categories of AL and four catego-
ries of ACWR are presented in Table 5. Crosstabs are for 
the two groups based on median CL separately. Number of 
injuries for each ACWR category are also presented (for 
low CL group we also indicated the original AL category). 
Categories have been created as quartiles (values presented 
in Table 1). The within player relation between AL and CL 
is presented in Figure S2.

4 � Discussion

We systematically evaluated the ACWR concept by compar-
ing it to an acute-to-random workload. When used in train-
ing load–injury models, the ACWRs creates remarkable 
statistical artefacts in the effect estimates. Here, we focus 
on the outcomes generated by these artefacts and provide 
some preliminary explanations. These findings demonstrate 
that when ACWR is used as an explanatory variable, results 
are always influenced by artefacts and artificial alterations. 
We have also shown that, depending on the characteristics 
of the sample (injury and data distribution), these artefacts 
can result in associations that can be statistically significant 
or compatible with increased or decreased injury risk.

The theory behind the use of the ACWR states that, 
when the AL exceeds the CL, an athlete is underprepared 
and hence at higher injury risk. The ACWR would indi-
cate “both the athlete’s risk of injury and preparedness 
to perform” [7]. This concept was linked to the Banister 
model, which used two components: fitness (represented 
by the chronic load) and fatigue (represented by acute 
workload). The ACWR has also been linked to another 
similar metric, Total Stress Balance, also calculated using 
the fitness and fatigue components of Banister [5–7]. How-
ever, while these two reference models were additive, for 
reasons unbeknownst to the authors, ACWR relies on a 
ratio. Moreover, it was suggested that the negative effect of 
increasing load is greater when the CL is lower [28]. These 
models are conceptually different insofar as the Banister 
model investigates the effect of fatigue while controlling 
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for fitness, while ACWR implies the absolute effect of 
fatigue changes with fitness.

The ACWR approach can be reframed similarly to the 
Banister model by way of stratifying observations based on 
CL. We tested the utility of these stratification procedures 

by reanalysing a previously published dataset. In doing so, 
we did not find any meaningful associations (Table 2). We 
also examined the independent effects of AL, CL, and their 
interaction; again, we did not find any meaningful associa-
tions with injury risk, suggesting that controlling for CL 

Table 2   Parameters of various 
models estimated from original 
data

B Std. error Wald Exp(B) 95% confidence 
intervals

Sig OR Lower Upper

Acute workload (AL) 0.000 0.000 0.027 1.000 1.000 1.001
Week to week AL difference 0.000 0.000 0.022 1.000 1.000 1.001
Chronic workload (CL) 0.000 0.001 0.969 1.000 0.999 1.001
AL − CL difference (coupled) 0.001 0.000 0.025 1.001 1.000 1.001
A − CL difference (uncoupled) 0.000 0.000 0.107 1.000 1.000 1.001

Acute workload 0.001 0.000 0.011 1.001 1.000 1.001
CL < 1328 0.334 0.480 0.486 1.396 0.545 3.574
1329 < CL < 1522 0.216 0.387 0.576 1.241 0.582 2.648
1523 < CL < 1717 0.020 0.380 0.958 1.020 0.484 2.150
CL > 1718 (ref) 0.000 1.000

Acute workload 0.002 0.001 0.062 1.002 1.000 1.004
Chronic workload 0.001 0.001 0.570 1.001 0.998 1.003
AL * CL 0.000 0.000 0.223 1.000 1.000 1.000

Log (Acute workload) 1.159 0.376 0.002 3.188 1.53 6.65
Log (Chronic workload) − 1.012 0.777 0.193 0.364 0.079 1.67

Week to week AL difference 0.000 0.000 0.021 1.000 1.000 1.001
Chronic workload 0.000 0.001 0.936 1.000 0.999 1.001

Week to week AL difference 0.000 0.000 0.022 1.000 1.000 1.001
CL < 1328 − 0.073 0.412 0.860 0.930 0.414 2.087
1329 < CL < 1522 − 0.036 0.356 0.920 0.965 0.481 1.937
1523 < CL < 1717 − 0.117 0.363 0.747 0.890 0.437 1.812
CL > 1718 (ref) 0.000 1.000

AL − CL difference (coupled) 0.001 0.000 0.017 1.001 1.000 1.001
Chronic workload 0.000 0.001 0.870 1.000 0.999 1.001

AL − CL difference (coupled) 0.001 0.000 0.019 1.001 1.000 1.001
CL < 1328 − 0.093 0.401 0.817 0.911 0.416 1.998
1329 < CL < 1522 − 0.042 0.353 0.905 0.959 0.480 1.914
1523 < CL < 1717 − 0.127 0.363 0.726 0.881 0.432 1.794
CL > 1718 (ref) 0.000 1.000

AL − CL difference (uncoupled) 0.003 0.001 0.001 1.003 1.001 1.005
Chronic workload 0.000 0.000 0.285 1.000 1.000 1.001
AL–CL * CL 0.000 0.000 0.003 1.000 1.000 1.000

AL − CL difference (uncoupled) 0.000 0.000 0.101 1.000 1.000 1.001
CL < 1328 − 0.057 0.403 0.888 0.945 0.429 2.081
1329 < CL < 1522 − 0.010 0.356 0.977 0.990 0.493 1.987
1523 < CL < 1717 − 0.110 0.364 0.764 0.896 0.439 1.831
CL > 1718 (ref) 0.000 1.000
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does not confer a meaningful advantage. These results, in 
addition to those of the original study, apparently supported 
this association since ACWR was the only variable found to 
be statistically significantly related to injury risk (Table 3). 

Stratifying by or controlling for CL does not seem to be 
advantageous, which suggests one of two conclusions: (1) 
ACWR appropriately captures the construct we are attempt-
ing to model (injury risk), or (2) CL does not contain any 

Table 3   Parameters of various 
models estimated using 
the original acute:chronic 
workload ratio (ACWR from 
2 to 4 weeks) and ACWRs 
created using fixed values 
for the chronic workload, for 
whole sample and players’ data 
dichotomised in two groups 
based on the chronic load 
median value

B Std. error Wald Exp(B) 95% confidence 
interval

Sig OR Lower Upper

Original ACWR values
ACWR 4 weeks 0.896 0.333 0.007 2.451 1.276 4.707
ACWR 3 weeks 1.121 0.296 0.000 3.069 1.718 5.485
ACWR 2 weeks 1.172 0.388 0.003 3.228 1.510 6.900
ACWR with fixed values
Acute/500 0.221 0.100 0.027 1.247 1.025 1.517
Acute/1000 0.441 0.200 0.027 1.555 1.051 2.301
Acute/1510 0.667 0.302 0.027 1.948 1.078 3.520
Acute/2000 0.883 0.400 0.027 2.418 1.104 5.295
Acute/2500 1.104 0.500 0.027 3.015 1.132 8.032
Subgroup (chronic load > 1523 AU)
Acute workload 0.000 0.000 0.529 1.000 1.000 1.001
ACWR 4 weeks 0.342 0.784 0.663 1.407 0.303 6.542
Acute/1510 0.316 0.502 0.529 1.372 0.513 3.670
Subgroup (chronic load < 1523 AU)
Acute workload 0.001 0.000 0.001 1.001 1.000 1.001
ACWR 4 weeks 1.276 0.374 0.001 3.583 1.721 7.463
Acute/1510 1.066 0.292 0.000 2.903 1.639 5.143
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Fig. 1   Results from models using true and random acute-to-chronic 
workload ratios. a Nonparametric (LOESS) calibration curve for the 
model. Even though the acute-to-chronic workload ratio has a statisti-
cally significant odds ratio that is greater than 1, the model displays 
poor calibration, indicating that the acute-to-chronic workload ratio, 
as it was modelled, does not contain predictive information, even 
when “tested” in the training dataset. b results for models that use 

random chronic workloads. Top, as mean chronic workload increases 
and coefficient of variation decreases, odds ratios increase—this is a 
basic statistical property of ratios. Bottom, c-statistics or AUCs from 
random chronic workload models are slightly  worse than that from 
the model that uses true chronic workload (cf. 0.574), but all are dis-
mal and comparable to an intercept-only model (cf. 0.5)
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useful information. We performed further analyses to test 
these competing explanations.

If the proposed etiological theory of ACWR was cor-
rect, then dividing the individual AL by a contrived CL (i.e., 
a value not corresponding to the real CL of each player) 
should produce disparate results from ACWR, since it vio-
lates the underlying etiological theory. Therefore, we started 
by simply dividing the AL of all the players by the same 
value (i.e., the average CL value, 1510 AU), and this ‘con-
trived’ CL replaced the players ‘real’ CL. Rather than an 
ACWR, this is an “acute to fixed workload ratio”. Surpris-
ingly, the OR was 1.95 (1.08–3.52), which is just slightly 
lower than the OR from the ACWR model (2.45, 1.28–4.71). 
Importantly, our analysis still suggested that the acute:‘fixed’ 
workload ratio performed similarly and still yielded a “statis-
tically significant” association with injury risk. We repeated 
the analysis with other ‘contrived’ fixed values, and intui-
tively, by increasing or decreasing the denominator, the p 

values remained the same, while the estimates increased or 
decreased (see Table 3).

Therefore, we generated random CL samples with a simi-
lar mean and SD of the original data, which is the equivalent 
of dividing the AL of a player by the CL of another hypo-
thetical random teammate. Since this has no logical basis, it 
can be conceived as a null model to assess the value of CL. 
Once again, we found associations between these contrived 
ACWR values and injury. From these data, we could call 
findings based on ACWR into question—the ACWR appears 
to simply be a linear rescaling of AL alone and provides no 
additional information. What is more, this finding calls into 
question theory behind the ACWR, which may have arisen 
as a post hoc theory from a statistically significant predictor 
rather than one born and hypothesized a priori from a deep 
theoretical framework (i.e. HARK-ing, Hypothesised After 
Results are Known). Undeniably, the results strongly dem-
onstrate that CL does not reflect “preparation” of the players 
and confers no added value, as even randomly-generated, 

Table 4   Differences between 
injured and uninjured players

Explanatory variables 
(AU)

N Mean SD P level Mean difference 95% Confidence 
Interval

Effect size 
(pooled 
SD)

Lower Higher

Acute workload
 Injured 70 1601 337 0.063 78 − 4 161 0.18
 Uninjured 1849 1523 445

Acute/1510
 Injured 70 1.061 0.223 0.063 0.052 − 0.003 0.107 0.18
 Uninjured 1849 1.009 0.295

ACWR 4 weeks
 Injured 70 1.085 0.219 0.010 0.071 0.018 0.125 0.26
 Uninjured 1849 1.014 0.271

ACWR 3 weeks Injured 70 1.092 0.210 0.002 0.081 0.030 0.132 0.31
 Uninjured 1849 1.011 0.259

ACWR 2 weeks
 Injured 70 1.083 0.229 0.009 0.076 0.020 0.131 0.31
 Uninjured 1849 1.008 0.244

Subgroup (Chronic > 1523 AU)
 Acute load
 Injured 34 1758 290 0.612 26 − 77 130 0.07
  Uninjured 926 1732 358

 ACWR 4 weeks
  Injured 34 1.011 0.171 0.675 0.013 − 0.048 0.074 0.07
  Uninjured 926 0.998 0.193

Subgroup (Chronic < 1523 AU)
 Acute load
  Injured 36 1453 314 0.013 140 31 250 0.33
  Uninjured 923 1313 425

 ACWR 4 weeks
  Injured 36 1.155 0.239 0.004 0.126 0.043 0.209 0.38
  Uninjured 923 1.029 0.331
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ACWRs with contrived CLs perform similarly to ACWRs 
with true CLs.

But why does this happen? Actually, the answer is quite 
simple. By dividing the numerator (AL) by a number, the 
researchers have just rescaled the numerator. The parameter 
estimates from the model correspond to a one unit increase 
in the explanatory variable. When rescaling, the unit is still 
one, but it now corresponds to a different quantity in the 
explanatory variable. The new unit of the ACWR indeed 
corresponds to the amount of the CL; i.e., 1 unit = 1 CL. 
If the CL is on average 2000 (AU, meters, etc.), the new 
estimate is now 2000 times the estimate corresponding to 
1 in the original scale (e.g., 1 AU or 1 m). In other words, 
the scale of the parameter estimate must offset the rescaling 
of the numerator. Since measures like ORs (or relative risk, 
etc.) are multiplicative, the new effect is even greater. That 
is, the model estimates log(OR) as the parameter, which is 
exponentiated to obtain the OR. What is multiplicative on 
the log(OR) scale is exponential when brought back to the 
original OR scale, and thus, the OR is raised to 2000. What-
ever the number γ of the denominator, the “new” OR will 
be the one of the numerator raised to γ. To draw a concrete 
example, if we have OR 1.001 for 1 m, but we want to refer 
the OR for 1 km, we can divide the original variable by 
1000. The new OR will be 1.0011000. Simply, this transfor-
mation follows from the laws of logarithms and magnifies 
the magnitude of the OR estimated using AL alone; when 

predictor units change, parameter estimate units change 
accordingly.

While rescaling can be an appropriate procedure when 
motivated, the involuntary rescaling of AL has produced 
more impressive parameter estimates. Through simple trans-
formations, a difference in AL will generate impressive 
effects when using the ratio. Indeed, in the sub-analysis per-
formed to reflect previous studies (e.g., dichotomising player 
data based on a median split of CLs), we found appreci-
able differences in the AL between injured versus uninjured 
player data. As shown in Table 4, the injured players in the 
low CL group have greater ALs. As for the whole sample, 
there is a negligible effect of AL, even if statistically signifi-
cant (ORs from 1.000 to 1.001). However, when the ACWR 
was used, the OR increases exponentially to 2.9 (1.6–5.1, 
Table 4). As further confirmation, an even greater OR was 
obtained by dividing the AL by 1510 AU compared to “real” 
CL (3.5, 1.7–7.3). Once again, the underlying etiological 
theory (chronic load “protective”) has nothing to do with the 
reasons for these results—rather, these results follow directly 
from the mathematics underlying the statistical model.

Dividing the AL by the CL not only changes the proper-
ties of the mean, but also the variance. Because CL is a tem-
porally smoothed version of the AL, it has a lower variance, 
and thus, when using it as the divisor, it creates a variable 
with a lower coefficient of variation and smaller mean than 
AL alone. This results in a greater parameter estimate and 
also influences the p values and CIs. By generating random 
CLs with a mean similar to the original sample, but enlarg-
ing or restricting the SD, the point estimates, CIs and p value 
are changed compared to the AL alone (Table S1). Specifi-
cally, when the SD of the randomly generated CL data was 
lowered, the p values decreased and ORs increased. This 
can be also seen in Fig. 1b that shows the ORs generated by 
with different CL means and coefficients of variation (i.e. 
SD). While these results can be obtained using both coupled 
and uncoupled ACWRs, the coupled ACWR has additional 
issues. Since the numerator is included in the denomina-
tor, the variance of the ratio will inevitably be smaller. This 
additional artefact, caused by shrinking the SD, also explains 
why the use of the CL calculated using the average of more 
weeks (or days) exploits this artefact. Using a rolling average 
in the denominator creates a positive correlation between the 
numerator and denominator. The result of this is that large 
values of AL are attenuated by division by larger CLs, hence 
reducing the variability of the ratio [29].

4.1 � General Problems with Ratios in Predictive 
Models

While the aforementioned consequences of the ratio trans-
formation are sufficient to invalidate the ACWR and the 
etiological theory behind it, we highlight a further problem 

Table 5   Cross tabulation to show the reclassification of individual 
player data

*n = 3 from acute load < 1261; n = 1 from 1262–1542; n = 8 from 
1543 to 1851

ACWR​ Total

 < 0.87 0.88–1.02 1.03–1.17  > 1.17

High chronic group (> 1523 AU)
 Acute load
  < 1261 73 7 0 0 80
  1262–1542 37 164 0 0 201
  1543–1851 1 186 105 0 292
  > 1852 0 51 264 72 387
  Total 111 408 369 72 960
  Injured 3 13 16 2 34

Low chronic group (< 1523 AU)
 Acute load
  < 1261 174 168 43 15 400
  1262–1542 0 112 131 36 279
  1543–1851 0 0 119 69 188
  > 1852 0 0 2 90 92
  Total 174 280 295 210 959
  Injured 1 11 12 12* 36
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generated by transforming data into a ratio as it results in 
a reclassification. First, we note the differences in proper-
ties between multiplicative (ratio) and linear scales. Indeed, 
Curran-Everett and others [20, 30] have warned against 
the use of ratios and percentages in such analyses, in part 
because the values depend on the direction of the compari-
son. For example, if training load is reduced from 1000 to 
800 (meters, AU, etc.), the relative decrease will be 20%, 
while if you increase from 800 to 1000, the relative increase 
will be 25%. These multiplicative changes are in contrast to 
additive ones, which are linear.

Second, because ACWRs are a proportion and thus sensi-
tive to the denominator, individual players with low absolute 
ALs tend to have greater ACWRs, resulting in model mis-
calibration. For example, injured players with the lowest AL 
values tend to move in the higher category of the ACWR. 
This is evidenced by Table 5, where the data of high and low 
CL groups are presented separately to reproduce a typical 
dichotomisation of the data used in previous studies. Indi-
vidual data with the lowest levels of AL belonging to the 
first quartile (< 1261 AU) moved into the higher ACWR 
categories (226 individual data, 57%); similar reclassifica-
tion can be seen in the other categories. This shift was more 
prevalent in the low CL group since dichotomising by CL 
means also separating by AL. Lower AL values are more 
likely to produce greater ACWR values when AL increases 
since it represents a larger proportion of the denominator 
(CL). Indeed, there is an obvious relation between AL and 
CL (Figure S2). Similar subgroup analyses have been used 
to support the claim that high CL is protective while low CL 
predisposes athletes to injuries when “spikes” of workload 
occur: studies have reported a stronger association between 
ACWR and injury risk at low compared to high CL [28, 31]. 
Performing the same analysis in this sample (n.b. this was 
not done in the original publication), the ACWR was also 
found to be associated with greater injury risk for the low 
CL group only, thus seemingly supporting previous findings. 
While one may think that this reclassification is appropri-
ate, since it appears to account for the increase “impact” of 
increasing load when the player is not “prepared” (i.e. low 
CL), we have already shown that this theory (protection or 
predisposition) does not stand since the CL itself magnifies 
and smooths the effect of AL effect estimates (i.e. just a 
rescaling number). If this theory held true (low CL predis-
posing), we would have found an association between AL or 
AL–CL change and the levels of CL (Table 2), and we would 
not have found similar results when using the contrived CL 
values. This did not occur. Rather, we also observed that 
each of the 12 injured players in the high ACWR group 
came from lower categories of the AL. Three were from 
the first quartile, one from the second and eight from the 
third. This example showed that the reclassification is arti-
ficial and the ratio gives more “weight” to absolute changes 

at low workloads and more “weight” when the workloads 
increase rather than when they decrease. This explains why 
this reclassification occurred more in the low than high CL 
group. Moreover, from a statistical theory standpoint, the 
“split”-based analysis implies an interaction between ACWR 
and CL; however, not only does this simplify to AL alone, 
but the OR 1.0 (1.0, 1.0) for their interaction suggests it is 
not informative. Although this adjustment does not have as 
large an impact as rescaling, it still biases the results and 
creates artificial differences between injured and uninjured. 
Reclassification of 12 injured players out of 36 in the high 
ACWR has a clear effect on the results and, as in previ-
ous studies, also on the calculations of other figures such 
as injury rate. While in the past, similar results have been 
used to support the predisposing effect of low CL. However, 
the evidence and logic we present suggest this is, instead, 
another result of the combination of statistical artefacts and 
noise added by the ratio, also causing re(mis)classification.

The ACWR creates artefacts generated by the combina-
tion of the aforementioned factors altering and magnifying 
the effects of the AL (numerator). Depending on the relation 
between AL and injuries, the effect estimates are increased 
and, depending on the distribution of the denominator, they 
are further inflated. Therefore, the ACWR values calculated 
from different smoothing averages (e.g., 2–4 weeks) with the 
highest value and lowest SD (Fig. 1b) will magnify the esti-
mates and influence the p values and CIs. The use of a ratio 
and further reducing the variance of the explanatory variable 
using other smoothing strategies—such as the EWMA, as 
suggested and used in some studies—suffers from the same 
problems. In addition, they also are not conceptually supe-
rior since the starting idea of a CL–AL interaction is not 
supported, but rather is just an artefact (whatever the math-
ematical “strategy” to calculate the “fatigue” and “fitness” 
components). Studies showing the superiority of ACWR 
based on EMWA, or the “equivalence” between coupled and 
uncoupled, confirm that these methods produce the same 
artefacts [14, 16, 32]. Similarly, explorative studies trying 
to find the best combination of AL and CL time windows 
to “optimize” parameter estimates may just be optimizing 
these artefacts (involuntary p-harking) [17]. Hold-out sam-
ples should be used to evaluate the effects of optimization, 
and prediction/model fit should be assessed rather than 
parameter estimation alone. Similarly, most arbitrary pre-
analytical data “treatment” also amplifies these artefacts by, 
for example, changing the variance of the AL, CL, and their 
ratio (e.g. deleting CL below 1 or 2 SD, single imputation, 
etc.) [8, 17, 28].

It may seem from the arguments we put forth that the 
“key” metric to focus on is the acute workload. Although we 
will not address this topic in detail here, it is not so straight-
forward. Simply comparing the AL (or any other potential 
factor) of injured versus non-injured is not sufficient as the 
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studies from which these data come are prone to several 
potential biases well known in epidemiology [33, 34]. There-
fore, it is not a question of “statistical analysis” or creating 
new metrics calculated from each other, but rather design 
and conceptually selecting explanatory variables based on 
a proper conceptual and theoretically sound framework, all 
while controlling for confounding factors. Moreover, it is 
essential that the predictive performance of these models 
be assessed out-of-sample. If these models are predictive 
of injury in hold-out samples, experimental approaches 
to manipulating the predictors (e.g., acute load) should be 
employed to assess the causal nature of the relationship. This 
approach is essential for causal inference, which is arguably 
the tacit aim of these studies. Indeed, as evidence of this 
causal interpretation, other than the overinterpretation of the 
studies themselves, we now have international guidelines 
and consensus suggesting how to manipulate these prog-
nostic factors (training load metrics) to reduce the injury 
risk, which assumes a causal effect (i.e., a perturbation in x 
results in a change in y). Importantly, this assumption has 
been made in the complete absence of any attempts to esti-
mate causal effects and based on results determined by arte-
facts due to data transformations. The interpretation should 
always be based on and commensurate with the real nature 
and goal of the study (descriptive, predictive, causal).

4.2 � Predictive Value of ACWR and Acute Workload

Although not the primary purpose of this work, we briefly 
explored the in-sample predictive value of the ACWR. 
Despite having a statistically significant and large OR, 
ACWR confers no predictive advantage with respect to 
injury risk. Proper scoring rules are virtually identical 
between ACWR and an intercept-only model (both Brier 
scores = 0.0351), and the ACWR model has a slightly greater 
c-statistic than the intercept-only model (0.574 vs. 0.5). In 
the ACWR model, the average probability of injury of those 
who were injured was 0.039. We replicated the aforemen-
tioned analyses using AL-only, and the results were identi-
cal, with the exception of the c-statistic, which went from 
0.574 to 0.544. From a predictive standpoint, when used in 
isolation, neither AL nor ACWR contain useful information, 
even when assessed in the training sample.

4.3 � Additional Considerations to the Study

For this study, we reproduced the same analysis of the origi-
nal investigation, which is similar to other publications using 
ACWR [35]. Similarly, we also classified and presented the 
data according to previous literature. However, this does 
not mean that the authors of the current study agree with 
or endorse these analyses and study designs. For exam-
ple, even presenting descriptive data (and categorisations) 

using non-independent values is questionable. Similarly, we 
repeated the analysis using logistic regression (with similar 
results but with data not shown) without taking into account 
the repeated measures just to see whether the same results 
could be obtained, even if expected. Therefore, we have sim-
ply used previously published data and analyses to show the 
problems created by the ACWR ratio and to show the lack of 
validity of the theory behind this metric. Similarly, we used 
the AL and CL calculated using a measure of internal load 
(session RPE), but the results can be applied to any proxy 
measure of training load (internal or external).

While we explained that the ratio is just a rescaling tech-
nique, we highlight that rescaling the explanatory variable is 
not always a wrong practice. For example, rescaling grams 
to kilograms (dividing by 1000) to examine the effect of 
body mass changes on risk would make sense and is prob-
ably advisable. However, it is wrong in this context firstly, 
because it was involuntary and ACWR never proposed to 
rescale (but rather as a normalization procedure). Secondly, 
because there is no apparent clinical or physiological ration-
ale for understanding how to rescale this kind of explana-
tory variable (AL), even more so considering this metric is 
applied to several measures of training load (e.g. how can 
the number of balls bowled in cricked be rescaled?).

5 � Conclusions

We are confident that most of these errors that have been 
made in previous studies were unintentional. It is also rea-
sonable that the authors believe that the reported relation 
between training and injury was authentic, and that the etio-
logical theory created to support the ACWR and its com-
ponents was rational. However, as the ACWR model fitted 
popular beliefs so well, it became a self-fulfilling prophecy 
and lowered scientists willingness to critically evaluate the 
construct. The selection of candidate prognostic factors 
may benefit from explorative studies, but we urge scientists 
to avoid procedures that may produce statistical artefacts 
and that focus on the dichotomization of effects (e.g., null 
hypothesis significance testing). In the current study, we 
have demonstrated using published data and simulations 
that:

•	 the etiological theory developed to explain the relation 
found in some studies between ACWR and injury risk is 
not supported;

•	 the ratio is a rescaling procedure, exponentially magnify-
ing the effect of the AL;

•	 a ratio using averages of the numerator as the denomina-
tor will have a lower SD, such that a one unit increase in 
the new explanatory variable will correspond to a higher 
ORs;
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•	 the ratio also causes artificial and non-physiologically 
justified reclassifications, further influencing the results;

•	 neither ACWR nor AL contain useful information for 
predicting injury;

•	 the findings based on ACWR reported in the literature 
are therefore all affected by artefacts that, depending on 
the data characteristics, resulted in negative, positive, or 
no associations (in this dataset positive associations).

5.1 � Practical applications

The ACWR and its components should be dismissed. Mov-
ing forward, time should be focused on selecting and identi-
fying appropriate proxy measures and developing reasonable 
causal assumptions. Creating new metrics without concep-
tual reference models and relying on statistical significance, 
especially for prediction, should be avoided. The results of 
previous studies should be reconsidered, and authors and 
editors should make efforts to correct the erroneous mes-
sages that were disseminated, and their associated theoreti-
cal frameworks should be revised. Finally, international and 
national organizations and athlete management systems that 
base their recommendations on the results of these studies 
should revise their recommendations, acknowledging these 
artefacts and lack of predictability.
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