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 In liver cirrhosis, increases in portal pressure are pri-
marily caused by a high resistance to outflow in the portal 
district due to structural modifications and a vasoactive 
component. When portal hypertension is established, 
splanchnic arterial vasodilation, a hyperdynamic circula-
tory syndrome with an enhanced cardiac output, and 
opening of portosystemic collaterals occur, causing an en-
hanced splanchnic flow that perpetuates and aggravates 
the portal pressure increase, promoting decompensation 
in cirrhotic patients ( Fig. 1 ). Portal hypertension plays a 
fundamental role in the development of ascites, hepatic 
encephalopathy, gastric and esophageal varices, and hepa-
torenal syndrome, which are among the most serious clin-
ical complications in these patients  [1–3] . Therefore, un-
derstanding the mechanisms responsible for splanchnic 
vasodilation is crucial for planning strategies to prevent 
and treat the complications that occur in cirrhosis.

  In cirrhosis with portal hypertension, splanchnic arte-
rial vasodilation occurs both in mesenteric and in splenic 
vascular beds, and a low splanchnic vascular resistance 
depends mostly on precapillary resistance arteries  [4] . 
The underlying molecular pathways have not been en-
tirely delineated, but an increased production of vasodi-
lating substances and an impaired vascular response to 
vasoconstrictors are the main mechanisms proposed  [5, 
6] . The aim of this review is to discuss in detail the prin-
cipal systems and substances that have been identified as 
mediators in this context.
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 Abstract 

 In liver cirrhosis, portal hypertension is a consequence of 
enhanced intrahepatic vascular resistance and portal blood 
flow. Significant vasodilation in the arterial splanchnic dis-
trict is crucial for an increase in portal flow. In this patho-
logical condition, increased levels of circulating endoge-
nous vasodilators, including nitric oxide, prostacyclin, car-
bon monoxide, epoxyeicosatrienoic acids, glucagon, 
endogenous cannabinoids, and adrenomedullin, and a de-
creased vascular response to vasoconstrictors are the main 
mechanisms underlying splanchnic vasodilation. In this re-
view, the molecular pathways leading to splanchnic vasodi-
lation will be discussed in detail.   © 2017 S. Karger AG, Basel 

Introduction

Portal venous pressure results from intrahepatic resis-
tance and portal flow, expressed as a mathematical func-
tion of resistance and flow across the hepatic vasculature 
(pressure = resistance      ·      flow). A pathological increase in 
portal pressure is called portal hypertension.
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  Increased Circulating Vasodilators 

 Nitric Oxide 
 Nitric oxide (NO) is a brief-half-life (20–30 s) free-

radical gas that freely passes through the membranes of 
cells. It exerts its vasodilating effect via the activation of 
guanylyl cyclase to synthesize cGMP and the subsequent 
relaxation of vascular smooth muscle cells. It is generated 
by NO synthase (NOS), of which 4 major isoforms exist: 
inducible NOS (iNOS), endothelial NOS (eNOS), neuro-
nal NOS (nNOS), and mitochondrial NOS. While a re-
duced production of NO has been observed in cirrhotic 
livers  [7] , there is general agreement in considering an 
increased NO production in the mesenteric vasculature 
as the crucial factor responsible for the decrease in 
splanchnic resistance in cirrhosis. In decompensated cir-
rhotic patients, plasma levels of NO-hemoglobin com-
plexes are increased  [8] . Moreover, in the portal vein plas-
ma NO concentrations are higher than in peripheral 
veins, indicating an increased synthesis in the splanchnic 
vasculature. NOS inhibition effectively contrasts the in-
crease in splanchnic flow in cirrhotic rats  [9] , confirming 
its fundamental role in determining the hemodynamic 
alterations typical of this pathological condition. In rats 
with ligation of the portal vein, an overproduction of NO 
by eNOS in the endothelium of superior mesenteric arter-
ies occurs before the onset of a splanchnic hyperdynamic 
circulation  [10] , suggesting that in portal hypertension 
NO is a fundamental participant in the generation of hy-
perdynamic circulation.

  The increased NO bioavailability is secondary to the 
increase in both NOS expression and activity. In cirrhot-
ic rats, iNOS and eNOS expression is enhanced in arte-
rial vessels  [11] , and eNOS concentrations in extracts of 
mesenteric arteries are more than double compared to 
values in control rats  [12] . In this animal model, also the 
vascular levels of mRNA for the enzyme are significantly 
higher  [11] . In rats with portal hypertension, even a small 
increase in portal pressure is associated with an increased 
eNOS expression  [13] , while in eNOS knockout mice in-
jected with carbon tetrachloride a reduced splanchnic 
blood flow is present  [14] . In their portal vein and supe-
rior mesenteric artery, also eNOS activity is elevated, as 
shown by the measurement of the conversion to citrulline 
of M-arginine  [15] . Activation of eNOS has been ob-
served already 10 h after ligation of the portal vein  [16] . 
In cirrhosis, eNOS is activated in the vasculature by sev-
eral stimuli that originate from the endothelium, such as 
inflammatory cytokines, shear stress, and VEGF  [17] . 
Other mechanisms have been shown to be involved in 
activation of the eNOS signaling pathway under this 
pathological condition, including upregulation of GTP 
cyclohydrolase I, mediated by bacterial translocation, 
with production of tetrahydrobiopterin (cofactor of 
eNOS)  [18] , phosphorylation of eNOS by Akt  [19] , and 
coupling of eNOS with chaperone heat shock protein 90 
 [20] . Recently, a new mechanism for eNOS modulation 
in cirrhosis, involving the renin-angiotensin system, was 
shown  [21] . Angiotensin-converting enzyme (ACE) 2 
cleaves angiotensin II to generate the vasodilator angio-
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hypertension in liver cirrhosis.   
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tensin-(1–7), which binds to the receptor Mas (MasR), 
leading to the activation of eNOS and the endothelial pro-
duction of NO. In the mesenteric arterial vasculature of 
cirrhotic rats, ACE2 and MasR expression and the pro-
duction of angiotensin-(1–7) are increased, contributing 
to vasodilation in this vascular district. Even though all of 
these studies suggest that eNOS mediates the splanchnic 
vasodilatory response in cirrhosis, another study report-
ed that, after portal vein ligation, in eNOS-knockout mice 
the portal pressure still rose and a hyperdynamic circula-
tion developed  [22] , suggesting the involvement of other 
NOS isoforms or other pathways. Indeed, bacterial infec-
tion, cytokines, and endotoxins promote also iNOS pro-
duction. In patients with cirrhosis, intestinal bacterial 
overgrowth frequently occurs and is associated with sys-
temic endotoxemia. Because endotoxin enhances the ex-
pression of iNOS, it has been hypothesized that in cirrho-
sis circulating endotoxin stimulates the vascular produc-
tion of NO  [23] . In patients with cirrhosis, selective iNOS 
inhibition causes peripheral vasoconstriction  [24] . In the 
adventitia of mesenteric vessels from cirrhotic rats, high-
er levels of activated macrophages that express iNOS have 
been documented  [25] . Therefore, activation of iNOS in 
these cells may induce, in a paracrine way, an increase in 
splanchnic flow, contributing to the worsening of portal 
hypertension. Also nNOS may induce splanchnic vasodi-
lation, even if its role seems less relevant  [26] .

  Carbon Monoxide 
 Carbon monoxide (CO) is an endogenous gaseous 

molecule similar to NO. In humans, the main source of 
CO is the enzyme heme oxygenase (HO), which catalyzes 
the degradation to biliverdin of heme. The two main HO 
isoenzymes are HO-1, the inducible isoform, and HO-2, 
which is constitutive. In arterial vessels, CO, generated 
both in smooth muscle and in endothelial cells, promotes 
smooth muscle myocyte relaxation through stimulation 
of soluble guanylyl cyclase and activation of large conduc-
tance Ca 2+ -activated K +  channels (BK Ca s)  [27] . The vaso-
dilating properties of CO are also due to its capability to 
inhibit formation of the vasoconstrictor molecule 20-hy-
droxyeicosatetraenoic acid  [28] . Patients with cirrhosis 
exhibit significant increases in carboxyhemoglobin plas-
ma levels  [29] . An increase in HO-1 expression has been 
documented in the mesenteric vasculature of rats with 
prehepatic portal hypertension  [30]  and common bile 
duct ligation  [31]  and in rats treated with CCl 4   [32] . In 
CCl 4 -cirrhotic rats, also an enhanced HO-2 expression 
has been observed  [33] . In different animal models of cir-
rhosis and portal hypertension, HO inhibition amelio-

rated both the mesenteric vascular response to vasocon-
strictors and the alterations in systemic hemodynamics. 
Moreover, we have demonstrated that in the advanced 
stages of cirrhosis an increased HO expression has a de-
terminant role in impairing the contractile response of 
mesenteric arteries to phenylephrine, while overexpres-
sion of NOS is the main responsible factor in early stages 
 [32] . In advanced cirrhosis, induction of HO-1 could be 
the cause of the diminished NO generation, and the 
mechanisms involve the competition between NOS and 
HO for the use of NADPH, the heme degradation neces-
sary to assemble NOS, and the binding of CO to the NOS 
prosthetic heme group. NO levels, oxidative stress, gluca-
gon, and angiotensin II induce the expression of HO-1, 
and in cirrhosis they may be the determiners of its in-
crease in the periferic vascular system  [34, 35] . In cirrhot-
ic rats, especially in ascitic animals, along with an in-
creased HO-1 expression, an enhanced BK Ca  α-subunit 
expression has been observed in mesenteric arteries, and 
inhibition of BK Ca  and HO normalized the increased re-
sponse to acetylcholine  [36] . CORM-3, a molecule that 
releases CO, induced mesenteric arterial vasodilation in 
cirrhotic ascitic rats, and this was amplified by pretreat-
ment with the HO-inhibitor chromium mesoporphyrin. 
Furthermore, the dilation induced by CO was abolished 
after the inhibition of not only soluble guanylyl cyclase 
but also BK Ca , underlining the crucial role of those chan-
nels in modulating the vascular effects of CO in decom-
pensated cirrhosis. Moreover, in cirrhosis, the impaired 
responsiveness of mesenteric arteries to acute flow varia-
tions, which is likely secondary to a preexistent overpro-
duction of vasodilators by the endothelium, seems to be 
due to a product of HO  [37] . The mechanism leading to 
this HO-enhanced expression and activity in the vascula-
ture still needs investigation, but it is probably multifacto-
rial since several factors contributing to the development 
of portal hypertension, including oxidative stress, cyto-
kines, and endotoxins, are known HO inducers.

  Prostacyclin (Prostaglandin I2) 
 Prostaglandin I2 (PGI 2 ) is another vasodilator derived 

from the endothelium. It is synthesized by cyclooxygen-
ases (COX) in response to both humoral and physical 
stimuli, including shear stress and proinflammatory sub-
stances. In vascular smooth myocytes, PGI 2  induces re-
laxation by promoting adenylyl cyclase activation and, as 
a consequence, inducing cyclic adenosine monophos-
phate production. In portal-hypertensive rats, an in-
creased basal synthesis of PGI 2  seems pivotal in determin-
ing vascular hypocontractility and vasodilation  [38] . In 
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patients with cirrhosis, the circulating PGI 2  concentra-
tions are increased  [39] . Moreover, in this group of pa-
tients, PGI 2  inhibition with indomethacin significantly 
increases the peripheral vascular resistance and reduces 
the hepatic blood flow, with a decrease, even if slight, in 
portal pressure, suggesting a role for PGI 2  in the induc-
tion of splanchnic vasodilation and, as a consequence, 
portal hypertension  [40] . Also in cirrhotic rats and rats 
with ligation of the portal vein, plasma and urinary levels 
of PGI 2  are higher than in controls  [41] . In the same study 
it was demonstrated that the increase in PGI 2  plays a role 
in the elevation of portal pressure and hyperdynamic cir-
culation development in experimental cirrhosis. In por-
tal-hypertensive animals, indomethacin significantly re-
duced circulating levels of PGI 2 , decreasing splanchnic 
blood flow, but it failed to modify the splanchnic blood 
flow in control rats, suggesting a minor role of PGI 2  under 
physiological conditions  [42] . In contradiction with this 
study, in which it was shown that in the mesenteric artery 
of rats with portal hypertension COX-1 expression was 
enhanced while COX-2 expression was not detectable, 
other authors showed that also selective COX-2 inhibi-
tion could be effective in improving portal hypertension 
 [43] . The increase in PGI 2  levels preceded the develop-
ment of hemodynamic changes, suggesting that hyperdy-
namic circulation is mostly a consequence and not a pri-
mary cause of the enhanced PGI 2  release within the 
splanchnic vasculature.

  Probably, in the development of portal hypertension, a 
PGI 2  and NO interaction promotes splanchnic hyper-
emia. In rats with portal vein stenosis, both short- and 
long-term treatment with indomethacin decreased the 
mesenteric arterial flow; however, after long-term treat-
ment it remained higher. Interestingly, the impaired effect 
of long-term treatment with indomethacin was associated 
with increased sensitivity to the NOS inhibitor NG-nitro-
L-arginine methyl ester, suggesting an enhanced NO pro-
duction after long-term PGI 2  inhibition  [44] . In portal hy-
pertension, several stimuli, including shear stress and pro-
inflammatory substances, induce COX in endothelial cells 
to produce PGI 2 . In patients with cirrhosis, its production 
may be induced also by circulating microparticles, re-
leased by various cells, that carry arachidonic acid into 
endothelial cells, stimulating COX activity  [45] .

  Epoxyeicosatrienoic Acids 
 Epoxyeicosatrienoic acids (EET), derived from the ar-

achidonic acid metabolism by cytochrome P-450 (CYP) 
epoxygenase enzymes, exist in 4 regioisomeric epoxides: 
5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Vascular 

endothelial cells are major sites for the production of 
EET, which have various biological activities (e.g., an ef-
fect on vascular tone among others). In particular, with 
regard to portal hypertension progression, they have a 
dual behavior: in the peripheral vascular beds they have a 
dilating effect, but in the portal and sinusoidal circulation 
they are vasoconstrictors  [46] . EET are important media-
tors in endothelium-dependent mesenteric relaxation in 
cirrhosis, but their effect is only mild under physiological 
conditions. In fact, inhibition of epoxygenase modifies 
the mesenteric vasodilatory response to acetylcholine 
only in rats with cirrhosis  [47] , indicating that an altered 
EET balance in the splanchnic vascular bed is character-
istic of cirrhosis. Plasma EET concentrations increase sig-
nificantly in cirrhotic patients compared to healthy indi-
viduals, but the ratios between 8,9-EET, 11,12-EET, and 
14,15-EET are similar  [48] . Moreover, in these patients, 
the peripheral vasoconstriction induced by miconazole, a 
nonspecific inhibitor of EET synthesis, is increased com-
pared to healthy subjects. In cirrhosis, changes in the vas-
cular expression of CYP may be crucial for the increase in 
circulating EET  [49] . Endothelium-derived 11,12-EET 
exerts a hyperpolarizing effect through the activation of 
calcium-activated potassium channels  [50, 51] . More-
over, a strong interaction between EET and the HO sys-
tem is well documented  [52] . In rat mesenteric arteries, 
11,12-EET exerts a dilator effect through a mechanism 
that is HO dependent, acting via calcium-activated potas-
sium channels. Also 5,6-EET, 8,9-EET, and 14,15-EET 
vasodilate mesenteric arteries, but only 8,9-EET acts sim-
ilarly to 11,12-EET, while 5,6-EET promotes vasodilation 
independently of guanylyl cyclase and HO, and HO inhi-
bition only partly impairs the effect of 14,15-EET  [53] . In 
mesenteric arteries from cirrhotic rats, enhanced vasodi-
lation, independent of NO and PGI 2 , is promoted by in-
creased reactivity to 11,12-EET via an enhanced myoen-
dothelial gap junction expression (in particular connex-
ins 40 and 43)  [54] . Recently, we demonstrated that, in 
experimental cirrhosis, treatment with a specific inhibi-
tor of epoxygenase significantly reduces the portal blood 
flow and pressure, in association with normalization of 
the response to acetylcholine of mesenteric arteries  [47] .

  Glucagon 
 Glucagon is a peptide hormone released by pancreas 

α-cells that, apart from regulating glucose levels by pro-
moting gluconeogenesis and glycogenolysis, is known to 
reduce vascular resistance. In cirrhosis, due to the poor 
hepatic function and the presence of numerous vascular 
portosystemic collaterals, glucagon escapes immediate 

D
ow

nl
oa

de
d 

by
: 

A
z.

 O
sp

. U
ni

v.
In

te
gr

at
a 

V
er

on
a 

B
ib

lio
te

ca
 M

en
eg

he
tti

   
93

.3
9.

20
3.

10
6 

- 
7/

8/
20

20
 4

:4
3:

15
 P

M



 Di Pascoli/Sacerdoti/Pontisso/Angeli/
Bolognesi
 

 J Vasc Res 2017;54:92–99 
DOI: 10.1159/000462974

96

hepatic degradation. In portal hypertension, hypersecre-
tion from pancreatic α-cells also contributes to hyperglu-
cagonism  [55] . In patients with cirrhosis, compared to 
normal subjects, glucagon levels are much higher and he-
modynamic responses are blunted after glucagon admin-
istration  [56] . In portal hypertension, glucagon contrib-
utes to the onset and progression of hyperdynamic circu-
lation and the decrease in mesenteric arterial reactivity to 
circulating vasoconstrictors, as indicated by the observa-
tion that in portal-hypertensive rats the decrease in portal 
blood flow and pressure induced by somatostatin is sec-
ondary to the inhibition of glucagon secretion  [57] . In 
cirrhotic patients with active gastrointestinal bleeding, 
the efficacy of somatostatin analogs is ascribable to the 
capability of reducing portal hypertension  [58] .

  Endogenous Cannabinoids 
 Endogenous cannabinoids (EC), such as anandamide, 

are ubiquitous lipid signaling molecules that are synthe-
sized from membrane phospholipids. CB1 is a specific EC 
receptor present in perivascular nerves and in smooth 
muscle and endothelial cells  [59] . High concentrations of 
circulating EC have been documented in patients with cir-
rhosis  [60] . In the splanchnic vasculature, the effects of EC 
are likely secondary to an increased production of NO  [61]  
but also to mechanisms independent of NO. Indeed, in 
mesenteric arteries of cirrhotic rats, NOS inhibition or en-
dothelial denudation did not abolish vasodilation  [62] . 
Overactivation of vascular CB1 receptors is implicated in 
mesenteric blood flow and portal pressure elevation in cir-
rhosis. In this pathological condition, due to bacterial 
translocation and endotoxemia, the release of EC by mac-
rophages and monocytes is increased, leading to activation 
of CB1 in the vessels and perivascular nerves and vasodila-
tion  [63] . In CCl 4 -cirrhotic rats, administration of a CB1 
receptor antagonist caused a significant reduction in ascite 
formation  [64] . Apart from CB1, other receptors, such as 
TRPV1, may be implicated in the EC-dependent vasore-
laxation of liver cirrhosis. TRPV1, expressed in perivascu-
lar nerves, has been shown to mediate the hypotensive ef-
fect of EC in cirrhosis  [65] . Moreover, it has been shown 
that in cirrhotic rats pretreatment with a molecule block-
ing the response of sensory nerves impairs the mesenteric 
artery vasorelaxation induced by anandamide, suggesting 
that the signaling pathway leading to relaxation is located 
in the adventitia of the vessels, where primary sensory 
nerves are situated. Anandamide determines a dose-de-
pendent vasodilator response in mesenteric but not in fem-
oral arteries of cirrhotic rats, highlighting the selectivity of 
EC effects in the splanchnic circulation  [66] .

  Adrenomedullin 
 Adrenomedullin (ADM) is a peptide with a potent va-

sodilating effect, produced in the endothelial cells of ves-
sels. In the aorta and portal vein of cirrhotic rats, ADM 
gene expression is enhanced compared to controls  [67] . 
Moreover, levels of circulating ADM are significantly 
higher in patients with cirrhosis  [68] . The elevation is 
more prominent in patients with ascites, suggesting that 
circulating levels of ADM correlate with the severity of 
hemodynamic changes  [69, 70] . ADM production in-
creases after stimulation with bacterial endotoxin and cy-
tokines  [71] . In cirrhosis, ADM plasma levels correlate 
with nitrate-nitrite levels  [72] : ADM seems to modulate 
endothelium-dependent vasorelaxation by phosphory-
lating and activating Akt with a consequent increase in 
cGMP production  [73] . Interestingly, in aortas of cirrhot-
ic rats, anti-ADM antibody administration reversed the 
blunted contractile response to phenylephrine  [67] .

  Impaired Reactivity to Circulating Vasoconstrictors 

 Concomitant with the increased circulating levels of 
vasodilating substances, splanchnic arteries exhibit a de-
creased contractile response to vasoconstrictors. A de-
creased expression or sensitivity of the receptors for va-
soconstrictor substances is the probable mechanism ac-
counting for the occurrence of a marked vasodilatation in 
the splanchnic arterial bed in spite of the increased levels 
of vasoconstrictors.

  In portal hypertension, the downregulation of neuro-
peptide Y, involved in adrenergic neurotransmission, 
causes a reduction in reactivity to noradrenaline  [74] . In 
cirrhosis, the increased systemic levels of norepinephrine 
may induce the presynaptic α 2 -adrenergic inhibition of 
neuropeptide Y production  [75] . Moreover, the activity 
of dipeptidyl-peptidase IV, which degrades neuropeptide 
Y, is increased in cirrhosis  [76] . In CCl 4 -induced cirrhot-
ic rats, neuropeptide Y administration enhanced the mes-
enteric arterial contractility and decreased the portal 
blood flow and pressure  [77] .

  Endothelin-1, despite its marked vascular constrictor 
capability, induces vasodilation when it binds to ETB1 
receptor  [78] . In the splanchnic circulation of bile duct-
ligated cirrhotic rats, levels of endothlin-1 were decreased, 
while ETB receptor expression was increased  [79] . More-
over, the expression of phosphorylated G protein-cou-
pled receptor kinases, that desensitize the vasoconstric-
tion-promoter ETA receptor, was substantially increased 
in cirrhotic rats.
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  In cirrhosis, the renin-angiotensin-aldosterone system 
activates to homeostatically compensate the intense vaso-
dilation. In cirrhotic rats, the vascular hyporesponsiveness 
to angiotensin II is a consequence of the increased interac-
tion between β-arrestin-2 and angiotensin II type 1 recep-
tor, and the consecutive change in receptor activity  [80] .

  In cirrhosis, a reduced expression or activity of Rho 
kinase represents another mechanism that contributes to 
the impaired contractile response  [81] .

  Neural Autonomic Dysfunction 

 Other studies have reported a contribution of neural 
autonomic dysfunction in the pathogenesis of the de-
creased splanchnic arterial resistance. The neural regula-
tion of splanchnic vascular tone occurs through the cen-
tral and peripheral efferent and afferent nervous system. 
In portal-hypertensive and cirrhotic rats, neurons in the 
cardiovascular regulatory nuclei are persistently activated 
 [82] . In these animal models, denervation of the primary 
afferent nerves normalized systemic vascular resistance 
 [83, 84] . In portal hypertension, the reactivity to nor-
adrenaline is also altered due to mesenteric sympathetic 

nerve atrophy, which is caused by processes of axonal re-
traction and apoptosis taking place in the neurons of 
sympathetic ganglia  [85] . A sustained overactivation of 
the sympathetic nervous system could be accountable for 
desensitization in the splanchnic vascular bed, thus wors-
ening vasodilation  [86] .

  Conclusion

NO, the circulating levels of which are increased in cir-
rhosis, seems to be the fundamental, but not the only, fac-
tor mediating splanchnic vasodilation. The involvement 
of CO, PGI 2 , EET, glucagon, EC, and ADM, among other 
endogenous vasodilators, has been shown. A decreased 
reactivity to vasoconstrictors in the splanchnic vascula-
ture and neural autonomic dysfunction also play a role in 
this process.
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