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Abstract

Immunotherapy has emerged as a potent alternative for cancer treatment, unfortu-
nately, the clinical benefit remains limited to few patients and immunotherapy resis-
tance due to immunosuppressive tumor microenvironment represents the major
reason of such a failure. Arginase-1 is one of the enzymes contributing to the establish-
ment of such immunosuppression. Among the human immune cells, polymorphonu-
clear cells (PMNs) represent the major source of arginase-1, while myeloid-derived
suppressor cells (MDSCs) are the main arginase-1 producing cells in mice. Due to
arginase-1 potential impact in dampening the immune response, there is a growing
interest in assaying arginase-1 levels and functions. Thus, in this chapter we propose
how to evaluate the expression and activity of arginase in human peripheral blood-
derived PMNs and in MDSCs isolated from tumor-bearing mice.

1. Introduction

Arginase (ARG) is a manganese metalloenzyme hydrolyzing L-arginine

to L-ornithine and urea. It is found throughout the living organisms, in bac-

teria, yeasts, plants, invertebrates, and vertebrates, and is thought to have

appeared first in bacteria (Dzik, 2014). The subsequent transfer of ARG to

an eukaryotic cell likely occurred through mitochondria. In fact, most inver-

tebrates, plants, bacteria, and yeasts have only one form of ARG (ARG2) that

localizes in mitochondria, while the ureotelic organisms, which metabolize

excess nitrogen as urea, express a second cytosolic isoform (ARG1). In

humans, up to now, three different isoforms of ARG1 have been identified

and produced by mRNA alternative splicing. Isoform 1, alias liver ARG1,

consists of 322 amino acids (aa) (Dizikes, Grody, Kern, & Cederbaum,

1986) and is localized in the cytosol of hepatocytes where it contributes to

the urea cycle and nitrogen metabolism; 330 aa isoform 2, identified in ery-

throid cells and PMNs (Munder et al., 2005), carrying eight additional amino

acids beginning from aa 43, is important for L-arginine homeostasis via the

competition with nitric oxide synthase (NOS) for the available L-arginine

substrate; 236 aa isoform 3, missing amino acids 204–289, has still an

undefined function and tissue distribution (UniProt-P05089).

Crystal structure resolution indicates that active human ARG1 is a

105kDa homotrimer and each of 35kDa subunit contains a binuclear

Mn(II) located at the bottom of the catalytic cleft. In particular, the metal

ions establish hydrogen bonds with histidine and aspartate residues, ensuring

protein stability and ARG activation (Ash, 2004). The overall fold of each
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subunit belongs to the α/β family, consisting of a parallel, 8 stranded β-sheet
flanked on both sides by numerous α-helices. Similarly to rat and mouse

arginases, which have alkaline pH optimal activity, human ARG1 has a

maximal enzyme velocity in the range of pH 9.0–9.5 with a pK value of

7.8 (Di Costanzo et al., 2005). In non-hepatic tissues, ARG1 reaction is

thought to provide a source of ornithine, the biosynthetic precursor of

proline and the polyamines required for collagen deposition and cellular

proliferation, respectively (Casero, Murray Stewart, & Pegg, 2018), even

though these conclusions were never experimentally confirmed. While this

is true in general, in immune cells, like neutrophils, a direct role of ARG1 in

decreasing L-arginine levels cannot be underestimated. In human neutro-

phils, ARG1 is stored in tertiary granules and, upon different stimuli

(e.g., inteleukin-8 (IL-8), phorbol-12 myristate-13 acetate (PMA), Ca2+

ionophore A23187, ionomycin; Barrientos et al., 2013; Jacobsen,

Theilgaard-Monch, Christensen, & Borregaard, 2007; Rotondo et al.,

2009, 2011), is secreted and participate to the homeostasis of L-arginine

in the extracellular milieu. L-arginine is a semi-essential amino acid that is

generally provided by protein turnover but, in special cases (e.g., inflamma-

tion), needs to be supplemented with the diet. While the release of ARG1

from activated PMNs was shown to dampen T cell proliferation in vitro

(Rotondo et al., 2011), increased ARG1 activity is required to sustain micro-

bial clearance in neutrophils, through the depletion of L-arginine in the

phagolysosome (Munder et al., 2005). Moreover, alteration of L-arginine

levels was shown to contribute to the pathogenesis of Alzheimer’s disease

(Liu et al., 2014) and diabetes (Romero et al., 2012). Even though adminis-

tration of L-argininewas though to prevent and or delay the onset of diabetes-

associated vascular alterations, several studies, both inmice and humans, found

no real benefit on clinical outcomes after prolonged supplementation of

L-arginine (Lucas, Fulton, Caldwell, & Romero, 2014). These negative

effects could be related to the ability of L-arginine to induce either the expres-

sion or activity of ARG1, consequently reducing L-arginine plasma levels,

independently from ornithine production.

In mice ARG1 is constitutively expressed in the cytosol of hepatocytes

while its expression is induced in myeloid cells (e.g., MDSC and alterna-

tively activated macrophages) by cytokines like interleukin 4 and inter-

leukin 13 (IL-4 and IL-13, respectively) (Munder et al., 1999; Munder,

Eichmann, & Modolell, 1998), as well as by transforming growth

factor-β (TGF-β) (Boutard et al., 1995) and granulocyte-macrophage

colony-stimulating factor (GM-CSF) ( Jost et al., 2003). The promoter
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region of mouse ARG1 contains elements that control its transcription

in response to IL-4, cyclic adenosine monophosphate (c-AMP), TGF-β
and lipopolysaccharide (LPS) (Morris, 2002). In alternatively activated mac-

rophages (M2macrophages), ARG1 expression contributes to wound healing

and tissue regeneration processes and in immune defense against multicellular

pathogens, parasites and immune suppression and allergic inflammation

(Barron et al., 2013; Campbell, Saville, Murray, Cruickshank, & Hardman,

2013; El Kasmi et al., 2008; Gray, Poljakovic, Kepka-Lenhart, & Morris,

2005; Herbert et al., 2010; Modolell, Corraliza, Link, Soler, & Eichmann,

1995; Pauleau et al., 2004; Pesce et al., 2009). In tumor-infiltrating dendritic

cells (DCs) andmyeloid-derived suppressor cells (MDSCs) ARG1 plays a role

in suppression of T cell-mediated response (Liu et al., 2009; Narita et al.,

2013) by downregulating the CD3ζ chain of the T cell receptor (TCR), even

though a systematic analysis was never been done and controversial results

keep the question open (Van de Velde et al., 2017). This mechanism seemed

to be relevant for tumor escape in vivo, because injection of the ARG inhib-

itor N-hydroxy-nor-L-arginine (nor-NOHA) was shown to slow the growth

of lung carcinoma in a dose-dependent manner (Rodriguez et al., 2004).

Therefore, L-arginine degradation by ARG1 appears to exert amajor negative

impact on anti-tumor T cell function and, indeed, L-arginine directly mod-

ulates T cell metabolism by enhancing cell survival and sustaining their anti-

tumor activity (Geiger et al., 2016). In this manuscript, however, very high

concentrations of L-arginine were used in the in vitro assays. To dissect the

contribution of myeloid-derived ARG1 to the immune response, conditional

myeloid-specific ARG1 knockout mice were developed (Arg1 flox/flox;

Tie2cre) in whichmyeloid cells are nearly devoid of ARG1 activity, as a mea-

sure of urea production (El Kasmi et al., 2008). In these mice, the absence of

ARG1 in myeloid compartment, unleashed the therapeutic activity of adop-

tively transferred, tumor-specific T cells by a mechanism requiring the release

of NO by monocyte-derived DCs (Marigo et al., 2016).

On the light of this information, it appears that profound dissimilarities exist in

theARG1biology between rodents and humans.While inmiceARG1 is a cyto-

solic enzyme induced inMDSC/M2macrophages, in humans ARG1 is stored in

PMNgranules whose exocytosis is induced by different pro-inflammatory stimuli

(Rotondo et al., 2011). Moreover, human ARG1 is constitutively expressed by

PMNs and its expression is not upregulated by stimuli that affect the mouse ana-

logue (Munder et al., 2005). Thus, in this chapter, we will describe assays opti-

mized to determine the ARG1 level and activity (Corraliza, Campo, Soler, &

Modolell, 1994), in human PMNs and mouse MDSCs.
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2. Arginase inhibitors

In view of findings suggesting that altered L-arginine homeostasis can

contribute to the pathogenesis and exacerbation of several conditions (e.g.,

cancer, autoimmune diseases, asthma), controlling intracellular and extracellular

arginase activity is attractive for disease modulation, both in humans and

mice. Targeting ARG is not an easy task. The few known ARG inhibitors

suffer from poor structural diversity. Two types of inhibitors are known to

bind to ARG (Di Costanzo, Pique, & Christianson, 2007). The first group

comprises product analogues to the ligand. Such inhibitors prevent the

natural hydrolysis taking place with the natural substrate. The second group

comprises transition state analogues like hydroxyarginines, boronic acids,

or sulfonamides (Boucher et al., 1994; Di Costanzo, Ilies, Thorn, &

Christianson, 2010). Boronic acids, like 2-S-amino-6-boronohexanoic acid

(ABH) and S-(2-boronoethyl)-L-cysteine (BEC), together with hydro-

xyarginine, like nor-N(ω)-hydroxy-L-arginine (nor-NOHA), react to form

transition state analogs complexing the Mn2+ ions and sequestering them

from the catalysis. Unfortunately, none of these inhibitors exhibit sufficient

differences in affinity to provide isoform-selective inhibition, both in vitro

and in vivo (Morris, 2009; Pudlo, Demougeot, & Girard-Thernier, 2017),

beside been toxic in vivo to some extent. Recently, renewed interested in

targeting ARG has brought scientists to design novel non-aminoacid-based

inhibitors (Mortier et al., 2017) that selectively interact with ARG1, which

is the prerequisite for the development of novel ARG1 modulators with

therapeutic relevance. Furthermore, a novel inhibitor, CB-1158, was develop

and the initial encouraging results in preclinical cancer models (Steggerda et al.,

2017) have paved theway to start a phase I clinical trial for treatment of solid tumors.

For the matter of this chapter we will evaluate ARG1 dependent effects using nor-

NOHA, which has been broadly used in vivo and in vitro (Rotondo et al., 2011).

3. Evaluating ARG1 in activated and resting PMN:
Immunofluorescence (IF) analysis

An immune-based method for the detection of ARG1 in purified

PMNs, isolated from peripheral blood, is described below. Combining

the specificity of antibody’s binding to ARG1 with the high resolution

capacity of confocal microscopy, it is possible to reveal the cellular distribution

of ARG1 and changes occurring during PMN priming.
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3.1 Equipment
1. BD vacutainer®, K2EDTA

2. 15 and 50mL polypropylene conical tubes (BD, Falcon)

3. Centrifuges

4. FACS Canto flow cytometer (BD Biosciences)

5. FlowJo Software (TreeStar)

6. 12�75–mm polypropylene tubes (BD, Falcon)

7. Cover glass, 13mm in diameter, 1mm thick (VWR)

8. SuperFrost Plus, glass slides, Thermo Fisher

9. 24-well plate (BD, Falcon)

10. Transfer pipette, 3.5mL (Sarstedt)

11. Serological pipettes (5, 10, 25mL, Sarstedt)

12. Leica TCS SP5 confocal laser scanning microscope (LeicaMicrosystems)

3.2 Material
1. Arginine-free RPMI (Biological Industries, Kibbutz Beit Haemek,

Israel), supplemented with 10% FBS (Fetal bovine serum; Gibco),

10U/mL penicillin and streptomycin and 0.01M Hepes

2. Ficoll-Paque, 1.077g/mL (GE Healthcare)

3. 4% Dextran (Mr 450,000–650,000; 31392, Sigma-Aldrich).

4. Dulbecco’s phosphate-buffered saline (DPBS without Ca2+ and Mg2+;

Lonza BioWhittaker, BE17-515Q)

5. 0.2% NaCl solution, 0.22μm filtered

6. 1.2% NaCl solution, 0.22μm filtered

7. Ionomycin (I0634, Sigma-Aldrich)

8. IL-8 (130-108-979, Miltenyi Biotec).

9. 36.5-38% formaldehyde solution (F8775, Sigma-Aldrich)

10. Tris Buffered Saline (TBS)

11. Tween-20 (Sigma-Aldrich)

12. Triton X-100 (Sigma-Aldrich)

13. Normal goat serum (S-1000, Vector Laboratories)

14. Primary antibodies: Goat anti-human MPO (R&D, AF3667), rabbit

anti-human H3 R2+R8+R17 citrullinated (Abcam, ab5103), mouse

anti-human ARG1 (monoclonal antibody from homemade hybridoma,

conjugated to Alexa Fluor 647)

15. Secondary antibodies: donkey anti-goat Alexa Fluor 488 (A-11055,

Thermo Fisher) and goat anti-rabbit Alexa Fluor 546 (A-11035,

Thermo Fisher)
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16. 40,6-diamidino-2-phenylindole dihydrochlorid (DAPI) (10236276001,

Sigma-Aldrich)

Note: all experiments must be performed in accordance with local institu-

tional ethical guidelines.

Note: collect blood within 10–15min of the experiment to ensure optimal

yield and resting PMNs. Avoid to purify PMNs from buffy coat. Cells tend to

have an activated and already degranulate phenotype.

Note: avoid cold temperature, PMNs tends to become activated. Try to

work at RT (20–22 °C) and to maintain the reagents at 37 °C before use.

3.3 Protocol
3.3.1 Isolation of PMNs from peripheral blood of healthy donors
1. Collect blood in K2EDTA vacutainer tubes, dilute 1/2 with DPBS, and

carefully layer onto a density gradient Ficoll-Paque. Centrifuge at

800� g for 20min at 24 °C, without brake.
2. Aspirate the top layer containing PBMC, keep momentarily aside, on

ice. Erythrocytes (RBC) and PMNs sediment at the bottom of the tube,

gently remove the excess of Ficoll-Paque and add DPBS and a volume of

4% dextran (both kept at 37 °C) to reach 1% final, gently invert the tube

to mix and allow to sit at RT for 20min.

3. Collect the upper PMN-rich layer avoiding the RBC, spin down and

lyse the residual RBC by resuspending the pellet in 3mL of 0.2% NaCl

for 2½ min and then in 7mL of warm 1.2%NaCl (both kept at 37°C) to
restore isotonicity. Centrifuge at 450� g at 24 °C for 5min.

4. Discard supernatant and wash pellet with 15mL warm of PBS (kept at

37 °C) and centrifuge again at 450� g at 24 °C to get rid of any remaining

lysing solution. The pellet obtained at this point is enriched in PMNs.

5. Check the cell purity by FACS analysis on forward/side scatter parameters,

and viability by trypan blue dye exclusion.Generally, PMNs yielded purity

and viability is >95%. Dilute PMNs in warm L-arginine free RPMI to a

concentration of 5�106 PMNs/mL.

Note: higher concentration of PMNs can result in spontaneous activation

and degranulation.

3.3.2 Immunofluorescence analysis of ARG1 in activated PMNs
1. Prepare a 24-well cell culture plate by inserting sterile 13mm round

glass cover slip in each well.

2. Plate 2�105 cells in 300μL L-arginine free RPMI containing 10%

FBS in each well and incubate at 37 °C for 1h for adherence.
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3. Meanwhile, prepare 20μM ionomycin in L-arginine free RPMI con-

taining 10% FBS and add 100μL per well (final concentration, 5μM).

Alternatively, add 100μL of 80nM of IL-8 (final concentration,

20nM). Incubate the cells from 30min up to 4h at 37 °C, 5% CO2.

4. Fix cells with 4% paraformaldehyde solution (final concentration in the

well) for 15min at RT.

5. Carefully remove the supernatant and wash three times with PBS.

Permeabilize the cells by adding 300μL of 0.5% Triton X-100 in

TBS and incubate for 1h at RT.

6. Remove the liquid and add blocking buffer (20% normal goat serum in

0.1% Triton X-100). Let stand for 2h at RT.

7. Without washing add primary antibodies diluted in PBS. The follow-

ing antibodies are routinely used: anti-MPO (1:200, stock 0.2mg/mL),

anti-ARG-1 (1:1000, stock 1.5mg/mL), anti-H3 citrullinated R2

+R8+R17 (1:500, stock 0.8mg/mL). Incubate O/N at 4 °C.
8. The following day, remove the primary antibodies and wash three

times with 0.05% Tween-20 in TBS.

9. Dilute the secondary antibodies in blocking buffer as follows: anti-

rabbit AF546 (1:2000, stock 2mg/mL), anti-goat AF488 (1:2000, stock

2mg/mL). Incubate for 1h at RT.

10. Wash with 0.05% Tween-20 as before. Wash once with TBS only.

11. Stain DNA with 40,6-diamidino-2-phenylindole (DAPI, 1μg/mL) for

10min, RT then wash twice with distilled water.

12. Set a 10μL drop of ProLong Antifade reagent (Thermo Fisher) onto a glass

slide and mount the cover slip. For microscopic analysis with immersion

lenses let the mounting media to dry for at least 1h. Store at 4°C.
13. Acquire images at the Leica TCS SP5 confocal microscope.

4. Intracellular determination of ARG1 levels in PMN by
flow activated cell sorting (FACS)

PMNs are a heterogeneous population of cells expressing ARG1.

FACS analysis, by combining antibodies directed to different cellular surface

markers, represents a sensitive and semi-quantitative method to evaluate

total intracellular levels of ARG1 in PMN subtypes.

4.1 Equipment
1. BD vacutainer®, K2EDTA

2. 15 and 50mL polypropylene conical tubes (BD, Falcon)

200 Stefania Canè and Vincenzo Bronte



3. Centrifuges

4. FACS Canto flow cytometer (BD Biosciences)

5. FlowJo Software (TreeStar)

6. 12�75–mm polypropylene tubes (BD, Falcon)

7. Transfer pipette, 3.5mL (Sarstedt)

8. Serological pipettes (5, 10, 25mL, Sarstedt)

4.2 Material
1. Cytofix/Cytoperm kit (BD Biosciences)

2. Human FcR blocking reagent (Miltenyi Biotec, 130-059-901)

3. Staining buffer: DPBS+0.5% w/v bovine serum albumin (BSA, A4503,

Sigma-Aldrich)

4. Anti-CD16 (clone 3G8)-FITC, anti-CD15 (clone HI98)-PE, anti-

CD66b (G10F5)-BV421 are from BD Biosciences, anti-ARG1 (clone

1.10 from homemade hybridoma, conjugated with Alexa FLuor-647,

Thermo Fisher)

4.3 Protocol
1. Isolate PMNs as in Section 3.3.1 and incubate the cells with Fc-receptor

blocking reagent diluted 1/25 at 4°C for 10min.

2. Add the mixture of antibodies (CD16/CD66b or CD15) and incubate at

4°C for 20min. The dose of each antibody depends on the lot number

and must be evaluated before.

3. Wash the cells with staining buffer and proceed to fixed and perme-

abilized using the BD Cytofix/Cytoperm kit according to the manufac-

turer’s instructions.

4. At the end of the incubation time, wash the cells extensively with

permeabilization buffer diluted following BD protocol.

5. Add the antibody clone 1.10 AF-647 to anti-ARG1 and incubate 1h at

4°C. The amount of antibody should be predetermined using PMNs

and the PBMC fraction as negative control.

6. Wash three times with permeabilization buffer and finally resupsend the

cells in staining buffer.

7. Acquire directly to the flow cytometry.

Note: we recommend performing the staining protocol in 96-round well

plate to avoid losing cells.

Note: do not let the stained PMNs standing for longer time before flow

cytometry.
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5. Determination of ARG1 activity from PMN-derived
supernatant

The enzyme activity is determined by an end-point colorimetric

method to evaluate the ornithine production, using L-arginine as a substrate.

Beside evaluating the overall level of ARG-1 by commercial ELISA it is

imperative to determine the activity of the protein, since it is an enzyme

with defined biochemical properties (e.g., Vmax, Kd).

5.1 Equipment
1. BD vacutainer®, K2EDTA

2. 15 and 50mL polypropylene conical tubes (BD, Falcon)

3. Centrifuges

4. Transfer pipette, 3.5mL (Sarstedt)

5. Cell culture treated petri dishes (Corning)

6. Serological pipettes (5, 10, 25mL, Sarstedt)

7. BCA assay kit (Thermo Fisher)

8. Spectra Max microplate reader (Molecular Device)

9. Heating block

10. 2mL Eppendorf tubes

11. pH-meter

5.2 Materials
1. Reagents for PMN isolation and activation as indicted in Section 3.3.1.

2. L-Arginine (A5131, Sigma-Aldrich)

3. L-Ornithine (O2375, Sigma-Aldrich)

4. MnCl2 (244589, Sigma-Aldrich)

5. Ninhydrin (N4876, Sigma-Aldrich)

6. Acetic acid (45754, Sigma-Aldrich)

7. Tris/HCl and NaCl (Sigma-Aldrich)

8. Carbonate-bicarbonate buffer (C3041, Sigma-Aldrich)

5.3 Protocol
1. Determine the protein content in the supernatant by BCA assay.

2. Take 100μg of total protein and bring to 100μL volume with a carbonate

solution, pH10.
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3. Adjust the pH to 9.5 then add 100μL of 75mM MnCl2. Incubated

20min at 55 °C.
4. Add 50μL of 140mML-arginine and incubate for 2h up toO/N at 37°C.
5. Stop the reaction by adding 850μL of acetic acid and add 300μL of

ninhydrin solution.

6. Incubate at 100 °C for 30min. Remove from the heating block and let

stand for 10min avoiding light exposure.

7. Spin the samples at 14000rpm for 5min, take 250μL of the supernatant

and plate in a 96 well plate (flat bottom). Read at 492nm.

8. Calculate L-ornithine concentration using a standard curve with serial

dilutions ranging from 2.0 to 0.5mmol/L. Reagent stock solutions to

use are: 100mmol/L L-arginine (fresh every day), 2mmol/L L-ornithine

(stable 1month at 4°C), 25g/L ninhydrin in 10mol/L acetic acid/

2.4mol/L phosphoric acid (stable for several months), 10mmol/L MnCl2
(stable for 1 month).

6. Evaluation of human PMN-derived ARG1 dependent
suppressions of T cell proliferation and
determination of ARG1 activity

Immune suppression exerted by degranulating PMNs on activated T cells

can be measured in terms of inhibition of T cell proliferation due to the ability to

induce proliferative arrest of actively dividing cells. Even though, in the protocol

we recommend employ PBMCs, the use of purified T cells might help in

avoiding potential interference from other cell subsets present among PBMCs.

6.1 Equipment
1. BD vacutainer®, K2EDTA

2. 15 and 50mL polypropylene conical tubes (BD, Falcon)

3. Centrifuges

4. FACS Canto flow cytometer (BD Biosciences)

5. FlowJo 7.6.5 Software (TreeStar)

6. 12�75-mm polypropylene tubes (BD, Falcon)

7. TruCount tubes (BD Biosciences)

8. Transfer pipette, 3.5mL (Sarstedt)

9. Cell culture treated petri dishes (Corning)

10. Serological pipettes (5, 10, 25mL, Sarstedt)

11. 96-well flat-bottom plate, cell culture treated

12. Incubator 8% CO2
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6.2 Materials
1. Anti-CD3 (5μg/mL), clone OKT3, obtained after expansion and puri-

fication of a commercially available hybridoma

2. Anti-CD28 (5μg/mL), clone CD28.2 (BioLegend, 302923)

3. Dulbecco’s phosphate-buffered saline (DPBS without Ca and Mg;

LonzaBioWhittaker, BE17-515Q)

4. CellTrace TM Violet Cell Proliferation Kit (Thermo Fisher)

5. Fetal bovine serum (FBS; Gibco). Note: FBS used for functional assay

should be tested to guarantee that immunosuppression is detectable and

not overcome by an excessive T cell proliferation

6. Human FcR blocking reagent (Miltenyi Biotec, 130-059-901)

7. L-Arginine (A5131, Sigma-Aldrich)

8. IMDM medium (12440053, Gibco)

9. Arginine-free RPMI (Biological Industries, Kibbutz Beit Haemek,

Israel), supplemented with 10% FBS (Fetal bovine serum; Gibco),

10U/mL penicillin and streptomycin and 0.01M Hepes.

10. Ficoll-Paque, 1.077g/mL (GE Healthcare).

11. 4% Dextran (Mr 450,000-650,000; 31392, Sigma-Aldrich).

12. 0.2% NaCl solution, 0.22μm filtered.

13. 1.2% NaCl solution, 0.22μm filtered.

14. Ionomycin (I0634, Sigma-Aldrich).

15. IL-8 (130-108-979, Miltenyi Biotec).

16. nor-NOHA (acetate) (10006861, Cayman Chemical).

17. Human serum (H3667, Sigma-Aldrich).

18. Anti-CD3, clone UCHT1 (Beckman Coulter), anti-CD4, clone SK3

(BD Biosciences) and anti-CD8, clone SK1 (BD Biosciences)

19. Staining buffer: DPBS+0.5% w/v bovine serum albumin (BSA,

A4503, Sigma-Aldrich)

6.3 Protocol
1. Prepare coating buffer with anti-CD3 (5μg/mL final concentration in

DPBS) to fill 96 well flat bottom microtiter plates with 200μL/well
using a multichannel pipettor. Fill an equal number of wells with

200μL/well of DPBS without antibodies, for background proliferation

measurement.

2. Incubate the plate overnight at 4°C or alternatively at 37°C for 1h.

3. Follow the detailed protocol highlighted in Section 3.3.1 to isolate

PMNs and resuspend them at 5�106 cells/ml in L-arginine free media.
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4. Transfer PMNs in a petri dish and stimulate them with ionomycin

(5μM) or IL-8 (20nM) for 30min at RT.

5. Gently aspirate the media with transfer pipette. Spin for 10min at

450� g at 24 °C. PMNs and any remaining cells/debris will be pelleted

at the bottom of the tube, leaving a cell-free supernatant.

6. Meanwhile, take the PBMC layer isolated in Section 3.3.1, transfer into

a 50mL conical tube and wash three times with ice cold DPBS con-

taining 1% human serum.

7. Dilute an aliquot of PBMC suspension in trypan blue dye solution and

evaluate the viable cell concentration.

8. Adjust the concentration of PBMCs to 2�107 cells/ml in DPBS and the

concentration of CellTrace to 2� in DPBS (final concentration ranging

from 0.5 to 2μM); quickly mix equal volumes of PBMCs and CellTrace

and incubate for 5min at 37°C. Quench the reaction by adding 1/5 of

the total volume of FBS, centrifuge 5min at 300� g, 4°C. Check the

incorporation of CellTrace by flow cytometry.

9. Plate CellTrace+ PBMCs in a 24-well plate at 3�106 cell/well for at

least 1h at 37°C in IMDM medium containing 10% FBS.

10. Harvest PBMCs, count them by trypan blue dye assay, adjust their con-

centration to 1�106 cells/mL in either supernatant from PMNs treated

or left untreated. Add 150μM L-arginine to all the conditions and plate

in triplicate, 200μL/well, in 96-well plates coated with anti-CD3 anti-

body extensively washed with DPBS to remove unbound anti-CD3

antibody. In some condition add nor-NOHA, an arginase inhibitor, at

the final concentration of either 100 or 300μM.Add 1μL/well of soluble
anti-CD28 (5μg/mL) and incubate at 37°C, 8% CO2 for 4 days.

11. At day 4, pool triplicates and wash samples once with sorting and

staining buffer, centrifuge the suspension 6min at 300� g, 4 °C, and
discard the supernatant.

12. Block nonspecific binding with 25μL FcR blocking reagent for 10min

at 4 °C.
13. Stain cells with anti-CD3 clone UCHT1, anti-CD4 clone SK3 and

anti-CD8 clone SK1 for 20min at 4°C. Adjust the volume of staining

mix to 100μL with staining buffer.

14. Wash samples once with staining buffer, centrifuge the suspension for

5min at 300� g, 4°C, and discard the supernatant.

15. Resuspend samples in 250μL DPBS, transfer the mix in TruCount

tubes, gently vortex, and proceed with flow cytometric acquisition

and analysis.
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7. Summary

Several data indicate that ARG1, secreted by activated PMNs or

expressed bymurineMDSC, by altering L-arginine homeostasis canmodulate

the immune response toward cancer. At the same time a new reinvigorating

interest on understanding the molecular mechanisms driving human PMNs

and murine MDSC differentiation has recently emerged due to the con-

tribution of these cells in the pathogenesis of diseases, like systemic lupus

erythematosus, rheumatoid arthritis, diabetes and cancer, among others. With

this chapter we describe protocols for the detection and functional evaluation

of ARG1 in both human PMNs, isolated from peripheral blood of healthy

donors, and mouse MDSCs with the aim of defining the basic experimental

approaches necessary to evaluate immune-derived ARG1.
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Appendix

Determination of ARG1 levels and activity in mouse-
derived myeloid cells

Isolate and purify MDSCs from the spleen of tumor-bearing mice following

the instructions present in Basic Protocol 1 recently published by our

group (Solito et al., 2019). Alternatively, bone-marrow derived MDSCs

(BM-MDSCs) can be generated using Basic Protocol 2 (Solito et al.,

2019). As control forMDSC-derived ARG-dependent suppression, we rec-

ommend to use cells obtained from conditional myeloid Arg1-deficient

mice (e.g., ARG1fl/fl;Tie-2Cre mice).

1. ARG-dependent suppressive activity of myeloid cells

Once obtained, proceed to evaluate ARG-dependent suppressive

ability in MDSCs and BM-MDSCs following the Basic Protocol 3

(Solito et al., 2019) with minor modifications:

1. At point 5 of Basic Protocol 3, MDSCs should be co-cultured with

T lymphocytes in the presence of ARG inhibitor, nor-NOHA,

previously titrated.
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2. In case TCR transgenic mice, developed to recognize a specific anti-

genic peptide, are not available, it is possible to perform the assay

using Basic Protocol 2 (Dolcetti, Peranzoni, & Bronte, 2010).

2. Evaluation of ARG1 protein levels in the pellet of myeloid cells

2.1 Equipment

1. 1.5 mL tubes

2. Minicentrifuge

3. SDS-PAGE running system and wet transfer apparatus

4. Heating block

5. Microplate reader

6. Bio-Rad ChemiDoc

2.2 Material

1. lysis buffer: 50 mM HEPES, 150 mM NaCl, 5 mM EDTA,

0.5% Triton, cocktail protease

inhibitors, 1 mM NaOV4, 2 mM PMSF

2. cOmplete™ Protease Inhibitor Cocktail (11836145001,

Sigma-Aldrich)

3. Tris-buffer saline (TBS) and Tween-20 (Sigma-Aldrich)

4. Laemmli buffer (161-0747, Bio-Rad)

5. NuPAGE, 10% bis-tris protein gel (NP0302BOX, Thermo

Fisher)

6. 20X MOPS buffer (Thermo Fisher)

7. PVDF membrane 0.2μm (88520, Thermo Fisher)

8. Transfer buffer: 25mM Tris-HCl (pH 7.6), 192 mM glycine,

20% methanol (Sigma-Aldrich)

9. Non-fat dry milk (1706404, Bio-Rad).

10. Bovine serum albumin (BSA), (A2153, Sigma-Aldrich)

11. Primary antibodies: goat anti-mouse ARG1 (SAB2500101,

Sigma-Aldrich); rabbit anti-mouse β actin (ab8227, Abcam)

12. Secondary antibodies: sheep anti-mouse-HRP (NA931, GE

Healthcare); donkey anti-rabbit-HRP (NA934,GEHealthcare)

13. SuperSignal West Pico Chemiluminescent substrate (34580,

Thermo Fisher)

14. BCA protein assay kit (23225, Thermo Fisher)

2.3 Protocol

1. Collect the cells (MDSCs, BM-MDSCs or M2 macrophages),

wash them twice in cold PBS.

2. Disrupt 5�105 pelleted cells on ice in lysis buffer. Incubate on

ice for 15min. Vortex every 5min, maximum speed.
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3. Spin at 14000rpm for 10min at 4°C, transfer the supernatant
containing proteins into a new tube and quantify the protein

content. Take 20μg add 1 volume of Laemmli’s buffer and

carry out the denaturation 5min at 100°C.
4. Proteins are separated on a 10% bis-tris acrylamide gel in MOPS

buffer and then transferred on a PVDF membrane (Millipore).

5. The membrane was saturated for 1h at RT in TBS/0.05%

Tween-20 (TBST) supplemented with 5% non-fat milk

(blocking solution).

6. Hybridizations of primary antibody is carried out as follows:

goat anti-ARG1 (1:500, stock 0.5mg/mL) ON 4°C in block-

ing solution; rabbit anti-actin antibody (1:3000, stock

0.3mg/mL) for 1h at RT in TBS-T/3% BSA.

7. After washing with TBST, hybridizations with the HRP-

conjugated secondary antibodies sheep anti-mouse IgG

(1:5000) and donkey anti-rabbit IgG (1:5000) both diluted

in blocking buffer are performed for 1h at RT. Detection of

the proteins is carry out using SuperSignal West Pico Chemi-

luminescent following manufacturer’s instructions.

3. Determination of ARG1 levels in mouse plasma, in tissue culture super-

natant and in cell homogenate

3.1 Equipment

1. Microplate reader

2. Multichannel pipettes

3. Eppendorf tubes

4. 37 °C incubator

5. Sonicator

6. Minicentrifuge

3.2 Material

1. Mouse ARG1 ELISA kit (LS-F6864, LSBio).

2. Deionized or distilled water.

3. Dulbecco’s phosphate-buffered saline (DPBS without Ca2+

and Mg2+; Lonza BioWhittaker, BE17-515Q).

4. Lysis buffer: 50mMTris-HCl, 150mMNaCl. Add at the time

of lysis cocktail of protease inhibitors and PMSF (final concen-

tration 2mM).

5. cOmplete™ Protease Inhibitor Cocktail (11836145001,

Sigma-Aldrich).
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3.3 Protocol

1. Collect and pellet the cells by centrifugation, 450� g at 4°C for

10min and remove the supernatant. Wash the cells three times

with DPBS then resuspend in lysis buffer. Lyse the cells by

ultrasonication. Centrifuge at 1500� g at 4°C for 10min to

remove cellular debris. Collect the supernatant and following

manufacture’s instruction assay ARG1 levels.

2. Collect plasma in heparin-containing tubes. Centrifuge the

samples for 15min at 1000� g at 4°C. Collect the supernatant
for assaying following manufacture’s instruction.

3. Remove cell culture supernatants and centrifuge the samples for

20min at 1000� g to remove cells and debris. Transfer the

supernatant into a new tube and proceed to assay following

the manufacture’s instruction.

4. Quantify ARG activity in cells

4.1 Equipment

1. 24-well tissue culture plates

2. Platform rocker

3. 96-well plate

4. Microplate reader

5. Heating block

6. ELISA plate (15041, Thermo Fisher)

7. 96-well plate flat (353072, Falcon)

4.2 Material

1. Cultured cells (e.g., MDSC)

2. Dulbecco’s phosphate-buffered saline (DPBS without Ca2+

and Mg2+; Lonza BioWhittaker, BE17-515Q)

3. Lysis buffer: 0.001% Triton X-100 (Sigma-Aldrich), protease

inhibitor cocktail and 2mM PMSF. Prepare fresh each time.

4. Arginase activation solution: prepare a 10mMMnCl2, 50mM

Tris-HCl, pH 7.5 solution. Store indefinitely at room

temperature.

5. Arginase substrate solution: make up a 0.5M L-arginine,

pH9.7 solution. Store indefinitely at room temperature

6. Urea standard solution: prepare a 100mg/mL urea solu-

tion. Store for 1 year at room temperature. Prepare the

standard starting from a concentration of 100mg/mL up

to 5mg/mL

7. Quantichrom urea assay kit (DIUR-500, Bioassay Systems)
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4.3 Protocol

1. To 5�105 cells plated in 24-well plate add lysis buffer (100μL)
per well and gently rock the plate for 15min at 4 °C. Transfer
into a new tube. Spin at 14000rpm 10min at 4 °C to remove

debris.

2. Transfer 50μL of each lysate to a 96-well flat plate. Add 50μL
of arginase activation solution to each well and incubate 10min

at 55 °C in a heating block.

3. Transfer 25μL of each activated lysate to a new 96-well flat

plate. Add 25μL arginase substrate solution to each well and

incubate from 1h up to 24h at 37°C.
4. Prepare the urea standard and a blank. Mix of 1vol of lysis

buffer, 1vol of arginase activation solution, and 2vol arginase

substrate solution as a diluent to match the content of the

experimental samples.

5. Add 5μL of each reacted sample, the serially diluted urea stan-

dard, and the blank solution control to an ELISA plate. Mix

together the Quantichrom urea assay kit reagents following

manufacturer’s instructions, then add 200μL per well to the

ELISA plate.

6. Incubate 2–20min at room temperature in the dark and quan-

tify urea by reading the absorbance at 520nm.
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