
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-022-01753-9
Arch. Rational Mech. Anal.

First Integrals and Symmetries
of Nonholonomic Systems

Paula Balseiro & Nicola Sansonetto

Communicated by M. Ortiz

Abstract

In nonholonomicmechanics, the presence of constraints in the velocities breaks
the well-understood link between symmetries and first integrals of holonomic sys-
tems, expressed by Noether’s Theorem. However, there is a known special class
of first integrals of nonholonomic systems generated by vector fields tangential to
the group orbits, called horizontal gauge momenta, that suggests that some ver-
sion of this link still holds. In this paper we prove that, under certain conditions
on the symmetry group and the system, the (nonholonomic) momentum map is
conserved along the nonholonomic dynamics, thus extending Noether’s Theorem
to the nonholonomic framework. Our analysis leads to a constructive method, with
fundamental consequences to the integrability of some nonholonomic systems as
well as their hamiltonization. We apply our results to three paradigmatic examples:
the snakeboard, a solid of revolution rolling without sliding on a plane, and a heavy
homogeneous ball that rolls without sliding inside a convex surface of revolution.

1. Introduction

1.1. Symmetries and first integrals

The existence of first integrals plays a fundamental role in the study of dy-
namical systems and influences many aspects of their behavior, in particular their
integrability. It is well-known that in holonomic systems with symmetries (de-
scribed by a suitable action of a Lie group), Noether’s Theorem ensures that the
components of the momentum map are first integrals of the dynamics. When con-
straints in the velocities are imposed and nonholonomic systems [11,23,48,50] are
considered, this conservation property no longer holds. In fact, the presence of
constraints in the velocites prevents the system from being variational (and thus
lagrangian/hamiltonian) and hence Noether’s Theorem cannot be applied. There-
fore the presence of symmetries does not necessarily lead to first integrals (see
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[11,12,18,20,22,23,30,32,42,44,46,48,54,57]); in particular, the components of
the momentum map need not be conserved by the dynamics.

Indeed the situation with nonholonomic systems with symmetries is quite sub-
tle: only certain components of the momentum map may be conserved and, in
general, it is not clear which ones or how many. However, many examples (see
e.g., Table 1) admit first integrals linear in the momenta that are generated by vec-
tor fields that are not infinitesimal generators of the symmetry action, but are still
tangential to the group orbits [7,9,28,31,57]; these are the so-called horizontal
gauge momenta [9]. The goal of this paper is to set a theoretical framework that
unifies there types of examples by proposing a systematic way to determine the total
amount of horizontal gauge momenta and to write a general method to compute
them.

The research of a possible link between the presence of symmetries and the
existence of first integrals in nonholonomic systems—if any exists—has been an
active field of research in the last thirty years [9,10,12,18,22,30,32,42,44,46,54,
57], and it dates back at least to the fifties with thework ofAgostinelli [1] and fifteen
years later with the works of Iliev [40,41].More recently, new tools and techniques,
with a strong relation with the symmetries of the system, have been introduced
in order to understand the dynamical and geometrical aspects of nonholonomic
systems, such as nonholonomic momentummap, momentum equations, and gauge
momenta. However, so far, the study of horizontal gauge momenta for different
examples has been done case by case without—a priori—knowing if they exist or
how many one could find. It is well known that first integrals are often found by
integration of a system of PDEs or, in special cases (see for example Table 1), a
system of ODEs, but a theoretical explanation of how and why a system of ODEs
is sufficient to construct first integrals was not known.

1.2. Main results of the paper

Given a nonholonomic system on a manifold Q with a symmetry described
by the (free and proper) action of a Lie group G, we consider functions of type
Jξ = 〈J, ξ 〉, where J is the canonical momentum map and ξ is a section of the
bundle Q × g → Q, with the property that the infinitesimal generator of each
ξ(q), q ∈ Q, is tangential to the constraint distribution. When Jξ is a first integral
of the nonholonomic dynamics, we say that Jξ is a horizontal gauge momentum.
Our nonholonomic Noether Theorem (Theorem 3.14) gives the theory and tools to
predict the exact amount of horizontal gauge momenta and also to establish them
by construction. First, denoting by k the rank of the distribution S, given by the
intersection of the constraint distribution D with the tangent bundle to theG-orbits,
Theorem 3.14 asserts the existence of k (functionally independent andG-invariant)
horizontal gauge momenta, when certain hypotheses are satisfied. The importance
of this first part resides in the fact that we are able to infer the exact amount of
horizontal gauge momenta without the need of computing them. Moreover, this
number is nothing but the rank of the vertical part of the constraints. Second,
we write an explicit system of linear ordinary differential equations, that admits
global solutions that give rise to the k horizontal gauge momenta. This system
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Table 1. Nonholonomic systems and related horizontal gauge momenta with respect to the
symmetry

is constructed using the theoretical information of the nonholonomic system, and
hence it has a “general character” in the sense that, given a nonholonomic system
(satisfying certain hypotheses) we can always write this system. Therefore we show
a unified way of computing the horizontal gauge momenta for many examples. We
also conclude that, in these cases, the components of the nonholonomic momentum
map [3,12] (in a suitable basis) are conserved along the dynamics, addressing the
fundamental question raised in [3,12]. These results are based on an intrinsic and
global formulation of the momentum equation that characterizes the horizontal
gauge momenta.

Table 1 shown the evidence for the generality of our result, showing some
of the classical examples of nonholonomic systems that fit into the scheme of
Theorem 3.14 emphasizing the relation between the rank(S) and the number of
horizontal gauge symmetries. We use our method to study in detail four of these
examples: the nonholonomic oscillator, the snakeboard, a solid of revolution rolling
on a plane and a heavy homogeneous ball rolling on a surface of revolution (in
particular, the last two examples are paradigmatic of a large class of nonholonomic
systems with symmetry) thus unifying many works in nonholonomic mechanics,
as e.g. [11,17,21–23,28,38,50,56,57].

Even though Theorem 3.14 applies to many important examples, not every
nonholonomic system is expected to admit horizontal gauge momenta. Therefore,
we study particular examples of nonholonomic systems that do not satisfy the
hypotheses of theTheorem, showing that as a consequence of this failure, the system
admits less than k (and even none) horizontal gauge momenta and clarifying the
need of each of the hypotheses.

The fact that we know the exact number of horizontal gauge momenta and
have a systematic way of constructing them has fundamental consequences on
the geometry and dynamics of nonholonomic systems; see e.g. [5,17,23,26,27,
37,38,56]. Under the hypotheses of Theorem 3.14 we first show that the reduced
dynamics is integrable by quadratures and, if some compactness conditions are
satisfied, it is indeed periodic (Theorem 4.4). From a more geometric point of
view, if the reduced dynamics is periodic, we have that the reduced space inherits
the structure of an S1-principal bundle outside the equilibria. Second, we prove
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(Theorem 4.5) the hamiltonization of these nonholonomic systems (see also [8,
37]), were, precisely the existence of k = rank(S) horizontal gauge momenta
and the fact that dim(Q/G) = 1 guarantee the existence of a Poisson bracket
on the reduced space M/G that describes the reduced dynamics. This bracket
is constructed using a dynamical gauge transformation by a 2-form that we also
show to be related to the momentum equation. Third, when the reduced dynamics
is periodic, we can obtain information on the complete dynamics (Theorem 4.12).
In particular, if the symmetry group G is compact, the reconstructed dynamics
is quasi-periodic on tori of dimension at most r + 1, where r is the rank of the
symmetry group G, and the phase space inherits the structure of a torus bundle. If
the symmetry group is not compact, the situation is less simple, but still understood:
the complete dynamics is either quasi-periodic or diffeomorphic toR, and whether
one or the other case is more frequent (or generic) depends on the symmetry group
(see Sect. 4.2, Appendix B and [2,33]).

1.3. Outline of the paper

The paper is organized as follows: in Sect. 2 we recall the basic aspects and
notations of nonholonomic systems and horizontal gauge momenta. In Sect. 3 we
present an intrinsic formulation of the momentum equation and the main result of
the paper, Theorem 3.14. The results of this Section are illustrated with the example
of the nonholonomic oscillator. The fundamental consequences of Theorem 3.14,
integrability and hamiltonization, are studied in Sect. 4. Finally, in Sect. 5 we first
apply our techniques and results to three paradigmatic examples outlined in bold in
Table 1. We also study different cases where the hypotheses of Theorem 3.14 are
not satisfied. The paper is complemented by two appendices: Appendix A recalls
basic definitions regarding almost Poisson brackets and gauge tranformations, and
Appendix B presents basic facts about reconstruction theory. Throughout the work,
we assume that all objects (functions, manifolds, distributions, etc) are smooth.
Unless stated otherwise, we consider Lie group actions that are free and proper or
we confine our analysis to the submanifold where the action is free and proper. In
this article, there are two types of comments, labelled Remark and Observation
respectively; the Remarks are central comments to the problems studied in this
paper, while the Observations are comments that complement the ideas but are not
central. Finally, whenever possible, summation over repeated indices is understood.

2. Initial Setting: Nonholonomic Systems and Horizontal Gauge Momenta

2.1. Nonholonomic systems with symmetries

A nonholonomic system is a mechanical system on a configuration manifold Q
with (linear) constraints in the velocities. The permitted velocities are represented
by a nonintegrable constant-rank distribution D on Q. A nonholonomic system,
denoted by the pair (L , D), is given by a manifold Q, a lagrangian function L :
T Q → R of mechanical type, i.e., L = 1

2κ − U for κ and U the kinetic and
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potential energy respectively, and a nonintegrable distribution D on Q. We now
write the equations of motion of such systems following [10].

Since the lagrangian L is of mechanical type, the Legendre transformation
Leg : T Q → T ∗Q defines the submanifold M := Leg(D) of T ∗Q. Moreover,
since Leg is linear on the fibers, τM := τ |M : M → Q is also a subbundle of
τ : T ∗Q → Q, where τ denotes canonical projection. Then, if �Q denotes the
canonical 2-formon T ∗Q and H the hamiltonian function induced by the lagrangian
L , we denote by �M := ι∗�Q and HM := ι∗H the 2-form and the hamiltonian
on M, where ι : M → T ∗Q is the natural inclusion. We define the (noningrable)
distribution C onM given, at each m ∈ M, by

Cm := {vm ∈ TmM : T τM(vm) ∈ Dq for q = τM(m)}. (2.1)

The nonholonomic dynamics is then given by the integral curves of the vector
field Xnh on M, taking values in C (i.e., Xnh(m) ∈ Cm) such that

iXnh�M|C = dHM|C, (2.2)

where�M|C and dHM|C are the point-wise restriction of the forms to C. It is worth
noticing that the 2-section�M|C is nondegenerate and thus we have a well defined
vector field Xnh satisfying (2.2), called the nonholonomic vector field.

On the hamiltonian side we will denote a nonholonomic system by the triple
(M,�M|C, HM).
Symmetries of a nonholonomic system. We say that an action of a Lie group G
on Q defines a symmetry of the nonholonomic system (L , D) if it is free and proper
and its tangent lift leaves L and D invariant.

Let g be the Lie algebra associated to the Lie groupG. At each q ∈ Q, we denote
by Vq ⊂ TqQ the tangent space to the G-orbit at q, that is Vq := span{ηQ(q) : η ∈
g}, where ηQ(q) denotes the infinitesimal generator of η at q.

The lift of theG-action to the cotangent bundle T ∗Q leaves also the submanifold
M ⊂ T ∗Q invariant, hence there is a well defined G-action on M denoted by
� : G × M → M. The hamiltonian function HM and the 2-section �M|C are
G-invariant and we say that (M,�M|C, HM) is a nonholonomic system with a G-
symmetry. We denote by Vm ⊂ TmM the tangent space to the G-orbit at m ∈ M
(i.e., Vm = {ηM(m) : η ∈ g}).
Definition 2.1. ([12])Anonholonomic system (M,�M|C, HM)with aG-symmetry
verifies the dimension assumption if, for each q ∈ Q,

TqQ = Dq + Vq . (2.3)

Equivalently, the dimension assumption can be stated as TmM = Cm +Vm for each
m ∈ M.

At each q ∈ Q, we define the distribution S over Q whose fibers are Sq :=
Dq ∩ Vq and the distribution gS over Q with fibers

(gS)q = {ξq ∈ g : ξQ(q) ∈ Sq}, (2.4)
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where ξQ(q) := (ξq)Q(q). Due to the dimension assumption (2.3), gS → Q is a
vector subbundle of Q × g → Q and, if the action is free then rank(S) = rank(gS)
(see [5]).During this article,we denote by	(gS) the sectionsof the bundlegS → Q.
Reduction by symmetries. If (M,�M|C, HM) is a nonholonomic system with a
G-symmetry, the nonholonomicvectorfield Xnh isG-invariant, i.e.,T�g(Xnh(m)) =
Xnh(�g(m)) with�g : M → M the G-action onM and g ∈ G, and hence it can
be reduced to the quotient space M/G. More precisely, denoting by ρ : M →
M/G the orbit projection, the reduced dynamics on M/G is described by the
integral curves of the vector field

Xred := Tρ(Xnh). (2.5)

Splitting of the tangent bundle. The dimension assumption ensures the existence
of a vertical complement W of the constraint distribution D (see [4]), that is, W is
a distribution on Q so that

T Q = D ⊕ W where W ⊂ V . (2.6)

A vertical complement W also induces a splitting of the vertical space V =
S ⊕ W . Moreover, there is a one to one correspondence between the choice of an
Ad-invariant subbundle gW → Q of g × Q → Q such that, at each q ∈ Q,

(g × Q)q = (gS)q ⊕ (gW )q , (2.7)

and the choice of a G-invariant vertical complement of the constraints W .

Observation 2.2. If the G-action is free, the existence of a G-invariant vertical
complement W is guaranteed by choosing W = S⊥ ∩ V , where S⊥ denotes the
orthogonal complement of S with respect to the (G-invariant) kinetic energy metric
(howeverW does not have to be chosen in this way). In the case of non-free actions,
as anticipated in the Introduction, we restrict our study to the submanifold ˜Q of Q
where the action is free (see Examples 5.2 and 5.3).1 ��

Next, we pull back the decomposition (2.6) to M. From (2.6) and (2.1) we
obtain the corresponding decomposition on TM,

TM = C ⊕ W with W ⊂ V, (2.8)

where, at each m ∈ M, Wm = {(ξq)M(m) : ξq ∈ (gW)q for q = τM(m)}. We
define the distribution S = C ∩ V or equivalently, for each m ∈ M,

Sm = {(ξq)M(m) : ξq ∈ (gS)q for q = τM(m)}.

1 If the action is not free, it can be proven that for compact Lie groups G (or the product
of a compact Lie group and a vector space), the dimension assumption guarantees that it is
always possible to choose a G-invariant vertical complement W , [5].
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2.2. Horizontal gauge momenta

Consider a nonholonomic system (M,�M|C, HM) with a G-symmetry and
recall that �M is the Liouville 1-form restricted to M (i.e., �M := ι∗�Q). It is
well known that for a nonholonomic system, an element η of the Lie algebra does
not necessarily induce a first integral of the type Jη (see [30] for a discussion of
this fact).

Definition 2.3. ([9,28]) A functionJ ∈ C∞(M) is a horizontal gauge momentum
if there exists ζ ∈ 	(gS) such that J = Jζ := iζM�M and also J is a first
integral of the nonholonomic dynamics Xnh, i.e., Xnh(J ) = 0. In this case, the
section ζ ∈ 	(gS) is called horizontal gauge symmetry.

We are interested in looking for horizontal gauge momenta of a given non-
holonomic system with symmetries satisfying the dimension assumption. Looking
for a horizontal gauge momentum J is equivalent to look for the corresponding
horizontal gauge symmetry.

Observation 2.4. The original definition of horizontal gauge momentum intro-
duced in [9] (and later in [28,31]) was not exactly as in Definition 2.3 but given in
local coordinates. ��
Definition 2.5. [12] The nonholonomic momentum map J nh : M → g∗

S is the
bundle map over the identity, given, for each m ∈ M and ξ ∈ gS|m , by

〈J nh, ξ 〉(m) = iξM�M(m). (2.9)

Hence, if ζ is a horizontal gauge symmetry, the corresponding horizontal gauge
momentum can be seen as a function of the type 〈J nh, ζ 〉 ∈ C∞(M) that is a first
integral of Xnh.

Observe that the existence of a horizontal gauge momentum, implies the exis-
tence of a global section on gS → Q. Hence, in order to prove that a nonholonomic
system admits exactly k horizontal gauge symmetries, we have to assume the trivi-
ality of the bundle gS → Q, that is, gS → Q admits a global basis of sections that
we denote by

BgS = {ξ1, ..., ξk}. (2.10)

The basis BgS induces functions J1, ..., Jk onM (linear on the fibers) defined by

Ji := 〈J nh, ξi 〉 = i(ξi )M�M for i = 1, ..., k. (2.11)

The functions J1, ..., Jk are the components of the nonholonomic momentum map
in the basis (2.10). Moreover, if there exists a basis BHGS = {ζ1, ...., ζk} of 	(gS)
given by horizontal gauge symmetries, then the corresponding components of the
nonholonomicmomentummap are the horizontal gaugemomenta {J1, ...,Jk} and,
in this case, we have that each component of the nonholonomic momentum map is
conserved along the nonholonomic dynamics.

Proposition 2.6. A nonholonomic system (M,�M|C, HM) with a G-symmetry
satisfying the dimension assumption admits, at most, k = rank(S) (functionally
independent) horizontal gauge momenta.
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Proof. Consider ξ1, ξ2 ∈ 	(gS). It is easy to see that if J1 = i(ξ1)M�M and
J2 = i(ξ2)M�M are functionally independent functions then ξ1, ξ2 are linearly
independent.

IfJ ∈ C∞(M) is a horizontal gauge momentumwith ζ its associated horizon-
tal gauge symmetry, then J and ζ can be written, with respect to the basis (2.10),
as

J = f i Ji and ζ = f iξi , for f i ∈ C∞(Q). (2.12)

We call the functions f i , i = 1, ..., k the coordinate functions of J with respect to
the basis BgS = {ξ1, ..., ξk}.

From now, if not otherwise stated, we assume the following conditions on the
symmetry given by the action of the Lie group G.
Conditions A. We say that a nonholonomic system with a G-symmetry satisfies
Conditions A if

(A1) the dimension assumption (2.3) is fulfilled;
(A2) the bundle gS −→ Q is trivial;
(A3) the action of G on Q is proper and free.

A section ξ of the bundle Q×g → Q is G-invariant if [ξ, η] = 0 for all η ∈ g.
As a consequence of Conditions A we obtain the following Lemma.

Lemma 2.7. Consider a nonholonomic system with a G-symmetry satisfying Con-
ditions A, then

(i) there exists a global basis BgS of 	(gS) given by G-invariant sections.
(i i) Let ξ ∈ 	(gS). The function Jξ = iξM�M is G-invariant if and only if
ξ ∈ 	(gS) is G-invariant.
(i i i) Let ρQ : Q → Q/G be the orbit projection associated to the G-action on
Q. If X ∈ X(Q) is ρQ -projectable, then [X, ξQ] ∈ 	(V ), for ξ ∈ 	(Q × g →
Q).

Proof. Items (i i) and (i i i) were already proven in [8, Lemma 3.8]. To prove item
(i) observe that items (A2) and (A3) imply that S admits a global basis of G-
invariant sections {Y1, ...,Yk}, i.e., [Yi , νQ] = 0 for all ν ∈ g. Since the action is
free, we conclude that, for (ξi )Q = Yi we have that [ξi , ν] ∈ 	(Q × g) is the zero
section and thus ξi are G-invariant. ��

Under Conditions A, we guarantee the existence of a global G-invariant basis
BgS of sections of gS → Q with associated G-invariant functions Ji (defined as in
(2.12)). Hence, J is a G-invariant horizontal gauge momentum if and only if the
corresponding coordinate functions f i in (2.12) are G-invariant as well.

3. A Nonholonomic Noether Theorem and the Conservation of the
Nonholonomic Momentum Map

3.1. An intrinsic formulation of the momentum equation

In order to achieve our goal of giving a precise estimate of the number of
(functionally independent) horizontal gauge momenta of a nonholonomic system,
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we write a momentum equation. Let (M,�M|C, HM) be a nonholonomic sys-
tem with a G-symmetry satisfying Conditions A. First, we consider a G-invariant
decomposition (or a principal connection)

T Q = H ⊕ V so that H ⊂ D. (3.13)

We denote by A : TM → g the connection 1-form such that KerA = H . Since
the vertical space V is also decomposed as V = S ⊕ W , the connection A can be
written as A = AS + AW , where, for each X ∈ T Q, AW : T Q → g is given by

AW (X) = η if and only if ηQ = PW (X),

and AS : T Q → g is given by

AS(X) = ξ if and only if ξQ = PS(X), (3.14)

where PW : T Q → W and PS : T Q → S are the corresponding projections
associated to decomposition

T Q = H ⊕ S ⊕ W. (3.15)

Second, we see that each map AS and AW defines a corresponding 2-form on Q
in the following way (see [4]): on the one hand, theW -curvature on Q is a g-valued
2-form defined, for each X,Y ∈ T Q, as

KW (X,Y ) = dD AW (X,Y ) = d AW (PD(X), PD(Y )) = −AW ([PD(X), PD(Y )]),

with PD : T Q = D ⊕ W → D the projection to the first factor. On the other
hand, after the choice of a global basisBgS = {ξ1, ..., ξk} of gS → Q, the g-valued
1-form AS on Q can be written as AS = Y i ⊗ ξi , where Y i are 1-forms on Q such
that Y i |H = Y i |W = 0 and Y i ((ξ j )Q) = δi j for all i = 1, ..., k (recall that the sum
over repeated indexes is understood). Then the corresponding g-valued 2-form is
given, for each X,Y ∈ T Q, by

(dDY i )⊗ ξ i (X,Y ) = dY i (PD(X), PD(Y ))⊗ ξ i .

Recalling that τM : M → Q is the canonical projection, we define the g-valued
2-forms σ̄gS and σgS on Q and M, respectively, by

σ̄gS := KW + dDY i ⊗ ξi ,
σgS := τ ∗

Mσ̄gS .
(3.16)

Equivalently, σgS is given by σgS = KW + dCY i ⊗ ξi , where KW = τ ∗
MKW ,

Y i = τ ∗
MY i and dCY i (X ,Y) = dY i (PC(X ), PC(Y)) for X ,Y ∈ TM, and PC :

TM −→ C the projection associated to decomposition (2.8).
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Definition 3.1. Consider a nonholonomic system (M,�M|C, HM) with a
G-symmetry satisfying Conditions A and denote by BgS = {ξ1, ..., ξk} a global
basis of 	(gS).The 2-form 〈J, σgS 〉 on M is defined by

〈J, σgS 〉 := 〈J,KW〉 + 〈J, dCY i ⊗ ξ i 〉,
:= 〈J,KW〉 + Ji d

CY i ,

where J : M → g∗ is the canonical momentum map restricted to M and 〈·, ·〉
denotes the pairing between g∗ and g.

The 2-form 〈J, σgS 〉 already appeared in [8] for a specific choice of the basis
BgS (see Sect. 4.1).

Lemma 3.2. Assume that Conditions A are satisfied, then

(i) The g-valued 2-forms σ̄gS and σgS depend on the chosen basis BgS .
(i i) If the basis BgS is G-invariant, then the 2-form 〈J, σgS 〉 is G-invariant as
well.

Proof. It is straightforward to see that the g-valued 2-forms σ̄gS and σgS depend
directly on the chosen basis BgS . Item (i i) is proven in [8, Lemma 3.8].

Proposition 3.3. (Momentum equation) Let us consider a nonholonomic system
(M,�M|C, HM) with a G-symmetry satisfying Conditions A, and let BgS =
{ξ1, ...ξk} be a (global) basis of 	(gS) with associated momenta J1, ..., Jk as in
(2.11). The functionJ = f i Ji , for f i ∈ C∞(Q), is a horizontal gauge momentum
if and only if the coordinate functions f i satisfy the momentum equation

f i 〈J, σgS 〉(Yi , Xnh)+ Ji Xnh( f
i ) = 0, (3.17)

where Yi := (ξi )M.

Proof. First, from Lemma 2.7 observe that if X is a vector field on M that is
Tρ-projectable, then [Yi ,X ] ∈ 	(V) for i = 1, ..., k. Thus, using (3.16),

σgS (Yi ,X ) = [dCτ ∗
MAW + dCτ ∗

MY j ⊗ ξ j ](Yi ,X )
= −τ ∗

MAW ([Yi ,X ])− τ ∗
MY j ([Yi ,X ])⊗ ξ j

= −τ ∗
MA([Yi ,X ]).

Second, by the definition of the canonical momentum map J : M → g∗, we get
that

〈J, σgS 〉(Yi ,X ) = −〈J, τ ∗
MA([Yi ,X ])〉 = −i[Yi ,X ]�M.

Then, recalling that�M = −d�M and using that�M(X ) is an invariant function,
we observe that

(�M + 〈J, σgS 〉)(Yi ,X )
= −Yi (�M(X ))+ X (Ji )+�M([Yi ,X ])− i[Yi ,X ]�M = d Ji (X ).
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Now,J = f i Ji is afirst integral of Xnh if andonly if 0 = dJ (Xnh) = f i d Ji (Xnh)+
Ji Xnh( f i ) which is equivalent, for Xnh = X , to

0 = f i (�M + 〈J, σgS 〉)(Yi , Xnh)+ Ji Xnh( f
i )

= − f i dHM(Yi )+ f i 〈J, σgS 〉(Yi , Xnh)+ Ji Xnh( f
i ).

Using the G-invariance of the hamiltonian function HM we get (3.17). ��
Observation 3.4. From the proof of Proposition 3.3,we observe that themomentum
equation can be equivalently written as 0 = f i�M([(ξi )M, Xnh])− Ji Xnh( f i ).��

As a consequence of Proposition 3.3 (ormore preciselyRemark 3.4), we recover
the well-known result that horizontal symmetries generate first integrals [10,12].
Recall that a horizontal symmetry is an element η ∈ g such that ηQ ∈ 	(D) (see
e.g. [11]).

Corollary 3.5. (Horizontal symmetries) Let (M,�M|C, HM) be a nonholonomic
system with a G-symmetry satisfying ConditionsA. If the bundle gS → Q admits a
horizontal symmetry η, then the function 〈J, η〉 is a horizontal gaugemomentum for
the nonholonomic system. Hence if there is global basis of horizontal symmetries of
gS, then the nonholonomic systemadmits k = rank (gS) horizontal gaugemomenta.

Proof. If η1 is a horizontal symmetry, then let BgS = {η1, ξ2, ..., ξk} a basis of
	(gS). A section ζ = f 1η1 + f iξi is a horizontal gauge symmetry if J1Xnh( f1)+
f i�M([Xnh, (ξi )M]) + Ji Xnh( f i ) = 0, since [Xnh, η1] = 0. Then we see that
f 1 = 1 and f i = 0 for i = 2, ..., k is a solution of the momentum equation and
hence η1 is a horizontal gauge symmetry. As a consequence, if the bundle gS → Q
admits a basis of horizontal symmetries, then the nonholonomic admits k horizontal
gauge momenta. ��

A set of solutions ( f 1, ..., f k) of the momentum equation (3.17) may depend
onM and not only on Q. Based on the fact that equation (3.17) is quadratic in the
fibers, we show next that it is equivalent to a system of partial differential equations
for the functions f i on the manifold Q.

3.2. The “strong invariance” condition on the kinetic energy

We now introduce and study an invariance property, called strong invariance,
that involves the kinetic energy, the constraints and the G-symmetry. This condition
is crucial to state our main result in Theorem 3.14.

Definition 3.6. Consider a Riemannian metric κ on amanifold Q and a distribution
S ⊆ V ⊆ T Q on Q, where V is the vertical space with respect to a G-action on
Q. The metric κ is called strong invariant on S (or S-strong invariant) if, for all
G-invariant sections Y1,Y2,Y3 ∈ 	(S), it holds that

κ(Y1, [Y2,Y3]) = −κ(Y3, [Y2,Y1]).
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Remark 3.7. It is important to remark the tensorial character of this condition.
In fact, it is enough to check the commuting condition on a G-invariant basis
of the distribution S to assert that the metric is S-invariant. More precisely, let
B = {Y1, ...,Yk} be aG-invariant basis of sections on S, such that κ(Y j , [Yi ,Yl ]) =
−κ(Yl , [Yi ,Y j ]), for all i, j, l ∈ {1, ..., k}. If Ya,Yb,Yc are G-invariant sections on

S, then Ya = f j
a Y j , Yb = f ibYi and Yc = f lc Yl , for f

j
a , f ib , f

l
c G-invariant functions

on Q and hence,

κ(Ya, [Yb,Yc]) = f j
a κ(Y j , f

i
b f

l
c [Yi ,Yl ] + f ibYi ( f

l
c )Yl − f lc Yl( f

i
b )Yi )

= f j
a f ib f

l
c κ(Y j , [Yi ,Yl ]) = −κ(Yc, [Yb,Ya]).

First we observe that, for a Riemannian metric κ , being G-invariant is weaker
than being strong invariant on the whole tangent bundle as the following example
shows:

Example 3.8. The case Q = G with a strong invariant metric on TG. Consider
a Lie groupG acting on itself with the left action and let κG be a Riemannian metric
on it. In this case, the metric being G-invariant is equivalent to being left invariant,
while being strong invariant on TG is equivalent to being bi-invariant. In fact, if
the metric is strong invariant on TG then κG([Yi ,Y j ],Yl) = −κG(Y j , [Yi ,Yl ]) for
all Yi ∈ X(G) such that [Yi , ηR] = 0 for all η ∈ g and ηR the corresponding right-
invariant vector field on G (we are using that the infinitesimal generator associated
to the left action is the corresponding right invariant vector field on G). Then, the
inner product 〈·, ·〉 on g defined by

〈η1, η2〉 = κG(η
L
1 , η

L
2 )(e), for ηi ∈ g

is ad-invariant and hence the metric κG turns out to be bi-invariant on G.

Example 3.9. Anonholonomic systemwith a strong invariant kinetic energy on
the vertical distribution V . Consider a nonholonomic system (M,�M|C, HM)
with a G-symmetry. If the kinetic energy metric κ is strong invariant on V then it
induces a bi-invariant metric on the Lie group G. This case only may occur when
the group of symmetries G is compact or a product of a compact Lie group with a
vector space. In order to prove this, we first observe the following:

Lemma 3.10. The kinetic energymetric satisfiesκ([Yi ,Y j ],Yl) = −κ(Y j , [Yi ,Yl ])
for all G-invariant Yi ∈ 	(V ) if andonly ifκ([(ηa)Q, (ηb)Q], (ηc)Q) = −κ((ηb)Q,
[(ηa)Q, (ηc)Q]) for all ηi ∈ g.

Proof. Thevertical distributionV admits a basis ofG-invariant sections {Y1, ..., Yn}.
For η ∈ g, there are functions g j ∈ C∞(Q), j = 1, ..., n so that ηQ = g jY j and
hence 0 = [Yi , ηQ] = g j [Yi ,Y j ] + Yi (g j )Y j . Then we obtain that

κ([(ηa)Q, (ηb)Q], (ηc)Q) = giag
j
b g

l
cκ([Yi ,Y j ],Yl)+ giag

l
cκ(Yi (g

j
b )Y j ,Yl)

− g j
b g

l
cκ(Y j (g

i
a)Yi ,Yl)

= −giag
j
b g

l
cκ([Yi ,Y j ],Yl).

Conversely, we write Yi = gai ηa and we repeat the computation. ��
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As a direct consequence of Lemma 3.10, if the kinetic energy is strong invariant
on V , then κ([(ηa)Q, (ηb)Q], (ηc)Q) = −κ((ηb)Q, [(ηa)Q, (ηc)Q]) for all ηi ∈ g.
Hence, for each q ∈ Q, there is an ad-invariant inner product on g defined, at each
η1, η2 ∈ g by

〈η1, η2〉q = κ((η1)Q(q), (η2)Q(q)).

Therefore, there exists a familyof bi-invariantmetricsκqG onG definedbyκqG(η
L
1 (g),

ηL2 (g)) = 〈η1, η2〉q .
Example 3.11. The symmetry group G is abelian. Consider a nonholonomic sys-
tem (M,�M|C, HM) with a G-symmetry, and let G be an abelian Lie group, then
the Lie algebra g is also abelian and the kinetic energy metric satisfies κ([(η1)Q,
(η2)Q], (η3)Q) = 0 for all ηi ∈ g. Following Example 3.9, we have also that
κ([Y1,Y2],Y3) = 0 for all G-invariant sections Yi on V and hence the kinetic
energy is trivially strong invariant on V .

Example 3.12. Horizontal symmetries. Consider a nonholonomic system (M,

�M|C, HM)with aG-symmetry satisfyingConditionsA andwith the bundle gS →
Q admitting a global basis of G-invariant horizontal symmetries {η1, ..., ηk} of the
bundle g× Q → Q. Then the vector space generated by the constant sections ηi is
an abelian subalgebra s of g and the kinetic energy metric is strong invariant on S.

3.3. Nonholonomic Noether Theorem

In this section we state the main result of this article: a nonholonomic ver-
sion of Noether Theorem which involves two fundamental results. Under certain
hypotheses, we first predict the exact amount of horizontal gauge momenta that a
nonholonomic systemwith symmetry admits, without the need of computing them.
Second, we establish a systematic way of constructing these horizontal gauge mo-
menta.

Given a nonholonomic system with a G-symmetry we add a fourth condition
to Conditions A:
Condition (A4). The G-symmetry satisfies that the manifold Q/G has dimension
1.

Condition (A4) can be equivalently formulated saying that the rank of any
horizontal space H defined as in (3.13) is 1. We stress that this case is meaningful,
since it is met, for example, in all the systems listed in Table 1.

Definition 3.13. Consider a nonholonomic system (M,�M|C, HM) with a G-
symmetry and let H be defined as in (3.13). We say that H is S-orthogonal if
it is given by

H := S⊥ ∩ D,

where the orthogonal space to S is taken with respect to the kinetic energy metric.
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The S-orthogonality condition implies that H is a G-invariant distribution,
while Condition (A4) guarantees that it is trivial, and thus H always admits a
(G-invariant) global generator X0, that is also ρQ -projectable, with respect to the
projection on the G-orbits ρQ : Q → Q/G.

Now, let (M,�M|C, HM) be a nonholonomic system with a G-symmetry
satisfying Conditions (A1)-(A4) (that is, the G-symmetry satisfies Conditions A
and Condition (A4)). Then there is a global G-invariant basisBgS = {ξ1, ..., ξk} of
sections of gS and, as usual, we denote by Yi := (ξi )Q the corresponding sections
on S. Taking into consideration also the generator X0 of H , the set {X0,Y1, ..., Yk}
defines a global basis of D = H ⊕ S. Following splitting (3.15), we also consider a
(possible non global) basis {Z1, ..., ZN } of the vertical complement W and we de-
note by (v0, v1, ..., vk, w1, ..., wN ) the coordinates on T Q associated to the basis

BT Q = {X0,Y1, ...,Yk, Z1, ...ZN }, (3.18)

(for short we write the coordinates (v0, vi , wa) associated to the basis BT Q =
{X0,Y j , Za}). IfBT ∗Q = {X0,Y i , Za} is the basis of T ∗Q dual toBT Q , we denote
by (p0, pi , pa) the induced coordinates on T ∗Q. The constraint submanifold M
is described as

M = {(q, p0, pi , pa) ∈ T ∗Q : pa = κa0v
0 + κajv j },

where p0 = κ00v
0 + κ0iv

i , and pi = κi0v
0 + κi jv

j , with κ00 = κ(X0, X0),
κ0i = κ(X0,Yi ), κi j = κ(Yi ,Y j ), κ0a = κ(X0, Za) and κaj = κ(Za,Y j ). We can
then define the dual basis

BT ∗M = {X 0,Y i ,Za, dp0, dpi } and BTM = {X0,Yi ,Za, ∂p0 , ∂pi }
(3.19)

of T ∗M and TM respectively, where X 0 = τ ∗
MX0, Y i = τ ∗

MY i , Za = τ ∗
MZa .

Observe that, by the G-invariance of p0 and pi , we have that Yi = (ξi )M and
Ji = iYi�M = pi .
Next, we state a nonholonomic version of Noether Theorem. Recall that ρQ : Q →
Q/G denotes the orbit projection of a G-action on the configuration manifold Q.
Moreover, a G-invariant basis BgS = {ξ1, ..., ξk} of the bundle gS → Q, defined
in (2.4), induces the G-invariant functions Ri

j on Q and functions R̄i
j the functions

on Q/G, given by

Ri
j := κ il [κ(Yl , [Y j , X0])+ κ(X0, [Y j ,Yl ])] and ρ∗

Q
R̄i
j = Ri

j , (3.20)

where Yi = (ξi )Q and κ il are the elements of the matrix [κ|S]−1, which is the
inverse of the restriction of the kinetic energy to S (the matrix with elements κil ).

Theorem 3.14. (Nonholonomic Noether Theorem) Consider a nonholonomic sys-
tem (M,�M|C, HM) with a G-symmetry satisfying Conditions (A1)-(A4) and
with a S-orthogonal horizontal space H. Moreover assume that the kinetic energy
metric is strong invariant on S and that

κ(X0, [Y, X0]) = 0

for X0 a ρQ -projectable vector field on Q taking values in H and for all Y ∈ 	(S).
Then
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(i) the system admits k = rank(S) G-invariant (functionally independent) hor-
izontal gauge momenta;
(i i) the k (functionally independent) G-invariant horizontal gauge momenta
can be written as

Jl = f il Ji ,

for Ji = i(ξi )M�M with ξi ∈ BgS and f il G-invariant functions on Q such
that the corresponding functions f̄l = ( f̄ 1l , ..., f̄

k
l ) for l = 1, ..., k on Q/G, so

that f il = ρ∗
Q
f̄ il , are the k solutions of the linear system of ordinary differential

equations on Q/G
R̄i
j f̄

j − X̄0( f̄
i ) = 0, (3.21)

where R̄i
j are the functions defined in (3.20) and X̄0 is the globally defined

vector field on Q/G such that TρQ (X0) = X̄0.

Proof. The proof is divided in two steps. In Step 1wewrite themomentum equation
(3.17) in (global) coordinates, defined by the basisBT Q in (3.18) and in Step 2 we
derive the system (3.21) from this coordinate version of the momentum equation.

Step1. Let us consider the G-invariant basis BgS = {ξ1, ..., ξk} in (2.10) with
Yi = (ξi )Q for i = 1, ..., k and the basis BT Q and BT ∗Q in (3.18). First, observe
that the 2-form 〈J, σgS 〉 is semi-basic with respect to the bundle τM : M → Q.
Let us denote by X1, X2 any element in the subset {X0,Y1, ...,Yk} of the basis
BTM in (3.19), and by X1 := T τM(X1) and X2 := T τM(X2) the corresponding
elements in the basis of BT Q . Then we have

〈J,KW〉(X1,X2) = pa dZ
a(X1, X2) = −pa Z

a([X1, X2])
= −(κ0av0 + κ jav j )Za([X1, X2]),

〈J, dCY i ⊗ ξi 〉(X1,X2) = pidY i (X1,X2)

= −piY
i ([X1, X2]) = −(κ0iv0 + κi jv j )Y i ([X1, X2]),

= −κi jv j Y i ([X1, X2]),
since κ0i = 0 by the S-orthogonality of H . Using that [X1, X2] ∈ 	(V ) (observe
that [Yi ,Y j ] ∈ 	(V ) since V is integrable, and [X0,Yi ] ∈ 	(V ) since X0 is ρQ -
projectable, see Lemma 2.7) then [X1, X2] = Za([X1, X2])Za + Y j ([X1, X2])Y j

and thus

〈J, σgS 〉(X1,X2) = −v0κ(X0, [X1, X2])− v jκ(Y j , [X1, X2]).
Second, using that T τM(Xnh(q, p)) = v0X0 + vi Yi (recall that Xnh is a second
order equation) and also recalling that the functions f i are G-invariant on Q, we
obtain that the momentum equation in Proposition 3.3 is written as

0 = f iv0〈J, σgS 〉(Yi ,X0)+ f iv j 〈J, σgS 〉(Yi ,Y j )+ piv
0X0( f

i ).

Putting together the last two equationswe obtain that a functionJ ∈ C∞(M) of the
form J = f i Ji is a G-invariant horizontal gauge momentum of the nonholonomic
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system (M,�M|C, HM) if and only if the coordinate functions f i ∈ C∞(Q)G
satisfy

vlv j
(

f iκ(Y j , [Yi ,Yl ])
)

+ (v0)2
(

f iκ(X0, [Yi , X0])
)

+ v0v j P0 j = 0, (3.22)

where P0 j := f i (κ(Y j , [Yi , X0])+ κ(X0, [Yi ,Y j ]))− κi j X0( f i ).
Note that if the horizontal distribution H is not chosen to be S-orthogonal, then

the momentum equation (3.22) is modified in the second term.
In order to obtain the simplest form of the coordinate version of the momentum

equation, we require the orthogonality condition between H and S.
Step2. Next we show how the system (3.21) arises as a consequence of (3.22).

Since (3.22) is a second order polynomio in the variables (v0, vi ), it is zero when
its associated matrix is skew-symmetric, that is when

(a) κ(Y j , [Yi ,Yl ]) = −κ(Yl , [Yi ,Y j ]), for all i, j, l = 1, ..., k,
(b) f iκ(X0, [Yi , X0]) = 0,
(c) P0 j = 0, for all j = 1, ..., k.

First we observe that items (a) and (b) are trivially satisfied by the hypotheses
of the theorem (item (a) is just the definition of strong invariance). Second, we
prove that item (c) determines the system of ordinary differential equations (3.21)
defining the G-invariant functions f i on Q.

Let us define thematrix [N ]with entries Nl j = κ(Yl , [Y j , X0])+κ(X0, [Y j ,Yl ])
and [κ|S] the kinetic energymatrix restricted to S (which is symmetric and invertible
with elements κli ). Then, the condition P0 j = 0 is written in matrix form as
[N ] f = [κ|S]X0( f ) for f = ( f 1, ..., f k)t , which is equivalent to R. f = X0( f )
for R the matrix with entries Ri

j = [κ|S]il Nl j . Therefore, item (c) is satisfied if

and only if the functions f = ( f 1, ..., f k) are a solution of the linear system of
differential equations defined on Q

Ri
j f

j − X0( f
i ) = 0, for each i = 1, ..., k. (3.23)

Since X0 ∈ 	(H) is ρQ -projectable, then there is a (globally defined) vector
field X̄0 on Q/G such that TρQ (X0) = X̄0. Moreover, Ri

j are also G-invariant
functions (κ, X0 and Yi are G-invariant), and thus we conclude that the system
(3.23) is well defined on Q/G. That is, (3.23) represents a (globally defined) linear
system of k ordinary differential equations for the functions ( f̄ 1, ..., f̄ k) on Q/G,
that is written as

R̄i
j f̄

j − X̄0( f̄
i ) = 0, for each i = 1, ..., k. (3.24)

where R̄i
j are the corresponding functions on Q/G (recall that dim(Q/G) = 1).

The system (3.24) admits k independent solutions f̄l = ( f̄ 1l , ....., f̄
k
l ) for l =

1, ..., k. Moreover, fl = ( f 1l , ....., f
k
l ) with f il = ρ∗

Q
( f̄ il ) are k independent so-

lutions of (3.23) and hence Jl = f il Ji are (functionally independent) G-invariant
horizontal gauge momenta for l = 1, ..., k.

It is important to note that item (c) is the only item determining the functions
f i , while the other two items are intrinsic conditions imposed on the nonholonomic
system. ��
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Remark 3.15. Based on the fact that dim(Q/G) = 1, the system R̄i
j f̄

j− X̄0( f̄ i ) =
0 defines a system of ordinary differential equations on Q/G that admits k indepen-
dent solutions, and that induces the desired horizontal gauge momenta. This system
of ordinary differential equations is also general, in the sense that it is constructed
by the characteristic elements of a nonholonomic system with symmetries as the
kinetic energy, the constraint manifold and the symmetry group. In Sect. 5, we will
write explicitly this system for different examples that, up to now, where studied
individually.

In the light of Definition 2.5, we can state

Corollary 3.16. (Conservation of the nonholonomicmomentummap)Given a non-
holonomic system satifying hypotheses of Theorem 3.14, the k horizontal gauge
symmetries form a basis of 	(gS), and then the associated components of the non-
holonomic momentum map are conserved along the nonholonomic dynamics.

Observation 3.17. The momentum equation (3.22) does not depend on the po-
tential energy function but only on the G-invariance of it. As a consequence, the
horizontal gauge momentum J , defined from Theorem 3.14, is a first integral of
(M,�M|C, HM = 1

2κ|M+U ) for any G-invariant potential energy functionU on
Q. Such a property, called weak-Noetherinity, has been first observed and studied
in [28,29,31]. ��
Corollary 3.18. Consider a nonholonomic system (M,�M|C, HM) with a G-
symmetry satisfying Conditions (A1)-(A4) and with a strong invariant kinetic
energy on S. If the horizontal space H, defined in (3.13), is orthogonal to the
vertical space V (with respect to the kinetic energy metric), then the system ad-
mits automatically k = rank(S) G-invariant (functionally independent) horizontal
gauge momenta.

Proof. If V⊥ = H then H is S-orthogonal and also κ(X0, [Yi , X0]) = 0 for all
i = 1, ..., k. Thus we are under the hypotheses of Theorem 3.14. ��
Observation 3.19. Since it is not always possible to choose H = V⊥ with H ⊂ D,
in some examples we have to check that κ(X0, [X0,Y ]) = 0 for all Y ∈ 	(S).
This condition is equivalently written as κ(X0, [X0,Yi ]) = 0 for all i = 1, ..., k
where Yi = (ξi )Q with ξi elements of the G-invariant basis BgS in (2.10), which
is identically expressed as (£X0κ)(X0,Yi ) = 0 or κ(∇X0Yi , X0) = 0 for ∇ the
Levi-Civita connection associated to the kinetic energy metric. ��
Guiding Example: nonholonomic oscillator. The nonholonomic oscillator de-
scribes a particle in Q = S1 × R × S1 with a Lagrangian given by L = m

2 (ẋ
2 +

ẏ2 + ż2)−U (y) and constraints in the velocities ż = yẋ . The constraint distribu-
tion is given by D = span{Y := ∂x + y∂z, ∂y}. The Lie group G = S1 × S1 acts
on Q so that V = span{∂x , ∂z} and leaves D and L invariant. Then S = span{Y }
and the kinetic energy metric is trivially strong invariant on S since rank(S) = 1
(in fact, it is strong invariant on V , see Example 3.11). Moreover, we see that
V⊥ = span{∂y} ⊂ D and hence defining the horizontal space H := V⊥, Corollary
3.18 guarantees the existence of one G-invariant horizontal gauge momentum.
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Next, wewill followTheorem 3.14 to compute the horizontal gaugemomentum
J for this example. Let us consider the basis BT Q = {X0 = ∂y,Y = ∂x + y∂z, ∂z}
of T Q with coordinates (v0, vY , vz). Observe that this basis induces the vertical
complement of the constraints W = span{∂z}. Then on T ∗Q we have the dual
basis BT ∗Q = span{dy, dx, ε := dz − ydx} with coordinates (p0, pY , pz). The
constraint submanifoldM is givenbyM = {x, y, z, p0, pY , pz) : pz = y

1+y2
pY }.

Recall that G acts on Q defining a principal bundle ρQ : Q → Q/G so
that ρQ (x, y, z) = y. The Lie algebra of the symmetry group is g = R

2 and
gS = span{ξ = (1, y)} while gW = span{(0, 1)}. Following (2.11), the element
ξ ∈ 	(gS) defines the function Jξ := 〈J nh, ξ 〉 = pY and the horizontal gauge
momentum will be written as J = f (y)pY ( f is already considered as a G-
invariant function on Q).
The momentum equation from Proposition (3.3): The function J is a horizontal
gaugemomenta if andonly if f satisfies that f (y)〈J, σgS 〉(ξM, Xnh)+pY Xnh( f ) =
0. Since dCdx = 0 then 〈J, dCdx ⊗ ξ 〉 = 0 and thus the momentum equation
remains f (y)〈J,KW〉(ξM, Xnh)+ pY f ′(y) = 0.
The differential equation of Theorem 3.14: Next, we write the momentum equation
in coordinates as it is expressed (3.21). Since rank(S) = 1, the ordinary differential
equation to be solved, for f = f (y), is

RY
Y f − f ′ = 0, for RY

Y = 1
κ(Y,Y ) κ(Y, [Y, ∂y]) = − y

1+y2
.

Therefore, the solution f (y) = 1√
1+y2

gives the (already known) horizontal gauge

momentaJ = 1√
1+y2

pY (which in canonical coordinates givesJ = √

1 + y2 px ).

We finally, we study the existence of horizontal gauge momenta for the case
when rank(H) = 0 (that is, Condition A4 does not hold but instead Q/G = {x}).
We need observe that there are still k = rank(S) = rank(D) horizontal gauge
symmetries.

Proposition 3.20. A nonholonomic system on a Lie group G for which the left
action is a symmetry and the kinetic energy metric is strong invariant on D, has k =
rank(D) horizontal gauge momenta (G-invariant and functionally independent).

Proof. In this case, T Q = V which means that Q � G and the only G-invariant
functions are the constant functions.Consider aG-invariant basisBgS = {ξ1, ..., ξk}
of 	(gS). We have to check that the momentum equation (3.17) is satisfied only
for constant functions. In fact, ζ = f iξi is a horizontal gauge symmetry if and if
fi ∈ C∞(Q)G and

f ivlv jκ(Y j , [Yi ,Yl ]) = 0, (3.25)

for (ξi )Q = Yi . Since the kinetic energy is strong invariant on D = S, then
f 1 = 1 and f i = 0 for i > 1 is a solution of (3.25) and hence ξ1 is a horizontal
gauge symmetry. Therefore, the sections of the basis BgS are k horizontal gauge
symmetries. ��

As illustrative examples, see the vertical disk and the Chaplygin sleigh in [28]
and [11], respectively.
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4. Existence of Horizontal Gauge Momenta and Related Consequences on
the Dynamics and Geometry of the Systems

4.1. Integrability and hamiltonization of the reduced dynamics

As we saw in Sect. 2.1, a nonholonomic system (M,�M|C, HM) with a G-
symmetry can be reduced to the quotient manifoldM/G and the reduced dynamics
is given by integral curves of the vector field Xred on M/G defined in (2.5).
Moreover, since the hamiltonian function HM on M is G-invariant as well, it
descends to a reduced hamiltonian function Hred on the quotientM/G, i.e., HM =
ρ∗Hred, and as expected, it is a first integral of Xred. The following Lemma will be
used in the subsequence subsections.

Lemma 4.1. If (M,�M|C, HM) is a nonholonomic system with a G-symmetry
satisfying Conditions (A1), (A2) and (A4) then dim(M/G) = k + 2, where
k = rank(S).

Proof. From (3.15), we have that D = H ⊕ S and thus we observe that rank(D) =
k + 1, since rank(H) = dim(Q/G) = 1 and rank(S) = k. Then dim(M) =
dim(Q)+rank(D) andhence, sinceG acts onT ∗Q by the lifted action, dim(M/G) =
dim(Q/G)+ rank(D) = k + 2. ��

Integrability of the reduced system In this Section, we recall the concept of
‘broad integrability’ and we show that the reduced dynamics Xred on M/G of
a nonholonomic system (M,�M|C, HM) with a G-symmetry satisfying the hy-
potheses of Theorem 3.14, is integrable by quadratures or geometric integrable,2

and if some compactness hypothesis is satisfied it is also ‘broadly integrable’. In or-
der to perform our analysis we identify broad integrability, which extends complete,
or better non-commutative, integrability outside the Hamiltonian framework, with
quasi-periodicity of the dynamics. We base our analysis on the characterization of
quasi-periodicity outside the hamiltonian framework, introduced in [13] (see also
[25,34,58]).

Definition 4.2. A vector field X on a manifold M of dimension n, is called broad
integrable, if

(i) there exists a submersion F = ( f1, . . . , fn−d) : M −→ R
n−d with compact

and connected level sets, whose components f1, . . . , fn−d are first integrals of
X , i.e. X ( fi ) = 0, for all i = 1, . . . , n − d;
(i i) there exists d linearly independent vector fields, Y1, . . . ,Yd on M tangent
to the level sets of the first integrals (i.e., Yα( fi ) = 0 for all α = 1, . . . , d and
for all i = 1, . . . , n − d) that pairwise commute and commute with X .3

As in the hamiltonian case, being broad integrable, has important consequences
in the characterization of the dynamics and the geometry of the phase space.

2 We recall that integrability by quadratures is also called geometric integrability, see [52].
3 The vector fields Y1, . . . ,Yd are also called dynamical symmetries of X .



N. Sansonetto & P. Balseiro

Theorem 4.3. ([13,34,58]) Let M be a manifold of dimension n. If the vector field
X on M is broad integrable, then

(i) for each c ∈ R
n−d , the level sets F−1(c) of F on M are diffeomorphic to

d-dimensional tori;
(ii) the flow of X is conjugated to a linear flow on the fibers of F. Precisely,
for each c ∈ R

n−d , there exists a neighbourhood U of F−1(c) in M and a
diffeomorphism

� : U −→ F(U)× T
d

m −→ �(m) = (F(m), ϕ(m))

which conjugate the flow of X on U to the linear flow

Ḟ = 0, ϕ̇ = ω(F) ;
on F(U)× T

d , for certain functions ωi : F(U) −→ R.

Now, we go back to our nonholonomic system (M,�M|C, HM) with a G-
symmetry. If we assume that the hypotheses of Theorem 3.14 are satisfied, then the
nonholonomic system admits k = rank(S) (functionally independent) G-invariant
horizontal gauge momenta. This fact, plus recalling that Hred is a first integral of
Xred and the fact that reduced manifold M/G has dimension k + 2, ensures that
the reduced dynamics Xred is integrable by quadratures. Moreover, if the joint level
sets of the first integrals are connected and compact the reduced dynamics satisfies
the hypotheses of Theorem 4.3 and it is then broad integrable on circles. We can
summarize these integrability issues as follows:

Theorem 4.4. Consider anonholonomic system (M,�M, HM)withaG-symmetry
satisfying Conditions (A1)-(A4). If the hypotheses of Theorem 3.14 are fulfilled,
then

(i) The vector field Xred admits k + 1 (functionally independent) first integrals
{J̄1, . . . , J̄k, Hred} onM/G, where Hred is the reduced hamiltonian;
(i i) The map F = (J̄1, . . . , J̄k, Hred) : M/G −→ R

k+1 is a surjective
submersion. The non equilibrium orbits of the reduced dynamics Xred are given
by the joint level sets of (J̄1, . . . , J̄k, Hred), and hence the reduced dynamics
is integrable by quadratures;
(i i i) If the map F = (J̄1, . . . , J̄k, Hred) : M/G −→ R

k+1 is proper, then the
reduced dynamics is broad integrable and the reduced phase space inherits the
structure of a S1-principal bundle.

Hamiltonization The non-hamiltonian character of a nonholonomic system can
also be seen by the fact that the dynamics is not described by a symplectic form or
a Poisson bracket. More precisely, as we have seen in Sect. 2.1, the restriction of
the 2-form�M on the distribution C is nondegenerate and hence it allows to define
the nonholonomic bracket {·, ·}nh on functions on M (see [39,45,55]), given, for
each f ∈ C∞(M), by

X f = {·, f }nh if and only if iX f�M|C = d f |C, (4.26)
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where (·)|C denotes the point-wise restriction to C. The nonholonomic bracket is an
almost Poisson bracket onM (see Appendix A for more details) with characteristic
distribution given by the nonintegrable distribution C and we say that it describes
the dynamics since the nonholonomic vector field Xnh is hamiltonian with respect
to the bracket and the hamiltonian function HM, i.e.,

Xnh = {·, HM}nh. (4.27)

In this framework, we use the triple (M, {·, ·}nh, HM) to define a nonholonomic
system.

If the nonholonomic system admits a G-symmetry, then the nonholonomic
bracket {·, ·}nh is G-invariant and it defines an almost Poisson bracket {·, ·}red on
the quotient space M/G given, for each f̄ , ḡ ∈ C∞(M/G), by

{ f̄ , ḡ}red ◦ ρ(m) = { f̄ ◦ ρ, ḡ ◦ ρ}nh(m), m ∈ M, (4.28)

where ρ : M → M/G is, as usual, the orbit projection (see Appendix A). The
reduced bracket {·, ·}red describes the reduced dynamics Xred (defined in (2.5))
since

Xred = {·, Hred}red.
The hamiltonization problem studies whether the reduced dynamics Xred is

hamiltonian with respect to a Poisson bracket on the reduced space M/G (that
might be a different bracket from {·, ·}red).

One of the most important consequences of Theorem 3.14 is related with the
hamiltonization problem as the following theorem shows.

Theorem 4.5. If a nonholonomic system (M, {·, ·}nh, HM) with a G-symmetry
verifying Conditions (A1)-(A4) satisfies the hypotheses of Theorem 3.14, then
there exists a rank 2-Poisson bracket {·, ·}BHGMred on M/G describing the reduced
dynamics as follows:

Xred = {·, Hred}BHGMred ,

for Hred : M/G → R being the reduced hamiltonian.

The problem of finding the bracket {·, ·}BHGMred , once k horizontal gauge momenta
exist, was already studied in [8,37]). However here, in the light of the techniques
introduced to prove Theorem 3.14, we take a different path to put in evidence the
role played by themomentum equation. More precisely, first we study how different
choices of a (global G-invariant) basis BgS of 	(gS) generate different rank 2-
Poisson brackets on M/G. If the nonholonomic system admits k (functionally
independent G-invariant) horizontal gauge symmetries then there will be a rank 2-
Poisson bracket {·, ·}BHGMred that describes the dynamics which is defined by choosing
the basis of 	(gS) given by the horizontal gauge symmetries. Then we show how
{·, ·}BHGMred depends on the system of differential equations (3.21). For the basic
definitions regarding Poisson brackets, bivector fields and gauge transformations
see Appendix A.
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Let us consider a 2-form B onM that is semi-basic with respect to the bundle
τM : M → Q. The gauge transformation of {·, ·}nh by the 2-form B gives the
almost Poisson bracket {·, ·}B defined, at each f ∈ C∞(M), by

iX f (�M + B)|C = d f |C if and only if X f = {·, f }B .
If the 2-form B is G-invariant, then the bracket {·, ·}B is also G-invariant and

it can be reduced to an almost Poisson bracket {·, ·}Bred on the quotient manifold
M/G given, at each f̄ , ḡ ∈ C∞(M/G), by

{ f̄ , ḡ}Bred ◦ ρ(m) = { f̄ ◦ ρ, ḡ ◦ ρ}B(m), (4.29)

where m ∈ M, Diag. (A.51) (see also [6,36]).
Let BgS be a global G-invariant basis of 	(gS) and recall from (2.11) the

associated G-invariant momenta Ji .

Proposition 4.6. Consider a nonholonomic system (M, {·, ·}nh, HM) with a G-
symmetry satisfyingConditions (A1)-(A3). Given a (global G-invariant) basisBgS

of 	(gS), the associated 2-form Bσ = 〈J, σgS 〉 induces a gauge transformation of
the nonholonomic bracket {·, ·}nh so that
(i) the gauge related bracket {·, ·}Bσ on M is G-invariant;
(ii) The induced reduced bracket {·, ·}Bσred onM/G is Poissonwith symplectic leaves

given by the common level sets of the momenta J̄i , where J̄i ∈ C∞(M/G) so
that ρ∗ J̄i = Ji . In particular, if Condition (A4) is satisfied, then the Poisson
bracket {·, ·}Bσ has 2-dimensional leaves.

Proof. (i) By construction, we see that the 2-form 〈J, σgS 〉 is semi-basic with
respect to the bundle M → Q and, by Lemma 3.2, it is G-invariant as well.
Therefore, the gauge transformation by the 2-form 〈J, σgS 〉 defines a G-invariant
almost Poisson bracket {·, ·}Bσ .
(i i) The G-invariant bracket {·, ·}Bσ induces, on the quotient space M/G, an

almost Poisson bracket {·, ·}Bσred. It is shown in [8, Proposition 3.9] that {·, ·}Bσred is
a Poisson bracket with symplectic leaves given by the common level sets of the
momenta J̄i ∈ C∞(M/G).4 ��

Note that the reduced nonholonomic vector field Xred might not be tangential
to the foliation of the bracket {·, ·}Bσred.
Definition 4.7. We say that a nonholonomic system (M, {·, ·}nh, HM) with a G-
symmetry is hamiltonizable by a gauge transformation if there exists a G-invariant
2-form B so that {·, ·}Bred is Poisson5 and

Xred = {·, Hred}Bred (4.30)

for Hred : M → R being the reduced hamiltonian.

4 In the notation of [8], Bσ corresponds to the 2-form B1 but for any G-invariant basis of
	(gS). The bracket {·, ·}Bσred is denoted by {·, ·}1red in the cited reference.
5 More generally, the bracket {·, ·}Bred can be conformally Poisson.
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Definition 4.8. [6] A gauge transformation by a 2-form B of the nonholonomic
bracket {·, ·}nh is dynamical if B is semi-basic with respect to the bundleM → Q
and iXnh B = 0. That is, if B induces a bracket {·, ·}B that describes the nonholo-
nomic dynamics: Xnh = {·, HM}B .

Therefore, once we know that different 2-forms of the type Bσ (recall that
different choices of basis of 	(gS) define different 2-forms) produce different
Poisson brackets on the reduced space, we need to find the one that is dynamical,
if it exists.

Observe that if the system admits k (G-invariant) horizontal gauge momenta,
then we have a preferred basisBHGS = {ζ1, ..., ζk} of 	(gS) given by the horizon-
tal gauge symmetries. Let us denote by σHGS the 2-form σgS (defined in (3.16)),
computed with respect to the basis BHGS, and by BHGS := 〈J, σHGS〉. The proof
of Theorem 4.5 is based on the following two facts: on the one hand, BHGS defines
a dynamical gauge transformation and on the other hand (by Proposition 4.6) the
resulting reduced bracket {·, ·}BHGMred is Poisson.

Proof of Theorem 4.5. Under the hypotheses of Theorem 3.14, the nonholonomic
system admits k G-invariant horizontal gauge momenta {J1, ...,Jk} with the cor-
responding G-invariant horizontal gauge symmetries that generate a basisBHGS =
{ζ1, ...ζk}of	(gS). Following [8, Theorem3.7] and, in particular [8,Corollary 3.13]
since rank(H) = 1, the 2-form BHGS = 〈J, σHGS〉 associated to the basis BHGS
induces a dynamical gauge transformation and hence the induced reduced bracket
{·, ·}BHGMred describes the reduced dynamics: Xred = {·, Hred}BHGMred . This bracket is
then Poisson with symplectic leaves defined by the common level sets of the hori-
zontal gauge momenta {J1, ...,Jk} (Proposition 4.6). ��

The following diagrams compare Proposition 4.6 with Theorem 4.5. The first
diagram illustrates the casewhenweperformagauge transformationby a2-form Bσ
(associated to the choice of a basisBgS of 	(gS), Proposition 4.6) while the second
one illustrates the case when the 2-form is BHGS (associated to the basis BHGS
given by horizontal gauge momenta, Theorem 4.5). In both cases, we obtain that
the resulting reduced brackets {·, ·}Bσred and {·, ·}BHGMred are Poisson. However, {·, ·}Bσred
might not describe the reduced dynamics since Bσ is not necessarily dynamical. On
the other hand, BHGS is always dynamical and thus the reduced bracket {·, ·}BHGMred

describes the dynamics: Xred = {·, Hred}BHGMred .
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(M, {·, ·}nh, HM)

reduction

��

gauge transf
by Bσ �� (M, {·, ·}Bσ )

��
(M/G, {·, ·}red, Hred) (M/G, {·, ·}Bσred)

(M, {·, ·}nh, HM)

reduction

��

dynamical gauge transf
by BHGS �� (M, {·, ·}BHGM , HM)

��
(M/G, {·, ·}red, Hred) (M/G, {·, ·}BHGMred , Hred)

Remark 4.9. Under the hypotheses ofTheorem4.5, the functions {HM,J1, ...,Jk}
are in involution with respect to the bracket {·, ·}BHGM, where {J1, ...,Jk} are the
horizontal gauge momenta defined by Theorem 3.14. In addition, also the reduced
functions {Hred, J̄1, ..., J̄k} onM/G are in involution with respect to the reduced
bracket {·, ·}BHGMred . However these functions are not necessarily in involution with
respect to the brackets {·, ·}nh and {·, ·}red, respectively.

In many cases, the horizontal gauge momenta cannot be explicitly written,
instead they are defined in terms of the solutions of the system of differential
equations (3.21). Next Theorem gives the formula to write explicitly the dynamical
gauge transformation BHGS (and as a consequence the Poisson bracket {·, ·}BHGMred ) in
a chosen basisBgS that is not necessarily given by the horizontal gauge symmetries.
Examples 5.2 and 5.3 make explicit the importance of the following formula:

Theorem 4.10. Consider anonholonomic systemdescribedby the triple (M, {·, ·}nh,
HM) with a G-symmetry verifying Conditions (A1)-(A4). Let BgS = {ξ1, ..., ξk}
be a global G-invariant basis of 	(gS) and X0 a ρ-projectable vector field on Q
generating the S-orthogonal horizontal space H. If the hypotheses of Theorem 3.14
are satisfied, then the 2-form BHGS is written with respect to the basis BgS as

BHGS := 〈J, σHGS〉 = 〈J,KW〉 − 〈J, Ri
jX 0 ∧ Y j ⊗ ξi 〉 + 〈J, dY i ⊗ ξi 〉,

= pad
Cεa − Ji R

i
jX 0 ∧ Y j + Ji d

CY i

(4.31)
for Ri

j and Ji being the functions defined in (3.20) and (2.11), respectively, and

X 0 = τ ∗
MX0, Y i = τ ∗

MY i , εa = τ ∗
Mε

a being the corresponding forms on M.

Proof. In order to prove formula (4.31), consider the basisBgS = {ξ1, ..., ξk} (not
necessarily given by horizontal gauge symmetries), and define the corresponding
functions Ji as in (2.11). If we denote by F the fundamental matrix of solutions
of the system of ordinary differential equations (3.21) (i.e., the columns of F are
the independent solutions ( f 1l , ..., f

k
l )) and by R the k × k-matrix with entries Ri

j ,
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then

R.F = X0(F) and J = FT J, where J =
⎛

⎜

⎝

J1
...

Jk

⎞

⎟

⎠
and J =

⎛

⎜

⎝

J1
...

Jk

⎞

⎟

⎠
.(4.32)

Moreover, let us denote by Y i
HGS the 1-forms on M such that Y i

HGS((ζl)M) = δil

and Y i
HGS|H = Y i

HGS|W = 0. Then if YHGS = (Y1
HGS, ...,Yk

HGS)
T we have that

YHGS = F−1Y where Y = (Y1, ...,Yk)T . Hence

〈J, dCY i
HGS ⊗ ζi 〉 = J T . CYHGS = JT FdC(F−1Y)

=JT FX0(F
−1)X 0 ∧ Y + JT FF−1dCY

= − JT F(F−1X0(F)F
−1)X 0 ∧ Y + JT dCY

= − JT RX 0 ∧ Y + JT dCY
= − Ji R

i
jX 0 ∧ Y j + 〈J, dCY i ⊗ ξi 〉.

Finally, we conclude, using Definition 3.1, that

BHGS = 〈J,KW〉 + 〈J, dCY i
HGS ⊗ ζi 〉 = pad

Cεa − Ji R
i
jX 0 ∧ Y j + Jid

CY i .

Observation 4.11. Following Example 3.12 and Corollary 3.5, a nonholonomic
system with a G-symmety that admits a basis of gS → Q given by G-invariant
horizontal symmetries is hamiltonizable without the need of a gauge transformation
(i.e., BHGS = 0 in this case, see [8]) ��

4.2. Horizontal gauge momenta and broad integrability of the complete system

In the previous subsections we have studied the dynamics and the geometry of
the reduced system. Under the hypotheses of Theorem 3.14 the reduced dynam-
ics is integrable by quadratures, and if the joint level sets of the first integrals are
connected and compact the reduced dynamics consists of periodic orbits or equilib-
ria. Moreover the reduced system is hamiltonizable via a rank-2 Poisson structure,
whose (global) Casimirs are the k horizontal gauge momenta. In this Section we
aim to obtain information on the dynamics and geometry of the complete system.
We will then focus in the case in which the reduced dynamics is periodic and, by
using techniques of reconstruction theory, we will see that if the symmetry group
G is compact, then the dynamics of the complete systems is quasi-periodic on tori
of dimension at most rank G + 1, where rank G denotes the rank of the group, i.e.
the dimension of the maximal abelian subgroup of G. If the symmetry group G
is not compact, the complete dynamics can be either quasi-periodic on tori or an
unbounded copy of R, depending on the symmetry group. Some details on these
aspects are reviewed in Appendix B, but see also [2,33]. We thus show how the
broad integrability of the complete dynamics of these type of systems is deeply
related to their symmetries, that are able to produce, not only the right amount
of dynamical symmetries, but also the complementary number of first integrals.
We will then apply these results to the example of a heavy homogeneous ball that
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rolls without sliding inside a convex surface of revolution (see Sect. 5.3). This case
presents a periodic dynamics in the reduced space, and a broadly integrable com-
plete dynamics on tori of dimension at most three, thus re-obtaining the results in
[26,38].

We say that a G-invariant subset P ofM is a relative periodic orbit for Xnh, if
it invariant by the flow and its projection onM/G is a periodic orbit of Xred. Now,
we can summarize these results as follows:

Theorem 4.12. Let us consider a nonholonomic system (M,�M|C, HM) with a
G-symmetry satisfying Conditions (A1)-(A4). Assume that the hypotheses of The-
orem 3.14 are fulfilled, and that the reduced dynamics is periodic, then

(i) if the group G is compact, the flow of Xnh on a relative periodic orbit P
is quasi-periodic with at most rank G + 1 frequencies and the phase space if
fibered in tori of dimension up to rank G + 1.
(i i) if G is non-compact, the flow of Xnh on a relative periodic orbit P is
either quasi-periodic, or a copy of R, that leaves every compact subset of P as
t → ±∞.6

Proof. To prove this result we combine the results on integrability of the reduced
systemgiven byTheorem4.4with the results on reconstruction theory fromperiodic
orbits recalled in Appendix B.

More precisely, we confine ourselves to the subspace of the reduced space
M/G in which the dynamics is periodic. Then, if the symmetry group is compact,
the reconstructed dynamics is generically quasi-periodic on tori of dimension d+1,
where r is the rank of the group [23,35,38,43]. The phase space, or at least a certain
region of it, has the structure of a T

d+1 fiber bundle, (see [26] for details on the
geometric structure of the phase space in this case). On the other hand if the group is
not compact, the reconstructed orbits are quasi-periodic or a copy ofR that ‘spirals’
toward a certain direction. ��

5. Examples

5.1. The snakeboard

The snakeboard is a derivation of the skateboard where the rider is allowed to
generate a rotation in the axis of the wheels creating a torque so that the board
spins about a vertical axis, see [12,49]. We denote by r the distance from the center
of the board to the pivot point of the wheel axes, by m the mass of the board, by
J the inertial of the rotor and by J1 the inertia of each wheel. Following [12] we
assume that the parameters are chosen such that J + 2J1 + J0 = mr2, where J0
denotes the inertia of the board. The snakeboard is then modelled on the manifold
Q = SE(2) × S1 × S1 with coordinates q = (θ, x, y, ψ, φ), where (θ, x, y)

6 A dynamical behaviour that leaves every compact subset of P as t → ±∞ is usually
called drift or drifting motion (see [33] for a discussion on this fact).
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Fig. 1. The snakeboard

represent the orientation and position of the board, ψ is the angle of the rotor with
respect to the board, and φ is the angle of the front and back wheels with respect
to the board (in this simplified model they are assumed to be equal).

The Lagrangian is given by

L(q, q̇) = 1

2
m(ẋ2 + ẏ2 + r2θ̇2)+ 1

2
Jψ̇2 + Jψ̇ θ̇ + J0φ̇

2.

The nonholonomic constraints impose that the front and back wheels roll without
sliding and hence the constraint 1-forms are defined to be

ω1 = − sin(θ + φ) dx + cos(θ + φ) dy − r cosφ dθ,

ω2 = − sin(θ − φ) dx + cos(θ − φ) dy + r cosφ dθ.
(5.33)

Note thatω1 andω2 are independentwheneverφ �= ±π/2. Therefore, we define the
configuration manifold Q so that q = SE(2)× S1 × (−π/2, π/2). The constraint
distribution D is given by

D = span{Yθ := sin φ∂θ − r cosφ cos θ∂x − r cosφ sin θ∂y, ∂ψ, ∂φ}. (5.34)

The existence of horizontal gaugemomenta. The system is invariant with respect
to the free and proper action on Q of G = SE(2)× S1 given by

�((α, a, b;β), (θ, x, y, ψ, φ))
= (θ + α, x cosα − y sin α + a, x sin α + y cosα + b, ψ + β, φ),

and hence V = span{∂θ , ∂ψ, ∂x , ∂y} and S = span{Yθ , ∂ψ } (see [12,15]). First, we
observe that [Yθ , ∂ψ ] = 0 and hence the kinetic energy metric is trivially strong
invariant on S. Second, H := span{∂φ} and it is straightforward to check that V⊥ =
H . Then, by Corollary 3.18(i) the system admits 2 (functionally independent) G-
invariant horizontal gauge momenta.
The computation of the of horizontal gauge momenta. Let us consider the
adapted basis to T Q = D ⊕ W , given by BT Q = {Yθ , ∂ψ , ∂φ, Z1, Z2}, where

Z1 := 1

2 cosφ

(

− sin θ∂x + cos θ∂y − 1

r
∂θ

)

and

Z2 := 1

2 cosφ

(

− sin θ∂x + cos θ∂y + 1

r
∂θ

)

.
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Denoting by (pθ , pψ, pφ, p1, p2) the coordinates on T ∗Q associated to the dual
basis

BT ∗Q = {αθ := − 1
r cosφ (cos θdx + sin θdy), dψ, dφ,ω1, ω2},

we obtain that

M =
{

(q; pθ , pψ, pφ, p1, p2) : p1 = −p2 = − 1
2

(

(mr2−J) sin φ
r cosφ � pθ + mr cosφ

�
pψ

)}

,

where � = �(φ) = mr2 − J sin2 φ (recall that �(φ) > 0, since mr2 > J).
Weconsider the global basis ofgS givenbyBgS = {ξ1 = (sin φ,−r cosφ cos θ+

y,−r cosφ sin θ − x; 0), ξ2 = (0, 0, 0; 1)}, and we observe that (ξ1)Q = Yθ and
(ξ2)Q = ∂ψ . Following (2.11), J1 = 〈J nh, ξ1〉 = pθ and J2 = 〈J nh, ξ2〉 = pψ .

The function J = fθ (φ)pθ + fψ(φ)pψ is a horizontal gauge momentum if
and only if R. f = f ′ where R is the 2 × 2 matrix given in (3.21), f = ( fθ , fψ)t

and f ′ = ( f ′
θ , f

′
ψ) for f ′

θ = d
dφ fθ (analogously for f ′

ψ ). In our case, using that
{Yθ , ∂ψ } is a basis of S and X0 = ∂φ , we obtain

R = [κ|S]−1N , for [κ|S] =
(

mr2 J sin φ
J sin φ J

)

and N =
(

0 0
−J cosφ 0

)

.

Hence, we arrive to the linear system

cosφ
�

(

J sin φ 0
−mr2 cosφ 0

) (

fθ
fψ

)

=
(

f ′
θ

f ′
ψ

)

, (5.35)

which admits 2 independent solutions: f1 = ( f θ1 , f
ψ
1 ), with f θ1 = 1√

2�
, f ψ1 =

− f 1θ sin φ, and f2 = (0, 1). Therefore the horizontal gaugemomenta can bewritten
as

J1 = 1√
2�
(pθ − pψ sin φ) and J2 = pψ. (5.36)

Remarks 5.1. (i) On the one hand, since ξ2 is a horizontal symmetry, it is ex-
pected to haveJ2 = pψ conserved (Cor. 3.5). On the other hand, the horizontal
gauge momentum J1 is realized by a non-constant section ζ1, and we recover
the expression of J1 given in [15] 7.
(i i)The horizontal gaugemomenta (5.36) can also be obtained from themomen-
tumequation inProposition3.3,which in case iswritten as fθ 〈J, σgS 〉(Yθ , Xnh)+
fψ 〈J, σgS 〉(∂ψ, Xnh)+ pθ Xnh( fθ )+ pψ Xnh( fψ) = 0.

Hamiltonization and integrability. The system descends to the quotient mani-
foldM/G equipped with coordinates (φ, pφ, pθ , pψ). The G-invariant horizontal
gauge momenta J1,J2 in (5.36) and the hamiltonian function HM, also descend
to functions J̄1, J̄2 and Hred on M/G.
Integrability. Since the reduced space M/G is 4-dimensional, Theorem 4.4 guar-
antees that the reduced dynamics is integrable by quadratures. We observe that the

7 We thank the referee for bringing this reference to our knowledge.
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reduced system is not periodic, thuswe cannot say anything generic on the complete
dynamics nor on the geometry of the phase space.
Hamiltonization. Theorem 4.5 guarantees that the system is Hamiltonizable. In
order towrite thePoissonbracket onM/G that describes thedynamics,we compute
the 2-form BHGS in terms of the basis BT Q = {Y1 := Yθ ,Y2 := ∂ψ, X0 :=
∂φ, ∂x , ∂y} using Theorem 4.10. Let us denote by Ri

j the elements of the matrix R

in (5.35), and using Thm. 4.10 (note that R1
2 = R2

2 = 0) we have that

BHGS = 〈J,KW〉 − pθ R
1
1dφ ∧ dθ − pψ R

2
1dφ ∧ dθ + pθdαθ .

Following Sect. 3.1 we compute

〈J,KW〉|C = ι∗(p1)dω1 + ι∗(p2)dω2|C
= −

(

(mr2−J) sin φ
cosφ � pθ + mr2 cosφ

�
pψ

)

dφ ∧ αθ |C.

Finally, substituting R1
1, R

2
1 and using that dαθ |C = tan φ dφ ∧ αθ we obtain that

BHGS = 0.
As a consequence of Theorem 4.5 the reduced bracket πred which is given by

πred = ∂φ ∧ ∂pφ + cosφ
�
(J sin φ pθ − mr2 pψ)∂pφ ∧ ∂pθ ,

is a Poisson bracket on M/G with J̄1 and J̄2 playing the role of Casimirs. The
reduced nonholonomic vector field is then Xred = {·,Hred}red.
Observation 5.2. The G-symmetry considered in this paper is different than the
one considered in [4,8], therefore the reduced bracket obtained here is not the same
as the one presented in these citations. Moreover, in [4,8], the snakeboard was
described by a twisted Poisson bracket (with a 4-dimensional foliation) while here,
we show that the snakeboard can be described by a rank 2-Poisson bracket. ��

5.2. Solids of Revolution

LetB be a strongly convexbodyof revolution, i.e., a bodywhich is geometrically
and dynamically symmetric under rotations about a given axis ([5,23]). Let us
assume that the surface S of B is invariant under rotations around a given axis,
which in our case is chosen to be e3. Then its principal moments of inertia are
I1 = I2 and I3.

The position of the body in R
3 is given by the coordinates (g, x) where g ∈

SO(3) is the orientation of the body with respect to an inertial frame (ex , ey, ez)
and x = (x, y, z) ∈ R

3 is the position of the center of mass. Denoting by m the
mass of the body, the lagrangian L : T (SO(3)× R

3) → R is given by

L(g, x;�, ẋ) = 1

2
〈I�,�〉 + 1

2
m||ẋ||2 + mg〈x, e3〉,

where � = (�1,�2,�3) is the angular velocity in body coordinates, 〈·, ·〉 repre-
sents the standard pairing in R

3 and g the constant of gravity.
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Fig. 2. Solid of revolution rolling on a horizontal plane

Let s be the vector from the center of mass of the body to a fixed point on the
surface S. If we denote by γ = (γ1, γ2, γ3) the third row of the matrix g ∈ SO(3),
then s can be written as s : S2 → S so that

s(γ ) = (�(γ3)γ1, �(γ3)γ2, ζ(γ3)) = �(γ3)γ − L(γ3)e3,

where � = �(γ3), ζ = ζ(γ3) are the smooth functions defined in [23], and L =
L(γ3) = �(γ)γ3 − ζ . The configuration space is described as

Q = {(g, x) ∈ SO(3)× R
3 : z = −〈γ , s〉},

and it is diffeomorphic to SO(3) × R
2. The nonholonomic constraint describing

the rolling without sliding are written as

� × s + b = 0,

where b = gt ẋ (with gt the transpose of g).
Let us consider the (local) basis of T Q given by {XL

1 , X
L
2 , X

L
3 , ∂x , ∂y}, where

XL
i are the left invariant vector fields on SO(3) and we denote the corresponding

coordinates on T Q by (�, ẋ, ẏ). Then the constraint distribution D is given by
D = span{X1, X2, X3}, where

Xi := XL
i + (α × s)i∂x + (β × s)i∂y + (γ × s)i∂z,

for α and β the first and second rows of the matrix g ∈ SO(3). The constraints
1-forms are

ε1 = dx − 〈α, s × λ〉 and ε2 = dy − 〈β, s × λ〉,

where λ = (λ1, λ2, λ3) are the (Maurer-Cartan) 1-forms on SO(3) dual to the left
invariant vector fields {X1

L , X
2
L , X

3
L}.

The symmetries. The Lagrangian and the constraints are invariant with respect to
the action of the special Euclidean group SE(2) acting on Q, at each (g; x, y) ∈ Q,
by

�((h; a, b)), (g; x, y)) = (h̃.g; h.(x, y)t + (a, b)t ),
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where h ∈ SO(2) is an orthogonal 2 × 2 matrix and h̃ =
(

h 0
0 1

)

∈ SO(3). The

symmetry of the body makes also the system invariant with respect to the right S1-
action on Q given by �S1(hθ , (g, x, y)) = (gh̃−1

θ , hθ (x, y)
t ), where we identify

θ ∈ S1 with the orthogonal matrix hθ ∈ SO(2).
Therefore, the symmetry group of the system is the Lie groupG = S1×SE(2),

with associated Lie algebra g � R × R × R
2. The vertical space V is given by

V = span{(η1)Q = −XL
3 − y∂x + x∂y,

(η2)Q = 〈γ ,XL〉 − y∂x + x∂y, (η3)Q = ∂x , (η4)Q = ∂y},
where ηi are the canonical Lie algebra elements in g andXL = (XL

1 , X
L
2 , X

L
3 ). We

observe that the action is not free, since (ηi )Q(g, x, y) are not linearly independent
at γ3 = 1.We check that the dimension assumption (2.3) is satisfied: T Q = D+V .
Let us chooseW = span{∂x , ∂y} as vertical complement of the constraints and then
the basis of T Q adapted to the splitting (2.6) is BT Q = {X1, X2, X3, ∂x , ∂y}, with
dual basis given by BT ∗Q = {λ1, λ2, λ3, ε1, ε2}. The associated coordinates on
T ∗
q Q are (M, K1, K2) forM = (M1,M2,M3) and the submanifoldM of T ∗Q is

then described by

M = {(g, x, y;M, K1, K2) : K1 = m〈α, s×�〉, K2 = m〈β, s×�〉}, (5.37)

where M = I� + ms × (� × s). The horizontal gauge momenta are functions on
M linear in the coordinates Mi .
The existence of horizontal gauge momenta. First, we observe that the G-action
satisfies Conditions (A1)-(A4) outside γ3 = ±1 and thus, in what follows, we will
work on the manifolds ˜Q ⊂ Q and ˜M ⊂ M defined by the condition γ3 �= ±1.
Second, we consider the splitting

T ˜Q = H ⊕ S ⊕ W, (5.38)

where S = D ∩ V = span{Y1 := X3,Y2 := 〈γ,X〉}, with X = (X1, X2, X3)

and H is generated by X0 = γ1X2 − γ2X1 (observe that H = S⊥ ∩ D). Now, we
check that the kinetic energy is strong invariant on S: in this case, it is enough to
see that κ([Y1,Y2],Y1) = 0 and κ([Y1,Y2],Y2) = 0. These two facts are easily
verified using simply that [XL

i , X
L
j ] = XL

k for i, j, k cyclic permutations of 1, 2, 3.
In the same way, we also check that κ(X0, [Yi , X0]) = 0, for i = 1, 2. Therefore,
by Theorem 3.14, we conclude that the system admits 2 = rank(S) G-invariant
(functionally independent) horizontal gauge momenta J1, J2 on ˜M (recovering
the results in [17,23]).
The computation of the 2 horizontal gauge momenta. In order to compute the
horizontal gauge momenta, we consider the basisBgS of 	(gS → ˜Q), defined by

BgS = {ξ1 := (1; 0, (h1, h2)), ξ2 := (0; 1, (g1, g2))},
where h1 = h1(g, x, y) = y + �β3, h2 = h2(g, x, y) = −x − �α3 and g1 =
g1(g, x, y) = y − Lβ3, g2 = g2(g, x, y) = −x + Lα3. The components of the
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nonholonomic momentum map, in the basis BgS , are given by

J1 = 〈J nh, ξ1〉 = i(ξ1)M�M = −M3 and

J2 = 〈J nh, ξ2〉 = i(ξ2)M�M = 〈γ ,M〉,
where we are using that (ξ1)Q = Y1 and (ξ2)Q = Y2, see (2.11). Then, a function
J = f1 J1 + f2 J2 is a horizontal gauge momentum if and only if the coordinate
functions ( f1, f2) satisfy the momentum equation (3.17)

f1〈J, σgS 〉(Y1, Xnh)+ f2〈J, σgS 〉(Y2, Xnh)− M3Xnh( f1)+ 〈γ ,M〉Xnh( f2) = 0.

That is, considering the basis, BT ˜Q = {X0, Y1, Y2, ∂x , ∂y}, the G-invariant
coordinate functions ( f1 = f1(γ3), f2 = f2(γ3)) are the solutions of the system
of ordinary differential equations (defined on ˜Q/G)

R

(

f1
f2

)

=
(

X̄0( f1)
X̄0( f2)

)

, for R = [κ|S]−1[N ], (5.39)

where X̄0 = Tρ
˜Q
(X0) = (1 − γ 23 )∂γ3 , the matrix [N ] has elements Nl j =

κ(Yl , [Yi , X0])− κ(X0, [Yi ,Yl ]) that in this case gives

[N ] = m(1 − γ 23 )
( −�A �(B − 〈γ , s〉)
L A − �〈γ , s〉 −LB

)

for A = �′(1− γ 23 )−�γ3 and B = L ′(1− γ 23 )− Lγ3 −〈γ , s〉 (with (·)′ = d
dγ3
(·))

and

[κ|S] =
(

I3 + m�2(1 − γ 23 ) −I3γ3 − Lm�(1 − γ 23 )−I3γ3 − Lm�(1 − γ 23 ) 〈γ , Iγ 〉 + L2m(1 − γ 23 )
)

.

The system (5.39) admits two independent solutions f̄1 = ( f̄ 11 , f̄
2
1 ) and f̄ 2 =

( f̄ 12 , f̄
2
2 ) on ˜Q/G and therefore we conclude that the two (G-invariant) horizontal

gauge momenta J1 and J2 are

J1 = − f 11 M3 + f 21 〈γ ,M〉 and J2 = − f 12 M3 + f 22 〈γ ,M〉, (5.40)

where f ij = ρ∗
˜Q
f̄ ij for i, j = 1, 2.

Observations 5.3. (i) For f = ( f 1, f 2), the system (5.39) is equivalently
written as (1 − γ 23 )−1R f = f ′. Therefore, we recover the system of ordinary
differential equations from [5,17,23] (and [9] for the special case of the Tippe-
Top and of the rolling disk).
(i i) The G-invariant horizontal gauge momenta J1, J2 descend to the quotient
˜M/G as functions J̄1, J̄2 that are functionally independent. It has been proven
in [23] that the functions J̄1, J̄2 can be extended to the whole differential space
M/G. In this case, it makes sense to talk about 2 = rank(gS) horizontal gauge
momenta.

��
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Integrability and hamiltonization. The nonholonomic dynamics Xnh defined on
˜M can be reduced to ˜M/G obtaining the vector field Xred (see (2.5)). Using the
basis BT ˜Q = {X0,Y1,Y2, ∂x , ∂y} and its dual basis of T ∗

˜Q

BT ∗
˜Q =

{

X0 := γ1λ2 − γ2λ1
1 − γ 23

, Y 1 := γ3
γ1λ1 + γ2λ2

1 − γ 23
− λ3,

Y 2 := γ1λ1 + γ2λ2
1 − γ 23

, ε1, ε2

}

, (5.41)

we denote by (v0, v1, v2, vx , vy) and (p0, p1, p2, K1, K2) the associated coordi-
nates on T ˜Q and T ∗

˜Q, respectively. The reduced manifold ˜M/G is represented
by the coordinates (γ3, p0, p1, p2).
Integrability.Theorem4.4guarantees that the reduced systemon ˜M/G admits three
functionally independent first integrals, namely two horizontal gauge momenta J̄1
and J̄2, and the reduced energy Hred. Since dim(˜M/G) = 4, the reduced dynamics
is integrable by quadratures. However, the reduced dynamics is not generically
periodic, and therefore we can say nothing generic on the complete dynamics or
on the geometry of the phase space.
Hamiltonization. Even though the hamiltonization of this example has been studied
in [5,37], here we see it as a direct consequence of Theorem 3.14. That is, since this
nonholonomic system satisfies the hypotheses of Theorem 3.14, it is hamiltonizable
by a gauge transformation (Definition 4.7). The reduced bracket {·, ·}BHGMred on ˜M/G
defines a rank-2 Poisson structure, with 2-dimensional leaves given by the common
level sets of J̄1 and J̄2, that describes the (reduced) dynamics.

In what follows we show how the 2-form BHGM, inducing the dynamical gauge
transformation that defines {·, ·}BHGMred , depends directly on the ordinary system of
differential equations (5.39). Consider the basis BT ˜Q and BT ∗

˜Q given in (5.41)
and following Theorem 4.10,

BHGM = 〈J, σHGM〉 = 〈J,KW〉 − Ji R
i
1X 0 ∧ Y1 − Ji R

i
2X 0 ∧ Y2 + JidY i ,

where X 0 = τ ∗̃
MX0 and Y i = τ ∗̃

MY i for i = 1, 2 are the corresponding 1-forms

on ˜M. Using (5.37) we have that (see [5]),

〈J,KW〉|C = K1 dε
1|C + K2 dε

2|C
= m�〈γ , s〉〈�, dλ〉 − m(�2〈�, γ 〉 + �′c3)〈γ , dλ〉

+ m(�L〈�, γ 〉 + L ′c3)dλ3|C.

Now, recalling the definition of X0, Y 1 and Y 2 in BT ∗Q (5.41), we compute the
term

Ji R
i
1X 0 ∧ Y1 + Ji R

i
2X 0 ∧ Y2 = (1 − γ 23 )−1(vl Nl1〈γ , dλ〉 + vl Nl2 dλ3),

= −m(�2〈�, γ 〉 + �′c3)〈γ , dλ〉
+ m(�L〈�, γ 〉 + L ′c3)dλ3.
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where we use that v1 = (1−γ 23 )−1(〈γ ,�〉γ3−�3) and v2 = (1−γ 23 )−1(〈γ ,�〉−
γ3�3). Finally, since dY i = 0 for i = 1, 2, we obtain that

BHGM = m�〈γ , s〉〈�, dλ〉,

recovering the dynamical gauge transformation from [5,37]. For the explicit for-
mulas for the brackets, see [5].

Observations 5.4. (i) Since the G-action on M is proper but not free, the
quotient M/G is a stratified differential space, [5,23] with a 4 dimensional
regular stratumgiven by ˜M/G and a 1-dimensional singular stratum, associated
to S1-isotropy type, that is described by the condition γ3 = ±1. Moreover, the
relation between the coordinates on T ∗

˜Q relative to the basis BT ∗
˜Q and BT ∗

˜Q
is

p0 = γ1M2 − γ2M1, p1 = γ1M1 + γ2M2, p2 = M3,

Therefore, adding p3 = M2
1+M2

2 ,we conclude that the coordinates (γ3, p0, p1,
p2, p3) on M/G are the same coordinates used in [21,23].
(i i) It is straightforward to write the equations of motion on ˜M/G in the vari-
ables (γ3, p0, p1, p2) for the reduced hamiltonian Hred recovering the equations
in [21,23]. We stress that there is no need to compute them to find the horizon-
tal gauge momenta, nor to study the integrability or the hamiltonization of the
system.
(i i i) The Routh sphere, the ellipsoid rolling on a plane and the falling disk
[14,21,23], are seen as particular cases of this example.

��

5.3. A homogeneous ball on a surface of revolution

Let us consider the holonomic system formed by a homogeneous sphere of
mass m and radius r > 0, which center C is constrained to belong to a convex
surface of revolution  (i.e., the ball rolls on the surface  ̃, see Fig. 3). The
surface is obtained by rotating about the z-axis the graph of a convex and smooth
function φ : R+ −→ R. Thus,  is described by the equation z = φ(x2 + y2).
To guarantee smoothness and convexity of the surface, we assume that φ verifies
that φ′(0+) = 0, φ′(s) > 0 and φ′′(s) > 0, when s > 0. To ensure that the ball
has only one contact point with the surface we ask the curvature of φ(s) to be at
most 1/r. The configuration manifold Q is R2 × SO(3) with coordinates (x, y, g)
where G is the orthogonal matrix fixing the attitude of the sphere and (x, y) are
the coordinates of C with respect to a reference frame with origin O and z-axis
coinciding with the figure axis of  .

Let us denote by n = n(x, y) the outward normal unit vector to  with com-
ponents (n1, n2, n3) given by

n1
n3

= 2xφ′, n2
n3

= 2yφ′ and n3 = − 1
√

1 + 4(x2 + y2)(φ′)2
.
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Fig. 3. The homogeneous ball on a convex surface of revolution

If ω = (ω1, ω2, ω3) is the angular velocity of the ball in the space frame, then the
Lagrangian of the holonomic system on T Q is

L(x, y, g, ẋ, ẏ, ω) = m

2n23

(

(1 − n22)ẋ
2 + 2n1n2 ẋ ẏ + ẏ2(1 − n21)

)

+ 1

2
〈Iω,ω〉−mgφ, (5.42)

where g denotes the gravity acceleration and I the moment of inertia of the sphere
with respect to its center of mass.
Geometry of the constrained system. The ball rotates without sliding on the
surface ˜ , and hence the nonholonomic constraints equations are

ẋ = −r (ω2n3 − ω3n2) , ẏ = −r (ω3n1 − ω1n3) .
We denote by {X R

1 , X
R
2 , X

R
3 } the right invariant vector fields on SO(3) and by

{ρ1, ρ2, ρ3} the right Maurer-Cartan 1-forms, that form a basis of T ∗SO(3) dual
to {X R

1 , X
R
2 , X

R
3 }. Then the constraint 1-forms are given by

ε1 = dx − r (n2ρ3 − n3ρ2) , ε2 := dy − r (n3ρ1 − n1ρ3) .

The constraint distribution D defined by the annihilator of ε1 and ε2 has fiber, at
q = (x, y, g), given by

Dq=span

{

Yx:=∂x− 1

rn3
(n2Xn−X R

2 ), Yy:=∂y+ 1

rn3
(n1Xn−X R

1 ), Xn

}

, (5.43)

where Xn := n1 X R
1 + n2 X R

2 + n3 X R
3 . Consider the basis of T Q

BT Q = {

Yx ,Yy, Xn, Z1, Z2
}

, (5.44)

where Z1 := 1
rn3

X R
2 − n2

rn3
Xn and Z2 := − 1

rn3
X R
1 + n1

rn2
Xn with associated

coordinates (ẋ, ẏ, ωn, ω1, ω2), for ωn = n · ω = niωi , the normal component of
the angular velocity ω. The dual frame of (5.44) is

BT ∗Q =
{

dx, dy, ρn, ε
1, ε2,

}

, (5.45)
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where ρn = niρi , with associated coordinates (px , py, pn,M1,M2) on T ∗Q. The
manifold M = κ!(D) is given by

M =
{

(x, y, g; px , py, pn,M1,M2) : M1 = −I
I+mr2

px , M2 = −I
I+mr2

py
}

.

The symmetries. Consider the action� of the Lie group G = SO(2)× SO(3) on
the manifold Q given, at each (x, y, g) ∈ Q and (hθ , h) ∈ SO(2)× SO(3), by

�(hθ ,h)(x, y, g) = (hθ (x, y)
t , h̃θgh),

where h̃θ is the 3×3 rotational matrix of angle θ with respect to the z-axis. In other
words, SO(3) acts on the right on itself and SO(2) acts by rotations about the figure
axis of the surface . The Lagrangian (5.42) and the constraints (5.43) are invariant
with respect to the lift of this action to T Q given by �(hθ ,h)(x, y, g, ẋ, ẏ, ω) =
(hθ (x, y)t , h̃θgh, hθ (ẋ, ẏ)t , ω). The invariance of the kinetic energy and the con-
straints D ensures that � restricts to an action on M, that leaves the equations of
motion invariant.

The Lie algebra g ofG is isomorphic toR×R
3 with the infinitesimal generators

(1; 0)Q = −y∂x + x∂y + X R
3 and

(0; ei )Q = αi X
R
1 + βi X R

2 + γi X R
3 , for i = 1, 2, 3,

where ei denotes the i-th element of the canonical basis ofR3 and,α = (α1, α2, α3),
β = (β1, β2, β3) γ = (γ1, γ2, γ3) the rows of the matrix g ∈ SO(3). Observe that
(1; 0)Q is an infinitesimal generator of the SO(2)-action and the others are infinites-
imal generators of the SO(3)-action. We then underline that the G-symmetry sat-
isfies the dimension assumption and it is proper and free whenever (x, y) �= (0, 0)
(note that the rank of V is 3 for (x, y) = (0, 0) and it is 4 elsewhere, showing that
the action is not even locally free).

Let us denote by ˜Q ⊂ Q and ˜M ⊂ M the manifolds where the G-action is
free, i.e. (x, y) �= (0, 0). The vertical distribution S = D∩V on ˜Q has rank 2 with
fibers

Sq = span{Y1 := −yYx + xYy,Y2 := Xn}.
The bundle gS → Q has a global basis BgS of sections given by

BgS =
{

ξ1 :=
(

1; x

r n3
,

y

r n3
, 0

)

, ξ2 := (0; n g)
}

,

and we check that (ξ1)Q = Y1 and (ξ2)Q = Y2. Finally we observe that ˜Q/G has
dimension 1 (ρ

˜Q
: ˜Q → ˜Q/G is given by ρ

˜Q
(x, y, g) = x2 + y2) and hence the

G-symmetry satisfies Conditions (A1)-(A4) on ˜Q.
The existence of horizontal gauge momenta. Using the basis (5.44) and the def-
inition of S, we consider the decomposition

T ˜Q = H ⊕ S ⊕ W,
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where W is a vertical complement of the constraints given by W := span{Z1, Z2}
and H := S⊥∩D is generated by X0 := xYx +yYy . As in Example 5.2, in this case,
it is enough (and straightforward using that n3(x, y) is rotational invariant and that
[X R

1 , X
R
2 ] = −X R

3 for all cyclic permutations) to check that κ([Y1,Y2],Y1) = 0
and κ([Y1,Y2],Y2) = 0 to guarantee that the kinetic energy is strong invariant on
S. Finally, we also see that κ(X0, [Yi , X0]) = 0, for i = 1, 2 . Therefore, follow-
ing Theorem 3.14, the system admits two G-invariant (functionally independent)
horizontal gauge momenta J1 and J2, showing that the first integrals obtained in
[17,27,38,50,56] can be obtained from the symmetry of the system as horizontal
gauge momenta.
The computation of the 2 horizontal gauge momenta. We now characterize the
coordinate functions of the horizontal gauge symmetries written in the basis BgS

on ˜Q. That is, let us denote

J1 := iY1� = −ypx + xpy and J2 := iY2� = pn .

Using the orbit projection ρ
˜Q

: ˜Q → ˜Q/G, a G-invariant function f on Q can be

thought as depending on the variable τ = x2 + y2, i.e., f = f (τ ). Following The-
orem 3.14(i i), a function J = f1 J1 + f2 J2 for f1, f2 ∈ C∞(Q)G is a horizontal
gauge momenta if and only if ( f1, f2) is a solution of the linear system of ordinary
differential equations on ˜Q/G,

R

(

f1
f2

)

=
(

X̄0( f1)
X̄0( f2)

)

where R = 2τ

(

0 −2 r I
E n23(2(φ

′)3 − φ′′)
A
r n

2
3 0

)

(5.46)

for A = φ′ + 2τφ′′ and X̄0 = Tρ
˜Q
(X0) = 2τ ∂

∂τ
. The matrix R is computed using

that R = [κ|S]−1[N ], where

[N ] = 2I

r
τ

(

0 −2τn23(2(φ
′)3 − φ′′)

An23 0

)

and [κ|S] =
(E
r2
τ 0
0 I

)

.

Since this system admits two independent solutions f1 = ( f 11 , f
2
1 ) and f2 =

( f 12 , f
2
2 )on ˜Q/G, then thenonholonomic systemadmits twoG-invariant horizontal

gauge momenta J1, J2 defined on ˜M of the form

J1 = f 11 J1 + f 21 J2 and J2 = f 12 J1 + f 22 J2, (5.47)

recalling that J1 = −ypx + xpy and J2 = pn

Observations 5.5. Let us denote by J̄1, J̄2 the functions on ˜M/G associated to
(5.47).

(i) The (reduced) first integrals J̄1, J̄2 can be extended by continuity to the
differential space M/G and thus J1, J2 are G-invariant functions on M (see
[27] for details) and in this case we say that the system admits 2 = rank(gS)
horizontal gauge momenta.
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(i i) The system of differential equations (5.46) can be written as

R1 f
2 = ( f 1)′ and R2 f

1 = ( f 2)′,

where R1 = R1(τ ) = −2 r I
E n23(2(φ

′)3 − φ′′) and R2 = R2(τ ) = A
r n

2
3. Hence

J̄1, J̄2 are first integrals of Routh type found in [38] (see also [17,23,51,56])
and shown to be horizontal gauge momenta in [27,29].

��
Integrability and reconstruction. The reduced integrability of this system was
established in [50] and its complete broad integrability has been extensively stud-
ied in [17,26,27,38,56], using the existence of first integrals J1 and J2, without
relating their existence to the symmetry group. The symmetry origin of J1 and
J2 was announced in [9], and then proved in [29,51]. Here we want to stress how
Theorem 3.14 can be applied and therefore the reduced integrability of the system
is ensured. That is, J̄1, J̄2, Hred are first integrals of the reduced dynamics Xred

defined on the manifold ˜M/G of dimension 4. Moreover, as proved in [38,56] the
reduced dynamics is made of periodic motions or of equilibria, and hence, since the
symmetry group is compact, the complete dynamics is generically quasi-periodic
on tori of dimension 3 (see Theorem 4.12 and [26,38]). Indeed one could can say
more on the geometric structure of the phase space ˜M of the complete system, it
is endowed with the structure of a fibration on tori of dimension at most 3 (see [26]
for a detailed study of the geometry of the complete system on ˜M).
Hamiltonization.Even though the hamiltonizationof this example has been studied
in [8], in this section we see the hamiltonization as a consequence of Theorem 3.14
and how the resulting Poisson bracket on ˜M/G depends on the linear system of
ordinary differential equations (5.46).

By Theorem 4.5, the nonholonomic system is hamiltonizable by a gauge trans-
formation; that is, on ˜M/G the reduced nonholonomic system is described by
a Poisson bracket with 2-dimensional leaves given by the common level sets of
the horizontal gauge momenta J̄1, J̄2, induced by (5.47), (recall that J̄i are the
functions on ˜M/G, such that ρ∗(J̄i ) = Ji ).

Following Theorem 4.10, we compute the 2-form BHGS, defining the dynamical
gauge transformation, using themomentumequation (5.46). Since dY 1|D = 0, then

BHGS := 〈J,KW〉 − p1R
1
2X 0 ∧ Y2 + p2R

2
1X

0 ∧ Y1 + p2dY2, (5.48)

where X 0 = τ ∗
MX0 and Y i = τ ∗

MY i . That is,

〈J,KW〉|C = M1 dε
1|C + M2 dε

2|C = − I r

E(x2 + y2)
(

p1(
1

rn23
+ 2n23A)X 0 ∧ Y2 + p0n3(2φ

′n3 + 1
r Y1 ∧ Y2

)

|C,
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and using that dY2|C = (x2+y2)
n3

p2X0 ∧ Y1|C , we obtain

BHGS=(x2+ y2)p2(
1
n3

+2 A
r n

2
3)X 0∧Y1+ r I

E (
1

rn3
+2φ′)(p1X 0∧Y2− p0n

2
3Y1∧Y2). (5.49)

Observations 5.6. (i) Since the action is not free,M/G is a semialgebraic variety
that consists in two strata: a singular 1-dimensional stratum corresponding to
the points in which the action is not free; and the four dimensional regular
stratum ˜M/G (where the action is free). Moreover, analyzing the change of
coordinates between BT ∗Q and BT ∗Q we get

τ = x2 + y2, p0 = xpx + ypy, p1 = −ypx + xpy, p2 = pn,

and adding p3 = p2x + p2y , we recover the coordinates used in [27,38] on ˜M/G.
(ii) Since the convexity of the function φ that parametrizes the surface  is not

strictly used, this example also describes the geometry and dynamics of a ho-
mogeneous ball rolling on surface of revolution such that its normal vector
fields has n3 �= 0. ��

5.4. Comments on the hypotheses of the nonholonomic Noether theorem:
examples and counterexamples

Theorem 3.14 shows that a nonholonomic system with symmetries satisfy-
ing certain hypotheses admits the existence of k functionally independent G-
invariant horizontal gauge momenta. Next, assuming Conditions (A1)-(A3), we
study what may happen if the other hypotheses of Theorem 3.14 are not satisfied.
In particular we study three cases: when the metric is not strong invariant, when
κ(X0, [X0,Y ]) is different from zero, and finally when Condition (A4) is not ver-
ified (i.e., dim(Q/G) �= 1). For each case we give examples and counterexamples
to illustrate our conclusions.

Analyzing the strong invariance condition and κ(X0, [X0,Y ]) = 0 Consider a
nonholonomic system (M,�M|C, HM)with a G-symmetry satisfying Conditions
(A1)-(A4). Suppose that ( f1, ..., fk) is a solution of the system of differential
equations (3.21), then, from (3.22), we observe that J = f j Ji is a horizontal
gauge momentum if and only if

f iκ(X0, [Yi , X0]) = 0 and f i (κ(Y j , [Yi , Yl ])+ κ(Yl , [Yi , Y j )) = 0, for each j, l.

for a S-orthogonal horizontal space H . That is, in some cases, even if κ(X0,

[X0,Yi0 ]) �= 0 for some Yi0 ∈ 	(S) or the metric is not strong invariant, we
may still have a horizontal gauge momentum.

Wenowpresent two examples that show themain features of these phenomenon.
The metric is not strong invariant on S. The following is a mathematical ex-
ample, that has the property that the metric is not strong invariant, and it admits
only 1 horizontal gauge momenta even though the rank of the distribution S is 3.
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Precisely, consider the nonholonomic system on the manifold Q = R
3 × SE(2)

with coordinates (u, v, x) ∈ R
3 and (y, z, θ) ∈ SE(2) with Lagrangian given by

L(q, q̇) = 1

2

(

u2 + v2 + ẋ2 + ẏ2 + ż2 + θ̇2 + 4(sin θ ż + cos θ ẏ)θ̇
)

,

and constraints 1-forms given by

εu = du − (1 + cos x)dθ and εv = dv − sin xdθ.

The symmetry is given by the action of the Lie group G = R
2 × SE(2) defined, at

each (a, b; c, d, β) ∈ G, by

�((a, b; c, d, β), (u, v, x, y, z, θ)) = (u + a, v + b, x, hβ

(

y
z

)

+
(

c
d

)

, θ + β),

where hβ is the 2 × 2 rotational matrix of angle β. The distribution S = D ∩ V is
generated by the G-invariant vector fields {Yθ ,Y1,Y2} given by

Yθ := ∂θ + (1 + cos x)∂u + sin x∂v, Y1 := cos θ∂y + sin θ∂z,

Y2 := − sin θ∂y + cos θ∂z,

and X0 = ∂x generates H = S⊥ ∩ D. It is straightforward to check that Conditions
(A1)-(A4) are satisfied and that κ(X0, [X0,Y ]) = 0 for allY ∈ 	(S). However, the
metric is not strong invariant on S: κ(Y2, [Yθ ,Y1]) = 1 and κ(Yθ , [Y1,Y2]) = 0.
From (3.22), we can observe that J = 2p1 + pθ is the only horizontal gauge
momentum of the system in spite of the rank of S being 3 (where, as usual, p1 =
iY1�M and pθ = iYθ�M).
Dropping condition κ(X0, [X0,Y ]) = 0. We illustrate with a multidimensional
nonholonomic particle the different scenarios obtained when κ(X0, [X0,Y ]) �= 0
for a section Y ∈ 	(S) (see Table 5.4).

Consider the nonholonomic system on R
5 with Lagrangian L(q, q̇) = 1

2 q̇ ·
κ q̇ − V (x1), where κ is the kinetic energy metric

κ =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 1 0 1
0 1 0 0 0
1 0 1 0 0
0 0 0 1 1
1 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎠

,

and with the nonintegrable distribution D given, at each q = (x1, . . . , x5) ∈ R
5,

by

Dq = span{D1 = f (x1) ∂x1 + b(x1) ∂x3 + c(x1) ∂x4 , D2 = h(x1) ∂x1 + g(x1) ∂x2 ,

D3 = d(x1) ∂x1 + j (x1) ∂x4 + l(x1) ∂x5},
where b(x1), c(x1), d(x1), f (x1), g(x1), h(x1), j (x1), l(x1) are functions on R

5

depending only on the coordinate x1. The group R
4 of translations along the x2,

x3, x4 and x5 directions acts on the system and leaves both the Lagrangian and
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the nonholonomic constraints invariant. It is straightforward to see that this G-
symmetry satisfies Conditions (A1)-(A4). The fiber of the distribution S over
q ∈ Q is Sq = span{Y1 := f (x1)D2 − h(x1)D1,Y2 := h(x1)D3 − d(x1)D2}.
Since the translational Lie group R

4 is abelian then the kinetic energy is strong
invariant on V (see Example 3.11). The distribution H = S⊥ ∩ D is generated
by the vector field X0 = β1(x1) D1 + β2(x1) D2 + β3(x1) D3, for β1, β2 and β3
suitable functions (defined on R

5 but depending only on the coordinate x1).
For particular choices of the functions b(x1), c(x1), d(x1), f (x1), g(x1), h(x1),

j (x1), l(x1) the two terms κ(X0, [Y1, X0]) and κ(X0, [Y2, X0]) may not vanish.
The computations and their expression are rather long and were implemented with
Mathematica. The next table shows different situations that we obtain:

Cases when Condition (A4) is not satisfied (or rank(H) �= 1) When Condition
(A4) is not verified, or more precisely when rank(H) > 1, it is still possible
to work with the momentum equation stated in Proposition 3.3. The problem that
appears whenwewant to apply the coordinatemomentum equation (3.22) is that we
cannot assert the existence of a global basis of H . However, in some examples the
horizontal space H may admit a global basis which we denoted by {X1, ..., Xn} for
n = rank(H). In this case, we observe that the second summand of the momentum
equation (3.22) gives the condition

κ(Xα, [Yi , Xβ ])− κ(Xβ, [Yi , Xα]) = 0 for all α, β = 1, ..., n,

and the third summand gives a system of partial differential equations whose solu-
tions induce the horizontal gaugemomenta. As an illustrative example, we canwork
out the Chaplygin ball [19,24]; this example has aG-symmetry so that rank(S) = 1
and rank(H) = 2 with a global basis (see e.g. [4,36]). However, working with the
momentumequation (3.17), it is possible to show that the systemadmits 1 horizontal
gauge momentum, recovering the known result in [16,19,24].
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A Appendix: Almost Poisson brackets and gauge transformations

Almost Poisson brackets. An almost Poisson bracket on a manifold M is a bilinear bracket
{·, ·} : C∞(M)×C∞(M) → C∞(M) that is skew-symmetric and satisfies Leibniz identity
(but does not necessarily satisfy Jacobi identity). Due to the bilinear property, an almost
Poisson bracket induces a bivector field π on M defined, for each f, g ∈ C∞(M) by

π(d f, dg) = { f, g}.
The vector field X f := {·, f } is the hamiltonian vector field of f . Equivalently, X f =
−π!(d f ), where π! : T ∗M → T M is the map such that for α, β ∈ T ∗M , β(π!(α)) =
π(α, β). The characteristic distribution of the bracket {·, ·} is the distribution onM generated
by the hamitonian vector fields.
An almost Poisson bracket {·, ·} is Poisson when the Jacobi identity is satisfied, i.e.,

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = 0, for f, g, h ∈ C∞(M).
Equivalently, a bivector fieldπ is Poisson if and only if [π, π ] = 0where [·, ·] is the Schouten
bracket, see e.g. [47]. The characteristic distribution of a Poisson bracket is integrable and
foliated by symplectic leaves.

Definition A.1. [53] An almost Poisson bracket {·, ·} on M is twisted Poisson if there exists
a closed 3-form � on M such that, for each f, g, h ∈ C∞(M)

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = �(X f , Xg, Xh),

where X f , Xg, Xh are the hamiltonian vector fields of f, g, h,with respect to {·, ·}. In other
words, a bivector field π on M is twisted Poisson if [π, π ] = 1

2π
!(�).

Observation A.2. The characteristic distribution of a twisted Poisson bracket is integrable
and it is foliated by almost symplectic leaves. Conversely, it was shown in [6], that any
regular almost Poisson bracket with integrable characteristic distribution is a twisted Poisson
bracket. ��
A regular almost Poisson bracket {·, ·} on M is determined by a 2-form� and a distribution
F defined on M so that �|F is nondegenerate. In fact, for f ∈ C∞(M),

X f = {·, f } if and only if iX f �|F = d f |F , (A.50)

(actually, the bracket is determined by the nondegenerate 2-section �|F on M). The distri-
bution F is the characteristic distribution of the bracket. If F is integrable, then {·, ·} is a
(regular) twisted Poisson bracket by the 3-form � = d� (� is not necessarily closed). A
Poisson bracket has F integrable and � closed.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Gauge transformations of a (regular) bracket by a 2-form.

Definition A.3. [53] Consider a (regular) bracket {·, ·} on the manifold M as in (A.50) and
a 2-form B satisfying that (�+ B)|F is nondegenerate. A gauge transformation of {·, ·} by
the 2-form B defines a bracket {·, ·}B on M given, at each f ∈ C∞(M), by

iX f (�+ B)|F = d f |F if and only if X f = {·, f }B .
In this case, we say that the brackets {·, ·} and {·, ·}B are gauge related .

Observations A.4. (i) The brackets {·, ·} and {·, ·}B have the same characteristic dis-
tribution F . Therefore, if an almost Poisson bracket has a nonintegrable characteristic
distribution, all gauge related brackets will be almost Poisson with a nonintegrable char-
acteristic distribution.
(i i) If the bracket {·, ·} is twisted Poisson by a 3-form�, then the gauge related bracket
{·, ·}B is twisted Poisson by the 3-form (�+dB).Moreover, they share the characteristic
foliationbut the 2-formoneach leaf Fμ changes by the term Bμ = ιμB for ιμ : Fμ → M
the inclusion.
(i i i) The original definition of a gauge transformation in [53] was given on Dirac
structures and then the 2-form B does not need to satisfy the nondegenerate condition
(�+ B)|F . ��

Definition A.5. Let τ : M → P be a vector bundle and let α be a k-form on the manifold
M . We say that α is semi-basic with respect to the bundle M → P if

iXα = 0 for all X ∈ T M such that T τ(X) = 0.

The k-form α is basic if there exists a k-form ᾱ on P such that τ∗ᾱ = α.

Observation A.6. Consider the canonical symplectic 2-form �Q on T ∗Q. If B is a semi-
basic 2-form with respect to the bundle T ∗Q → Q, then�Q + B is a nondegenerate 2-form
on T ∗Q. ��
Symmetries. Let us consider an almost Poisson manifold (M, {·, ·}) given as in (A.50) and
a Lie group G acting on M and leaving {·, ·} invariant. Then on the reduced manifold M/G
there is an almost Poisson bracket {·, ·}red defined, at each f, g ∈ C∞(M/G) by

{ f, g}red ◦ ρ = {ρ∗ f, ρ∗g},
where ρ : M → M/G is the orbit projection.
If a G-invariant 2-form B satisfies that (�+ B)|F is nondegenerate, then the gauge related
bracket {·, ·}B is G-invariant as well. Both brackets {·, ·} and {·, ·}B can be reduced to obtain
the corresponding reduced brackets {·, ·}red and {·, ·}Bred on the quotient manifold M/G as
the diagram shows that

(M, {·, ·})
reduction

��

gauge transf. byB �� (M, {·, ·}B)

��
(M/G, {·, ·}red) (M/G, {·, ·}Bred)

(A.51)

As was observed in [6,36], the brackets {·, ·}red and {·, ·}Bred can have different properties.
More precisely, they are not necessarily gauge related and hence one can be Poisson while
the other not. In fact, {·, ·}red and {·, ·}Bred are gauge related if and only if the 2-form B is
basic with respect to the principal bundle M → M/G.
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B Appendix: Some facts on reconstruction theory

The reconstruction of the dynamics from reduced equilibria and reduced periodic orbits
has been well studied in [35,43], when the symmetry group is compact and in [2] in the
non-compact case. In this subsection we shortly review the basic results of reconstruction
theory in the simplest framework, of free and proper group actions. We consider a Lie group
G that acts freely and properly on a manifold M . The freeness and properness of the action
guarantee that the quotient space M/G has the structure of a manifold and τ : M −→ M/G
is a principal bundle with structural group G. Let X be a G-invariant vector field on M ,
then there exists a vector field X̄ on M/G, which is τ -related to X . We recall that a G-orbit
Om0 = G ·m0, withm0 ∈ M , is a relative equilibrium for X , if it is invariant with respect to
the flow of X and its projection to the reduced space M/G is an equilibrium of the reduced
dynamics X̄ . Moreover a G-invariant subset P of M is called a relative periodic orbit for
X , if it is invariant by the flow and its projection to the quotient manifold M/G is a periodic
orbit of X̄ .
Let P be a relative periodic orbit and γ a curve in P . By the periodicity of the reduced
dynamics, the integral curves of the complete system, that pass through γ (0), returns peri-
odically, with period T > 0, to the G-orbit through γ (0). The freeness of the action of G on
M guarantees that ∀γ in P there exists a unique p(γ̂ ) in G such that

φXT (γ ) = ψp(γ̂ )(γ ),

where φXT is the flow of X at time T , ψg is the action of G on M , γ̂ is the projection of γ
on M/G with respect to τ , and the map p : P → G, γ �→ p = p(γ̂ ) is the so-called phase
[26]. The phase p is a piecewise smoothmap, constant along the orbits of X (i.e. p◦φXt = p,
∀t) and it is equivariant with respect to conjugation, that is p(h · γ ) = h p(γ̂ )h−1, ∀h ∈
G, ∀γ ∈ P . Then the following Theorem holds:

Proposition B.1. [2,35,43] Let P be a relative periodic orbit of X on M. Then

(i) if the group G is compact, the flow of X in P is quasi-periodic with at most rank G + 1
frequencies;

(ii) if G is non-compact, the flow of X in P is either quasi-periodic, or a drift.

The non-compact case is the most frequent and also the most interesting, for example one
could say more on which of the two behaviours of the dynamics, namely quasi-periodicity
or a drift, is “generic” by studying the group G (but this goes beyond our scopes, for more
details see [2]).

Observation B.2. In [2,35,43] reconstructions results are given from the point of view of
Lie Algebras, while [33] develops a theory in terms of groups. Moreover [33] investigates
the structure of the copies of R and shows that one can define an intrinsic notion of a certain
number of frequencies that gives rise to the idea that, in this case, the reconstructed dynamics
‘spirals’ toward a certain direction. ��
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