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Introduction

Identification of the signaling pathways that are critical for sen-
sitivity to targeted therapy as well as conventional therapy is 
essential for improved cancer treatments. In fact, it has recently 
been demonstrated that in order for some targeted cancer therapy 
treatments to be effective, specific target genes need to be either 
mutated or overexpressed. Moreover, cells that are initially sensi-
tive to targeted therapy often develop resistance. Certain types 
of cancers, namely melanoma,1-17 chronic myeloid leukemia 

Neutrophil gelatinase-associated lipocalin (NGAL, a.k.a Lnc2) is a member of the lipocalin family and has diverse roles. 
NGAL can stabilize matrix metalloproteinase-9 from autodegradation. NGAL is considered as a siderocalin that is 
important in the transport of iron. NGAL expression has also been associated with certain neoplasias and is implicated 
in the metastasis of breast cancer. In a previous study, we examined whether ectopic NGAL expression would alter the 
sensitivity of breast epithelial, breast and colorectal cancer cells to the effects of the chemotherapeutic drug doxorubicin. 
While abundant NGAL expression was detected in all the cells infected with a retrovirus encoding NGAL, this expression 
did not alter the sensitivity of these cells to doxorubicin as compared with empty vector-transduced cells. We were also 
interested in determining the effects of ectopic NGAL expression on the sensitivity to small-molecule inhibitors targeting 
key signaling molecules. ectopic NGAL expression increased the sensitivity of MCF-7 breast cancer cells to eGFR, Bcl-2 and 
calmodulin kinase inhibitors as well as the natural plant product berberine. Furthermore, when suboptimal concentrations 
of certain inhibitors were combined with doxorubicin, a reduction in the doxorubicin IC50 was frequently observed. An 
exception was observed when doxorubicin was combined with rapamycin, as doxorubicin suppressed the sensitivity of 
the NGAL-transduced MCF-7 cells to rapamycin when compared with the empty vector controls. In contrast, changes in 
the sensitivities of the NGAL-transduced HT-29 colorectal cancer cell line and the breast epithelial MCF-10A cell line were 
not detected compared with empty vector-transduced cells. Doxorubicin-resistant MCF-7/DoxR cells were examined in 
these experiments as a control drug-resistant line; it displayed increased sensitivity to eGFR and Bcl-2 inhibitors compared 
with empty vector transduced MCF-7 cells. These results indicate that NGAL expression can alter the sensitivity of certain 
cancer cells to small-molecule inhibitors, suggesting that patients whose tumors exhibit elevated NGAL expression or 
have become drug-resistant may display altered responses to certain small-molecule inhibitors.

Ectopic NGAL expression can alter sensitivity 
of breast cancer cells to EGFR, Bcl-2, CaM-K 
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(CML)18,19 and non-small cell lung cancer (NSCLC)20,21 have 
been intensively investigated for the mechanisms of sensitivity 
and resistance to small-molecule inhibitors. Thus, it is essential 
to understand why certain cancer patients are sensitive or develop 
resistance to various therapeutic approaches and whether the sen-
sitivity results from intrinsic or extrinsic events.

A common phenomenon that occurs after treatment of can-
cer patients with chemotherapeutic drugs is drug resistance. The 
mechanisms behind these developments are many and include 
increased expression of drug transporters, amplification of critical 
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Desferrioxamine (DFO), inhibit cellular iron transport and have 
been evaluated in various cancer clinical trials.91 Oxygen and 
iron concentrations may be altered in the tumor microenviron-
ment due to drastic tumor growth.92-94 In order for a cancer cell 
to survive, invade and metastasize, it may have to have increased 
iron transport as well as elevated glycolysis.67-69,95,96 The role of 
iron transport in chemotherapeutic drug resistance of cancer cells 
is complex and may depend on the particular drug and cancer 
type investigated.97,98 Interestingly, some iron depletors have been 
shown to decrease resistance of certain cancer cells to chemo-
therapeutic drugs including doxorubicin.99,100

Increased levels of NGAL have been detected in the urine of 
patients with various types of cancer (i.e., brain, breast, colon, 
ovarian, pancreatic and prostate). Novel non-invasive urine-based 
tests could prove useful for the detection and/or prognosis of 
many cancer types.101-104 The role(s) of NGAL in chemotherapeu-
tic drug resistance, invasion, cancer metastasis and sensitivity to 
targeted therapy have not been fully elucidated. Targeting NGAL 
could result in decreased cancer cell survival and tumor regres-
sion as well as improve the effectiveness of radiation and chemo-
therapy in cancer therapy. NGAL is considered by some scientists 
to possess characteristics of an oncogene. In some studies, NGAL 
has been shown to increase the mobility, invasion, metastasis and 
tumorigenesis of certain cancer cells (breast, CRC).105-108 Elevated 
expression of NGAL increases the invasiveness of certain cancer 
cell types, while inhibition of NGAL expression decreases their 
invasiveness and metastasis.72-75,105 Novel approaches to target 
MMP-9/NGAL are needed, as MMP-9 inhibitors have not per-
formed well in clinical cancer trials,109 and NGAL has functions 
which are independent of MMP-9.

NGAL may exert many different effects that are important 
in invasion and metastasis. NGAL can stabilize MMP-9 at the 
cell surface,110-112 and this complex, in association with CD44, 
may promote the cleavage of E-Cadherin (E-Cad) into soluble(s) 
E-Cad thereby inducing epithelial-mesenchymal transition 
(EMT).112,113 Alternatively, NGAL may be important in the 
transport of inhibitors and natural products into cells or prevent-
ing their efflux from cells. In the following studies, we exam-
ined the effects of ectopic NGAL expression on the sensitivity of 
breast cancer and CRC to several small-molecule inhibitors tar-
geting critical molecules in signal transduction pathways. Ectopic 
expression of NGAL increased the sensitivity of MCF-7 breast 
cancer cells to EGFR, CaM-K and Bcl-2 inhibitors as well as the 
natural plant product berberine. In contrast, ectopic expression of 
NGAL did not alter the sensitivity of the CRC line or the breast 
epithelial MCF-10A line to the various small-molecule inhibitors 
or natural products. We chose to examine the effects of ectopic 
NGAL expression on sensitivity to doxorubicin on two different 
types of cancers: breast cancer cells, which are generally sensi-
tive to doxorubicin therapy, and CRC cells, which are considered 
resistant to doxorubicin therapy. Addition of suboptimal doses 
of some inhibitors lowered the IC

50
 of doxorubicin in MCF-7 

breast cancer cells with the exception of rapamycin. In contrast, 
doxorubicin appeared to inhibit the effects of rapamycin on the 
normally sensitive MCF-7/NGAL but not MCF-7/pLXSN cells. 
These results could have clinical significance, as NGAL is often 

survival genes, genetic mutations and deletions or increased acti-
vation of certain signal transduction pathways.22-26 Therefore, it 
is also important to understand how cancers become drug-resis-
tant and whether or not their drug resistance can be reversed.

Over the past 35 years, many genes have been identified 
which can cause or contribute to the formation of cancer.27,28 
These include two major classes of genes, the oncogenes29-33 and 
the tumor-suppressor genes such as retinoblastoma (RB),34-37 
TP53,38-40 BRCA1,41,42 PTEN,43 TSC1 and TSC2.44-47 Many of 
these oncogenes and tumor suppressors are often critical regu-
lators of cellular senescence.48-53 Moreover, microRNAs (miR-
NAs)54-60 and epigenetic modifications61-63 have been shown to 
play important roles in regulating cancer progression. Certain 
miRNAs may be induced by drugs such as metformin, which can 
control cancer growth.60 Some miRNAs may be regulated by epi-
genetic mechanism by tumor-suppressor genes such as BRCA1.63

In some cases, the genetic culprit involved in a particular can-
cer may be known [e.g., BCRABL in chronic myeloid leukemia,18,19 
HER2 in certain forms of breast cancer,64-66 EGFR in certain lung 
cancers,25,27,28 BRAF in melanomas, thyroid cancers, non-small cell 
lung cancers and colorectal cancers (CRC)1-18,25,27,28]. However, 
in most cases, there are multiple genetic and epigenetic events 
occurring that can interact and result in a cancer cell capable of 
becoming metastatic and/or drug resistant. In addition, there are 
other important metabolic contributions by the tumor microen-
vironment that aid in the progression of the cancer cell as well 
as the development of sensitivity/resistance to various therapeutic 
approaches and the survival of cancer-initiating cells (CICs).67-69

One factor that may be important for cancer survival and 
metastasis is neutrophil gelatinase-associated lipocalin (NGAL). 
One of the genomic responses to common cancer treatments 
such as radiation and chemotherapy is the induction of NGAL 
expression.70-75 NGAL may act to stabilize MMP-9 and increase 
its ability to degrade the extracellular matrix, thereby promoting 
metastasis.

NGAL expression is regulated by the transcription factors 
NF-κB, CEBP and others.76-79 Radiation and chemotherapy can 
induce reactive oxygen species (ROS) that result in NF-κB acti-
vation80-83 and subsequent downstream NGAL transcription. In 
addition, the tumor microenvironment can alter intracellular 
NF-κB activity.83 Chemo- and radiotherapy could result in the 
synthesis of NGAL in cancer cells, which may lead to the devel-
opment of therapy-resistant cells. These cells can contribute to 
the reemergence and metastasis of the cancer, as increased NGAL 
expression may allow the cells to persist under conditions where 
therapy-sensitive cancer cells would not normally survive.

Cancer cells have increased demands for intracellular iron. 
NGAL is a member of the lipocalin family and, as such, is capa-
ble of serving as a siderocalin or molecule involved in the trans-
port of iron and other molecules.84 Iron is essential for many key 
processes, including the rate-limiting step in DNA synthesis per-
formed by ribonucleotide reductase.85 Iron (Fe2+) is also required 
for cells to progress through the cell cycle from G

1
 to S phase. 

Tumor cells have a high requirement for iron and express elevated 
levels of the transferrin receptor-1.86-89 Novel chelators of iron are 
being considered for cancer treatment.90 Iron chelators, such as 
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doxorubicin by MTT assays. Graphs in Figure 1 represent the 
effects of varying concentrations of the EGFR inhibitor AG1478 
(Fig. 1A, D and G) doxorubicin (Fig. 1B, E and H), and varying 
concentrations of doxorubicin with a constant concentration the 
EGFR inhibitor (Fig, 1C, F and I).

Ectopic NGAL expression did not appear to alter the sensi-
tivity of MCF-10A/NGAL cells to either the EGFR inhibitor 
AG1478 (Fig. 1A) or doxorubicin (Fig. 1B). Interestingly, a dose 
of the EGFR inhibitor at approximately the IC

50
 completely elim-

inated the growth of these cells, which are normally cultured in 
medium containing rEGF (Fig. 1C). These results demonstrate 
that the toxic effects of doxorubicin can be enhanced by the 
EGFR inhibitor in the breast epithelial MCF-10A line.

In contrast to the results observed with the breast epithe-
lial MCF-10A/NGAL cells, ectopic NGAL expression did alter 
the sensitivity of MCF-7/NGAL cells to the EGFR inhibitor 

expressed at high levels in certain advanced cancer patients, and 
its expression is induced after chemo- and radiotherapy. NGAL 
expression could also alter the sensitivity of cancer and other 
patients to various small-molecule inhibitors and natural prod-
ucts such as berberine, which are used in traditional medicine.

Results

Effects of enforced NGAL expression on sensitivity to the 
EGFR inhibitor AG1478. MCF-10A, MCF-7 and HT-29 cells 
were infected with a retrovirus encoding NGAL or the empty 
retrovirus pLXSN. NGAL was detected in the supernatants from 
NGAL retrovirus-infected cells114,115 but not in the empty vector 
pLXSN virus-infected cells.115

We examined the effects of elevated NGAL expression on the 
sensitivity of all of the cell lines to the various inhibitors and 

Figure 1. Sensitivity of NGAL- and pLXSN-infected cells and doxorubicin-resistant MCF-7/DoxR cells to the eGFR inhibitor AG1478, doxorubicin and the 
combination of doxorubicin and a constant dose of 250 nM AG1478. Cells were collected and seeded (2,000 cells/well) in 96-well plates. The follow-
ing day, serial 2-fold dilutions of AG1478 (A, D and G), doxorubicin (B, E and H) or serial 2-fold dilutions of doxorubicin and a constant dose of 250 nM 
AG1478 (C, F and I) were added to the wells. Four days later, MTT assays were performed. (A–C) MCF-10A/pLXSN (solid squares), MCF-10A/NGAL (solid 
upright triangles), (D–F) MCF-7/pLXSN (solid squares), MCF-7/NGAL (solid upright triangles) and 25 nM doxorubicin-selected MCF-7/DoxR cells (solid 
downward triangles), (G–I) HT-29/pLXSN (solid squares), HT-29/NGAL (solid upward triangles). A hatched horizontal line is present at the 50% relative 
growth mark from which the IC50 can be calculated. A vertical arrow indicates the IC50. The statistical significance was determined by the unpaired 
t-test (***, p < 0.001). All the experiments in this figure were performed at the same time (set up on the same day). These experiments were repeated 
multiple times, and similar results were obtained.
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additive effects to the doxorubicin IC
50

 in HT29 cells (Fig. 1I), 
similar to what was seen in the other cell lines. The IC

50
s for the 

drug-treated cells are presented in Table 1.
Effects of enforced NGAL expression on sensitivity to the 

Bcl-2 inhibitor ABT-737. The effects of varying concentrations 
of the Bcl-2 inhibitor ABT-737 (Fig. 2A, D and G), doxorubi-
cin (Fig. 2B, E and H) or varying concentrations of doxorubi-
cin and a constant concentration of ABT-737 (Fig. 2C, F and I) 
on growth in NGAL-expressing cells are presented in Figure 2. 
The results with the doxorubicin titrations are presented again 
to allow direct comparison with the results obtained with doxo-
rubicin titrations combined with a constant dose of the Bcl-2 
inhibitor.

Overexpression of NGAL did not alter the IC
50

 of MCF-10A/
NGAL cells to ABT-737; however, MCF-10A/NGAL cells were 
more sensitive to lower concentrations of the Bcl-2 inhibitor than 
MCF-10A/pLXSN cells (Fig. 2A). The addition of the Bcl-2 
inhibitor decreased the concentration of doxorubicin required to 
reach the IC

50
 in both MCF-10A/pLXSN and MCF-10A/NGAL 

by less than 2-fold (Fig. 2C).
In contrast to the results observed with the breast epithelial 

MCF-10A cells, NGAL expression did exhibit an effect on the 
sensitivity of MCF-7/NGAL cells to the Bcl-2 inhibitor ABT-737 
(Fig. 2D) but not to doxorubicin only (Fig. 2E). MCF-7/pLXSN 
cells were at least 1,000-fold more resistant to the Bcl-2 inhibitor 
than either MCF-7/NGAL or MCF-7/DoxR cells. The MCF-7/
DoxR line was also highly sensitive to the ABT-737 (Fig. 2D) 
but not to doxorubicin (Fig. 2E). Treatment with ABT-737 did 
significantly diminish the concentration of doxorubicin required 
to reach the IC

50
 in pLXSN- or NGAL-expressing cells (11- and 

3.3-fold, respectively). Moreover, the IC
50

 for MCF-7/DoxR cells 
was considerably reduced (200-fold) when the Bcl-2 inhibitor 
was added (Fig. 2F).

In HT29 CRC cells, the effects of NGAL overexpression did 
not significantly alter the sensitivity of HT29/NGAL cells to 
either the Bcl-2 (Fig. 2G) or doxorubicin (Fig. 2H). However, a 

AG1478 (Fig. 1D) but not doxorubicin (Fig. 1E). In addition, 
the MCF-7/DoxR line was very sensitive to the EGFR inhibi-
tor AG1478 (Fig. 1D) but was highly resistant to doxorubicin 
(Fig. 1E). Interestingly, a dose of the EGFR inhibitor reduced the 
concentration of doxorubicin required to reach the IC

50
 at least 

10-fold in all the MCF-7 cells (Fig. 1F). The MCF-7/DoxR cells 
were included in these studies as they were derived directly from 
MCF-7 cells by selection in medium containing 25 nM doxoru-
bicin for prolonged periods of time.114

NGAL expression did not significantly alter the sensitivity 
of HT29/NGAL cells to either the EGFR inhibitor AG1478 
(Fig. 1G) or doxorubicin (Fig. 1H). In fact, the HT29 cells 
appeared to be very resistant to the effects of the EGFR inhibitor. 
A constant dose of 250 nM EGFR inhibitor did not produce any 

Table 1. effects of ectopic NGAL expression on the sensitivity of cells to doxorubicin, small-molecule inhibitors and the natural plant product  
berberine1

Drug treatment MCF-10A/pLXSN MCF-10A/NGAL MCF-7/pLXSN MCF-7/NGAL MCF-7/DoxR HT-29/pLXSN HT-29/NGAL

AG1478 (eGFR Inh) 300 nM 300 nM > 2,000 nM 30 nM 6 nM > 2,000 nM > 2,000 nM

ABT-737 (Bcl-2 Inh) 400 nM 300 nM 1,000 nM 1 nM 1.5 nM 600 nM 600 nM

Rapamycin (mTORC1 Inh) 0.2 nM 0.2 nM 0.15 nM 0.2 nM > 100 nM > 100 nM > 100 nM

KN-93 (CaMK Inh) > 10,000 nM 10,000 nM 110 nM 12 nM 2,500 nM 500 nM 550 nM

Berberine > 2,000 nM > 2,000 nM 2,000 nM 12 nM > 2,000 nM > 2,000 nM 2,000 nM

Doxorubicin 30 nM 25 nM 80 nM 60 nM 2,000 nM 40 nM 40 nM

Dox + 250 nM AG1478 < 1nM < 1nM 12 nM 12 nM 80 nM 50 nM 40 nM

Dox + 50 nM ABT-737 20 nM 18 nM 7 nM 15 nM 8 nM 1.8 nM 3 nM

Dox + 5 nM Rapa < 2nM < 2 nM 1.5 nM 70 nM 2.5 nM 28 nM 28 nM

Dox + 250 nM KN-93 18 nM 12 nM 12 nM < 2 nM 30 nM 40 nM 40 nM

Dox + 250 nM Ber 28 nM 20 nM 70 nM 10 nM 8 nM 50 nM 50 nM
1MTT analysis was performed with different unselected cancer lines and certain 25 nM doxorubicin resistant (DoxR). Determined by plating 2,000 cells/
well in 96-well plates in phenol red-free RPMI , + 10% FBS. Serial 2-fold dilutions (n = 12 dilutions) of doxorubicin were dispensed into eight wells per 
each doxorubicin concentration after the first day. MTT analysis was performed after four additional days of incubation and results were normalized to 
untreated cells as described.114 All IC50s are estimated values derived from the graphs presented in Figures 1–5.

Table 2. Fold differences in sensitivity to small-molecule inhibitors, 
berberine and doxorubicin in MCF-7/pLXSN, MCF-7/NGAL and MCF-7/
DoxR cells1

Drug treatment MCF-7/NGAL MCF-7/DoxR

AG1478 (eGFR Inh) 67 X↓ 333 X↓

ABT-737 (Bcl-2 Inh) 1,000 X↓ 667 X↓

Rapamycin (mTORC1) 1.3 X↑ 667 X↑

KN-93 (CaM-K) 9.2 X↓ 23 X↑

Berberine (AMPK, others) 166 X↓ —

Doxorubicin (topoisomerase, others) 1.3 X↓ 25 X↑

Dox + 250 nM AG1458 — 6.7 X↑

Dox + 50 nM ABT-737 2 X↑ 1.1 X↑

Dox + 5 nM Rapa 47 X↑ 1.7 X↑

Dox + 250 nM KN-93 6 X↑ 2.5 X↑

Dox + 250 nM Berberine 7 X↓ 8.8 X↓
1Fold change in IC50s were normalized to the IC50s detected in MCF-7/
pLXSN cells. ↓ indicates a decrease in IC50 in comparison to MCF-7/pLXSN 
control cells. ↑ indicates an increase in the IC50 compared with MCF-7/
pLXSN control cells. estimated data values obtained from drug titrations 
derived from graphs in Figures 1–5 and listed in Table 1.
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rapamycin at approximately 0.2 nM. Furthermore, no additive 
effects in sensitivity were seen with the addition of rapamycin 
when combined with doxorubicin (Fig. 3C).

Similar to MCF-10A cells, both MCF-7/pLXSN and MCF-7/
NGAL cells were very sensitive to the mTORC1 inhibitor 
rapamycin (Fig. 3D). In contrast though, the doxorubicin-resis-
tant MCF-7/DoxR cells were highly resistant to rapamycin. The 
combinatorial effects of different concentrations of doxorubicin 
and a constant dose of rapamycin were assayed, and as expected, 
the MCF-7/pLXSN cells were highly sensitive to the constant 5 
nM dose of rapamycin in the presence of different concentrations 
of doxorubicin (Fig. 3F). Moreover, the dose of 5 nM rapamycin 
synergized with doxorubicin and lowered the doxorubicin con-
centration required to reach the IC

50
 greater than 10-fold in the 

doxorubicin-resistant MCF-7/DoxR cells. Interestingly, overex-
pression of NGAL appeared to prevent the effects of rapamycin 
when combined with different concentrations of doxorubicin in 

suboptimal dose of the Bcl-2 inhibitor did reduce the doxorubi-
cin IC

50
 for both HT29/LXSN and HT29/NGAL cells greater 

than 30-fold (Fig. 2I).
Effects of enforced NGAL expression on sensitivity to the 

mTORC1 inhibitor rapamycin. Breast epithelial, breast cancer 
and CRC cell lines were exposed to varying concentrations of the 
mTORC1 inhibitor rapamycin (Fig. 3A, D and G) and varying 
concentrations of doxorubicin combined with a constant dose of 
rapamycin (Fig. 3C, F and I) to determine the effects of NGAL 
expression. Once again, the results with the doxorubicin titra-
tions are presented (Fig. 3B, E and H) to allow for direct com-
parison of treated cells.

MCF-10A cells treated with rapamycin are presented in 
Figure 3A and C. Ectopic NGAL expression did not alter the IC

50
 

of MCF-10A/NGAL cells to the mTORC1 inhibitor (Fig. 3A), 
although both MCF-10A/pLXSN and MCF-10A/NGAL cells 
were very sensitive to the mTORC1 inhibitor, with the IC

50
 for 

Figure 2. Sensitivity of NGAL- and pLXSN-infected cells and doxorubicin-resistant MCF-7/DoxR cells to the Bcl-2 inhibitor ABT-737, doxorubicin and the 
combination of doxorubicin and a constant dose of 50 nM ABT-737. Cells were collected and seeded (2,000 cells/well) in 96-well plates. The follow-
ing day, serial 2-fold dilutions of ABT-737 (A, D and G), doxorubicin (B, E and H) or serial 2-fold dilutions of doxorubicin and a constant dose of 50 nM 
ABT-737 (C, F and I) were added to the wells. Four days later, MTT assays were performed. (A–C) MCF-10A/pLXSN (solid squares), MCF-10A/NGAL (solid 
upright triangles), (D–F) MCF-7/pLXSN (solid squares), MCF-7/NGAL (solid upright triangles) and 25 nM doxorubicin-selected MCF-7/DoxR cells (solid 
downward triangles), (G–I) HT-29/pLXSN (solid squares), HT-29/NGAL (solid upward triangles). A hatched horizontal line is present at the 50% relative 
growth mark from which the IC50 can be calculated. A vertical arrow indicates the IC50. The statistical significance was determined by the unpaired 
t-test (***, p < 0.001). All the experiments in this figure were performed at the same time (set up on the same day). These experiments were repeated 
multiple times and similar results were obtained.
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were analyzed compared with the effects of doxorubicin alone 
(Fig. 4B, E and H).

Figure 4A–C represents results with the breast epithelial 
MCF-10A cells. Ectopic NGAL expression appeared to slightly 
alter the sensitivity of MCF-10A cells to the CaM-K inhibitor, 
although a clear IC

50
 could not be established but was estimated 

to be close to 10,000 nM KN-93 in the MCF-10A/NGAL and 
greater than 10,000 nM in the MCF-10A/pLXSN cells (Fig. 4A). 
In general, both MCF-10A/NGAL and MCF-10A/LXSN cells 
were very resistant to the CaM-K inhibitor. These slight effects of 
KN-93 on MCF-10A/NGAL cells were similarly observed with 
the addition of varying concentrations of doxorubicin as the IC

50
s 

for both MCF-10A/pLXSN and MCF-10A/NGAL cells were 
marginally decreased (Fig. 4C).

Both MCF-7/pLXSN and MCF-7/NGAL were very sensitive 
to the CaM-K inhibitor KN-93 and had IC

50
s of approximately 

MCF-7/NGAL cells (Fig. 3F). These results suggest that doxo-
rubicin neutralized the effects of rapamycin in MCF-7/NGAL 
cells.

Ectopic expression of NGAL did not alter the sensitivity of 
HT29/NGAL cells to either rapamycin (Fig. 3G) or doxorubicin 
(Fig. 3H). HT29 cells were exceedingly resistant to the mTORC1 
inhibitor by itself as compared with the breast cell lines. A subop-
timal dose of rapamycin was able to reduce the doxorubicin IC

50
 

for HT29/LXSN and HT29/NGAL cells approximately 2-fold 
(Fig. 3I).

Effects of enforced NGAL expression on sensitivity to the 
CaM-K inhibitor KN-93. The CaM-K inhibitor KN-93 was 
also used to examine the potential effects NGAL overexpression 
may have on cell growth in response to chemotherapeutic drugs. 
Effects of KN-93 (Fig. 4A, D and G) and KN-93 in combination 
with varying concentrations of doxorubicin (Fig. 4C, F and I) 

Figure 3. Sensitivity of NGAL- and pLXSN-infected cells and doxorubicin-resistant MCF-7/DoxR cells to the mTORC1 inhibitor rapamycin, doxorubicin 
and the combination of doxorubicin and a constant dose of 5 nM rapamycin. Cells were collected and seeded (2,000 cells/well) in 96-well plates. The 
following day, serial 2-fold dilutions of rapamycin (A, D and G), doxorubicin (B, E and H) or serial 2-fold dilutions of doxorubicin and a constant dose 
of 5 nM rapamycin (C, F and I) were added to the wells. Four days later, MTT assays were performed. (A–C) MCF-10A/pLXSN (solid squares), MCF-10A/
NGAL (solid upright triangles), (D–F) MCF-7/pLXSN (solid squares), MCF-7/NGAL (solid upright triangles) and 25 nM doxorubicin-selected MCF-7/DoxR 
cells (solid downward triangles), (G–I) HT-29/pLXSN (solid squares), HT-29/NGAL (solid upward triangles). A hatched horizontal line is present at the 
50% relative growth mark from which the IC50 can be calculated. A vertical arrow indicates the IC50. The statistical significance was determined by the 
unpaired t-test (***, p < 0.001). All the experiments in this figure were performed at the same time (set up on the same day). These experiments were 
repeated multiple times and similar results were obtained.
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Effects of enforced NGAL expression on sensitivity to the 
natural plant product berberine. The natural plant derivative 
berberine was also examined in our cell lines, and the results are 
presented in Figure 5. Berberine affects the regulation of many 
genes, including suppressing NF-κB, ERK and MMP-9 expres-
sion while also inducing 5' adenosine monophosphate-activated 
protein kinase (AMPK) expression.

Ectopic NGAL expression did not exhibit any effect on the 
sensitivity of MCF-10A cells to berberine over the concentra-
tions examined (up to 2,000 nM), as the IC

50
s were not reached. 

Although the MCF-10A/NGAL cells did display more sensitivity 
to berberine at the highest concentrations used, they were not 
statistically different from the MCF-10A/pLXSN. Likewise, the 
addition of a constant dose (250 nM) of berberine did not appear 
to significantly lower the concentration of doxorubicin needed to 
reach the IC

50
 of doxorubicin alone in either MCF-10A/pLXSN 

or MCF-10A/NGAL cells (Fig. 5C).

110 nM and 12 nM, respectively (Fig. 4D). In contrast, the doxo-
rubicin-resistant MCF-7/DoxR was more resistant to KN-93, and 
an IC

50
 of approximately 2,500 nM was observed. The effects of 

combining different concentrations of doxorubicin with a con-
stant dose of KN-93 were assessed. The MCF-7/NGAL cells were 
highly sensitive to the constant dose of KN-93 in the presence of 
different concentrations of doxorubicin (Fig. 4F). Moreover, the 
dose of 250 nM KN-93 synergized with doxorubicin and lowered 
the doxorubicin IC

50
 in both MCF-7/pLXSN and the doxorubi-

cin-resistant MCF-7/DoxR cells.
As seen in Figure 4G, ectopic NGAL did not significantly 

alter the sensitivity of HT29/NGAL cells to the CaM-K inhibi-
tor KN-93, and the HT29/pLXSN and HT29/NGAL cells had 
IC

50
s of approximately 500 nM and 600 nM, respectively to 

KN-93. Unlike the results observed with the MCF-7 cell lines, a 
suboptimal dose of the CaM-K inhibitor did not reduce the doxo-
rubicin IC

50
 for HT29/LXSN and HT29/NGAL cells (Fig. 4I).

Figure 4. Sensitivity of NGAL- and pLXSN-infected cells and doxorubicin-resistant MCF-7/DoxR cells to the CaM-K inhibitor KN-93, doxorubicin and the 
combination of doxorubicin and a constant dose of 250 nM KN-93. Cells were collected and seeded (2,000 cells/well) in 96-well plates. The following 
day, serial 2-fold dilutions of KN-93 (A, D and G), doxorubicin (B, E and H) or serial 2-fold dilutions of doxorubicin and a constant dose of 250 nM KN-93 
(C, F and I) were added to the wells. Four days later, MTT assays were performed. (A–C) MCF-10A/pLXSN (solid squares), MCF-10A/NGAL (solid upright 
triangles), (D–F) MCF-7/pLXSN (solid squares), MCF-7/NGAL (solid upright triangles) and 25 nM doxorubicin-selected MCF-7/DoxR cells (solid downward 
triangles), (G–I) HT-29/pLXSN (solid squares), HT-29/NGAL (solid upward triangles). A hatched horizontal line is present at the 50% relative growth mark 
from which the IC50 can be calculated. A vertical arrow indicates the IC50. The statistical significance was determined by the unpaired t-test (***, p < 
0.001). All the experiments in this figure were performed at the same time (set up on the same day). These experiments were repeated multiple times 
and similar results were obtained.
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(Fig. 5F). Moreover, berberine synergized with doxorubicin to 
dramatically lower the doxorubicin IC

50
 in the doxorubicin-resis-

tant MCF-7/DoxR cells.
Similar to the results observed with the MCF-10A cell line, 

ectopic NGAL expression had a mild effect on the sensitivity of 
HT29 cells to berberine (Fig. 5G–I). HT29/pLXSN cells were 
slightly more resistant to berberine than HT29/NGAL cells, 
with both having an IC

50
 of greater than 2,000 nM (Fig. 5G). 

A suboptimal dose of berberine did not produce a measurable 
reduction in the doxorubicin IC

50
s for HT29/LXSN and HT29/

NGAL cells (Fig. 5I).
Inhibitor and doxorubicin IC

50
s for various NGAL and 

pLXSN retrovirally infected cell lines as well as the combina-
tion effects of doxorubicin with a constant dose of each inhibi-
tor are presented in Table 1. The fold difference in sensitivities 
of the MCF-7/pLXSN, MCF-7/NGAL and MCF-7/DoxR cell 

MCF-7/pLXSN, MCF-7/NGAL and MCF-7/DoxR cells were 
also treated with berberine and are presented in Figure 5D–F. 
As seen in Figure 5D, MCF-7/NGAL cells were very sensitive to 
berberine and had an IC

50
 of approximately 10 nM. In contrast, 

MCF-7/pLXSN and the doxorubicin-resistant MCF-7/DoxR 
were exceedingly more resistant to berberine and exhibited IC

50
s 

of approximately 2,000 nM and greater than 2,000 nM, respec-
tively. The combinatorial effects of different concentrations of 
doxorubicin and a constant dose of berberine were determined 
and yielded some unexpected results. Although MCF-7/pLXSN 
and MCF-7/NGAL cells did not demonstrate a significant differ-
ence in their doxorubicin IC

50
s, the sensitivities of MCF-7/NGAL 

cells to a constant dose of berberine (250 nM) in the presence of 
different concentrations of doxorubicin were increased approxi-
mately 10-fold, while addition of a constant dose of berberine 
did not increase the sensitivity of MCF-7/pLXSN to doxorubicin 

Figure 5. Sensitivity of NGAL- and pLXSN-infected cells and doxorubicin-resistant MCF-7/DoxR cells to the natural product berberine, doxorubicin and 
the combination of doxorubicin and a constant dose of 250 nM berberine. Cells were collected and seeded (2,000 cells/well) in 96-well plates. The 
following day, serial 2-fold dilutions of berberine (A, D and G), doxorubicin (B, E and H) or serial 2-fold dilutions of doxorubicin and a constant dose of 
250 nM berberine (C, F and I) were added to the wells. Four days later, MTT assays were performed. (A–C) MCF-10A/pLXSN (solid squares), MCF-10A/
NGAL (solid upright triangles), (D–F) MCF-7/pLXSN (solid squares), MCF-7/NGAL (solid upright triangles) and 25 nM doxorubicin-selected MCF-7/DoxR 
cells (solid downward triangles), (G–I) HT-29/pLXSN (solid squares), HT-29/NGAL (solid upward triangles). A hatched horizontal line is present at the 
50% relative growth mark from which the IC50 can be calculated. A vertical arrow indicates the IC50. The statistical significance was determined by the 
unpaired t-test (***, p < 0.001). All the experiments in this figure were performed at the same time (set up on the same day). These experiments were 
repeated multiple times and similar results were obtained.
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levels in drug-resistant MCF-7/DoxR/pLXSN cells than MCF-7/
pLXSN.115 Moreover, the doxorubicin-resistant MCF-7/DoxR 
cells do not normally express NGAL; however, upon treatment 
with doxorubicin, increased NGAL protein has been detected.114 
Elevated NGAL expression does not appear, by itself, to alter the 
sensitivity to doxorubicin in the cells examined, and the doxoru-
bicin-resistance of MCF-7/DoxR cells could result from aberrant 
regulation of various signaling pathways or drug transporters in 
these cells.

The MCF-7/DoxR cells were very sensitive to the EGFR 
inhibitor AG1478 and the Bcl-2 inhibitor ABT-737. It is likely 
that the drug resistance present in MCF-7/DoxR is hypersensi-
tive to EGFR pathway activation and Bcl-2 survival signaling. In 
contrast, MCF-7/DoxR cells were resistant to mTORC1 inhibi-
tion by itself, but the doxorubicin-resistance present in MCF-7/
DoxR was eliminated when rapamycin was combined with doxo-
rubicin in our assays. On the other hand, while MCF-7/NGAL 
cells were highly sensitive to rapamycin, the effects of rapamycin 
were eliminated when combined with doxorubicin. These results 

lines to the various inhibitors are presented in Table 2. In 
this table, the values obtained with MCF-7/NGAL and 
MCF-7/DoxR are normalized to the empty vector-infected, 
doxorubicin-sensitive control line, MCF-7/pLXSN.

Discussion

These studies were undertaken to determine whether 
increased NGAL expression altered the sensitivity of 
breast and CRC cells to certain small-molecule signal 
transduction inhibitors and the natural plant product 
berberine. The effects of the inhibitors and natural prod-
uct were also examined in combination with the chemo-
therapeutic drug doxorubicin in cancer cell types that are 
normally sensitive to doxorubicin (breast) and cancer cell 
types which are normally resistant to doxorubicin (CRC) 
as well as immortalized breast epithelial cells (MCF-10A), 
which are not malignant. NGAL may have roles in iron 
transport, which may be associated with chemosensitivity 
in certain cancers. Some studies have shown that iron che-
lators will reduce chemotherapeutic drug resistance.99,100 
NGAL expression has been associated with a poor prog-
nosis in breast cancer. Importantly, our studies document 
that elevated NGAL expression altered the sensitivity to 
certain small-molecule inhibitors and the natural plant 
product berberine, especially in the MCF-7 breast cancer 
cell line. However, elevated NGAL expression had fewer 
effects on the immortalized breast epithelial MCF-10A 
cells and essentially no effects on the HT-29 CRC cell 
line.

In MCF-7/NGAL cells, it is likely that NGAL is alter-
ing either the uptake or efflux of some of the inhibitors 
and berberine into the cells. This is a novel, but logical 
function for NGAL. The expression of NGAL increased 
the toxicity of the EGFR, Bcl-2, CaM-K and berberine. 
In contrast, elevated NGAL expression antagonized the 
effects of the mTORC1 inhibitor rapamycin when com-
bined with doxorubicin in MCF-7/NGAL cells. These are impor-
tant results, as some cancer patients are treated with EGFR, Bcl-2 
and mTORC1 inhibitors in combination with chemotherapeutic 
drugs. Interestingly, our results also identified that the sensitivity 
of the CRC line HT-29 to doxorubicin could be increased when 
co-treated with the Bcl-2 inhibitor ABT-737.

We included in our studies the doxorubicin-resistant deriva-
tive of the MCF-7 cell line, MCF-7/DoxR, to serve as a control for 
determining the effects of doxorubicin and the small-molecule 
inhibitors. Drug resistant breast cancer cells often express higher 
levels of proteins involved in drug transport. The doxorubicin-
resistance of MCF-7/DoxR cells was eliminated by EGFR, Bcl-2, 
CaM-K and mTORC1 inhibitors and the natural plant product 
berberine.

The doxorubicin-resistant MCF-7/DoxR cell line was also 
infected with the retrovirus encoding NGAL;115 however, these 
cells were not more resistant or sensitive to doxorubicin than 
the pLXSN empty vector control MCF-7/DoxR cells (data 
not presented). NGAL expression was not detected at higher 

Figure 6. Overview of targeting of key pathways and effects on NGAL expres-
sion. Activation of many signaling cascades can occur after activation of the 
eGFR receptor or by treatment with doxorubicin, which induces reactive 
oxygen species (ROS) and the CaM-K cascade. The sites where certain signal 
transduction inhibitors (black rectangles) and the natural product berberine 
and the diabetes drug metformin are indicated. Berberine may activate AMPK 
(red rectangle) as well as inhibit NF-κB (black rectangle). NGAL expression may 
alter the transport and efflux of certain small-molecule inhibitors, which, in 
some cases, may be deleterious to the cancer cell.
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aging191 and mice treated with metformin do not exhibit as much 
aging as untreated mice.183 Moreover, metformin may be able to 
prevent the survival of certain CICs.

Enhanced glycolysis (Warburg effect) is critical for CIC sur-
vival.192-197 Metformin disrupts the glycolytic metabotype and 
alters the ATM-mediated DNA damage response resulting in the 
acceleration of stress-induced senescence. Metformin in the pres-
ence of suppressed mTOR signaling slows down aging and alters 
the cellular senescence processes. Hence, metformin can alter 
the ability of cells to become immortalized into CICs and slows 
down cellular aging. By reducing the levels of DNA damage sig-
naling, metformin has genoprotective effects198 and anticancer/
tumor suppressor effects.199-202 Berberine may have similar effects 
on AMPK. Interestingly, MCF-7 cells that overexpressed NGAL 
were hypersensitive to berberine.

Materials and Methods

Cell lines and growth factors. Breast cancer cells lines (MCF-7) 
and the CRC line HT-29 were obtained from the ATCC. Cells 
were maintained in a humidified 5% CO

2
 incubator at 37°C 

with RPMI-1640 (RPMI) (Invitrogen) supplemented with 10% 
fetal bovine serum (FBS) (Atlanta Biologicals). This complete 
RPMI media is abbreviated cRPMI. The immortalized breast 
epithelial MCF-10A line was obtained from the ATCC and cul-
tured in DMEM/F12 (Invitrogen) medium containing: 2.5 mM 
L-glutamine, supplemented with 5% heat-inactivated equine 
serum (Invitrogen), 500 ng/ml hydrocortisone (Sigma-Aldrich), 
21.5 ng/ml epidermal growth factor (EGF) (Sigma-Aldrich), 10 
μg/ml insulin (Sigma-Aldrich), 100 ng/ml cholera toxin (Sigma-
Aldrich) and 15 mM HEPES (Sigma-Aldrich). AG1478 (EGFR 
inhibitor), KN-93 (CaM-K inhibitor), rapamycin (mTORC1 
inhibitor), doxorubicin and berberine were purchased from 
Sigma-Aldrich. ABT-737 (BCL-2 inhibitor) was obtained from 
Dr. Michael Andreeff (MD Anderson Cancer Center).

Methylthiazol tetrazolium assay. Methylthiazol tetrazolium 
(MTT) assays were performed to determine a cell line’s sensi-
tivity to chemotherapeutic drugs. Two thousand cells per well 
were plated in 96-well plates in 100 μL of cRPMI without phe-
nol red (Invitrogen) and allowed to attach overnight under nor-
mal culture conditions. The next day, serial 2-fold dilutions of 
a chemotherapeutic drug were made and 100 μL of each dilu-
tion were added to a corresponding well on the 96-well plate. 
Cells were incubated for 4 d under normal culture conditions. 
On the fourth day, 22.2 μL of a 5 mg/mL solution of thiazolyl 
blue tetrazolium bromide (Sigma-Aldrich) in 1X PBS was added 
to each well and incubated for 90 min at 37°C. The media was 
then removed and 150 μL of dimethyl sulfoxide (DMSO) (Fisher 
Scientific) was added to resuspend formazin crystals to produce 
a purple color, which was subsequently read on a Multiskan EX 
Microplate photometer (Thermo Scientific) at a wavelength of 
570 nm. Colormetric readings were normalized against plates 
of non-treated cells under identical culture conditions. Relative 
growth was calculated by dividing normalized cell growth val-
ues in the presence of drugs by normalized cell growth values 
in the absence of drugs, and the results were graphed. Drug 

suggest that NGAL has different effects when certain small-mol-
ecule inhibitors are combined with chemotherapeutic drugs and 
could have clinical implications, as many cancer patients express 
elevated levels of NGAL.71-76,116

The doxorubicin-resistance of MCF-7/DoxR cells was elimi-
nated when the cells were treated with the CaM-K inhibitor 
KN-93 and doxorubicin, as they exhibited a similar IC

50
 for 

doxorubicin as the drug-sensitive MCF-7/pLXSN cells. These 
results suggest a key role for the CaM-K pathway in the doxoru-
bicin resistance of MCF-7/DoxR cells. The MCF-7/NGAL cells 
were also very sensitive to the CaM-K inhibitor. The CaM-K 
pathway is important in the regulation of the Ras/Raf/MEK/
ERK pathway,117 the regulation of NF-κB118 and AMPK.119 Also, 
the CaM-K pathway is activated after doxorubicin treatment 
and after other treatments which induce reactive oxygen species 
(ROS).120-122 A diagram illustrating where some of these drugs 
interact in signaling pathways is presented in Figure 6.

NGAL expression has been associated with a poor progno-
sis in breast and other cancers.80,116 While elevated expression 
of NGAL does not alter the IC

50
 for the chemotherapeutic drug 

doxorubicin in the cell lines examined, it did alter their sensitiv-
ity to certain small-molecule inhibitors in the breast cancer cell 
line MCF-7. Furthermore, elevated expression of NGAL did not 
appear to alter the responses of either the CRC line HT-29 or the 
immortalized epithelial line MCF-10A to doxorubicin.

Targeting the EGFR/Ras/PI3K/Akt/mTORC1 pathway is 
a key anticancer and anti-aging approach. There are many sites 
which are frequently mutated or aberrantly expressed and are 
being targeted in this pathway, from upstream receptors (e.g., 
EGFR, HER2)25,27,28,123,124 to downstream signaling proteins 
such as Ras,29,125,126 PI3K,26,30,127-138 PTEN,43,139,140 Akt,25-28 TSC1/
TSC2,44-47,144 Rheb,25-28,145 mTOR25-28,146-165 and p70S6K.25-28,166 
This pathway also plays important roles in cell growth and is 
often aberrantly regulated in diabetes and obesity.151 Many anti-
diabetes drugs such as metformin and the traditional drug bere-
brine interfere with components that feed into this pathway or 
are regulated by this cascade, and there is cross-talk between 
these pathways. It is interesting that rapamycin and berberine 
both had effects on NGAL-expressing cells. NGAL suppressed 
the effects that rapamycin had on lowering the doxorubicin IC

50
 

in MCF-7/NGAL cells, while MCF-7/NGAL cells were very sen-
sitive to the effects of berberine.

mTORC1 phosphorylates unc-51-like kinase 1 (ULK1), which 
results in the suppression of autophagy. The mTORC1 inhibitor 
rapamycin prevents phosphorylation of ULK1, and autophagy 
can occur.167-169 It appears that targeting key molecules which con-
trol energy may be approaches to control cancer and aging. Drugs 
such as rapamycin target mTORC1, and metformin is an indirect 
inhibitor of mTORC1. Metformin induces AMPK which acti-
vates TSC1 and subsequently suppresses mTORC1 activity.170-186 
Berberine may elicit similar effects.187-189 Metformin may also 
induce the phosphorylation and inactivation of Raptor,190 a key 
regulatory component in the mTORC1 complex which is critical 
for the translation of many weak “oncogenic” mRNAs important 
in proliferation. Interestingly, diabetics treated with metformin 
have lower incidences of cancer and also do not exhibit as much 
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