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Abstract 

Background:  There are no accepted universal biomarkers capable to accurately predict response to immuno-check-
point inhibitors (ICI). Although recent literature has been flooded with studies on ICI predictive biomarkers, available 
data show that currently approved companion diagnostics either leave out many possible responders, as in the 
case of PD-L1 testing for first-line metastatic lung cancer, or apply to a small subset of patients, such as the recently 
approved treatment for microsatellite instability-high or mismatch repair deficiency tumors. In this study, we con-
ducted a survey of the available data on ICI trials with matched genomic or transcriptomic datasets in order to cross-
validate the proposed biomarkers, to assess whether their prediction power was confirmed and, mainly, to investigate 
if their combination was able to generate a better predictive tool.

Methods:  We extracted clinical information and sequencing data details from publicly available datasets, along 
with a list of possible biomarkers obtained from the recent literature. After an operation of data harmonization, we 
validated the performance of all the biomarkers taken individually. Furthermore, we tested two strategies to combine 
the best performing biomarkers in order to improve their predictive value.

Results:  When considered individually, some of the biomarkers, such as the ImmunoPhenoScore, and the IFN-γ 
signature, did not confirm their originally proposed predictive power. The best absolute scoring biomarkers are TIDE, 
one of the ICB resistance signatures and CTLA4 with a mean AUC > 0.66. Among the combinations tested, generalized 
linear models showed the best performance with an AUC of 0.78.

Conclusions:  We confirmed that the available biomarkers, taken individually, fail to provide a satisfactory predictive 
value. Unfortunately, also combination of some of them only provides marginal improvements. Hence, in order to 
generate a more robust way to predict ICI efficacy it is necessary to analyze and combine additional biomarkers and 
interrogate a wider set of clinical data.

Keywords:  Immuno-checkpoint inhibitors biomarkers, Genomics, Immunotherapy, ImmunoPhenoScore, TIDE, RNA-
seq, Exome sequencing, Majority voting, Generalized linear models
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Background
Tumors escape from immunological control by activating 
during their growth and development a wealth of nega-
tive immune-checkpoints of which the best character-
ized and clinically validated are B7/CTLA4 and PD-L1/
PD-L2/PD1 [1]. These checkpoints prevent the priming 
and/or activation of tumor-infiltrating lymphocytes, acti-
vate regulatory T cells or cause T cell exhaustion, which 
all together facilitate unchecked tumor growth. Mono-
clonal antibodies (mAb) such as anti-CTLA4, anti-PD-1 
and anti-PD-L1 were developed to specifically target 
these pathways. Over the last years, clinical develop-
ment of these antibodies have led to unprecedented out-
comes characterized by increased overall survival and 
long term disease control for metastatic cancer patients 
in a growing number of indications [2, 3]. Currently, the 
US FDA and EU have approved the commercialization 
of these immuno-checkpoint inhibitors (ICIs) in several 
metastatic solid tumors. Also one of those inhibitors 
was recently approved for any metastatic solid tumor 
with microsatellite instability-high (MSI-H) or mismatch 
repair deficiency (dMMR), the first drug approval based 
on genetic features shared across different tumor types 
[4].

Despite these major breakthroughs, responses to 
immunotherapy are observed only in a minority of 
patients, and some biomarkers approved as companion 
diagnostics to stratify patients only marginally help to 
select responders from non-responders. As an exam-
ple, patients are currently eligible for treatment with 
anti-PD1 mAb pembrolizumab as first-line treatment 
of metastatic non-small-cell lung cancer (mNSCLC) if 
their tumor cells result ≥ 50% positive to immunohisto-
chemistry (IHC) analysis of ligand PD-L1 expression. As 
a matter of fact, according to a recent meta-analysis, the 
percentage of responders in PD-L1-negative patients is 
not strongly dissimilar from that of the PD-L1 positive 
group (23–29% vs 5–12%) [5]; this further supports the 
need for additional and more robust predictive biomark-
ers, and to integrate a more extensive amount of informa-
tion into a final prediction score.

Along this line, the ImmunoPhenoScore (IPS), an 
approach based on RNA-seq, was recently described as 
a novel system for the prediction of responders to ICI 
treatment in melanoma patients [6]. Relative expres-
sion levels of a number of intrinsic/extrinsic factors were 
combined (by addition or subtraction) in an algorithm 
computing a final score called the IPS. The whole model 
was built with the purpose of predicting the expression 
of Granzyme and Perforin genes as an indirect measure 
of immunogenicity. It was developed using TCGA data 
and validated by the sole available datasets in which ICI 
clinical data and transcriptomic profile were available, 

i.e. two melanoma datasets associated to anti-PD-1 and 
anti-CTLA4 treatment [7, 8]. The discriminating power 
of the IPS system looked very accurate (mostly for the 
anti-PD-1 dataset), where the overall responder group 
appeared to be clearly separated by a particular IPS cutoff 
(> 6).

Apart from this case, several discrete DNA/RNA-
based biomarkers have emerged in recent literature. For 
instance, the study of inflammatory processes, which led 
to the identification of an interferon gamma (IFN-γ) sig-
nature, called T cell-inflamed GEP (Gene Expression Pro-
file) [9]. The IFN-γ signature was more recently employed 
in a pan-cancer analysis of 300 patients treated with ICI, 
resulting in higher response rates when integrated with 
Tumor Mutational Burden (TMB), even if the authors 
did not report an AUC performance for this new com-
binatorial biomarker classifier [10]. Furthermore, animal 
modeling of the genetic status of MLH1 and POLE genes 
confirmed the importance of the impairment of DNA 
mismatch repair (MMR) machinery [11], as expected. 
This was then able  to increase the neoantigen load and 
sensitivity to ICI treatment [11]. Recently, the TIDE sig-
nature was introduced as a mixed T cell classification, 
partitioning patients into cytotoxic T lymphocyte (CTL) 
high (dysfunction score) or CTL low (exclusion score) 
[12]. Finally, it has been noted that epithelial–mesen-
chymal transition expression traits could represent the 
link between tumor intrinsic and tumor extrinsic fac-
tors, which lead to immune checkpoint blockade (ICB) 
resistance, resulting in the emergence of several possible 
biologic signatures [7, 13–20]. Starting from this back-
ground information, we conducted an in silico validation 
and combination analysis of the proposed biomarkers 
using publicly available datasets from ICI clinical trials 
and associated molecular annotations.

Results
We collected genomic and/or transcriptomic data from 
anti-PD-1 and anti-CTLA4 studies with clinical infor-
mation (Table  1). There is a clear imbalance regarding 
the tumor type distribution, with a strong prevalence of 

Table 1  List of available studies

First author Tumor type RNA-seq data WES 
mutation 
list

References

Hugo Melanoma 28 26 [7]

Riaz Melanoma 49 65 [20]

Rizvi NSCLC NA 33 [21]

Snyder Melanoma NA 63 [22]

Van Allen Melanoma 41 105 [8]
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melanoma datasets (4) and only one dataset for NSCLC. 
Furthermore, the dimensionality of these datasets is quite 
small (mean of 39 and 66 patients for RNA and WES 
data, respectively), therefore making it difficult to infer a 
robust model.

We did not re-evaluate the expression levels via 
sequence re-analysis in order to create a whole compre-
hensive dataset, since the dramatic clinical confounding 
factors would have vanished our efforts (Additional file 1: 
Methods, Additional file  2: Table  S1, Additional file  3: 
Table S2 and Additional file 4: Table S3).

A list of putative immunotherapy biomarkers comput-
able from genomic and transcriptomic data (Table  2) 
was derived from the aforementioned datasets and other 
in silico data. For protein-based ones, we included their 
own RNA derivation, such as PD-L1 gene expression 
(CD274). These were included with the assumption that 
there was a strong correlation between the protein and 
its own RNA transcript levels, while being aware that 
there are other processes involved in the regulation of 
final protein expression levels (e.g. degradation, stabiliza-
tion). On the other hand, our in-house RNA-sequencing 
of lung specimens demonstrates a strong correlation 
between the PD-L1 gene FPKM and the IHC protein 
level (CLONE 22C3, DAKO) (data not shown). We also 
included multi-gene markers such as the IFN-γ signature 
(originally computed via NanoString technology). All 
the genes included in the signature gene lists are listed 
in Table  3, with the exclusion of the algorithmic ones 
for which we refer to the original sources (e.g. TIDE and 

IPS). Furthermore, a high-level summary of the overall 
analysis process is provided (Additional file 5: Figure S1).

Taking into consideration the lack of uniqueness in the 
separation of patients in responder and non-responder 
groups (all the five studies from which we extrapolated 
data used different methods and response evaluation cri-
teria, Additional file 1: Methods), we selected a method 
that also takes into consideration the overall survival 
of progressive disease patients. Moreover, it allowed a 
good balancing with regards to the number of samples 
between the two groups (ranging from 38% of responders 
with respect to the total number of patients, to 70%).

We then computed the classification performance of 
all the proposed biomarkers in each available study. This 
resulted in 56 tests since there was a lack of RNA infor-
mation in some datasets (Additional file 6: Table S4 and 
Fig. 1). The area under the curve (AUC) values markedly 
vary from 0.43 to 0.87. Of note, we could not reproduce 
the classification power of the IPS neither in the Hugo 
et  al. [7] or in the Van Allen et  al. [8] melanoma data-
sets (AUC 0.68 and 0.56 vs 1.00/1.00, using their same 
responder/non-responder separation types, respectively, 
as confirmed by [12]). TIDE signature performance was 
validated in the Hugo dataset (AUC 0.82) and slightly 
different in the Van Allen dataset (AUC 0.73 vs 0.80). 
This is due to their multi-class ROC with a third class 
on long-term survival patients, which we included in the 
responder group. However, we confirmed the published 
results with a three-class model (AUC 0.80). Finally, the 
performance of the IFN-γ reduced marker was slightly 

Table 2  List of biomarkers in this study

Marker Origin Type Description References

CD274 RNA Single gene Programmed death 1 ligand 1 [21]

Mutational load DNA Nr. mutations Absolute number of mutations in WES [8, 22]

IFN-y (reduced set) RNA Gene set Interferon gamma reduced set [9]

IFN-y (expanded set) RNA Gene set Interferon gamma reduced set [9]

IPS RNA Algorithm Immunophenoscore [6]

PDCD1 RNA Single gene Programmed death 1 [23]

POLE RNA Single gene DNA polymerase epsilon, catalytic subunit [11]

POLE2 RNA Single gene DNA polymerase epsilon 2, accessory subunit [11]

POLE3 RNA Single gene DNA polymerase epsilon 3, accessory subunit [11]

POLE4 RNA Single gene DNA polymerase epsilon 4, accessory subunit [11]

CTLA4 RNA Single gene Cytotoxic T-lymphocyte associated protein 4 [25]

PDCD1LG2 RNA Single gene Programmed cell death 1 ligand 2 [24]

ICB resist. signature 1 RNA Gene set Epithelial–mesenchymal transition signature 1 [7]

ICB resist. signature 2 RNA Gene set Epithelial–mesenchymal transition signature 2 [17]

ICB resist. signature 3 RNA Gene set Epithelial–mesenchymal transition signature 3 [18]

AXL pathway RNA Gene set AXL receptor tyrosine kinase pathway [19]

AXL RNA Single gene AXL receptor tyrosine kinase [19]

TIDE RNA Algorithm Tumor immune dysfunction and exclusion [12]
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lower in our three transcriptomic datasets (AUC: 0.50, 
0.64, 0.69) when compared to those of the published 
study (AUC 0.80, 0.66). This difference may reflect one of 
the technological biases of comparing RNA-seq results 
with Nanostring counts.

Moreover, we computed the mean AUC for all datasets 
for every classifier (Additional file  7: Table  S5) to pro-
vide a better representation of every performance value 
among all studies. Therefore, every marker proposed in 
literature shows a discrete performance delta (0.01–0.35) 
when tested among different datasets, and, in general, 
the best performing parameters are TIDE, ICB resistance 
signature 1 and CTLA4 with a mean AUC of 0.71, 0.67 
and 0.66, respectively. Observing the peak performances, 

TIDE, ICB signature 1 and AXL are the only individual 
markers with AUC > 0.8.

As a next step, we merged all the three datasets with 
transcriptomic data and the dichotomous marker predic-
tions in a single whole dataset. This is necessary in order 
to have a dataset with a sufficient number of observa-
tions, which in turn increases statistical significance.

Next, we tried to address the problem of correlation 
arising from markers that were linked or were func-
tion of others (e.g. PD-L1 and IPS, IFN-γ reduced and 
expanded sets). A Pearson correlation analysis (Addi-
tional file  8: Table  S6 and Fig.  2a) showed that PD-1 
gene and the IFN-γ reduced set are the only correlated 
markers at > 0.5 (at a 0.01 significance level). Notably, 

Table 3  Gene lists for gene set signatures

IFN-y (reduced set)

CXCL10, CXCL9, HLA-DRA, IDO1, IFNG, STAT1

IFN-y (expanded set)

CCL5, CD2, CD3D, CD3E, CIITA, CXCL10, CXCL13, CXCR6, GZMB, GZMK, HLA-DRA, HLA-E, IDO1, IL2RG, LAG3, NKG7, STAT1, TAGAP

ImmunoPhenoScore (IPS)

ACAP1, ADRM1, AHSA1, AIM2, APOL3, ARHGAP10, ATM, ATP10D, B2 M, BIRC3, BRIP1, C1GALT1C1, C3AR1, CASP3, CASQ1, CCL20, CCL3L1, CCL4, CCL5, 
CCNB1, CCR2, CCR5, CCR7, CCT6B, CD14, CD160, CD2, CD27, CD274, CD300E, CD37, CD3D, CD3E, CD3G, CD55, CD69, CD72, CD86, CD8A, CETN3, 
CFLAR, CLEC5A, CMKLR1, CSE1L, CTLA4, CXCR4, DAPP1, DARS, DOCK9, DUSP2, ESCO2, ETS1, EXO1, EXOC6, EXOSC9, EZH2, FCGR2A, FCGR2B, FCGR3A, 
FCRL6, FERMT3, FLT3LG, FOXP3, GDE1, GEMIN6, GNLY, GPSM3, GPT2, GZMA, GZMH, GZMK, GZMM, HAPLN3, HAVCR2, HLA-A, HLA-B, HLA-C, HLA-DMB, 
HLA-DPA1, HLA-DPA1, HLA-DPB1, HLA-DPB1, HLA-E, HLA-F, IARS, ICOS, IDO1, IFI16, IL18BP, IL2RB, IL34, IL4R, ITGA4, ITGAL, ITGAM, KIF11, KNTC1, L1CAM, 
LAG3, LCK, LIME1, LIPA, LRP1, LRRC42, LTK, MARCO, MMP12, MNDA, MPZL1, MRC1, MS4A6A, NCOA4, NEFL, NFKBIA, NKG7, NUF2, PARVG, PDCD1, 
PDCD1LG2, PDGFRL, PELO, PIK3IP1, PLEK, PRC1, PRSS23, PSAP, PSAT1, PTGER2, PTGES2, PTGIR, PTGS1, PTRH2, REPS1, RGS1, RTKN2, S100A8, S100A9, 
SAMSN1, SCG2, SDPR, SELL, SETD7, SIGLEC14, SIGLEC6, SIK1, ST8SIA4, STAB 1, TAL1, TAP1, TAP2, TFEC, TIGIT, TIMM13, TIPIN, TPK1, TRAT1, TRIB2, UQCRB, 
USP9Y, WIPF1, ZAP70, ZCRB1

ICB resistance signature 1

ADAMTS7, AXL, COL12A1, COL8A1, FAP, FBLN1, INHBA, LOXL2, MMP1, MMP13, ROR2, TAGLN, TWIST2, WNT5A

ICB resistance signature 2

CNN1, COL3A1, MXRA7, SERPINF2

ICB resistance signature 3

CST2, LAMA3

AXL pathway

AXL, FLT1, FLT4, GAS6, KDR, MERTK, MET, RET, TEK, TYRO3

Fig. 1  Overview of top scoring AUCs generated for all markers for the available studies with both DNA and RNA data. We plotted only tests with 
minimum AUC of 0.60, among 54 analyses (18 for each study), for readability purposes
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several parameters do not correlate significantly with 
the most accepted markers (e.g. IPS vs PD-L1, even if 
PD-L1 is one of the inputs of the IPS model), potentially 
suggesting that they could contain different informa-
tion, and may benefit from a combinatorial approach.

In order to validate this hypothesis, we performed 
a majority voting exploration analysis in which we 
included all the uncorrelated markers, with the exclu-
sion of PD-1 gene (Additional file  9: Table  S7 and 
Fig. 2b).

All of these biomarker subsets were explored trying all 
possible combinations to find the best consensus group 
in 17, with 131,054 possibilities, according to the basic 
combinatory formula:

where c is the number of combinations and n is the num-
ber of markers.

The acceptable combinations in terms of AUC, defined 
as the percentage of those being equal to or better than 
0.65 was then explored. For such analyses, we observed 
that the percentage of acceptable combinations is 2.1%. 
The frequencies of these uncorrelated markers in the 
acceptable combinations was computed (Additional 
file 10: Table S8): POLE4, ICB resistance signature 1 and 
TIDE are the most present, with frequency values of 0.68, 
0.65 and 0.61, respectively.

c =

n
∑

j=2

(

n
j

)

Generalized linear models (GLMs) were then built as 
an additional strategy to combine these classifiers. We 
iterated cross-validation for 10,000-times, randomly 
selecting the 20% of the original set for testing. From the 
GLM predictions, we obtained mean AUC of 0.78, mean 
sensitivity of 0.87, mean specificity of 0.73 (Fig. 2c). Con-
sidering the significance of each coefficient, at 1% we 
had TIDE and ICB resistance signature 1, at 5% CTLA4 
(Additional file 11: Table S9). It is noteworthy that TIDE 
and ICB resistance signature 1 have also been found 
among the top three most present markers of the best 
majority voting analyses and those with the best mean 
AUC when taken individually.

Taken together, these results confirm that the combi-
nation of multiple parameters enables us to improve the 
prediction power to a mean AUC of 0.71–0.78.

Discussion
We explored whether several proposed RNA/DNA pre-
dictive biomarkers of efficacy of cancer immunotherapy 
with antibodies inhibitors of immunological check-
points were confirmed by a cross-comparison among 
publicly available datasets. From these analyses we 
demonstrated that their combination led only to a mod-
est improvement of the overall predictive performance. 
What we could learn from this study is the dramatic 
difficulty of putting the concept of immunotherapy 
response in a mathematical and statistical frame. The 
confounding factors here are hidden in several steps, 
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namely the clinical classification, the patient history 
and the tumor sampling. The clinical classification, 
deriving from several different criteria, has already been 
discussed (see Additional file 1: Methods). The patient’s 
history is a determinant factor, since these molecular 
profiles are usually derived from tumor samples that 
have been collected months, if not years, before ICI 
therapy initiation. One can easily assume that during 
this often long period of time, also as a consequence of 
sequential non-ICI therapies (chemotherapy and tar-
get therapy), patients’ tumors have undergone clonal 
selection processes that have reshaped their molecular 
landscape. In a scenario of a biopsy with a time frame 
closer to the therapy, the tumor sampling effect comes 
at play. These issues have challenged researchers world-
wide who are currently designing liquid biopsies strat-
egies in order to find DNA/RNA biomarkers in the 
patient’s blood. This strategy would incredibly speed up 
the protocol if such biomarkers do exist and are actu-
ally detectable with novel highly sensitive technologies. 
Finally, a limitation of the currently employed –omic 
technologies is the lack of information about the spa-
tial organization of the immune infiltrate, critical for 
an effective action of immune cells on the tumor mass. 
With the release of novel, larger and better annotated 
datasets one could stratify the patient population using 
all these criteria.

Conclusions
We performed a validation study of a large panel of pro-
posed biomarkers related to ICI response, in several solid 
tumors. Furthermore, a combination effort was carried 
out, leading to a slight increase in accuracy. We plan to 
carry on this study by expanding the patient cohort as 
additional data will become available, and to validate the 
top scoring biomarkers in selected tumor specimens.

Methods
Data collection
Clinical information and sequencing data from publicly 
available datasets was extracted. We searched GEO and 
PubMed records for genomic datasets matching the key-
word “Immuno-Checkpoint Blockade”, “PD1”, “CTLA4”, 
“RNA-seq”, “Exome Sequencing”. We harmonized data in 
a list of patients with the relative response and for each 
patient we got the list of mutations derived by WES anal-
ysis and/or the list of expressed genes in TPM. All the 
scripts are written in R and are available at https​://gitla​
b.com/bioin​fo-ire-relea​se/ici-bioma​rker-revie​w, along 
with input datasets to reproduce all the singular and 
combinatorial analyses.

Responder and non‑responder separation
One of the main challenges of this work was to tackle 
the variability of how clinical benefit was measured in 
the different studies (Additional file 1: Methods). All the 
results shown in this paper are derived from the separa-
tion in which LB, CR, PR SD and PD with overall survival 
(when available) greater than 2 years are in the responder 
group, while NB and PD with overall survival lower than 
2 years (or without this kind information) are in the non-
responder group.

Performance of individual markers
We used a partitioning system with the aim of building 
a receiver operating characteristics (ROC) curve for each 
biomarker in each study and set the threshold for each 
marker as the value for which the sum of sensitivity and 
specificity is maximized, according to Youden’s index. 
Basic statistics were then extracted: for each biomarker 
we joined the AUCs coming from different studies to 
have a minimum, a maximum and a mean value.

Performance of combined markers
Before the combination step, we computed Pearson cor-
relation coefficient among all the biomarkers. Then we 
excluded the minimum number of them in order to avoid 
correlation coefficients greater than 0.5. In the majority 
voting approach, we combined all the patients with all 
the uncorrelated biomarkers according to all the pos-
sible combinations starting from picking up just two of 
them to selecting all of them. We predicted a patient as 
responder whether at least half of the biomarkers agreed 
on that class. For each marker combination, we calcu-
lated confusion matrix, sensitivity, specificity and AUC, 
then we filtered out those with AUC < 0.65 and computed 
the frequency of each marker in these best combinations. 
Regarding GLM, we randomly selected a training set con-
taining the 80% of the original set and built GLM models 
using the binomial family function (logit as link). Next, 
using the coefficients computed for such models, the 
response for each patient of the remaining test set was 
predicted and compared with the real response in order 
to calculate the ROC curve. We iterated these operations 
for 10,000-times and computed the mean AUCs and the 
mean of the best sensitivities and specificities.

Additional files

Additional file 1. Methods.

Additional file 2: Table S1. Separation criteria for responder and non-
responder groups in the datasets.

https://gitlab.com/bioinfo-ire-release/ici-biomarker-review
https://gitlab.com/bioinfo-ire-release/ici-biomarker-review
https://doi.org/10.1186/s12967-019-1865-8
https://doi.org/10.1186/s12967-019-1865-8
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Additional file 3: Table S2. Overview of responders and non-responders 
across datasets where both DNA and RNA data are available.

Additional file 4: Table S3. Per-patient summary of clinical classification 
where both DNA and RNA data are available.

Additional file 5: Figure S1. High level workflow for ICI biomarker 
validation and combination. The N biomarkers were individually tested 
for each dataset, this test serving as a primary validation of the proposed 
performance. Mean accuracy was computed for each classifier in all avail-
able datasets. Combinatorial analysis was carried out with majority voting 
and Generalized Linear Models. The E[X] formula stands as an example of 
the model to create when estimating the a0…aN linear factors.

Additional file 6: Table S4. Performance of each marker in the single 
datasets.

Additional file 7: Table S5. Summary of the biomarker performance. The 
second column indicates the number of datasets on which the marker 
was tested; the last column is the difference between the maximum and 
the minimum AUC for each biomarker.

Additional file 8: Table S6. Pearson correlation coefficients among each 
marker.

Additional file 9: Table S7. Combinations of uncorrelated markers and 
evaluation according to majority voting algorithm. For each combination, 
number of markers involved and AUC are shown.

Additional file 10: Table S8. Marker frequencies in the previous combi-
nations with AUC greater than or equal to 0.65.

Additional file 11: Table S9. GLM coefficient estimates, with their respec-
tive standard errors, t-values and p-values.
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