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Abstract: Clinical data suggest that only a subgroup of non-small cell lung cancer (NSCLC) patients
has long-term benefits after front-line platinum-based therapy. We prospectively investigate whether
KRAS status and DNA polymerase β expression could help identify patients responding to platinum
compounds. Prospectively enrolled, advanced NSCLC patients treated with a first-line regimen
containing platinum were genotyped for KRAS and centrally evaluated for DNA polymerase β

expression. Overall survival (OS), progression-free survival (PFS), and the objective response rate
(ORR) were recorded. Patients with KRAS mutations had worse OS (hazard ratio (HR): 1.37, 95%
confidence interval (95% CI): 0.70–2.27). Negative DNA polymerase β staining identified a subgroup
with worse OS than patients expressing the protein (HR: 1.43, 95% CI: 0.57–3.57). The addition of
KRAS to the analyses further worsened the prognosis of patients with negative DNA polymerase β

staining (HR: 1.67, 95% CI: 0.52–5.56). DNA polymerase β did not influence PFS and ORR. KRAS
may have a negative role in platinum-based therapy responses in NSCLC, but its impact is limited.
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DNA polymerase β, when not expressed, might indicate a group of patients with poor outcomes.
KRAS mutations in tumors not expressing DNA polymerase β further worsens survival. Therefore,
these two biomarkers together might well identify patients for whom alternatives to platinum-based
chemotherapy should be used.
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1. Introduction

Over the last 40 years, several million lung cancer patients have received platinum-based regimens,
and despite the clinical use of an impressive variety of targeted agents, these drugs are still one of
the main therapeutic options for certain patients [1]. Platinum compounds are also the best choice
in first-line immunotherapy combinations [2]. However, despite the good impact of platinum-based
therapies, only a small proportion of patients have durable benefits [3]. Therefore, biomarkers to
explain the resistance mechanisms to platinum compounds are urgently needed.

KRAS mutations have long been considered potential biomarkers to predict the outcome of
platinum-based chemotherapy in NSCLC [4]. The TAILOR trial data shed light on the possibility that
there was a small negative prognostic effect of KRAS mutations in advanced NSCLC patients treated
with a platinum-based doublet when EGFR-mutant patients were excluded from the analysis [5].

Platinum adducts are repaired by different DNA repair systems. The Fanconi anemia (FA) pathway
is thought to coordinate these systems, including homologous recombination (HR), nucleotide excision
repair (NER), and translesion synthesis (TLS) repair [6,7]. Other DNA repair systems, such as base
excision repair (BER), are involved in cisplatin-induced DNA damage, but so far, they have been
assigned only a marginal role in repairing this damage [8].

Our group recently reported in a preclinical study that DNA polymerase β, an important
component of the BER pathway, could be involved in platinum-based chemotherapy responses.
Our results suggested a different pattern of sensitivity/resistance to cisplatin, dependent on KRAS
mutational status [9].

The present work explores whether DNA polymerase β, alone or in combination with KRAS
mutational status, can identify tumors with different abilities to respond to platinum compounds.
This is the first study to prospectively assess the combined role of the selected biomarkers to identify
patients who could benefit from platinum-based therapy.

2. Material and Methods

2.1. Study Population and Samples

The Fondazione IRCCS Istituto Nazionale dei Tumori (Milan, Italy), the Regina Elena National
Cancer Institute (Rome, Italy), the Hospital Papa Giovanni XXIII (Bergamo, Italy), and the Metropolitan
and Attikon Hospitals (Athens, Greece) were the centers involved. Consecutive patients with
metastatic NSCLC who received platinum-based chemotherapy in combination with either vinorelbine,
gemcitabine, or pemetrexed, according to the physician’s choice, as first-line therapy between February
2014 and April 2017 were included in the BioRaRe prospective multicenter trial.

All patients had an Eastern Cooperative Oncology Group (ECOG) Performance Status (PS)
between 0 and 2 and were at least 18 years of age. Exclusion criteria included any evidence of serious
comorbidities that the investigator judged as a contraindication to the participation in the study,
pregnancy, and breast-feeding.

Patients evaluable for tumor response according to the RECIST 1.1 criteria were examined,
and their demographics and clinical and pathological characteristics were retrieved. E-CRF and
medical records were used to collect data.
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The study was approved by the Fondazione IRCCS Istituto Nazionale dei Tumori Institutional
Review Board (INT18/13) and conducted according to the Declaration of Helsinki ethical principles for
medical research involving human subjects. All patients gave signed written informed consent.

2.2. Mutational Analysis

KRAS mutational status was determined by Sanger sequencing at each center, following
the protocol already used in a clinical trial by our group [10]. Briefly, DNA extraction was
performed on histological tumor specimens by using standard phenol–chloroform procedure after
macro/microdissection in order to recovery most of the cancer cells and to reduce contamination by
normal ones. DNA preparations were verified for their concentration and quality by spectrophotometric
measurement. Genomic DNAs were amplified by polymerase chain reaction (PCR) using high-fidelity
Taq polymerase and specific primers encompassing intronic regions for KRAS exons 2–4. PCR products
were then analyzed electrophoretically on agarose gel, and automated bidirectional sequencing was
performed using BigDye Terminator chemistry. Sequences were then automatically compared with
wild-type KRAS gene profiles by software analysis to assess the presence of possible mutations.

2.3. Immunohistochemical Analysis (IHC)

IHC was done centrally on single slides at the Fondazione Filarete, as previously reported [11].
Sections were immune-stained with anti-DNA polymerase β antibody ab26343 (Abcam, Cambridge,
UK), and incubated with biotinylated secondary goat anti-rabbit antibody (VC-BA-1000-MM15,
Vector Laboratories, Burlingame, CA, USA). Sections were labeled by the avidin–biotin–peroxidase
(ABC) procedure with a commercial immunoperoxidase kit (VECTASTAIN Elite ABC-Peroxidase Kit
Standard, VC-PK-6100-KI01, Vector Laboratories, Burlingame, CA, USA). The immune reaction
was visualized with 3,3′-diaminobenzidine peroxidase DAB substrate kit (VC-SK-4100-KI01,
Vector Laboratories, Burlingame, CA, USA) substrate and sections were counterstained with Mayer’s
hematoxylin. Figure S1 shows representative images of negative and positive DNA polymerase
β staining.

A semiquantitative H-score (percentage of positive tumoral cells x intensity: 0 = negative,
1 = slight, 2 = moderate, 3 = strong) was calculated independently by two pathologists. In case of
disagreement, a third opinion was requested.

2.4. Outcomes

The primary outcome of the study was progression-free survival (PFS). Secondary outcomes
were objective response rate (ORR) and overall survival (OS). PFS was defined as the time from the
start of the platinum-based first-line therapy to the date of progression or death from any cause,
whichever came first. ORR was defined as the proportion of patients with a complete or partial
response to treatment. OS was defined as the time from the platinum-based first-line therapy to the
date of death from any cause.

2.5. Statistical Methods

Chi-squared and Kruskal–Wallis tests were used to analyze the relations between the DNA
polymerase β H-score (Polβ) and categorical clinical variables. The Spearman correlation coefficient
was used to measure the correlation between Polβ and continuous clinical variables. Polβ was analyzed
as a continuous and dichotomous variable (Polβ = 0 as negative and Polβ > 0 as positive).

Patients who had not died or had no disease progression were censored at their last available
information on status. Survival curves were calculated with the Kaplan–Meier method and tested
by the log-rank test. Cox proportional hazard models were used to analyze the impact of DNA
polymerase β on PFS and OS, adjusting for clinical and pathological characteristics such as ECOG-PS,
age, histology, smoking, therapy, and, only for OS, immunotherapy. Results were expressed as hazard
ratios (HRs) with their 95% confidence intervals (95% CIs).
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The impact of DNA polymerase β on ORR was analyzed with logistic regression models and
expressed as odds ratios (ORs) with their 95% CIs, while for dichotomized analysis, the chi-square
test was used. A subgroup analysis was done for patients with both Polβ and KRAS mutational
status available.

All statistical tests were two-sided, and p < 0.05 was considered statistically significant.
Statistical analyses were done using SAS version 9.4 (SAS Institute, Cary, NC, USA).

3. Results

Of the 120 patients registered in the trial with material available, 109 had a DNA polymerase β

H-score (Polβ) and 74 had both Polβ and KRAS mutational status. Figure 1 reports the flowchart of
the study.
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Figure 1. CONSORT diagram showing the flow of participants.

The main demographic characteristics of the population (n = 109) and the relationships between
characteristics and Polβ are reported in Table 1.

3.1. Progression-Free Survival

The median PFS was, respectively, 5.9 and 7.2 months in the mutated (mut) and wild-type (wt)
KRAS groups (adjusted HR mut vs. wt: 1.09, 95% CI: 0.56–2.08, p = 0.815).

Polβ, considered a continuous variable, did not have any significant impact on PFS in a
multivariable Cox model. HR was 0.99 for each 10-unit increment of the score, with 95% CI 0.97–1.02
and p = 0.579. The inclusion of KRAS mutational status in the statistical model did not modify the
impact of Polβ on progression or death risk (HR: 0.99, 95% CI: 0.96–1.02, p = 0.501). Considering Polβ
as a dichotomous variable, median PFS were, respectively, 4 and 6.3 months for negative (neg) and
positive (pos) staining. The absence or presence of DNA polymerase β had no impact on the risk of
PFS, considering the multivariable models, either including KRAS status or not in the analysis (HR
pos vs. neg: 1.10, 95% CI: 0.44–2.70, p = 0.847; HR pos vs. neg: 1.08, 95% CI: 0.49–2.38, p = 0.857).
Detailed results of the multivariable analysis for PFS are reported in Table 2, and the Kaplan–Meier
curves for PFS are shown in Figure 2A. The forest plot in Figure 2B graphically shows the effect of
KRAS status on the relationship between Polβ and PFS.
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3.2. Overall Survival

The median OS was, respectively, 12.4 and 20.5 months in the mutated and wild-type KRAS
groups (adjusted HR mut vs. wt: 1.27, 95% CI: 0.70–2.27, p = 0.441).

Polβ, analyzed as a continuous variable, had no impact on survival in the multivariable models
including KRAS status or not (HR: 0.99, 95% CI: 0.96–1.01, p = 0.39; HR = 0.99, 95% CI: 0.95–1.02,
p-value = 0.388).

Patients who were negative for DNA polymerase β staining had a median OS of 11.6 months
compared to 20.6 months in the positive group. The absence of DNA polymerase β caused a worse but
not statistically significant OS compared to DNA polymerase β-expressing patients (HR pos vs. neg:
1.43, 95% CI: 0.57–3.57, p = 0.439). With the inclusion of KRAS mutational status in the statistical model,
the effect on survival with Polβ was stronger (HR pos vs. neg: 1.67, 95% CI: 0.52–5.56, p = 0.386).
The results of the multivariate analyses for OS are reported in Table 3. Kaplan–Meier curves for OS,
reported in Figure 3A,B, show the effect of KRAS status on the relationship between Polβ and OS.

Table 1. Baseline characteristics of patients (n = 109) and their relation with Polβ as a continuous or
dichotomous variable. Pos, positive; neg, negative.

n (%)
p p

Polβ Continuous Polβ pos vs. neg

Age of diagnosis Median(Q1–Q3) 66.8 (60.0–71.4) 0.448 * 0.788 †

Missing 3

Gender Male 70 65.4 0.717 † 0.366 **
Female 37 34.6
Missing 2

ECOG-PS 0 78 81.3 0.157 † 0.443 **
1 17 17.7
2 1 1

Missing 13

Smoking Never 21 20 0.618 † 1.000 **
Former
smokers 42 40

Smokers 42 40
Missing 4

Stage at diagnosis IIIB 28 26.2 0.038 † 0.507 **
IV 79 73.8

Missing 2

Histotype Adenocarcinoma 90 82.6 0.291 † 0.184 **
Squamous 17 15.6

Other 2 1.8

Platinum-based therapy Cisplatin 33 34.7 0.726 † 0.486 **
Carboplatin 62 65.3

Missing 14

Immunotherapy No 62 58.5 0.248 † 0.352 **
Yes 44 41.5

Missing 3

Polβ Median(Q1-Q3) 160.0 (60.0–200.0) - -
negative 13 11.9 - -
positive 96 88.1

KRAS Mutated 35 47.3 0.053 † 0.125 **
Wild-Type 39 52.7

Missing 35

At a median follow-up of 18.8 months (Q1–Q3: 8.3–48.9), there were 90 progressions, 62 deaths, and 100 deaths
or progressions. Q1–Q3: first–third quartile, pos: positive, neg: negative, †: Kruskal–Wallis test, *: Spearman
correlation, **: Fisher test.
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Table 2. Multivariable Cox models adjusted for ECOG-PS, age, histology, smoking, and therapy for
progression-free survival, considering Polβ continuous or Polβ positive vs. negative. Pos, positive;
neg, negative.

Polβ Continuous Polβ pos vs. neg

HR (95% CI) p HR (95% CI) p

Polβ (10-unit increment) 0.99 (0.97–1.02) 0.579 - -

Polβ
Positive - - reference

Negative - - 1.07 (0.49–2.38) 0.857

Age at metastasis diagnosis (5 years increment) 0.82 (0.72–0.94) 0.005 0.82 (0.72–0.95) 0.006

Histology
Adenocarcinoma reference reference

Squamous 1.10 (0.60–2.03) 0.755 1.12 (0.60–2.10) 0.728
Nos or other 2.26 (0.27–18.6) 0.449 2.34 (0.28–19.5) 0.432

Smoke
Never reference reference

Previous 1.25 (0.69–2.26) 0.463 1.27 (0.70–2.29) 0.434
Current 0.79 (0.40–1.56) 0.495 0.81 (0.41–1.59) 0.543

ECOG-PS 1.51 (0.78–2.94) 0.223 1.51 (0.76–3.00) 0.244

Therapy
Cisplatin reference reference

Carboplatin 1.73 (1.02–2.92) 0.041 1.69 (1.01–2.85) 0.046

Table 3. Multivariable Cox models adjusted for ECOG-PS, age, histology, smoking, therapy,
and immunotherapy for OS, considering Polβ continuous and Polβ positive or negative. Pos: positive,
neg: negative.

Polβ Continuous Polβ pos vs. neg

HR (95% CI) p HR (95% CI) p

Polβ (10-unit increment) 0.99 (0.96–1.01) 0.390 - -
Polβ

Positive - - reference
Negative - - 1.43 (0.57–3.57) 0.439

Age at metastasis diagnosis (5 years increments) 0.87 (0.75–1.01) 0.066 0.87 (0.75–1.01) 0.065

Histology
Adenocarcinoma reference reference

Squamous 0.94 (0.46–1.95) 0.877 0.98 (0.47–2.06) 0.960
Nos or other 7.67 (0.83–70.6) 0.072 8.86 (0.94–83.3) 0.056

Smoke
Never reference reference

Previous 2.65 (1.15–6.12) 0.022 2.76 (1.21–6.30) 0.016
Current 1.58 (0.61–4.11) 0.350 1.63 (0.63–4.26) 0.316

ECOG-PS 1.18 (0.48–2.90) 0.724 1.12 (0.44–2.87) 0.812

Therapy
Cisplatin reference reference

Carboplatin 1.74 (0.94–3.21) 0.075 1.70 (0.93–3.12) 0.084

Immunotherapy
No reference reference
Yes 0.57 (0.32–1.03) 0.063 0.55 (0.31–0.98) 0.041
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Figure 2. (A) Kaplan–Meier curves for PFS according to the positive or negative DNA polymerase β

staining. (B) Effect of KRAS status on the relationship between Polβ and PFS adjusted for ECOG-PS,
age, histology, smoking, and therapy.
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3.3. Overall Response Rate

There were no differences between the DNA polymerase β negative and positive staining groups,
or among different Polβ as a continuous variable in ORR to platinum-based first-line therapy (Table 4).

Table 4. Objective response rates by DNA Polymerase β H-score (Polβ). CR, complete response; PR,
partial response; SD, stable disease; PD, progressive disease.

Polβ neg
n = 12

Polβ pos
n = 64 Chi-Squared Test Logistic Regression Model

CR + PR −n (%) 4 (33.3) 23 (35.9) Chi = 0.03 OR = 1.002
95% CI 34.9–90.1 51.1–75.7 Df = 1 95%CI = 0.997–1.006

SD + PD −n (%) 8 (66.7) 41 (64.1) p = 0.864 p = 0.505
95% CI 9.9–65.1 24.3–48.9

4. Discussion

KRAS mutations have often been investigated as possible biomarkers for selecting chemotherapy,
but results have varied, casting doubt on the true utility of this protein. In a previously published
randomized prospective trial from our group, an analysis of 247 patients showed that those carrying
KRAS mutations and treated with a first-line platinum-based regimen had worse PFS than patients
with wild-type KRAS [5]. The present study detected a not-statistically-significant effect for OS,
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KRAS-mutated patients having a worse prognosis than KRAS wild-type patients. A possible
explanation, although the trend is in line with previous observations, is that the statistical power of this
cohort of patients was half that in our earlier study, where KRAS status was significantly associated
with survival. On the other hand, the LACE-Bio pooled analysis, including data of 1543 patients
participating in four clinical trials, showed that there is no difference in terms of outcomes in early-stage
lung cancer patients with either wild-type or mutated KRAS [12]. Our different result may suggest
that KRAS mutations could play different roles in early and advanced disease. In advanced stages,
KRAS could be a condition necessary, but not sufficient, to explain a more aggressive phenotype.

There is preclinical evidence that KRAS and its mutated versions modulate DNA repair,
hence the cellular response to genotoxic agents. Oncogenic RAS can inactivate BRCA-1 dependent
homologous recombination (HR) by favoring the dissociation of BRCA-1 from chromatin [13]. Moreover,
activated KRAS can suppress the expression of DNA repair genes (including BRCA1, BRCA2, EXO-1,
and TP53) [14]. In leukemic cells, mutant KRAS promoted the upregulation of components of the
alternative nonhomologous end-joining (NHEJ) pathway, such as DNA ligase IIIα, PARP1, and XRCC1,
and the inhibition of the alternative NHEJ pathway selectively sensitized KRAS-mutated cells to
chemotherapy [15].

Our group also suggested KRAS-dependent specific alterations in the BER system, where we
found DNA polymerase β as a possible selection factor. We demonstrated at the preclinical level
that DNA polymerase β could play a role in the response to cisplatin-based chemotherapy, and the
data indicated a pattern of sensitivity or resistance depending on the KRAS mutational status [9].
These findings support the hypothesis that the combination of mutant-KRAS status with DNA repair
could be a predictive biomarker for response to platinum-based therapy.

On the basis of these assumptions, we planned a translational study to clinically validate KRAS
and DNA polymerase β as “biomarkers” for poor response and outcome to platinum-based first-line
chemotherapy. We investigated DNA polymerase β as a possible selection marker, alone or in
combination with KRAS status. DNA polymerase β expression, summarized in the H-score and
considered as a continuous variable, was meaningless to both PFS and OS, alone or with KRAS.

When we compared negative or positive DNA polymerase β staining patients, we detected an
interesting, though not statistically significant, difference: OS patients negative for DNA polymerase β

staining had worse outcomes than the positive staining group. This result was confirmed even when
KRAS status was considered in the analysis.

These data, although interesting and calling for further analysis, are not supported by the literature,
where DNA polymerase β upregulation was described as causing resistance to cisplatin in an ovarian
cancer model [16]. In a colorectal cancer model expressing high levels of DNA polymerase β, cisplatin
was ineffective compared to the same model in which DNA polymerase β was downregulated. In the
same paper, 5-year OS curves showed that patients with high DNA polymerase β expression had a
significantly poorer prognosis than those with low expression [17]. However, DNA polymerase β has
been investigated as a selection marker in very few, only retrospective studies, and our is the first
attempt to investigate it, prospectively, in NSCLC.

A recent report suggests that if cells are not able to repair DNA single-strand break lesions through
BER (as should be the case here for cells negative for DNA polymerase β), these lesions are channeled
to the HR system [18]. We do not know whether this is also true for cisplatin-induced DNA lesions
and whether these patients have HR alterations, but it does suggest an intriguing explanation for the
worse outcome observed in DNA polymerase β-negative patients.

To our knowledge, this is the first investigation of the role and value of DNA polymerase β,
alone or in combination with KRAS status, as a marker of response to platinum-based therapy in
NSCLC. Besides the results, this paper also stimulates the idea to further investigate the combination of
biomarkers that indicate how different biological pathways coexist or work together in those scenarios,
where no single biomarker has been shown to have strong value.
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In conclusion, KRAS may have a negative role in platinum-based therapy responses in NSCLC,
but its impact is limited. The absence of DNA polymerase β might indicate a group of patients
with poor outcomes compared to patients positively staining for this protein. In addition, a mutated
form of KRAS in tumors not expressing DNA polymerase β further worsens survival. Therefore,
these two biomarkers together might well identify patients for whom alternatives to platinum-based
chemotherapy should be used.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/8/2438/s1,
Figure S1: Negative and positive DNA polymerase β staining tissues magnified 400X.
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