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Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision
medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a
range of molecular alterations that can deeply influence the natural history of this disease.
Several molecular alterations have been found over time, paving the road to biomarker-
driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC
patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC
(especially in adenocarcinoma histotype) and have been identified decades ago. Since its
discovery, its molecular characteristics and its marked affinity to a specific substrate have
led to define KRAS as an undruggable alteration. Despite that, many attempts have been
made to develop drugs capable of targeting KRAS signaling but, until a few years ago,
these efforts have been unsuccessful. Comprehensive genomic profiling and wide-
spectrum analysis of genetic alterations have only recently allowed to identify different
types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment
approach of KRAS-mutant patients and might hopefully increase their prognosis and
quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic
KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
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INTRODUCTION: KRAS MUTATIONS

Non-small cell lung cancer (NSCLC) represents one of the most multifaceted tumor based on its
complex molecular features. The identification of driver mutations, predominantly identified in the
adenocarcinoma histotype, have opened the era of ‘biomarker-driven therapy’ (1). The ‘oncogene
addicted’ disease, characterized by a targetable gene alteration, represents a subgroup of NSCLC in
which targeted agents have radically changed prognosis and quality of life of these patients (2). With
the advent of tumor genotyping, upfront routine testing for targetable biomarker alterations is
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strongly recommended in all patients with diagnosis of NSCLC
to personalize treatment (3). Additional molecular analysis by
next generation sequencing (NGS) may be considered as part of
broader testing panels, with the final aim of detecting rare
druggable alterations to enroll patients in clinical trials. Among
gene alterations involved in cancer development, kirsten rat
sarcoma (KRAS) represents the most common oncogene driver
in human cancer. It has been demonstrated that the wild-type
KRAS is a proto-oncogene that is frequently activated during
many types of cancer progression (4). Once the KRAS gene
mutates, it acquires oncogenic properties that are causally
involved in the development of human cancers (5, 6). Such
oncogenic forms of the KRAS gene are prevalent in pancreatic
carcinomas (>80%), colon carcinomas (40–50%), and lung
carcinomas (30–50%), but are also present in biliary tract
malignancies, endometrial cancer, cervical cancer, bladder
cancer, liver cancer, myeloid leukemia and breast cancer (7).
KRAS protein is a small guanine triphosphatase (GTPase) that
serves as a binary switch in signal transduction for most receptor
tyrosine kinases and plays a key role in regulating cell growth,
differentiation and apoptosis by interacting with multiple
effectors including mitogen-activated protein kinase (MAPK)
(8). Oncogenic KRAS mutations mostly occur in exon 2 at codon
12, less frequently at codon 13 (3-5%) and rarely at exon 3 codon
61 (less than 1%) (9). KRAS signaling begins with the stimulation
of a vast array of upstream receptors including receptor tyrosine
kinases (RTKs). Adaptor proteins interact with the intracellular
domain of activated EGFR and in turn recruit guanine nucleotide
exchange factors (GEFs), such as Son of Sevenless (SOS), to the
cellular membrane where they can associate with KRAS to
promote the switch from inactive GDP to active GTP. KRAS
signaling terminates upon the hydrolysis of GTP to GDP by the
intrinsic GTPase activity of RAS. Cancer-causing mutations in
KRAS drastically impair the GTPase activity, resulting in KRAS
proteins that are locked in the active GTP-bound conformation,
regardless of the upstream signal. As consequence, these
missense mutations cause a constitutive activation of KRAS
downstream pathways and promote cell proliferation and
tumor development (10). In this review we aim to give an
overview on KRAS role in lung cancer pathogenesis and
targeting with a special focus on new potential treatments
based on epigenetic modulation.
KRAS IN LUNG CANCER: CLINICAL
FEATURES AND THERAPEUTICAL
IMPLICATIONS BEFORE THE ADVENT
OF DIRECT INHIBITORS

In NSCLC, KRAS mutations occur in 30% of adenocarcinoma and
less frequently (about 7%) in squamous-cell lung carcinoma (11).
Nevertheless, more recent results suggest that, in most cases, KRAS
mutations do not occur in pure squamous-cell lung carcinoma but
in mixed histology of adenosquamous or neuroendocrine
carcinomas (12, 13). Although most of KRAS-mutant NSCLC
Frontiers in Oncology | www.frontiersin.org 2
are diagnosed in former or active smokers, KRAS mutations can
also be detected in never smoker patients with early onset of
cancer, thus its mutational state cannot be predicted on the basis of
smoking history alone (14). Because of its high frequency in lung
adenocarcinoma, several preclinical and clinical investigations
have been conducted seeking effective therapeutic approaches
targeting KRAS mutations but, for many years, these efforts have
been unsuccessful. The deeper knowledge of genomic alterations
has led to the identification of different KRAS subtype mutations.
Indeed, it has been demonstrated that in NSCLC the most frequent
KRAS allelic variations are the p.G12C (39%) and p.G12V (17-
18%), resulting from a G:C to T:A transversion as a classical
smoking-induced alteration (15). Remarkably, smokers and never
smokers have a different spectrum of mutations and codon
variants in KRAS. Thus, transition mutations (G12D) are more
common in never smokers, whereas transversion mutations
(G12C and G12V) are more common in former or current
smokers (16). Moreover, KRAS-mutant NSCLC in smoker
patients are genomically more complex, with a higher
mutational burden and higher frequency of additional mutations
in TP53 or STK11 genes compared to never smoker tumors, as
result of antigenic exposure and oxidative stress in epithelial cells
(17). From a clinical point of view, KRAS-mutant cancers have
generally been associated with poorer overall survival (OS)
compared to KRAS wild type tumors, especially in the advanced
stages (18–20); however, other studies in early (where the benefit of
adjuvant chemotherapy is minimal) or advanced stage of KRAS-
mutant lung cancer have provided conflicting results, thus the
prognostic value of KRAS alteration is still debated (21–23). A
systematic review and meta-analysis including 3,620 patients has
shown that KRAS mutations confers a significantly worse
prognosis in patients with lung adenocarcinoma (19).
Furthermore, KRAS mutations also have a predictive value in
lung cancer. Indeed, as already outlined, KRAS represents a critical
downstream effector on the EGFR pathway. Thus, there is a
biologic rationale supporting the hypothesis that KRAS-mutant
NSCLC are intrinsically resistant to EGFR TKIs because of a
constitutive activation of the kinase that regulates EGFR signaling
(24–27). With this regard, several studied have evaluated the
efficacy of erlotinib or gefitinib according to KRAS mutational
status confirming an association between KRAS mutations and
limited activity of EGFR TKIs (28, 29). Several investigators have
also hypothesized that KRAS may be a predictive biomarker of
response to chemotherapy. Indeed, early preclinical data have
shown that KRAS mutations correlate with a greater sensitivity
to pemetrexed in NSCLC models (30) probably due to the
pemetrexed ability to alter KRAS RNA expression. From a
biologic point of view, this result is explained by a strong
dependency of KRAS-mutant cells on folate metabolism
pathways. Unfortunately, these preclinical results did not
translate into an increased clinical activity (31, 32); indeed, a
retrospective study conducted on 1,190 KRAS-mutant NSCLC
patients treated with upfront platinum-based doublet
chemotherapy has demonstrated that pemetrexed was associated
with a shorter progression-free interval compared to other agents,
such as taxanes (32). Nevertheless, at the ESMO 2021 congress, in
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the NVALT22 study cisplatin-pemetrexed chemotherapy plus
bevacizumab did not improve PFS compared with carboplatin-
paclitaxel plus bevacizumab in KRAS mutant patients (33).
Concerning other potential targets, Mainardi et al. (34) have
found that Src homology region 2 (SHP2), a cytoplasmic Src
homology 2 domain containing protein tyrosine phosphatase that
regulates several cellular processes, is necessary for KRAS-mutant
tumor cell growth in in vivo models of NSCLC. Accordingly, the
authors have highlighted that SHP2 inhibition promotes a
senescence response in KRAS-mutant NSCLC cells, suggesting a
rationale for targeting SHP2 in NSCLC harboring KRAS
mutations. Indeed, a recent study has reported that the co-
inhibition of SHP2 and KRAS in xenograft models is effectively
able to suppress feedback reactivation of KRAS pathway,
producing a significant tumor shrinkage (35). With regard to
immunotherapy, KRAS mutations have been associated with
immune checkpoint inhibitors (ICIs) benefit in NSCLC patients.
In particular, a subgroup analysis of Checkmate 057 has shown
greater outcomes wit ICIs in KRAS-mutant patients (36). Kim
et al. (37) compared in a meta-analysis ICIs treatment and
docetaxel in pretreated NSCLC patients, stratifying results by
KRAS status. They have found that, in KRAS-mutant NSCLC
patients, overall survival (OS) was improved with ICI versus
chemotherapy; on the other hand, this benefit was not reported
in KRAS wild-type patients. Moreover, through the
ImmunoTarget registry, it has been evaluated the sensitivity of
ICIs in NSCLC patients with a variety of driver mutations.
Accordingly, KRAS mutations resulted in increased
immunotherapy benefit compared to other driver mutations
(38). Recently, new data are available regarding (chemo)
immunotherapy efficacy according to KRAS status. Sun et al.
have demonstrated that among patients with PD-L1>50%
treated with ICI, KRAS mutant tumors are associated with a
superior overall survival compared with KRAS wild type (mOS
21.1 vs 13.6 months, p=0.03). However, among patients treated
with chemoimmunotherapy, there was no significant survival
difference between patients with KRAS mutant and KRAS wild
type status (mOS, 20.0 vs 19.3 months; p=0.93). Moreover, among
patients with KRAS mutant status, OS did not differ between those
treated with ICI monotherapy and chemoimmunotherapy (mOS,
21.1 vs 20.0 months; p= 0.78). The authors conclude that among
patients with PD-L1 expression of 50% or greater NSCLC treated
with ICI monotherapy, KRAS wild type is associated with worse
survival compared with KRAS mutant patients; in contrast,
survival did not differ appreciably between patients with KRAS
mutant and KRAS wild type status who were treated with
chemoimmunotherapy. Definitely patients with PD-L1>50% and
KRAS-mutant NSCLC had favorable survival (mOS ≥20 months)
with either ICI monotherapy or chemoimmunotherapy, while
patients with KRAS wild type who were treated with ICI
monotherapy had worse survival compared with those treated
with chemoimmunotherapy (39). With regard to KRAS mutation
subtype, another study has shown that treatment outcomes with
chemoimmunotherapy are similar in patients with G12C and non-
G12C subtypes (40). All these results could have a potential
biological rationale because of the correlation between a higher
Frontiers in Oncology | www.frontiersin.org 3
incidence of KRAS mutations in smokers and, as already known,
the elevated rate of tumoral DNA mutations and the higher tumor
mutational burden (TMB) in smoker patients compared to never-
smokers (41, 42). Another important issue is the potential clinical
relevance of KRAS mutations in combination with other genetic
alterations. In particular, variations in KRAS mutation subtypes
have been associated with distinct biological behaviors that may
led to different clinical outcomes (43, 44). For example, tumors
with KRAS G12C mutations exhibited higher ERK1/2
phosphorylation than those with KRAS G12D (45); to support
this data, a recent study using mouse models with KRAS-mutant
tumors, demonstrated higher efficacy of the MEK inhibitor
selumetinib in KRAS G12C cancers compared with KRAS G12D
tumors. Concerning additional alterations, EGFR/ALK/BRAF co-
mutations are rare in KRAS-mutant lung adenocarcinoma;
concomitant mutations in onco-suppressor genes, especially
TP53, STK11 and KEAP1, are more often found (11, 14, 46, 47).
Furthermore, additional alterations may affect the immunogenicity
of KRAS-mutant tumors. For example, it has been recently
demonstrated that tumors carrying KRAS/TP53 mutations have
an enhanced tumor inflammation, increased PD-L1 expression
and tumor-infiltrating lymphocytes (TILs) and, consequently,
there is a remarkable clinical benefit wit ICIs (48). In contrast,
additional STK11 mutations in KRAS-mutant NSCLC could
decrease immune surveillance through NF-kB pathway
modulation. Indeed, these tumors are associated with low TILs
infiltration that further reduces immune surveillance (49, 50).
Several trials have shown that STK11/LKB1 mutations in KRAS-
mutant NSCLC might be predictive of primary resistance to ICIs
or chemotherapy as well (51–53). Taken together, all this evidence
suggests that KRAS mutations cannot be evaluated as a single
entity, but it needs to be placed in the context of the specific tumor
features and seen as part of a complex process in cancer
development and progression. The deeper understanding of
underlying KRAS biology and function has allowed, after many
years of failures, to develop agents able to stop the winding path
towards KRAS unstoppable tumors (Tables 1, 2).
THE ERA OF KRAS DIRECT INHIBITION

Although KRAS was one of the earliest oncogenic drivers
discovered, for decades a therapeutic breakthrough in its
targeting has been hampered by several biochemical obstacles
(such as the high affinity of GTP for KRAS, the difficulty of
finding pockets on KRAS large enough for small-molecule drugs),
prompting the increasingly widespread opinion that KRAS was
definitely undruggable (54, 55). Therefore, tackling KRAS
alterations has been focused on inhibition of its membrane
binding (or subcellular localization), identification of lethality
partners and on inhibition of its downstream effectors.
Concerning direct inhibition, the peculiar crystal structure of the
KRAS G12C subtype and the unique reactivity of the cysteine thiol
result in the ability to covalently bind the cysteine residue within
the region adjacent to the nucleotide-binding pocket, inducing a
significant perturbation of protein functional domains and a
December 2021 | Volume 11 | Article 792385
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negative allosteric regulation of RAS signaling in tumor cells (56).
This feature can be exploited to create covalent small-molecule
inhibitors, binding to KRAS and locking cells in the inactive GDP-
bound state (57–59). Thus, various pharmaceutical companies
have begun to develop KRAS G12C-specific inhibitors, many of
which are being explored in ongoing clinical trials. AMG 510/
Sotorasib was the first compound to enter clinical trials with
promising results since early trials phases, especially in NSCLC
patients. Canon et al. (60) have identified this highly selective
molecule inducing tumor regression in preclinical models. In
particular, AMG 510 potently inhibits cellular viability in KRAS
G12X cell lines and induces tumor regression in xenograft models
(60). Furthermore, AMG 510 has shown synergistic growth
inhibitory effects when combined with other inhibitors of
protein that regulate KRAS activation (such as MEK, AKT, PI3K
and members of EGFR family) or with immunotherapy (60).
Preliminary results of AMG 510 clinical activity have been
presented at the 2019 American Society of Clinical Oncology
meeting (61), showing a very promising activity in a cohort of
34 NSCLC patient harboring KRAS G12C mutation achieving a
surprising objective response rate (ORR) of 48% and a disease
control rate (DCR) of 96%. Regarding its safety profile, the adverse
events (AEs) have been manageable with only 9% of grade 3-4 AEs
(mostly anaemia and diarrhoea) (62). The final results from the
phase I trial have shown a median progression-free survival (PFS)
of 6.3 months and a median duration of response of 10.9 months
in NSCLC subgroup (59 patients), with a confirmed ORR in 32.2%
and DCR in 88.1% of patients (63). Thus, the trial has confirmed
the antitumor activity of AMG 510 in pretreated NSCLC patients
carrying KRAS G12C mutation, consistent with preliminary
results (64). The phase II CodeBreak 100 trial has validated the
power of KRAS inhibition with sotorasib in patients with advanced
NSCLC. In the phase II trial sotorasib has now shown a durable
Frontiers in Oncology | www.frontiersin.org 4
ORR of 37.1%, a DCR of 80.6%, a median PFS of 6.8 months and a
median OS of 12.5 months, in the face of grade 3-4 toxicities rate,
mostly diarrhea and hepatic transaminase elevation (11%) (65, 66).
These exciting data have led to the fast-track designation of AMG
510 by Food and Drug Administration (FDA). Another cysteine
12-directed covalent inhibitor is MRYX849/adagrasib. Similar to
sotorasib, adagrasib is a KRAS G12C inhibitor that has
demonstrated a great activity on tumor regression in cell lines
and patient-derived xenograft models, as well as in vivo, showing
tumor regression in 65% of KRAS G12C mutant preclinical
models including different tumor histotypes (67). Indeed, this
agent is under investigation in the KRYSTAL trial, a phase I/II
multiple expansion cohort trial of MRTX849 in patients with
advanced solid tumors carrying KRAS G12C mutation. In this
trial, 79 patients were treated with adagrasib 600 mg BID. Overall,
the treatment has been well tolerated and most patients has
experienced grade 1-2 AEs, such as nausea, diarrhea, vomiting,
fatigue and increased ALT. The only commonly reported (>2%)
grade 3-4 treatment-related serious AE has been hyponatremia.
Among the 51 patients evaluable for clinical activity, the trial has
reported an ORR of 45% and DCR of 96% (68). Interestingly, other
studies have highlighted that MRTX849 has synergistic effects
when combined with EGFR, Src homology 2 domain-containing
tyrosinephosphatase-2 (SHP2), mammalian target of rapamycin
(mTOR) or cyclin-dependent kinase 4 (CDK4) and CDK6
inhibitors and its efficacy has resulted increased in case of SHP2,
MYC or mTOR gene loss (67). A third KRAS G12C covalent
inhibitor is JNJ-74699157 (ARS-3248), currently evaluated in a
phase I clinical trial enrolling different KRASG12Cmutated tumor
types (NCT04006301). A fourth KRAS G12C covalent inhibitor is
LY3499446, evaluated in a phase I/II clinical trial (NCT04165031):
the study was early terminated due to an unexpected toxicity
finding. Concerning pan-RAS inhibitors, many compounds have
TABLE 2 | Trials evaluating KRAS as a potential predictive marker.

FIRST AUTHOR Type of study N° of patients (TOT/KRASmut) Drug Outcome

Mao C Meta-analysis 1470/231 EGFR-TKI ORR 3% vs 26% (KRAS mut vs wt)
Linardou H Meta-analysis 1008/165 EGFR-TKI Significantly lower ORR in KRAS mut
Sun JM Retrospective 484/39 Pemetrexed ORR 14% vs 28% (KRAS mut vs wt)
Renaud S Retrospective -/1190 CT Best ORR with taxanes compared to pemetrexed
Borghaei H Retrospective -/62 Nivolumab vs Docetaxel HR 0.52 (0.29-0.95)
Kim JH Meta-analysis -/138 ICI vs docetaxel HR 0.64 (0.43-0.96)
Mazieres J Retrospective 551/271 ICI ORR higher in KRAS compared to other driver mutations
Sun L Retrospective 1127/573 ICI

CT + ICI
HR, 0.77 (0.61-0.98) KRAS mut vs wt
HR, 0.99 (0.70-1.40) KRAS mut vs wt
ORR, objective response rate; TKI, tyrosine kinase inhibitor; CT, chemotherapy; ICI, immune-checkpoint inhibitor; wt, wild-type.
TABLE 1 | Trials evaluating KRAS as a prognostic marker.

FIRST author Type of study N° of patients (KRASmut vs KRASwt) Outcome

Johnson MC Retrospective 241 vs 520 mOS 16 vs 23 m (HR 1.21, p=0.048)
Mascaux C Meta-analysis 625 vs 2968 HR 1.35, p=0.01
Marabese M Retrospective 60 vs 187 mOS 10.6 vs 14.3 m (HR 1.41, p=0.032)
Shepherd FA Pooled analysis 300 vs 1246 HR 1.17, p=0.12
Macerelli M Retrospective 39 vs 69 mOS 10.3 vs 13.2 m (p=0.4)

DCR 76% vs 91% (p=0.03)
Dece
mOS, median overall survival; DCR, disease control rate.
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been tested but the major issue reported is the difficult
discrimination between active and inactive KRAS state, with a
consequent high off-target activity and a marked toxicity (69).
Regarding preclinical evidence, two previous compounds (ARS-
853 and ARS-1620) have demonstrated to reduce cell growth and
inhibit downstream signaling to MAPK exclusively in tumor cell
lines with KRAS G12Cmutations (57, 58, 70). Notably, ARS-853 is
a potent G12C allele-specific inhibitor that reduces cancer cell
proliferation in vitro; its mechanism exploits the need of KRAS
G12C nucleotide exchange to switch in the activated status,
trapping it in the GDP-RAS state (58, 70). However, ARS-853
has not entered clinical evaluations in KRAS mutant lung cancer
yet. Instead, ARS-1620, a covalent compound with high potency
and selectivity for KRAS G12C, have shown rapid and sustained
tumor regression in vivo (57). The interesting feature of tumor cells
harboring KRAS mutations is that they develop, over time, escape
mechanisms to break free from the KRAS activation status and
undergo adaptative changes to became insusceptible to the drug
(71). Instead of relying on the drug-inhibited MEK pathway to
proliferate, these adapted cells are capable of using EGFR and
aurora kinase downstream signaling cascades to remain in the
active form (35). These data may help elucidating why most
patients enrolled in clinical trials tend to exhibit partial
responses to KRAS inhibitors. For this reason, overcome
treatment resistance by developing combination therapies might
be a promising approach for the future to create a more durable
response to KRAS G12C inhibitors (Table 3).

KRAS Indirect Inhibition
Due to the long-standing belief that KRAS was undruggable for
the above-mentioned reasons, a large branch of research has
been conducted on indirect inhibition. These strategies, which
turned out to be mainly unsuccessful, were aimed at KRAS
expression (including epigenetic modulation), processing and
downstream signaling inhibition.

Inhibitors of the Nucleotide Exchange Cycle
Guanine nucleotide exchange factors (GEFs), such as SOS, are
essential to promote KRAS signaling by catalyzing the exchange
of GDP with GTP, thus resulting in the active KRAS-GTP form;
GEF inhibitors are a field of particular interest because their
activity is not dependent on the type of KRASmutation, resulting
in pan-RAS inhibition. Several small molecules inhibiting SOS
have been identified, although only one has made its way to the
clinical experimentation (72). BAY-293 is a SOS1 inhibitor
which showed a high affinity for its target but weak activity on
cell proliferation in vitro (73). BI-1701963 is another SOS1
Frontiers in Oncology | www.frontiersin.org 5
inhibitor with promising pre-clinical activity, currently tested
in a phase I trial, alone or in combination with trametinib, in
solid tumors harboring KRAS mutation (NCT04111458).

An interesting new role has been proposed for miR-148a-3p,
a tumor suppressor microRNA which controls cell proliferation
by reducing the expression of SOS2; in KRAS-mutated cells this
microRNA is commonly lost, representing a possible new target
in KRAS-mutant NSCLC (74).

Src homology region 2 (SH2)-containing protein tyrosine
phosphatase 2 (SHP2) is essential for the activation of KRAS
(and other RTKs) signaling, in fact previous studies identified
SHP2 as a scaffold protein that links SOS to GRB-2 enhancing
the nucleotide exchange cycle (75). Different SHP2 inhibitors are
currently under investigation in clinical trials, alone or in
combination with other agents; as SHP2 is also implicated in
acquired resistance to KRAS G12C inhibitors, there is a strong
rationale in combining KRAS and SHP2 inhibitors (71). RMC-
4630 has shown promising activity as a single agent in an
ongoing phase I clinical trial (NCT03634982), with a DCR of
71% in the cohort of 7 patients with NSCLC and KRAS G12C
mutation; RMC-4630 is also being tested in a phase Ib/II clinical
in combination with cobimetinib/osimertinib (NCT03989115);
JAB-3068 and JAB-3312 are SHP2 allosteric inhibitors investigated
in a phase I/II clinical trial (respectively NCT03518554,
NCT03565003 and NCT04121286, NCT04045496); TNO155 is
being explored as a single agent or with an anti-EGFR (EGF816) in
a phase I clinical trial (NCT03114319), in combination with
adagrasib in a phase I/II clinical trial (NCT04330664) and in
combination with spartalizumab (anti-PD-1) or ribociclib in a
phase Ib trial (NCT04000529); RLY-1971 and BBP-398 as single
agents are under evaluation in phase I trials (NCT04252339
and NCT04528836).

Inhibitors of RAS Post-Translational Processing
KRAS undergoes several post-translational modifications in
order to become active (76). The first step is the prenylation of
the carboxyl terminal by the addition of a farnesyl tail, mediated
by farnesyltransferase (FTase) or geranylgeranyltransferase
(GGTase). Although an interesting preclinical activity of FTase
inhibitors (FTIs), first-generation FTIs tipifarnib and lonafarnib,
and second-generation salirasib, have not shown significant
activity in NSCLC patients (77–79). A possible mechanism of
intrinsic resistance to FTIs may be the alternative prenylation
of KRAS by GGTase; preclinical data regarding the activity of
FGTI-2734, a dual FTase and GGTase inhibitor, on KRAS
mutant cell lines (including a NSCLC line) are promising (80).
Another potential target involved in KRAS post-translational
TABLE 3 | KRAS G12C direct inhibitors.

TRIAL Phase Drug Setting N° Patients Results AE

CodeBreaK100 I/II Sotorasib ≥2L 59 ORR 32.2%, DCR 88.1%, mPFS 6.3m, mOS 10.9m 9% G3/4 (anemia, diarrhoea)
KRYSTAL-1 I/II Adagrasib ≥2L 79 ORR 45%, DCR 96% G3/4 common TRAE: Hyponatremia (3%)
NCT04006301 I ARS-3248 ≥2L Ongoing
NCT04165031 I/II LY3499446 ≥2L Closed due to toxicity
Dece
ORR, objective response rate; DCR, disease control rate; mPFS, median progression free survival; mOS, median overall survival; AE: adverse events; TRAE, treatment related adverse event.
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modifications comprehends phosphodiesterase-d (PDE-d), a
prenyl-binding protein that transports prenylated KRAS to the
cellular membrane; NHTD is a PDE-d inhibitor with promising
in vitro and in vivo activity on mouse xenografts (81).

Inhibitors of Downstream Signaling
Targeting KRAS intracellular pathways has not scored interesting
results due to the redundancy and crosstalk of downstream
signaling. The inhibition of RAF/MEK/ERK pathway using
selective BRAF inhibitors, such as vemurafenib or dabrafenib,
whose activity is well established in tumors carrying BRAF V600E
mutation, is not effective in KRAS mutant tumors. These drugs can
effectively bind only to BRAF monomers, but in KRAS mutant
tumors the MAPK pathway is activated by RAF dimers, which are
not inhibited by vemurafenib or dabrafenib; in addition, these TKIs
cause an upregulation in ERK phosphorylation and activation
mediated by CRAF (the so called “MAPK paradox”) (82). On the
other hand, nonselective RAF inhibitors like sorafenib (multi-TKI
inhibitor of RAF, VEGFR and PDGFR amongst others), did not
show a relevant clinical activity in subgroups of KRAS mutant
NSCLC: in the MISSION phase III trial sorafenib was tested against
placebo in pretreated NSCLC patients, and although a significantly
longer PFS, OS was similar between the two arms both in the overall
population (8.2 vs 8.3 months; HR, 0.99, p=0.49) and in the KRAS
mutant population (6.4 vs 5.1 months; HR, 0.76, p=0.279) (83); in
the BATTLE-1 and BATTLE-2 trials, 8-weeks DCR was non
statistically different with sorafenib according to KRAS status,
although in the latter study RAF and MEK inhibitors showed a
better clinical activity than EGFR inhibitor erlotinib in KRAS
mutant patients (84, 85). MEK inhibitors have been used alone or
in combination with chemotherapy, based on preclinical data of
enhanced activity, with disappointing results up to now. The
randomized phase III SELECT-1 trial has compared selumetinib
plus docetaxel versus docetaxel in 510 patients with KRAS mutant
pretreated NSCLC, showing no significant difference in mPFS (3.9
vs 2.8 months, p=0.44) and mOS (8.7 vs 7.9 months, p=0.64) (86).
Trametinib has not demonstrated a better clinical activity compared
to docetaxel in a randomized phase II study conducted on KRAS
mutant NSCLC patients (87); trametinib has also been evaluated in
phase I/Ib trials in combination with docetaxel or pemetrexed in
patients with NSCLC, showing a favorable toxicity profile and a
slightly better activity on patients with KRASmutation compared to
KRAS wild-type patients (88, 89). Binimetinib has been tested in the
first-line setting in the phase IB SAKK 19/16 study, in combination
with platinum-based chemotherapy, in patient with KRAS mutant
NSCLC; the addition of binimetinib has not shown early signs of
clinical activity (90). Several trials are being conducted using MEK
inhibitors alone or in combination with other agents. A preclinical
study by Lee et al. has shown that in murine models of KRAS
G12D/p53- lung cancer, the combination of trametinib with
anti-PD-1 or anti-PD-L1 immune-checkpoint inhibitors has
synergistic anti-tumor effect; this might be explained by an
immunomodulatory effect of trametinib that, according to the
authors, might be determined by the depletion of PMN-MDSC
from the tumor microenvironment (91). ERK inhibitors have
shown little activity as monotherapy, so they are currently under
investigation mostly in combination with other drugs (e.g. ICIs or
Frontiers in Oncology | www.frontiersin.org 6
other targeted agents) in phase I basket trials (NCT03745989;
NCT04418167; NCT03415126).

PI3K-AKT-mTOR is another downstream pathway whose
signaling is started by the phosphorylation of PI3K by means of
KRAS-GTP; it has important interconnections with RAF-MEK-
ERK pathway, in fact the inhibition one of them causes a
compensating hyperactivation of the other (92). This might be
the reason why single agents directed against this pathway have
proven to be mostly unsuccessful. In the phase II BASALT-1
trial, buparlisib, a pan-PI3K inhibitor, was tested in a cohort of
63 patients with pretreated NSCLC harboring a PI3K pathway
activation, including 3 patients with concomitant KRAS
alterations; the study was closed due to futility, with a 12-week
PFS of 23.3% and 20% in squamous and non-squamous
histology (93). After the disappointing results of everolimus in
unselected patients with pretreated NSCLC (RR<5%), a phase II
trial with ridaforolimus was conducted on 79 patients with
pretreated KRAS mutated NSCLC, obtaining similar outcomes
(RR 1%) (94). More emphasis should be given to combination
therapies which include PI3K pathway inhibitors, as it is
involved in resistance mechanisms to direct KRAS inhibitors:
preclinical studies have demonstrated that the addition of PI3Ki
to ARS1620, a selective RAS G12C inhibitor, was effective in cell
lines and in xenografts after the failure of ARS1620 monotherapy
(95). Dual inhibition of MAPK and PI3K pathways has shown
synergistic effects on cell proliferation in preclinical models (96–
98), but in the clinical setting alarming signs of toxicity have been
reported (99, 100).

Synthetic Lethality
Synthetic lethal screenings are used to identify, in different cell
lines, genes that are indispensable for cell survival and
proliferation. In KRAS mutated cell lines, previous studies have
shown that selective inhibition of BCL-XL, CDK4, XPO1,
GATA2, or NF-kB results in cell death, according to the
principle of synthetic lethality (101–105). Abemaciclib, a
CDK4/6 inhibitor, has been investigated in the JUNIPER trial,
a phase III study in KRAS mutated pretreated NSCLC, and it has
not improved OS compared to erlotinib, the control arm (7.4 vs
7.8 months, HR 0.968, p=0.77) (106). Although palbociclib,
another CDK4/6i, hasn’t shown relevant clinical activity in
patients with pretreated NSCLC harboring cell cycle gene
alterations (107), preclinical data suggest that the combination
of palbociclib and MEKi has synergistic antitumoral and
radiosensitizing effects on KRAS mutated NSCLC cell lines
(108, 109); different clinical trials are evaluating this combination
in the clinical setting (NCT03170206; NCT02022982). Based on
synthetic lethality, NCT02079740 is a phase Ib/II trial
investigating safety and tolerability of the combination of the
BCL inhibitor navitoclax and trametinib, while NCT03095612 is
a phase I/II trial evaluating selinexor, an inhibitor of exportin-1
(XPO1), in combination with docetaxel in previously treated
KRAS mutant NSCLC. NF-kB is a key transcription factor for
KRAS mutated NSCLC; its activity is downregulated by the
proteasome inhibitor bortezomib, which restores the function
of IkB (NF-kB inhibitor). In a phase II trial, 16 patients with
previously treated NSCLC harboring KRAS G12D mutation
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were treated with bortezomib, but results were disappointing:
only 1 partial response was seen, mPFS was 1 month and mOS 13
months. To note, the patient that obtained a partial response had
a special histotype (invasive mucinous adenocarcinoma) (110).

New Potential Approaches
Although the recent discovery of direct inhibitors, KRAS mutated
NSCLC remains a challenging disease. Several mechanisms of
resistance to direct inhibitors have been identified, both on-target
(acquired point mutations or KRAS amplification) and off-target
(activating mutations in RAF/MEK/ERK pathway, oncogenic
fusions of other oncogenes such as ALK and RET or histological
transitions) (111). Different strategies to improve the results
obtained so far are under investigation, for example the use of
KRAS direct inhibitors in combination with immunotherapy in
the phase II KRYSTAL-7 trial (NCT04613596) and in the phase Ib
CodeBreak 101 trial (NCT04185883). Recently, preliminary
results about two combination arms of the CodeBreak 101 trial
were presented at the AACR-NCI-EORTC 2021 Virtual
International Conference on Molecular Targets and Cancer
Therapeutics. In 33 pretreated patients with KRAS-mutant
NSCLC, sotorasib was combined with two different doses of
afatinib (20 mg in cohort one and 30 mg in cohort two),
showing respectively an ORR of 20% and 35% and a DCR of
70% and 74%; the most common grade 3 AE was diarrhea.
Sotorasib and trametinib combination was tested in 18 patients
with heavily pretreated NSCLC, achieving early signs of activity:
DCR was 87% in patients not previously treated with a KRAS
G12C inhibitor; the most common AEs were diarrhea, nausea,
vomiting and skin reactions (112). Other fields of research are
exploring new potential indirect targets, for example p65BTK, an
isoform of Bruton’s tyrosine kinase expressed in more than 50%
NSCLC samples that acts as a downstream effector of RAF/MEK/
ERK pathway in KRAS mutated cell lines; this important
oncogene, which up to now has been known to be expressed
only in hematopoietic cells, could be targetable by BTK inhibitors
like ibrutinib (113). A further important open issue is targeting
non-G12C KRAS mutations; for instance, KRAS G12V mutation,
although more common in colorectal cancers (CRC) or pancreatic
adenocarcinomas, accounts for about 6% of NSCLC mutations.
Direct KRAS G12V inhibitors are still in the preclinical setting, but
they showed promising results in patient-derived xenograft
models of NSCLC, CRC and pancreatic cancers, obtaining even
complete tumor regressions (114). The deeper understanding of
the metabolic reprogramming in KRAS-mutant cells has allowed
to identify additional vulnerabilities. Kerr and colleagues showed
that KRAS G12D copy gain, which is a common step during
tumor progression, not only induces a glycolytic switch in lung
cancer models, but also enhances glutathione (GSH) biosynthesis,
translating into lower ROS levels and increased resistance to
oxidative stress; treating KRAS-mutant NSCLC cell lines with
the glucose analogue 2-deoxy-D-glucose and with BSO (an
inhibitor of the synthesis of GSH) resulted in a dramatic
apoptosis, confirming their dependency on glucose and GSH
(115). The upregulation of fatty acid synthetase (FASN) is also
frequent in KRAS-mutant cancer cells in order to provide a large
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amount of lipids, which are necessary to store energy and build cell
membranes (116); indeed, FASN inhibitor TVB-2640 was tested
(alone or in combination with a taxane) in a phase Ib trial in solid
tumors including a cohort of pretreated NSCLC patients: a higher
activity was seen in patients harboring a KRAS mutation, with a
median time to progression of 22 weeks vs 5 weeks (p<0.02) (117).
Lastly, LKB1 mutations are found simultaneously with KRAS
mutation in about 10% of NSCLC and seems to confer
susceptibility to phenformin, a mitochondrial inhibitor and
analogue of the antidiabetic drug metformin. This might be
explained because LKB1 is a kinase responsible for the
phosphorylation of AMPK under condition of energy stress (low
intracellular ATP levels), leading to the control of cell growth; in
the absence of LKB1, the depletion of ATP induced by phenformin
results in apoptosis due to the inability of these cells to recognize
the state of energy deficiency (118).

Epigenetic KRAS Modulation
Epigenetic modulation of gene expression is an important
regulatory process in biology (119) and its alterations contribute
to cancer development and progression. Gene regulation occurs in
the context of packaging of DNA into an organizing structure, the
nucleosome, composed of a DNA strand wound around a core of
eight histone proteins (120). Each histone protein has a N-
terminal tail extended outward through the DNA strand. Amino
acid residues on the histone tail are modified by post-translational
methylation, acetylation and phosphorylation (121). On the
contrary, deacetylation, demethylation, and dephosphorylation
of histones work decreasing access of transcription factors to
promoter regions (122). These post-translational modifications
can alter the secondary structure of the histone protein tails,
increasing the distance between DNA strands and histones and
facilitating the access to transcription factors to gene promoter
regions (123). Therefore, it is clear that epigenetic regulation is
strongly correlated with gene expression and, potentially, with
cancer development. In particular, epigenetic modification concur
to lung cancer spreading (124–126) and some data available have
shown that there is an interaction between KRAS mutations and
epigenetic changes (127). For example, histone deacetylase
inhibitors have shown the ability of blocking KRAS signalling
through gene transcription inhibition and by promoting apoptosis
process. Indeed, promising results have been achieved for the
treatment of several tumours (122). Notably, Panobinostat has
been evaluated in KRAS-mutant NSCLC A549 cell line,
demonstrating a significant reduction of cell proliferation (128).
Yamada et al. (129) have also evaluated the synergistic efficacy of
MEK plus a histone deacetylase inhibitor, demonstrating that this
combination has activity in KRAS-mutant lung cancer cells and
might be consider for a promising novel therapeutic approach for
patients with NSCLC harbouring KRAS mutations. Liu et al. (127)
have demonstrated that KRAS mutations increase telomerase
activity and length using RAS/MEK pathway activation. In vitro
experiments have shown that there is a clear correlation between
chemoresistance in KRAS-mutant tumors and telomerase length;
as consequence, targeting telomerase/telomere may represent a
potential therapeutic strategy for patients carrying KRAS
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mutations. Unluckily, imetelstat, a telomerase inhibitor, has been
tested in a phase II study as maintenance treatment and has failed
to improve PFS in patients with advanced NSCLC, only showing a
trend toward an improved PFS and OS in patients with shorter
telomere (130). Hong et al. (124) have speculated that GSK-J4, the
histone H3K27 demethylase inhibitor, is able to induce oxidative
and metabolic stress in cancer cell lines when a KRAS mutation is
detected, linking the role of oncogenic KRAS in the metabolic
stress response to GSK-J4 sensitivity. The trial results suggest
GSK-J4 as a potential treatment option for cancer patients with
KRAS mutations. Indeed, previous studies have shown that KRAS
mutant cancers are more sensitive to oxidative stress (131, 132);
moreover, a recent study has exhibited that in NSCLC with KRAS
mutations there is an altered expression of genes involved in
metabolism upon glutamine deprivation, confirming the
relationship between KRAS mutations and oxidative stress
susceptibility (133). Sunaga et al. (134) have used RNA
interference (RNAi) to knock down the KRAS-mutant cells
transcript. They have demonstrated that this mechanism reduces
cell proliferation through MAPK pathway downregulation, but
cancer progression is not completely abolished due to escape
pathways using EGFR, STAT3 and Akt phosphorylation. These
findings reveal that inhibition of KRAS signaling is effective, but it
could be not enough for a such complex and sophisticated issue
(134). Another study has examined the inhibitory growth effects of
an anti-KRAS ribozyme adenoviral vector (KRbz-ADV) in in vivo
and in vitroNSCLCmodels. In this study, KRbz-ADV has reduced
NSCLC cell growth, determining tumor shrinkage in vitro and
inducing complete xenograft regression in 70% of cases after
repeated intratumoral injection of KRbz-ADV in vivo (135). A
further epigenetic regulation is mediated by bromodomain and
extraterminal (BET) proteins that bind acetylated histones and
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recruit transcription factors to active promoters and enhancers.
For this reason, agents targeting BET proteins have emerged as
potential therapeutic strategies (136) and have been tested in
hematopoietic and solid tumors, showing a significant MYC
suppression in cancer cells (137). Interestingly, BET inhibitors
have demonstrated to suppress KRAS pathway, in particular in
NF1-mutant tumors, by suppressing KRAS-driven transcriptional
output (138); as consequence, MEK and ERK downstream appear
silenced. Therefore, Guerra et al. have demonstrated that BET
inhibitors might enhance the efficacy of MEK inhibitors in KRAS-
mutant cancers (139). They have also identified a subset of lung
cancer harbouring KRAS mutations. Specifically, several tumors
express high level of the homeobox gene HOXC10. HOX genes are
development controllers often overexpressed in cancer and, on the
contrary, are normally expressed in the corresponding tissue
during non-tumoral development (139, 140). In the case of lung
tissues, HOX genes are not expressed at all during lung
development, on the other hand HOXC10 appears overexpressed
in NSCLC. In this study, the authors have shown that HOXC10 is a
biomarker of response to MEK/BET inhibitors and regulates
expression of pre-replication complex proteins in conjunction
with MEK. Thus, MEK/BET inhibitor can suppress KRAS output
and HOXC10 to trigger replication defects and induce cell death
(139). Fabrizio et al. have investigated the role of methylation of
Kelch-like ECH-associated protein cytosine-guanine dinucleotide
(KEAP1CpGs); they have found that this methylation shows a
significant inverse correlation with the KEAP1 transcript levels.
Notably, these results were limited to the KRAS wild-type
squamous cell carcinoma and adenocarcinoma, whereas in
adenocarcinoma histotype the effect of epigenetic silencing of
KEAP1 was also observed in the EGFR mutated subpopulation.
In conclusion, the study has revealed that the epigenetic regulation
of KEAP1 expression has different features in KRAS and EGFR
settings of NSCLC, suggesting KEAP1 methylation as a predictive
marker for response to anti-EGFR agents in oncogene addicted
disease. Moreover, the correlation between epigenetic features and
histotype underlies an interplay with lung cancer pathogenesis and
development (141). Despite the many obstacles and its intrinsic
complexity, the intriguing scenario of epigenetic targeting has led
to many efforts trying to find the weak spot of KRAS-mutant
tumors, although in this regard there is still a long way to go.
CONCLUSIONS

NSCLC is a heterogeneous disease, in which the only histological
classification is largely inadequate to completely define its intrinsic
complexity. Molecular markers have dramatically reshaped
NSCLC treatment, but KRAS mutations still represent a
challenge for physicians and patients. Recently, promising
compounds have opened the doors to a new era in which KRAS
targeting is possible. The most promising therapeutic approaches
are represented by KRAS G12C direct inhibitors, AMG 510 and
MRTX849, that have shown encouraging preliminary results in
ongoing clinical trials. Actually, the impressive preclinical and
clinical activity showed by AMG 510, has led to the fast-track
FIGURE 1 | Site of activity of different agents targeting KRAS.
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designation by the FDA, representing one of the major
breakthrough in the lung cancer research of the last years (142).
Other treatment strategies including the inhibition of specific
pathways, such as RAF/MEK/ERK, are under investigation as
well (NCT03745989; NCT04418167; NCT03415126). The role of
ICIs in KRAS mutant NSCLC treatment is also under
consideration, alone or in combination with targeted therapy
approaches (NCT04613596). Also epigenetic deregulation has
been increasingly recognized as one of the major mechanisms of
gene expression modulation in lung cancer. Furthermore, some
data support the hypothesis that there could be an interplay
between KRAS epigenetic regulation and lung cancer
pathogenesis (141), suggesting a sophisticated balance between
genomic and epigenomic features and lung cancer development.
However, although much progress has been made in KRAS-
mutant NSCLC treatment, clinical trials have shown that
outcomes cannot be given for granted even when the same
subtype mutation occurs. This limited efficacy underlies a
relevant molecular heterogeneity among KRAS-mutant lung
cancer, with such an innate or acquired resistance to targeted
therapy, requiring further investigations. Overcoming
mechanisms of resistance, implementing gene expression
profiling in routine practice, tailoring treatment strategies and
extending pharmacological approaches to KRAS mutations other
than G12C currently represent the biggest challenge to be
addressed for the near future. On the whole, the historical
undruggable KRAS alteration is likely to be targeted and a
significant turning point has been reached, allowing to offer a
Frontiers in Oncology | www.frontiersin.org 9
range of opportunities in the growing individualized treatment
paradigm for KRAS-mutant NSCLC patients (Figure 1).
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