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District heating networks (DHNs) are promising technologies to increase the efficiency and reduce emissions of heat distribution to
residential and commercial buildings. The advent of the smart grid paradigm has introduced the usage of heating load forecasting tools
in DHNs. They provide estimates of future heating load, improving the planning of heat production and power station maintenance. In
this work, we propose a methodology based on the integrated use of regularized regression and clustering for generating predictive
models of future heating load in DHNs. The methodology is tested on a real case study based on a dataset provided by AGSM, an
Italian utility company that manages a DHN in the city of Verona, Italy. We generate a set of multiple-equation models having different
degrees of complexity and show that models generated by the proposed approach outperform those trained by standard methods.
Moreover, we provide an interpretation of patterns encoded by these models, and show that they identify real operational states of the
network. The approach is completely data-driven.

Index Terms—Heating load forecasting, predictive model generation, regularized regression, model clustering, model interpretability,
time series analysis, dynamical systems.
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1 INTRODUCTION

P REDICTIVE models are key tools in modern intelli-
gent systems. They allow to forecast in advance future

system states and to choose optimal actions, accordingly.
Several application domains require increasingly accurate
predictive models, from autonomous driving to churn pre-
diction [1] , robotics and planning , to provide a few ex-
amples. In the context of smart grids [2], predictive models
have recently gained strong interest because they enable to
improve planning of energy production and power station
maintenance. A specific branch of smart grids concerns
district heating networks (DHNs), in which centralized heat-
ing plants generate the heat and distribute it through a
pipe system via exchangers to residential and commercial
buildings (see Figure 1.a). DHNs are acknowledged as a
promising technology for heat distribution, since they en-
sure better efficiency and pollution control than standard
heating systems.

The heating production strongly depends on the envi-
ronment temperature, represented by variable T in Figure
1.a, but also other weather and social factors may influence
it. In Figure 1.a we represent, for instance, the relative
humidity (RH), the rainfalls (R), and holidays (H), an im-
portant social factor in this context. Load forecasting models
are analytical tools designed to predict future heating load
from these factors. In particular, past and present values of
heating load, and past, present and future (predicted) values
of social/weather factors are used to predict future values
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Fig. 1. System overview and problem definition. (a) District heating
network and factors influencing the heating load. (b) Overview of
the model generation process. Functions Generate all models and
Merge models are defined in Algorithm 1.

of the load. Different model variants can make predictions
at different times in the future (e.g., one hour or one day)
and use different modeling frameworks to generate the
prediction. Another key problem concerns the identification
of the most informative factors and lags to be used for
prediction. In this work, we focus on model selection and
assume the set of predictors to be fixed and provided
by prior knowledge. Our problem here concerns instead
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the generation of parsimonious (i.e, compact, in terms of
number of parameters) and interpretable predictive models
able to outperform a model presented in [3].

We present a methodology based on the integrated usage
of regularized regression and k-means clustering for gener-
ating compact and interpretable multiple-equation autore-
gressive models able to predict future heating load in DHNs.
The approach is based on two steps: i) the partition of the ob-
servations in the dataset into N sets having same weekday
and hour-of-the-day (e.g., all observations from Monday at
midnight are grouped together, the same for observations of
Monday at 1.00, and so on, until Sunday at 23.00), and use
ridge regression to generate one autoregressive model for
each weekday-hour pair; ii) the merging, by k-means clus-
tering, of autoregressive models having similar parameters,
obtaining models having k ≤ N autoregressive equations.
Using this original strategy we reach two important goals:
namely, we get compact, interpretable and accurate models
for heating load forecasting, and we automatically discover
different operational states of the DHN from these models.
Importantly, these states are detected in a completely data-
driven way. Moreover, each state is related to a specific set of
weekday-hour pairs and it is represented by the parameters
of an autoregressive model that predicts future loads only
for these pairs. Parameters of autoregressive models corre-
spond to cluster centroids computed by a clustering strategy
that favours the grouping of autoregressive models having
homogeneous parameters.

The proposed approach is applied to a real case study
based on a DHN located in Verona, Italy. The dataset used
contains hourly heating loads produced by 3 heating plants
in 2016, 2017 and 2018. We first analyze and compare the
performance of models having different degrees of compres-
sion (i.e., number of clusters). Then we select two compact
models having good forecasting performance, analyze their
parameters and the states of the DHN they represent.

The main contributions of this work to the state-of-the-
art are summarized in the following points:

• we propose an original methodology based on the
combination of ridge regression and k-means cluster-
ing for generating compact multiple-equation autore-
gressive linear models for load forecasting in DHNs;

• we apply the approach to a real case study and
show that the generated models outperform models
provided by standard methods;

• we analyze the dependence between model complex-
ity and model performance;

• we analyze the parameters of two compact models
and provide an interpretation of some clusters as
states of the DHN.

The original contribution that mainly differentiates this
work from other approaches, concerns the combination of
regression and clustering methods for, respectively, building
linear predictive models on subsets of samples having sim-
ple and homogeneous relationships between weather/social
factors and heating load, and merging models having simi-
lar parameters. This allows to build compact models having
different abstraction levels and possibly showing different
mechanisms of the process under investigation. In the next

sections the main differences between our method and the
literature are also highlighted.

The rest of the manuscript is organized as follows. Sec-
tion 2 presents the state-of-the-art on this topic. Section 3 de-
scribes the dataset, proposed methodology and performance
measures used to evaluate the models. Results are analyzed
in Section 4 and conclusions are drawn in Section 5.

2 RELATED WORK

We found two main connections between our work and the
literature. One is methodological and the other concerns
the application domain. From the methodological point of
view, clusterwise regression [4] and mixture regression are
the techniques more similar to ours. They aim to partition
the dataset and, simultaneously, make regression models
for each partition. They differ from our approach because
they consider all possible sample partitions and do not
use any prior knowledge to make the partition, as we do
with the weekday-hour factor. Our methodology therefore
solves a simpler problem but it is also more efficient, since
it takes advantage of the prior knowledge about sample
partitioning.

Regarding the specific application domain of load fore-
casting for smart grids, there exist an extended literature
dating back to the eighties [2]. Some recent literature con-
cerns also DHNs [5], [6], [7]. Multiple linear regression
models and SARIMA models are used, considering both
weather conditions and social components. Other relevant
social components are calendar events [6], such as holidays
which have different behaviours than working days, lead-
ing to systematic variations in the heating load. In [7] an
optimization is developed on combined heat and power
to minimize the production, distribution and net operating
cost. In [6] linear regression, multilayer perceptron, and
support vector regression are compared to forecast the
heat load of a district heating system in Aarhus, Denmark.
Models are trained on six years of hourly data including
load, weather (outdoor temperature, wind speed, and solar
irradiation) and social factors (hour-of-the-day, day-of-the-
week, weekend, month-of-the-year, and holidays). Several
other papers propose the usage of standard and extended
methods to improve prediction performance, such as the
recent [8], where linear regression, neural networks and
support vector regression are used, together with feature
selection, and compared to each other. Multiple-equation
linear models with one equation for each hours of the day
are built in [8] and [9] but those equations are not merged
as we propose in this paper to improve model parsimony.

3 MATERIAL AND METHODS

In this section we formalize the problem, describe the
dataset, introduce the model generation procedure and de-
fine the performance measures used to evaluate the model.

3.1 System overview and problem definition
An overview of the system under investigation is depicted
in Figure 1.a. The heat is produced by a power plant (on
the left) and distributed through a water pipe system to
commercial and residential buildings (on the right). The
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red line represents hot water moving from power plant to
buildings, and the blue line represents cold water moving
back to the power plant. The main factors possibly affecting
the heating load (l) are the temperature (T ), relative humid-
ity (RH), rainfalls (R), wind speed (WS), wind direction
(WD) and holidays (H). The model generation process is
summarized in Figure 1.b. We want to develop interpretable
models for predicting heating load in the next 48 hours from
informative variables contained in the training set. The 48-
hours time horizon is useful for operational planning and
control.

3.2 Dataset
We merged data from three sources, namely, a dataset
of hourly heating loads for a DHN managed by an Ital-
ian utility company called AGSM (https://www.agsm.
it/); weather data from a nearby meteorological sta-
tion (https://rp5.ru/); and a dataset of Italian holidays
( https://pypi.org/project/workalendar/). Data was col-
lected from 01/01/2016 to 21/04/2018 (i.e., 842 days,
20208 observations, date format in the overall manuscript
is DD/MM/YYYY). The first source (which is proprietary)
provides data for three power stations that we summed
together to obtain the total hourly load provided to the
network. From the meteorological data archive (which is
freely available) we took the five weather variables listed
in the previous subsection (namely, T, RH, R, WS, WD)
and processed them to obtain an hourly sampling interval.
Holidays were mapped to a binary variable (0=working day,
1=holiday).

These variables were further manipulated to obtain the
final training and test sets. We first selected only observa-
tions belonging to time intervals in which the heating is
on (this is regulated by law in intervals from 01/01/2016
to 11/05/2016, from 11/10/2016 to 14/05/2017, and from
16/10/2017 to 21/04/2018). Then we engineered new vari-
ables expected to have predictive power in our context,
according to similar applications in the literature [9]. The
final list of twenty independent variables and one depen-
dent variable (i.e, the heating load) is reported in Table 1
with short descriptions. Finally, we used standardized data
from 2016 and 2017 (10128 observations) as a training set
and from 2018 (2496 observations) as a test set.

3.3 Model generation procedure
The methodology proposed in this work aims to generate a
model of heating load l at time tj given the 20 independent
variables of Table 1. For instance, to predict the load of
next Monday at 8.00 we need the temperature (or some
forecasts) in the previous week, the relative humidity and
other weather variables of next Monday at 8.00, then we
need to know if next Monday will be a holiday, and the
heating load of the previous Sunday, Saturday, . . ., Monday,
at 8.00 (i.e., variables li, 1 ≤ i ≤ 7).

A possible mathematical form for this model is a single
equation linear regression model computed by the Ordinary
Least Squares method [10] (we will call this model MOLS

1 in
the following). However, to generate a good model we need
to identify some invariants (i.e., rules or patterns) in the
data. The main assumption we use in this work is that, in the

TABLE 1
List of variables used in the models.

Variable Description
l Heating load [MW] (target variable)

li, 1 ≤ i ≤ 7 Heating load i days before [MW]
lp Load in previous day peak (6:00 AM) [MW]
T Temperature [°C]
T 2 Square of temperature [°C]

Tma(7) Moving avg of temperature last 7 days [°C]
TM Maximum temperature of the day [°C]
T 2
M Square of maximum temperature of the day [°C]

TMp Maximum temperature of the previous day [°C]
T 2
Mp Square of max temperature of previous day [°C]
RH Relative humidity [%]
WS Wind speed [m/s]
WD Wind direction [0, 9], 9=no wind
R Rainfall (1 = rain, 0 = no rain)
H Holiday (0 = false, 1 = true)

context of district heating networks, data taken in the same
weekday-hour (e.g., on Monday at 8.00), are characterized
by specific statistical properties. We therefore use a multi-
equation strategy, based on autoregressive models, wherein
each equation deals with a specific weekday-hour. First,
we learn an autoregressive model for each weekday-hour,
obtaining 168 models (24 models for each weekday). Then
we use k-means clustering [10] on vectors of autoregressive
model parameters to merge models having similar param-
eters, achieving a more compact and interpretable final
prediction model based on cluster centroids. In this model,
clusters correspond to different states of the heating load and
cluster centroids correspond to the parameters of “average”
autoregressive models representing the invariants of these
states. Notice that the weekday-hour factor here consid-
ered to partition the samples can be substituted with more
complex factors, such as month-weekday-hour, that could
provide information about seasonality. But seasonality can
also be dealt with by introducing specific variables in the set
of independent variables.

Algorithm 1, in the following, provides the pseudo-
code and the mathematical notation of two procedures (also
depicted in Figure 1.b) representing the core of the proposed
approach. The first procedure is called Generate all models.
It is used to generate the complete set of 168 autoregressive
models, called Md,h, d = 1, . . . , 7, h = 0, . . . , 23, where d
represents the weekday and h the hour of the day. The
second procedure is called Merge Models and is used to
generate more compact models, having k autoregressive
equations (with 1 ≤ k ≤ 168) represented by cluster
centroids. We use the notation Mk to represent a generic
prediction model composed of k autoregressive equations.

Ridge regression. Single autoregressive models are
trained by ridge regression [10], instead of standard OLS,
because it is more robust to variable correlations. In fact,
some of the variables described in Table 1 are significantly
correlated to each other, hence in some cases they could be
interchangeably used to generate models having different
parameters but similar behaviors. Ridge regression avoids
this issue by imposing a constraint on parameter size that

https://www.agsm.it/
https://www.agsm.it/
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Algorithm 1: Model generation procedure

Generate_all_models(D) // D: dataset
for d in 1..7 // d: weekday
for h in 0..23 // h: hour
Md,h=Ridge_regression(Dd,h)

end
end
return {Md,h, d = 1, . . . , 7, h = 0, . . . , 23}

end

Merge_Models({Md,h, d = 1, ..., 7, h = 0, ..., 23}, k)
Mk=K_means({Md,h, d = 1, . . . , 7, h = 0, . . . , 23}, k)
return Mk

end

forces the solution with minimal L2 norm to be selected
among all solutions having the similar goodness of fit. The
Lagrangian form of the optimization problem solved by
ridge regression is shown in the following [10]:

β̂ridge = argmin
β

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
, (1)

where βridge is the vector of model parameters computed by
ridge regression, n is the number of observations, yi is the
i-th observation of the dependent variable in the training set
(i.e., the heat load in our case), xij is the value of the j-th
independent variable (see Table 1) for the i-th observation of
the training set, β0 is the intercept, βj is the j-th parameter
of the regression model, and λ ≥ 0 is a complexity param-
eter that controls the amount of shrinkage. The larger the
value of λ, the greater the amount of shrinkage. The optimal
λ parameter is selected by 10-folds cross-validation. Due
to the shrinkage constraint, model coefficients generated by
ridge regression are more uniform than those generated by
OLS hence they can be used in the subsequent clustering
phase without having any problem of multiple clusters with
same predictive behavior.

K-means. The k-means algorithm is a well known itera-
tive descent clustering method [10] which aims at minimiz-
ing the objective function J =

∑n
i=1

∑k
c=1 ric ‖ xi − µc ‖2,

where ric ∈ {0, 1} is a binary indicator of point-cluster
membership, xi is a data point (i.e., a vector of model
parameters in our case), µc is the centroid of cluster c, n
is the number of data points and k the number of clusters.
A clustering is a set of centroids that minimizes J .

We implemented our approach in Python using the
Scikit-learn (https://scikit-learn.org) library. For ridge re-
gression we used function RidgeCV with parameters
alphas ∈ [0.005, 5e9], intercept = True, normalize =
False, and cv = 10. For k-means we used function KMeans
with Euclidean distance ‖ · ‖2, and re-initialized the algo-
rithm 100 times.

3.4 Performance measures

Models are evaluated by four indices, namely, the coefficient
of determination (R2) [10] on the training set, the root mean
square error (RMSE) on the test set, the Akaike information
criterion (AIC), and the number of parameters in the model.

Root mean square error (RMSE). Given a time-series with
n observations y1, . . . , yn and a prediction ŷ1, . . . , ŷn, the
RMSE is computed as [10],

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2)

and represents the average prediction error over all time
instants in the time series. Since we are interested in eval-
uating our models on predictive horizons of 48 hours, we
computed the average RMSE on all 48-hours predictions
that can be made on the test set (RMSE in the following).

Akaike information criterion (AIC). Given a model with
k parameters and a likelihood L, its AIC is [10],

AIC = 2 · k − 2 · log(L). (3)

Since we used this formula to evaluate multi-equation
autoregressive models, we substituted the log-likelihood
log(L) with a measure of goodness for this specific type
of model, namely n

2 · log(RMSE
2
), where n is the number

of samples in the test set.

4 RESULTS

In this section we first present model M168, namely, the
model generated by procedure Generate all models and us-
ing one autoregressive model for each weekday-hour. Then
we analyze the performance of models Mk with k < 168
(generated from model M168 by procedure Merge models)
and investigate the dependence of this performance on k.
We finally focus our attention on a small subset of models,
namely M1, M2, M6 and M168, having specific properties
(i.e., smallest number of parameters, best AIC and best
RMSE) and analyze their parameters, discovering a set of
states of the heating network.

4.1 Model M168

Model M168 is composed of 168 autoregressive models.
Each autoregressive model has 21 parameters (i.e., one
parameter for each variable and one intercept) hence the
total number of parameters is 3528. Figure 2 shows the
distribution of parameters for each variable. For instance,
the first box plot, on the left, shows the distribution of the
intercepts across the 168 autoregressive models, which has
a median of 14.091 and all values larger than 10. The second
boxplot displays the distribution of parameters related to
the temperature (i.e., variable T ). The median is -2.456 and
the interquartile range is negative with only few positive
outliers, which is reasonable since temperature is usually
negatively related to heating load (namely, when the tem-
perature decreases the heating load increases). The opposite
behavior is observed for variable l1 (i.e., the heating load
one day before) which has all positive parameters since it is
directly related to the predicted heating load.
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Fig. 2. Distribution of model parameters across the 168 autoregressive
models of model M168.

4.2 Dependence of model performance on k

The question we answer in this section concerns the rela-
tionships between the number of autoregression models k
(with 1 ≤ k ≤ 168) and the performance of related model
Mk. The analysis proposed in the following allows us to
understand this relationship and to identify some models
having good balance between performance and parsimony,
which results also in the discovery of some states of the heat-
ing network. Models with k < 168, generated by procedure
Merge Models, are more parsimonious than model M168 in
terms of number of parameters, but they have also lower
performance due to the reduction of the degrees of freedom
of the model. For each model Mk we compute the average
coefficient of determination R̄2 (over all k autoregressive
models inMk), theRMSE (over all 48-hours predictions on
the test set), and the AIC. Figure 3.a shows the distribution
of R̄2 of models M1, M2, M3, M6, M100 and M168 (only
6 models are displayed to improve the readability of the
figure). Model M168 has R̄2 equal to 0.980 (see the second
row of Table 2 and the red point on the right hand side of
Figure 3.a), which is the highest since the model employs the
largest number of autoregressive models. As k decreases,
the R̄2 decreases as well, but the performance are high for all
k, with a minimum R̄2 of 0.930 for model M1 (see Table 2).
The chart also shows the R̄2 of models MOLS

1 and MRidge
1 ,

that are generated using ordinary least squares (OLS) [10]
and ridge regression, respectively, on the entire training
set (i.e., without splitting it by weekday-hour). Moreover,
we display the mean performance of model MOLS

168 which
has 168 autoregressive models and is generated by OLS
instead of ridge regression. The coefficient of determination
of MOLS

1 and MRidge
1 , respectively 0.948 and 0.942 (see

Table 2), are slightly better than that of M1, and the R̄2 of
MOLS

168 , namely 0.984, is slightly better than that of M168.
We see in the next paragraph that this order of performance
changes when performance is computed on the test set in-
stead of on the training set, showing that models computed
by Algorithm 1 have improved generalization capability
than standard models.

Figure 3.b provides information about model RMSE
on the test set. The values of RMSE of models computed
by Algorithm 1 (see red points connected by a red line
in Figure 3.b, and related values in the second column of

TABLE 2
Model performance.

Model RMSE R̄2 AIC # params
MOLS

168 [3] 1.570 0.984 14193 3528
M168 1.377 0.980 12623 3528
M6 1.657 0.953 3968 126
M2 1.736 0.941 3954 42
M1 1.855 0.930 4107 21
MOLS

1 1.982 0.948 3822 21
MRidge

1 2.136 0.942 4287 21

Table 2) range from 1.377 of model M168 to 1.855 of model
M1. Boxplots show the distribution of RMSE for each Mk.
Interesting enough, the RMSE of model M168, which is
computed by ridge regression, is lower than that of MOLS

168

(namely, 1.570), that is the best model presented in [3] (see
the two red points on the right of Figure 3.b). This improve-
ment is achieved by the regularization term introduced
by ridge regression, which enhances model generalization.
Another very interesting result concerns the lower RMSE
of M1 with respect to MOLS

1 and MRidge
1 (respectively

1.982 and 2.136 on the left of Figure 3.b). It shows that
the proposed methodology outperforms standard model
generation methods, such as OLS and also ridge regression,
if they are applied to the complete dataset.

Since both R̄2 and RMSE improve when the number of
autoregressive models increases, we use the AIC to identify
models having a good balance between parsimony and
prediction performance. We are in fact interested in compact
models because it is realistic to believe that there is a high
level of redundancy in model M168. Figure 3.c shows that
the AIC has two local minima in k = 2 and k = 6, with
similar AIC values of 3954 and 3968, respectively (see also
Table 2). The AIC then increases in model M1, because of
the poor goodness of fit, and in models Mk with k ≥ 7,
because they use many parameters.

Figure 3.d compares the RMSE of models M1 (red),
M6 (green) and M168 (blue) on all predictions made on
the test set. The x-axis contains dates from 07/01/2018 to
22/04/2018, the y-axis shows RMSE values. Each point rep-
resents the RMSE of the 48-hours prediction starting from
the date in the x-axis. Model M1 is the most compact but it
has the worst performance (i.e., the highest RMSE), model
M168 is the most complex and has the best performance (i.e.,
lower RMSE), and models M2 and M6 have intermediate
performance. We notice that in some points, such as point
P1 in Figure 3.d, all the models have a peak of RMSE, while
in other points, such as point P2 and P3, only some models
(namely, M1 and M6) have an error increase. Figure 3.e, 3.f
and 3.g show the 48-hours prediction of models M6 (green
line) and M168 (blue line), with the true heating load of the
network (red line) in points P1, P2 and P3, respectively.

4.3 Parameters and interpretation of selected models

Models M2 and M6 have, respectively, 42 and 126 parame-
ters (see Table 2), that correspond to a reduction of 99.10%
and 96.43% of parameters with respect to model M168. This
strong shrinkage yields, however, a quite limited decrease
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Fig. 3. Model performance. (a) Dependence of R̄2 on k; (b) Dependence of RMSE on k; (c) Dependence of AIC on k; (d) RMSE of models M1,
M6 and M168 over the test set; (e)(f)(g) comparison between real evolution of load and predictions of models M6 and M168 for three peaks of error
P1, P2 and P3.

of performance, since the RMSE of M2 grows by 26.1%
(from 1.377 to 1.736, see Table 2) and the RMSE of M6

grows by 20.3% (from 1.377 to 1.657). This behavior points
out that the proposed merge strategy, based on k-means,
preserves the prediction capabilities of the final model while
clustering similar autoregressive models. The analysis of
cluster centroids (i.e., parameters of models M2 and M6)
and related weekday-hour pairs therefore provides model
interpretation and allows the identification of states of the
heating network, as explained in the following.

Figures 4.a and 4.b show the coordinates of cluster
centroids for models M2 and M6, respectively. The x-axis
contains the list of variables, namely, the intercept (I) and
all independent variables of Table 1. The y-axis displays
the value of variable parameters. Different centroids (corre-
sponding to different autoregressive models in a model Mk)
are depicted by different colors. Figures 4.c and 4.d show, by
two heatmaps, the distribution of clusters across weekdays
(columns) and hours of the day (rows) for models M2 and
M6, respectively.

Focusing on model M2 (see Figures 4.a and 4.c), we
observe that cluster C0 (in blue) is characterized by an

intercept of 12.227 which is smaller than the intercept of
cluster C1, namely 15.322. Other significant differences are
present, for instance, between the parameters of tempera-
ture (see variable T in the x-axis), which have a value of
-2.065 for cluster C0 and of -2.279 for cluster C1. Another
parameter of interest is holiday (variable H) which has
value -0.212 for cluster C0 and -1.059 for cluster C1. These
differences can be directly interpreted in terms of heating
network states. The properties of cluster C1 say that this
cluster represents a state in which larger heating load is
provided (under the same conditions of other variables)
than in the state represented by C0 (according to the higher
intercept). Moreover, the heating load is more influenced
by the temperature in state C1 than in state C0. The same
holds for variable holiday, namely, the heating load is more
influenced by holidays in state C1 than in state C0. All
these factors identify two specific states of the network,
that are also projected to different intervals of hour of the
days and weekdays, as clearly displayed in Figure 4.c. This
figure shows that cluster C0 (blue) mainly corresponds to
time intervals when the network is little used, i.e., night
and weekends, while cluster C1 (red) corresponds to time
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Fig. 4. Detail on models M2 and M6. (a) Centroids (i.e., parameters of autoregressibe models) of model M2; (b) Centroids of model M6; (c)
Distribution of clusters in model M2 across weekdays and hours; (d) Distribution of clusters in model M6 across weekdays and hours.

instants when the heating network is more strongly used,
i.e., daytime and working days.

The proposed methodology allows to enhance the gran-
ularity of the discovered states by increasing the number of
clusters k. In this way more specific states can be identified.
The highest granularity is provided by model M168 but in
our investigation we noticed that the more interesting states,
able to generalize over similar behaviors of the network, are
found with k < 10. Here we show the clusters identified by
model M6, which has the second best AIC after model M2.
The distribution of clusters over weekdays and hours of the
day, in Figure 4.d, shows four big clusters and two small
ones. Interesting enough, two of the big clusters split the
“strong usage” state (i.e., C1) of M2, and the other two big
clusters split the “little usage” state (i.e.,C0) detected byM2.
In particular, cluster C0 of model M6 (in blue) is specialized
on very strong usage of the network, which occurs on peak
hours (around 6.00 during working days and Saturday) and
on Monday, namely, when people turn on the heaters after
the night or after the weekend. Cluster C2 of model M6 (in
red) represents a state of strong but slightly lower usage
of the network, which mainly occurs in the afternoon and
evening. On the other hand, clustersC3 andC4 of modelM6

split in two parts cluster C0 of model M2 (i.e., low usage of
the network).

The remaining clusters C1 and C5 of model M6 group
together only 12 and 2 weekday-hour pairs, respectively.

These clusters have different parameters than other clusters
and they mainly concern time slots on Thursday (cluster
C1), and Wednesday/Friday at 13.00/14.00 (cluster C5). As
such, it is difficult to associate these two clusters to clear
operational states (e.g., holidays or week-end), however we
cannot exclude the presence of specific behaviors on those
time slots because the heating load signal is very complex
and is generated by behaviours of both residential and
commercial consumers. A key point to highlight is that these
clusters are statistically significant because i) their average
coefficient of determination is very high (i.e., R̄2 = 0.98
for C1 and R̄2 = 0.99 for C5) hence they correctly fit
the training data, ii) they are compact and well separated
clusters (i.e., silhouettes are 0.71 and 0.88, respectively, and
silhouettes of clusters C0, C2, C3 and C4 are 0.58, 0.72, 0.58
and 0.60, respectively), iii) they are stable over different
number of clusters (i.e., cluster C1 appears in model M4

and cluster C5 appears in model M5, and they both keep
their configuration of weekday-hours fixed until M6 and
beyond), iv) they provide performance improvements.

A possible interpretation for clusterC5 is obtained by ob-
serving that its centroid has a positive parameter (i.e., 3.117)
for temperature (T ), and a strongly negative parameter (i.e.,
-7.428) for the maximum temperature of the previous day
(TM ). Since the maximum temperature in winter (when the
heating is on) is at about 13.00 or 14.00, and this cluster
concerns the same hours we can observe that the linear
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combination of the two variables 3.511TM−7.111T actually
represents a weighted difference between the maximum
temperature of the previous day (TM ) and the maximum
temperature at the current day. Hence this parameter config-
uration could suggest that in the specific time slots of cluster
C5 the composed variable related to temperature difference
is more informative than variables selected in other clusters
for predicting the heating load. Feature engineering is out of
the scope of this work but this result is interesting because it
suggests novel informative variables to insert in the variable
set. Our analysis also confirmed that temperature variations
between consecutive days can strongly affect the prediction
performance (peak P1 in Figure 3 corresponds to a decrease
of the daily average temperature from 7◦C to −1◦C in 24
hours). Cluster C1 follows similar principles.

To conclude this section we briefly provide a perfor-
mance comparison with a popular modeling framework,
namely Convolutional Neural Networks (CNNs), to show
that the proposed method has comparable performance on
the same dataset. The best model we generated with a
relatively small CNN model has two layers, six neurons,
18491 parameters and RMSE of 1.455. Larger networks
reach only slightly better performance. This performance is
comparable with that of more parsimonious linear models
presented in this paper (in particular, it is slightly worse
than M168 and slightly better than M6) but the number of
parameters used by CNNs is much higher. Similar results
have been achieved with Long Short-Term Memory (LSTM)
networks. The main motivation for these results seems to
be that CNN and LSTM models were trained on the over-
all dataset, which contains complex dependencies between
weather/social factors and heating load, while our multiple-
equation linear models were trained on subsets of samples
in which simpler relationships are present. Neural networks
cannot be trained on the same subsets of samples because
they need large number of samples to avoid overfitting.
These results further support our strategy based on sample
partitioning, generation of simple models on those parti-
tions, and fusion of similar models using clustering.

5 CONCLUSION

In this paper we propose a methodology for generating in-
terpretable predictive models in the context of load forecast-
ing in district heating networks. Our analysis shows that in
datasets having a predefined partitioning structure, such as,
weekday-hour, a predictive model can be generated by first
creating an autoregressive model for each subset of observa-
tions and then merging, by clustering, similar autoregressive
models having homogeneous parameters. We used ridge
regression for estimating parameters of single autoregres-
sive models, since it is robust to variable correlation, and k-
means for model clustering. Results show that i) predictive
models generated by the proposed technique maintain a
good accuracy also when a small number of clusters k is
used, ii) the clustering of autoregressive models yields inter-
pretable “average” models representing significant states of
the heating network. Future work concerns the integration
of the current approach with (interpretable) feature engi-
neering and feature selection methods able to automatically

generate and select variables that can improve prediction
performance while preserving model interpretability.
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