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Abstract

Small and Medium Enterprises (SMEs) represent 90% of businesses and more than
50% of employment worldwide. While large companies lead long-term innovation
strategies with dedicated resources for new technologies, SMEs struggle to manage
the increased complexity of processes due to funds shortages, low managerial skills,
and lack of personnel. To achieve a sustainable fourth industrial revolution, it is
crucial to develop systems that consider SMEs’ conditions. Monitoring technologies
provide numerous benefits for SMEs without burdening the production process in
use. Monitoring systems facilitate process management, improve product quality and
relief operators. In this thesis, we provide two contributions to process monitoring:
the first one is an automatic system for recognizing the process phases, while the
second one consists of developing a forecasting procedure for product quality. The
automatic recognition system uses a supervised deep learning method to capture long
and complex actions. This is made possible by stacking expanded convolutional filters
on the input data. The second proposed contribution is a predictive procedure that
combines the causal flow of the product with domain expert knowledge to achieve
an efficient and flexible forecasting system. We introduce a neural network architec-
ture named Separable Temporal Convolutional Network (S-TCN), which efficiently
exploits causal precursors to obtain distant temporal information. The proposed
methods are tested in numerical experiments and in a controlled environment that
replicates manufacturing tasks. Finally, the predictive procedure has been applied to
a medium-sized manufacturing company.
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Segmentazione di fasi del processo e relazioni causali
per impianti manifatturieri continui

Di
Giovanni Menegozzo

Sommario

Le piccole e medie imprese (PMI) rappresentano il 90% delle imprese e più del 50%
dell’occupazione nel mondo. Mentre le grandi aziende conducono strategie di innovazione
a lungo termine con risorse dedicate alle nuove tecnologie, le PMI faticano nel gestire la
maggiore complessità dei processi a causa della scarsità di fondi, delle basse competenze
manageriali e della penuria di personale. Per raggiungere una quarta rivoluzione industriale
sostenibile, è fondamentale sviluppare sistemi che considerino le condizioni delle PMI. Le tec-
nologie di monitoraggio forniscono numerosi benefici alle PMI senza appesantire il processo
produttivo in uso. I sistemi di monitoraggio facilitano la gestione del processo, migliorano
la qualità del prodotto e soccorrono gli operatori. In questa tesi, forniamo due contributi
al monitoraggio dei processi: il primo consiste in un sistema automatico di riconoscimento
delle fasi del processo, mentre il secondo consiste nello sviluppo di una procedura di pre-
visione per una caratteristica qualitativa chiave del prodotto. Il sistema di riconoscimento
automatico utilizza un metodo di apprendimento profondo supervisionato per catturare
movimenti lunghi e complessi. Ciò è reso possibile dall’utilizzo di filtri convoluzionali sui
dati di input. Il secondo contributo proposto consiste in una procedura predittiva che com-
bina il flusso causale del prodotto con la conoscenza degli esperti del dominio per ottenere
un sistema di previsione efficiente e flessibile. Introduciamo un’architettura di rete neurale
chiamata Separable Temporal Convolutional Network (S-TCN), che sfrutta in modo effi-
ciente i precursori causali per ottenere informazioni temporali distanti. I metodi proposti
sono testati in esperimenti numerici e in un ambiente controllato che replica le attività di
produzione. Infine, la procedura predittiva è stata applicata a un’azienda manifatturiera di
medie dimensioni.
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Paolo Fiorini
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Co-Relatore:
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Titolo: Dottore
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Chapter 1

Research goals and challenges

The manufacturing sector accounts for roughly 15% of the global Gross Domestic

Product (GDP) and it reached $13.9 trillion US dollars in 2018 [12, 13]. These

enormous numbers are difficult to conceive, however, it is sufficient to consider all

the products that surround us to understand the impact of manufacturing in our life.

Mass production has expanded, thus the number of manufactured objects has steadily

increased. Nowadays, technological discoveries and globalization push industries to

adapt the production process to customers’ needs by overcoming constraints. The so-

called fourth industrial revolution is taking over, blurring the boundaries between the

physical, digital and biological domains [14]. The fourth industrial revolution refers

to the technological transformation that society is undergoing in the 21st Century

[15]. Indeed, since our lives are strongly related to manufacturing goods, the fourth

industrial revolution will not involve only products, but it will affect our whole expe-

rience. This enormous transformation cannot be relegated to companies, but it must

be sustained by all society players as universities and governments. In 2011, Ger-

many was the first nation to lunch a plan to promote a sustainable fourth industrial

revolution. The "Industrie 4.0" plan encourages synergy between research centers

and stakeholders to introduce technologies and build the proper entrepreneurial atti-

tude [16]. "Industrie 4.0" promotes a holistic concept of industrial production with

shared responsibility between companies and society for developing interconnected

factories and cities. It focuses on skills distribution and seeks to spread the fourth
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industrial revolution thrust throughout the community. Following, Europe adopted

the "Industry 4.0" plan inheriting from Germany the concept of combining industrial

with social-economic development. In 2015, China began the "Made in China 2025"

plan to promote the fourth industrial revolution. Differently from European Union

(EU), they propose a top-down approach using substantial financial investments to

restructure the entire industry [17]. The United States of America (USA) presented

the "Advanced Manufacturing Partnership" project and favored public services, po-

litical, education, and training policies. As a result, many governments have adopted

policies to manage the introduction of new technologies into industries. Researchers

compared innovative policies approved by different nations for Industry 4.0 (I4.0)

[18, 19]; the different choices made by governments have strong effects on the evo-

lution of the manufacturing ecosystem. For example, some investments in training

and education return after many years with higher qualified operators, while others

have immediate results as financial aid to companies. This situation requires a flex-

ible assessment for I4.0 achievement. Therefore, before proposing innovations, it is

necessary to consider the manufacturing context analyzed, its needs and limitations.

Without proper consideration of the circumstances, the proposed innovation may be

unaffordable for some companies or, even worse, impact negatively on social welfare.

For this reason, we start this thesis by describing the characteristics of the European

and Italian manufacturing context.

1.1 The importance of SMEs for the European man-

ufacturing sector

The realization of I4.0 is heavily affected by companies’ size. The EU has divided

the businesses into four categories shown in Table 1.1. The size and turnover of a

company suggest diverse roadmaps to Industry 4.0. I4.0 technologies need to reach all

companies to enable healthy and sustainable industrial growth [20]. Therefore, it is

necessary to consider the different characteristics between micro, small, medium en-

24



Company category Staff headcount Turnover or Balance sheet total
Large/Multi-national > 250 > € 50 m > € 43 m

Medium < 250 � € 50 m � € 43 m
Small < 50 � € 10 m � € 10 m
Micro < 10 � € 2 m � € 2 m

Table 1.1: EU recommendation 2003/361 on enterprises category.

terprises (SMEs) and multi-national enterprises (MNEs) to develop effective method-

ologies [9]. SMEs worldwide account for 99% of all undertakings and employ 60%

of the workforce in the private sector [21]. The International Energy Agency (IEA)

highlights that SMEs create almost 50% of the global gross value added [22]. Ac-

cording to [23] European SMEs employ approximately 90 million people in total, and

this Figure increases by 1.1 million every year. Although their smaller dimension and

lower turnover, SMEs are indeed the true economic backbone of the EU. Applying

the I4.0 concept without considering SMEs’ challenges is not acceptable in the EU

because if the I4.0 technologies would be suitable only for large manufacturers, the

consequences could be harmful. For example, proposing solutions that require nu-

merous specialized employers would benefit large firms, while SMEs would not access

these technologies. The gap between SMEs and large companies would increase with

a consequent loss of competitiveness for most industries.

The presence of SMEs is particularly significant in Italy. SMEs generate the 63%

of the total value-added for enterprises compared to the average of 53% in EU27

(after Brexit) [24]. Micro-enterprises in Italy (95%) are over the EU average (93%).

Only 0.09% of Italian companies have more than 250 employees, compared to 0.14%

in France, 0.19% in Europe, and even 0.48% in Germany (five times as many) [25].

Accordingly, in Italy, micro-companies account for 45% of the workforce, compared to

30% in France, 19% in Germany and 29.5% in the EU [25]. For large companies, the

workforce employed is only 21% in Italy, compared to 33% in France, 37% in Germany,

and 33% in the EU [26]. These data present Italy as a reference for the adoption of

policies towards SMEs. The Italian situation allows to understand the effectiveness

of I4.0 practices for SMEs and justifies focusing on this class of companies.
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In the next section, the substantial differences between SMEs and large enterprises

are exposed. This thesis aims to promote enabling technologies for I4.0 in the context

of SMEs. As described in this section, the research focus is motivated by the high

numbers of SMEs in the European and Italian panorama.

1.2 Risks and challenges for SMEs

As shown in Table 1.1, in addition to the number of employees, a characteristic feature

for SMEs is a limited turnover. The financial aspect, indeed, is quite restrictive for

SMEs and represents a primary obstacle [1]. Although it has gradually improved

since the mid-2010s, for SMEs’ access to finance remains challenging. The financing

situation of euro area firms was particularly severe for SMEs, with some differences

across sectors. Figure 1-1 show that the percentage of firms that perceived access

to finance as their main problem was consistently higher for SMEs than for large

companies [3]. During the 2009-12 period, about 15% of EU SMEs that were looking

Figure 1-1: Percentages of firms that consider financing the biggest problem for the
company, adapted from [1].

for bank loans as a founding source was also constrained in obtaining a bank loan.

Today it is currently stabilizing around 8% [3]. The financial uncertainty has been

crucial with the arrival of the pandemic, further increasing the gap between SMEs
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and large enterprises. If we consider the Italian scenario that predicts the number

of jobs lost due to Covid, the consequences are expected to be less critical for large

companies than for SMEs (Figure 1-2). On a prospect of 125 thousand lost jobs,

large companies expect a loss of 1.1 percentage points lower than SMEs (almost half

loss) [27]. The gap between MNEs and SMEs leads to unfair competition between

Figure 1-2: Projection on jobs lost due to default by size changes 2021/2019. Effect
of Covid adapted from [2].

industries and it favors large companies at the expense of SMEs with a consequent

reduction in social welfare distribution. In recent years, to facilitate the achievement

of I4.0 in SMEs, strong funding has been issued by governments. As reported at

the beginning of this section, the adopted policies (particularly the EU with the

NextGeneration EU plan) gradually fund SMEs and consequentially decrease financial

pressure. Specifically, in Italy, there will be a unique opportunity as in addition to

the new "Transizione 4.0" plan and the NextGeneration EU project, with "Piano

Italia" an endowment of around 200 billion will be granted, just under two-thirds

in the form of loans and the remainder in grants [28]. These funds allow companies

to access expensive technologies through facilitated financial plans. For example,

during the "Industria 4.0" project (the first plan adopted by Italy for I4.0), hyper-

amortization (150%) has proved to be an extremely effective tool in facilitating the

purchase of advanced technologies for SMEs. It emerges that between 2017 and 2018,

the value of investments generated by hyper-amortization in Italy exceeds 25 billion

euros overall [29]. Therefore, although limited financial capabilities are a feature of
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SMEs, many efforts have been made to alleviate the economic pressure and in the

coming years the access to finance should further improve.

However, other barriers slow down the adoption of I4.0 in SMEs. In [9], Mittal et

al. reviewed Smart Manufacturing (SM) and I4.0 maturity models and they analyzed

specific requirements of SMEs. They identify three main research gaps that pertain

to SMEs:

• different starting conditions between SMEs and large firms;

• disconnection between maturity models and self-assessment readiness tools;

• differences in preparing the next step after maturity and readiness are assessed.

The above study highlights the importance of cultural maturation in SMEs. Even

if industries can obtain funding thanks to governments’ support plans, without I4.0

cultural awareness, funding can be lost on inadequate technology. Often in SMEs,

enabling technologies are erroneously perceived as tools to improve the current pro-

duction without exploiting the true potential provided by the interaction of these

systems. Without adequate cultural and managerial competence, I4.0 technologies

are not recognized as revolutionary and fail to switch the running paradigm in au-

tonomous and re-configurable industries. The result of the survey carried out by [30]

highlight this risk while drawing a comparison between different nations: The major-

ity of German companies does not assume their production processes have achieved

a high degree of digitalization, while the Slovenian and Italian companies believe that

their production processes have achieved a medium degree of digitalization. So it is

not strange if the Italian and Slovenian companies agree that new technologies can be

implemented gradually with contained investments, even without radical changes, and

that implementation does not require significant investments. In contrast, the Ger-

mans think that implementation of Industry 4.0 requires major investments and that

these will cost [30]. This behavior describes an inconsistency, given that digitalization

is higher in Germany than in the other two states [31]. Digitization and cultural ma-

turity towards I4.0 are correlated. These discrepancies are also recognizable between
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large companies and SMEs. Figure 1-3 shows that Italian manufacturer’s digitiza-

tion is strongly tilted in favor of large firms [32]. Again, the main risk is that the

Figure 1-3: The digitalization of Italian companies from CERVED 2020 report [3].

improvement of advanced technologies benefits large firms as they are more prepared

for the transition, not succeeding in intercepting the majority of companies. There-

fore, it is suggested that although I4.0 technologies have revolutionary potential, their

introduction into the companies must be accompanied by a cultural shift.

In addition to the financial and managerial circumstances, another feature of

SMEs is related to business strategies. Table 1.2 reports the different characteris-

tics of the SME and Multi-National Enterprises (MNE), adapted from [9]. SMEs

must quickly adapt the industrial process to respond to customer needs and produce

highly specialized products [33]. A large product portfolio has a negative influence

on the operational performance [34]. The request for a flexible production increases

the overall complexity of the management. Moreover, in order to promptly customize

the production, companies struggle to manage long-term strategies [35]. The need

for flexibility and lack of long-term strategy prevents research and development. The

absence of standardization and protocols due to large variations in production pro-

cesses hinders the training time of new operators. Therefore, a small number of expert
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N. Feature SMEs MNEs
1 Financial Resources Low High
2 Advanced Manufacturing Low (Very) High

Technology
3 Software Umbrella Low High
4 Research and Development Low High
5 Nature of Product High Low

Specialization
6 Standards consideration Low High
7 Organization culture and Low High

Leadership flexibility
8 Company Strategy Dictated by Instinct Market Research and

Of Leader (Owner) Accurate Analyses
9 Decision Making Restricted to Board of Advisors

Leader and Consultants
10 Organizational Structure Less Complex Complex

And Informal And Formal
11 Human Resources Multiple Domains Specialized Domains

Engagement
12 Exposure to Human High in The Industry Low Within Industry

Resource Development Low Outside The Industry High Outside the Industry
13 Knowledge and Experience Focused In A Spread Around Different

Industry Specific Area Areas
14 Alliances with Universities Low High

Research Institutions
15 Important Activities Outsourced Internal to the

Organization
16 Dependence on Collaborative High Low

Network
17 Customer/Supplier Relations High (Strong) Low (Not So Strong)

Table 1.2: Description of the features of SMEs and MNEs. Refer to [9] for the origi-
nal source and more details

operators find themselves managing the increasing complexity of SMEs without the

capability to train or hire new practitioners. For example, according to a 2015 survey

of the manufacturing sector in Japan, the main obstacles to investing in data-mining

(that is an advanced technology for I4.0) are related to lack of human resources and

planning [36]. To enable I4.0 in SMEs is necessary to improve the management of

processes reducing overall complexity. Reducing complexity allows devoting more

resources to knowledge transfer, testing new technologies and improving production

operations.

Even if efforts have been made to increase funding and maturity culture, the
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