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Abstract

Transcription factors (TFs) are proteins that promote or reduce the expression of genes by

binding short genomic DNA sequences known as transcription factor binding sites (TFBS).

While several tools have been developed to scan for potential occurrences of TFBS in linear

DNA sequences or reference genomes, no tool exists to find them in pangenome variation

graphs (VGs). VGs are sequence-labelled graphs that can efficiently encode collections of

genomes and their variants in a single, compact data structure. Because VGs can losslessly

compress large pangenomes, TFBS scanning in VGs can efficiently capture how genomic

variation affects the potential binding landscape of TFs in a population of individuals. Here

we present GRAFIMO (GRAph-based Finding of Individual Motif Occurrences), a com-

mand-line tool for the scanning of known TF DNA motifs represented as Position Weight

Matrices (PWMs) in VGs. GRAFIMO extends the standard PWM scanning procedure by

considering variations and alternative haplotypes encoded in a VG. Using GRAFIMO on a

VG based on individuals from the 1000 Genomes project we recover several potential bind-

ing sites that are enhanced, weakened or missed when scanning only the reference

genome, and which could constitute individual-specific binding events. GRAFIMO is avail-

able as an open-source tool, under the MIT license, at https://github.com/pinellolab/

GRAFIMO and https://github.com/InfOmics/GRAFIMO.

Author summary

Transcription factors (TFs) are key regulatory proteins and mutations occurring in their

binding sites can alter the normal transcriptional landscape of a cell and lead to disease

states. Pangenome variation graphs (VGs) efficiently encode genomes from a population

of individuals and their genetic variations. GRAFIMO is an open-source tool that extends

the traditional PWM scanning procedure to VGs. By scanning for potential TBFS in VGs,

GRAFIMO can simultaneously search thousands of genomes while accounting for SNPs,
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indels, and structural variants. GRAFIMO reports motif occurrences, their statistical sig-

nificance, frequency, and location within the reference or alternative haplotypes in a given

VG. GRAFIMO makes it possible to study how genetic variation affects the binding land-

scape of known TFs within a population of individuals.

This is a PLOS Computational Biology Software paper.

Introduction

Transcription factors (TFs) are fundamental proteins that regulate transcriptional processes.

They bind short (7-20bp) genomic DNA sequences called transcription factor binding sites

(TFBS) [1]. Often, the binding sites of a given TF show recurring sequence patterns, which are

referred to as motifs. Motifs can be represented and summarized using Position Weight Matri-

ces (PWMs) [2], which encode the probability of observing a given nucleotide in a given posi-

tion of a binding site. In recent years, several tools have been proposed for scanning regulatory

DNA regions, such as enhancers or promoters, with the goal of predicting which TF may bind

these genomic locations. Importantly, it has been shown that regulatory motifs are under puri-

fying selection [3,4], and mutations occurring in these regions can lead to deleterious conse-

quences on the transcriptional states of a cell [5]. In fact, mutations can weaken, disrupt or

create new TFBS and therefore alter expression of nearby genes. Mutations altering TFBS can

occur in haplotypes that are conserved within a population or private to even a single individ-

ual, and can correspond to different phenotypic behaviour [6,7]. For these reasons, popula-

tion-level analysis of variability in TFBSs is of crucial importance to understand the effect of

common or rare variants to gene regulation. Recently, a new class of methods and data struc-

tures based on genome graphs have enabled us to succinctly record and efficiently query thou-

sands of genomes [8]. Genome graphs optimally encode shared and individual haplotypes

based on a population of individuals. An efficient and scalable implementation of this

approach called variation graphs (VGs) has been recently proposed [9]. Briefly, a VG is a

graph where nodes correspond to DNA sequences and edges describe allowed links between

successive sequences. Paths through the graph, which may be labelled (such as in the case of a

reference genome), correspond to haplotypes belonging to different genomes [10]. Variants

like SNPs and indels form bubbles in the graph, where diverging paths through the graph are

anchored by a common start and end sequence on the reference [11]. VGs offer new opportu-

nities to extend classic genome analyses originally designed for a single reference sequence to a

panel of individuals. Moreover, by encoding individual haplotypes, VGs have been shown to

be an effective framework to capture the potential effects of personal genetic variants on func-

tional genomic regions profiled by ChIP-seq of histone marks [12]. During the last decade,

several methods have been developed to search TFBS on linear reference genomes, such as

FIMO [13] and MOODS [14] or to account for SNPs and short indels such as is-rSNP, TRAP

and atSNP [15–17], however these tools do not account for individual haplotypes nor provide

summary on the frequency of these events in a population. To solve these challenges, we have

developed GRAFIMO, a tool that offers a variation- and haplotype-aware identification of

TFBS in VGs. Here, we show the utility of GRAFIMO by searching TFBS on a VG encoding

the haplotypes from all the individuals sequenced by the 1000 Genomes Project (1000GP)

[18,19].
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Design and implementation

GRAFIMO is a command-line tool, which enables a variant- and haplotype- aware search of

TFBS, within a population of individuals encoded in a VG. GRAFIMO offers two main func-

tionalities: the construction of custom VGs, from user data, and the search of one or more TF

motifs, in precomputed VGs. Briefly, given a TF model (PWM) and a set of genomic regions,

GRAFIMO leverages the VG to efficiently scan and report all the TFBS candidates and their

frequency in the different haplotypes in a single pass together with the predicted changes in

binding affinity mediated by genetic variations. GRAFIMO is written in Python3 and Cython

and it has been designed to easily interface with the vg software suite [9]. For details on how to

install and run GRAFIMO see S1 Text section 7.

Genome variation graph construction

GRAFIMO provides a simple command-line interface to build custom genome variation

graphs if necessary. Given a reference genome (FASTA format) and a set of genomic variants

with respect to the reference (VCF format), GRAFIMO interfaces with the VG software suite

to build the main VG data structure, the XG graph index [9] and the GBWT index [10,20]

used to track the haplotypes within the VG. To minimize the footprint of these files and

speedup the computation, GRAFIMO constructs the genome variation graph by building a

VG for each chromosome. This also speeds-up the search operation since we can scan different

chromosomes in parallel. Alternatively, the search can be performed one chromosome at the

time for machines with limited RAM.

Transcription factor motif search

The motif search operation takes as input a set of genomes encoded in a VG (.xg format), a

database of known TF motifs (PWM in JASPAR [21] or MEME format [22]) and a set of geno-

mic regions (BED format), and reports in output all the TFBS motifs occurrences in those

regions and their estimated significance (Fig 1). To search for potential TFBS, GRAFIMO

slides a window of length k (where k is the width of the query motif) along the paths of the VG

corresponding to the genomic sequences encoded in it (Fig 1B). This is accomplished by an

extension to the vg find function, which uses the GBWT index of the graph to explore the k-

mer space of the graph while accounting for the haplotypes embedded in it [10]. By default,

GRAFIMO considers only paths that correspond to observed haplotypes, however it is possible

also to consider all possible recombinants even if they are not present in any individual. The

significance (log-likelihood) of each potential binding site is calculated by considering the

nucleotide preferences encoded in the PWM as in FIMO [13]. More precisely, the PWM is

processed to a Position Specific Scoring Matrix (PSSM) (Fig 1A) and the resulting log-likeli-

hood values are then scaled in the range [0, 1000] to efficiently calculate a statistical signifi-

cance i.e. a P-value by dynamic programming [23] as in FIMO [13]. P-values are then

converted to q-values by using the Benjamini-Hochberg procedure to account for multiple

hypothesis testing. For this procedure, we consider all the P-values corresponding to all the k-

mer-paths extracted within the scanned regions on the VG. GRAFIMO computes also the

number of haplotypes in which a significant motif is observed and if it is present in the refer-

ence genome and/or in alternative genomes. (Fig 1B).

Report generation

We have designed the interface of GRAFIMO based on FIMO, so it can be used as in-drop

replacement for tools built on top of FIMO. As in FIMO, the results are available in three files:
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a tab-delimited file (TSV), a HTML report and a GFF3 file compatible with the UCSC Genome

Browser [24]. The TSV report (Fig A in S1 Text) contains for each candidate TFBS its score,

genomic location (start, stop and strand), P-value, q-value, the number of haplotypes in which

it is observed and a flag value to assess if it belongs to the reference or to the other genomes in

VG. The HTML version of the TSV report (Fig B in S1 Text) can be viewed with any web

browser. The GFF3 file (Fig C in S1 Text) can be loaded on the UCSC genome browser as a

custom track, to visualize and explore the recovered TFBS with other annotations such as

nearby genes, enhancers, promoters, or pathogenic variants from the ClinVar database [25].

Results

As discussed above, GRAFIMO can be used to study how genetic variants may affect the bind-

ing affinity of potential TFBS within a set of individuals and may recover additional sites that

are missed when considering only linear reference genomes without information about vari-

ants. To showcase its utility, we first constructed a VG based on 2548 individuals from the

1000GP phase 3 (hg38 human genome assembly) encoding their genomic variants and phased

haplotypes (see S1 Text section 1 for details). We then searched this VG for putative TFBS for

three TF motifs with different lengths (from 11 to 19 bp), evolutionary conservation, and

information content from the JASPAR database [21]: CTCF (JASPAR ID MA0139.1), ATF3

(JASPAR ID MA0605.2) and GATA1 (JASPAR ID MA0035.4) (Fig D in S1 Text) (see S1 Text

Fig 1. GRAFIMO TF motif search workflow. (A) The motif PWM (in MEME or JASPAR format) is processed and its values are scaled in the range [0, 1000]. The

resulting score matrix is used to assign a score and a corresponding P-value to each motif occurrence candidate. In the final report GRAFIMO returns the corresponding

log-odds scores, which are retrieved from the scaled values. (B) GRAFIMO slides a window of length k, where k is the motif width, along the haplotypes (paths in the

graph) of the genomes used to build the VG. The resulting sequences are scored using the motif scoring matrix and are statistically tested assigning them the

corresponding P-value and q-value. Moreover, for each entry is assigned a flag value stating if it belongs to the reference genome sequence ("ref") or contains genomic

variants ("non.ref") and is computed the number of haplotypes in which the sequence appears.

https://doi.org/10.1371/journal.pcbi.1009444.g001
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section 3-4-5). To study regions with likely true binding events, for each factor we selected

regions corresponding to peaks (top 3000 sorted by q-value) obtained by ChIP-seq experi-

ments in 6 different cell types (A549, GM12878, H1, HepG2, K562, MCF-7) from the

ENCODE project [26,27] (see S1 Text section 2). We used GRAFIMO to scan these regions

and selected for our downstream analyses only sites with a P-value < 1e-4 and considered

them as potential TFBS for these factors. Based on the recovered sites, we consistently observed

across the 3 studied TFs that genetic variants can significantly affect estimated binding affinity.

In fact, we found that thousands of CTCF motif occurrences are found only in non-reference

haplotypes, suggesting that a considerable number of TFBS candidates are lost when scanning

for TFBS the genome without accounting for genetic variants (Fig 2A). Similar results were

Fig 2. Searching CTCF motif on VG with GRAFIMO provides an insight on how genetic variation affects putative binding sites. (A) Potential CTCF

occurrences statistically significant (P-value< 1e-4) and non-significant found in the reference and in the haplotype sequences found with GRAFIMO oh hg38

1000GP VG. (B) Statistical significance of retrieved potential CTCF motif occurrences and frequency of the corresponding haplotypes embedded in the VG. (C)

Percentage of statistically significant CTCF potential binding sites found only in the reference genome or alternative haplotypes and with modulated binding

scores based on 1000GP genetic variants (D) Percentage of population specific and common (shared by two or more populations) potential CTCF binding sites

present on individual haplotypes.

https://doi.org/10.1371/journal.pcbi.1009444.g002
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obtained searching for ATF3 (Fig E in S1 Text) and GATA1 (Fig F in S1 Text). We also found

several highly significant CTCF motif occurrences in rare haplotypes that may potentially

modulate gene expression in these individuals (Fig 2B). Similar behaviours were observed for

ATF3 (Fig E in S1 Text) and GATA1 (Fig F in S1 Text).

We also investigated the potential effects of the different length and type of mutations i.e.

SNPs and indels on the CTCF, ATF3 and GATA1 binding sites. However, we did not observe

a clear and general trend (Fig G in S1 Text). By considering the genomic locations of the sig-

nificant motif occurrences we next investigated how often individual TFBS may be disrupted,

created or modulated. We observed that 6.13% of the potential CTCF binding sites can be

found only on non-reference haplotype sequences, 5.94% are disrupted by variants in non-ref-

erence haplotypes and ~30% are still significant in non-reference haplotypes but with different

binding scores (Fig 2C). Similar results were observed for ATF3 (Fig E in S1 Text) and

GATA1 (Fig F in S1 Text). Interestingly, we observed that a large fraction of putative binding

sites recovered only on individual haplotypes are population specific. For CTCF we found that

24.66%, 6.74%, 5.68%, 13.01%, 12.52% of potential CTCF TFBS retrieved on individual haplo-

type sequences only are specific for AFR, EUR, AMR, SAS and EAS populations, respectively

(Fig 2D). Similar results were observed for ATF3 and GATA1 (S1 Text sections 4–5).

Among the unique CTCF motif occurrences found only on non-reference haplotypes in

CTCF ChIP-seq peaks we uncovered one TFBS (chr19:506,910–506,929) that clearly illustrates

the danger of only using reference genomes for motif scanning. Within this region we recovered a

heterozygous SNP that overlaps (position 10 of the CTCF matrix) and significantly modulates

the binding affinity of this TFBS. In fact, by inspecting the ChIP-seq reads (experiment

ENCSR000DZN, GM12878 cell line), we observed a clear allelic imbalance towards the alternative

allele G (70.59% of reads) with respect to the reference allele A (29.41% of reads). This allelic

imbalance is not observed in the reads used as control (experiment code ENCSR000EYX) (Fig 3).

Taken together these results highlight the importance of considering non-reference

genomes when searching for potential TFBS or to characterize their potential activity in a pop-

ulation of individuals.

We also compared the performance of GRAFIMO against FIMO [13] (Fig H in S1 Text

and S1 Text Section 6). FIMO is faster and requires less memory, when scanning a single lin-

ear genome. However, when considering the 2548 individual genomes and their genetic varia-

tion, GRAFIMO proves to be generally faster than FIMO. Moreover, we benchmarked how

GRAFIMO running time and memory usage change using an increasing number of threads

(Fig I in S1 Text). By increasing the number of threads, we observed a dramatical drop in run-

ning time, while memory usage remained similar.

Conclusion

By leveraging VGs, GRAFIMO provides an efficient method to study how genetic variation

affects the binding landscape of a TF within a population of individuals. Moreover, we show

that several potential and private TFBS are found in individual haplotype sequences and that

genomic variants significantly also affect the binding affinity of several motif occurrence can-

didates found in the reference genome sequence. Our tool therefore can help in prioritizing

potential regions that may mediate individual specific changes in gene expression, which may

be missed by using only reference genomes.

Availability and future directions

GRAFIMO can be downloaded and installed via PyPI, source code or Bioconda. Its Python3

source code is available on Github at https://github.com/pinellolab/GRAFIMO and at https://
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github.com/InfOmics/GRAFIMO under MIT license. Since GRAFIMO is based on VG data

structure, has the potential to be applied to future pangenomic reference systems that are cur-

rently under development (https://news.ucsc.edu/2019/09/pangenome-project.html). The

genome variation graphs enriched with 1000GP on GRCh38 phase 3 used to obtain the results

presented in this manuscript can be downloaded at http://ncrnadb.scienze.univr.it/vgs.

Supporting information

S1 Text. Additional information about experiments design, GATA1 and ATF3 search on

genome variation graph, and how to install and run GRAFIMO. Fig A. Example of TSV

summary report. The tab-delimited report (TSV report) shows the first 25 potential CTCF

occurrences retrieved by GRAFIMO, searching the motif in ChIP-seq peak regions defined in

ENCODE experiment ENCFF816XLT (cell line A549). Fig B. Example of HTML summary

report. The HTML report shows the first 25 potential CTCF occurrences retrieved by GRA-

FIMO, searching the motif in ChIP-seq peak regions defined in ENCODE experiment

ENCFF816XLY (cell line A549). Fig C. Example of GFF3 track produced by GRAFIMO,

loaded on the UCSC genome browser. GRAFIMO returns also a GFF3 report which can be

loaded on the UCSC genome browser; the loaded custom track shows three potential CTCF

occurrences (region chr8:142,782,661–142,782,680) retrieved by GRAFIMO overlapping a

dbSNP annotated variant (rs892844) (image obtained from the UCSC Genome Browser web-

site). Fig D. Structure of transcription factor motifs used to test GRAFIMO. Transcription

Fig 3. Considering genomic variation, GRAFIMO captures more potential binding events. GRAFIMO reports a potential CTCF binding site at chr19:506,910–

506,929 found only in haplotype sequences, searching the motif in ChIP-seq peaks called on cell line GM12878 (experiment code ENCSR000DZN). The reads used to

call for ChIP-seq peaks (ENCFF162QXM) show an allelic imbalance at position 10 of the motif sequence towards the alternative allele G, instead of the reference allele

A. The imbalance is captured by GRAFIMO which reports the sequence presenting G at position 10 (found in the haplotypes), while the potential TFBS on the

reference carrying an A is not reported as statistically significant (P-value> 1e-4). CTCF motif logo shows that the G is the dominant nucleotide in position 10.

https://doi.org/10.1371/journal.pcbi.1009444.g003
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factor binding site motifs of (A) CTCF, (B) ATF3 and (C) GATA1. Fig E. Searching ATF3

motif on VG with GRAFIMO provides an insight on how genetic variation affects the

binding site sequence. (A) Potential ATF3 occurrences statistically significant (P-value < 1e-

4) and non-significant found in the reference and in the haplotype sequences found with GRA-

FIMO oh hg38 1000GP VG. (B) Statistical significance of retrieved potential ATF3 motif

occurrences and their frequency in the haplotypes embedded in the VG. (C) Percentage of sta-

tistically significant ATF3 potential binding sites found only in genome reference sequence,

percentage of potential TFBS found in the reference for which genetic variants cause the

sequence to be no more significant, percentage of binding sites found only in the haplotypes,

percentage of potential TFBS found in the reference with increased statistical significance by

the action of genomic variants and percentage of those with a decreased significance by the

action of variants (with P-value still significant). (D) Fraction of population specific potential

ATF3 binding sites recovered on individual haplotype sequences. Fig F. Searching GATA1

motif on VG with GRAFIMO provides an insight on how genetic variation affects the

binding site sequence. (A) Potential GATA1 occurrences statistically significant (P-

value < 1e-4) and non-significant found in the reference and in the haplotype sequences found

with GRAFIMO oh hg38 1000GP VG. (B) Statistical significance of retrieved potential GATA1

motif occurrences and their frequency in the haplotypes embedded in the VG. (C) Percentage

of statistically significant GATA1 potential binding sites found only in genome reference

sequence, percentage of potential TFBS found in the reference for which genetic variants cause

the sequence to be no more significant, percentage of binding sites found only in the haplo-

types, percentage of potential TFBS found in the reference with increased statistical signifi-

cance by the action of genomic variants and percentage of those with a decreased significance

by the action of variants (with P-value still significant). (D) Percentage of population specific

potential GATA1 binding sites, among those TFBS retrieved uniquely on individual genome

sequences. Fig G. Influence of the different length and type of mutations on binding affin-

ity score. (A) CTCF, (B) ATF3, (C) GATA1. Fig H. Comparing GRAFIMO and FIMO per-

formance. (A) Searching CTCF motif (JASPAR ID MA0139.1) on human chr22 regions (total

width ranging from 1 to 9 millions of bp) without accounting for genetic variants FIMO is

faster than GRAFIMO (using a single thread). (B) FIMO uses less memory resources than

GRAFIMO, however they work on different frameworks. (C) When considering the genetic

variation present in large panels of individuals as 1000GP on GRCh38 phase 3 (2548 samples),

GRAFIMO proves to be faster than FIMO in searching potential CTCF occurrences. It is faster

when run with a single execution thread, and significantly faster when run with 16. Fig I.

GRAFIMO running time efficiently scales with the number of threads used. By running

GRAFIMO with multiple threads (A) the running time significantly decreases, while (B) mem-

ory usage remains similar. Table A. Number of genomic variants used to test GRAFIMO.

Number of genomic variants used to test GRAFIMO, divided by chromosome. The variants

were obtained from 1000 Genomes Project on GRCh38 phase 3, and belongs to 2548 individu-

als from 26 populations. The number of variants refers to SNPs and indels together. In total

were considered ~78 million variants. Table B. ENCODE ChIP-seq experiment codes. To

test our software, we searched the potential occurrences of three transcription factor motifs

(CTCF, ATF3 and GATA1) in a hg38 pangenome variation graph enriched with genomic vari-

ants and haplotypes of 2548 individuals from 1000 Genomes project phase 3. To have likely to

happen binding events, TF motifs were searched in ChIP-seq peak regions, obtained from the

ENCODE project data portal.

(DOCX)
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S1 Code. GRAFIMO v1.1.4 source code, documentation and running examples.
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