-

~l’ Dipartimento di Informatica
Universita degli Studi di Verona

Rapporto di ricerca 81/2011

Research report
March 2011

A uniform framework for temporal
functional dependencies with
multiple granularities

Carlo Combi

Dipartimento di Informatica, Universita degli Studi di Verona
strada le Grazie 15, 37134 Verona Italy
carlo.combi@Qunivr.it

Angelo Montanari
Dipartimento di Matematica e Informatica, Universita degli Studi di Udine

via delle Scienze 206, 33100 udine Italy

angelo.montanari@uniud.it

Pietro Sala

Dipartimento di Informatica, Universita degli Studi di Verona
strada le Grazie 15, 37134 Verona Italy
pietro.sala@univr.it

Questo rapporto ¢ disponibile su Web all’indirizzo:

This report is available on the web at the address:

http://www.di.univr.it/report

Abstract

Temporal functional dependencies (TFDs) add a temporal component to clas-
sical functional dependencies to deal with temporal data. As an example, while
functional dependencies model constraints like “employees with the same role get
the same salary”, TFDs can represent constraints like “for any given month, em-
ployees with the same role have the same salary, but their salary may change
from one month to the next one” or “current salaries of employees uniquely de-
pend on their current and previous roles”. In this paper, we propose a general
framework for specifying TFDs, possibly involving different time granularities,
and for checking whether or not a given database instance satisfies them. The
proposed framework subsumes existing formalisms for TFDs and it allows one to
encode TFDs which are not captured by them.

Keywords: Temporal Database, Functional Dependencies, Granularity, Biomed-
ical Data.

1 Introduction

Temporal functional dependencies (TFDs) add a temporal dimension to classical
functional dependencies (FDs) to deal with temporal data [2, 10, 11, 12, 13] (as a
matter of fact, two temporal dimensions have been considered only in [5], where
standard FDs are evaluated at every database snapshot). As an example, while
FDs model constraints like “employees with the same role get the same salary”,
TFDs can represent constraints like “for any given month, employees with the
same role have the same salary, but their salary may change from one month to
the next one” (2, 12] or “current salaries of employees uniquely depend on their
current and previous roles” [10]. Since temporal constraints may refer to different
time units, e.g., university courses are organized on semesters, the scheduling of
business activities usually refers to business months or weeks, follow-up visits
are usually planned on working days, TFDs must allow one to express temporal
constraints at different time granularities.

In this paper, we propose a general framework that makes it possible to for-
mally specify TFDs, possibly involving multiple time granularities, and to check
whether or not a given database instance satisfies them. We will prove that the
proposed framework subsumes all existing formalisms for TFDs, and it allows
one to express TFDs which are not captured by them. As an example, assuming
months as the basic time unit, we can encode constraints such as “employees with
the same role, who will not change it from the current month to the next one, will
get the same (unchanged) salary”. Moreover, we will show the effectiveness of
the approach by applying it to a real-world medical domain, related to the admin-
istration of chemotherapies.

The paper is organized as follows. In Section 2, we provide the motivating
scenario. In Section 3, we describe the basic features (i.e., the temporal data
model and the temporal views), the proposed framework relies on. In Section
4, we introduce a new formalism for the representation of TFDs, and we show
that it allows one to capture a large variety of TFDs. Then, in Section 5, we
explain how to bring back the problem of checking whether a temporal relation
satisfies a given TFD to the problem of checking whether the evaluation of a
suitable algebraic expression returns the empty relation. We conclude the section
with a short discussion of computational aspects.

In Section 6, we briefly surveys existing systems for TFDs and we compare
them with the framework we propose. Finally, in Section 7, we provide an assess-
ment of the work and we outline future research directions.

2 A motivating scenario from clinical medicine

To illustrate the relevance of properly expressing and carefully checking temporal
constraints on data, we consider a real-world example taken from the domain
of chemotherapies for oncology patients. Most health care institutions collect
a large quantity of clinical information about patients and physicians’ actions,
such as therapies and surgeries, and health care processes, such as admissions,
discharges, and exam requests. All these pieces of information are temporal in
nature and the associated temporal dimension needs to be carefully modeled, in
order to be able to properly represent clinical data and to reason on them. In the
considered case, oncology patients undergo several chemotherapy cycles. Each
one can be repeated several times, and it typically includes the administration of
several drugs to be assumed according to a predefined temporal pattern.

The problem of managing chemotherapy plans has been extensively studied
by the clinical research. Chemotherapy plans are described and recommended
in detail in several clinical practice guidelines. Let us consider the following
chemotherapy recommendations related to FAC and CEF regimens [1, 7] for the
treatment of breast cancer.

Example 1 Recommended FAC and CEF regimens.

FAC regimen: “The recommended FAC regimen consists of 5-fluorouracil
on days 1 and 8, and doxorubicin and cycloshosphamide on day 1.
This is repeated every 21 days for 6 cycles” (that is, 6 cycles of 21
days each).

CEF regimen: “The recommended CEF regimen consists of 14 days
of oral cycloshosphamide, and intravenous injection of epirubicin and
5-fluorouracil on days 1 and 8. This is repeated every 28 days for 6
cycles.”

A relation schema Patient to be used for storing information about patients
who underwent chemotherapies can be structured as follows. For each patient,
we store the type of therapy, the patient’s identifier, the blood group, the name
of physician who prescribes the therapy, the assumed drugs with their quantities,
and the specific assumption time by means of attributes Chemo, Patld, BG, Phys,
Drug, Qty, and VT, respectively. We assume that attribute V'I" specifies the valid
time of a tuple in term of days (from a given, implicit day taken as the origin of
the time domain).

Table 1 shows a possible instance of the relation schema Patient describing
chemotherapy treatments for patients with Patld 1, 2, and 3. As an example,
according to the prescription of the FAC treatment reported in Example 1, the first

2

day of the cycle the patient has to assume the drugs Flu, Dox, and Cyc, i.e., drugs
containing 5-fluorouracil, doxorubicin, and cyclophosphamide, respectively.

TUPLE# | Chemo | Patld | BG Phys | Drug | Qty | VT
1 FAC 1 0+ Smith Flu | 500 | 1
2 FAC 1 O+ | Hubbard | Dox | 50 | 1
3 FAC 1 0+ Verdi Cyc | 500 | 1
4 FAC 1 0+ Smith Flu | 500 | 8
5 CEF 2 AB- | Verdi Cyc | 600 | 1
6 CEF 2 AB- | Hubbard | Flu | 600 | 1
7 CEF 2 AB- | Hubbard | Epi | 60 | 1
8 CEF 2 AB- | Smith Cyc | 600 | 2
9 CEF 2 AB- | Verdi Cyc | 500 | 3

20 CEF 2 AB- | Verdi Cyc | 600 | 8
21 CEF 2 AB- | Hubbard | Flu | 600 | 8
22 CEF 2 AB- | Hubbard | Epi | 60 | 8
33 CEF 3 AB- | Verdi Cyc | 550 | 1

Table 1: An instance s of the relation schema Patient, storing data about

chemotherapy treatments. ' . ‘
According to the clinical meaning of data, several requirements can be im-

posed on this relation schema. They stem from both clinical/medical reasons and
organizational rules of the medical unit managing the chemotherapy administra-
tion. In the following, we provide some typical requirements to be represented
and managed by the database systems.

(1) For any given drug, a patient may have at most one assumption per day:
such a requirement prevents any patient from having two or more assumptions
of the same drug during the same day. As the administration of a drug within a
chemotherapy has relevant side effects on the patient status, it is quite obvious.
Nevertheless, checking it prevents possible data insertion errors.

(2) For any chemotherapy, the quantities of a given drug prescribed to a patient on
two days which are at most 14 days far away cannot be different: for any patient,
such a requirement forces drug quantities of chemotherapies to remain unchanged
whenever the assumptions take place within 14 days (notice that the relation de-
picted in Table 1 violates it). According to the considered chemotherapies, this
amounts to impose that drug quantities cannot change during a chemotherapy cy-
cle (obviously, they can change if the chemotherapy changes).

(3) For any chemotherapy, the quantities of a given drug administered by assump-
tions that take place during the same month cannot be different: this requirement

3

states that, regardless of the patient, for any chemotherapy and any month, the ad-
ministered quantity of a drug is always the same. A possible explanation of such a
requirement is that there exists some form of synchronization among different ad-
ministrations of the same chemotherapy, which forces changes in drug quantities
to be done only when changes in month occur (for instance, to take into account
different seasonal conditions).

(4) For any pair of assumptions of the same drug by the same patient on two
consecutive days, the quantity of the second assumption uniquely depends on (the
drug and) the quantity of the first assumption: this requirement constrains the
assumptions of a drug on two consecutive days by imposing different patients not
to assume different quantities of the drug on the next day, if they assume the same
quantity of it on the current day. A possible explanation of such a requirement is
that, regardless of the patient and the chemotherapy, the physician must follow a
predefined therapy plan, suggested by the clinical practice, for what concerns the
quantities of drugs administrated on consecutive days.

(5) For any pair of assumptions of the same drug prescribed by the same physi-
cian to the same patient on two consecutive days, the quantity of the second as-
sumption uniquely depends on (the drug and) the quantity of the first assumption:
this requirement slightly differs from the previous one as it further constrains the
physician to be the same.

(6) For any pair of consecutive assumptions of the same drug by the same patient
within the same chemotherapy, the quantity of the second assumption uniquely
depends on (the drug and) the quantity of the first assumption: such a require-
ment constrains consecutive assumptions of a drug by a patient within an assigned
chemotherapy. As a general rule, time delays between consecutive assumptions
may differ from one drug to another. As an example, oral cycloshosphamide in
the CEF regimen is assumed daily for 14 days, while there is an interval of 7 days
between two consecutive intravenous injections of epirubicin.

(7) For any pair of consecutive assumptions of the same drug by the same patient
within the same month, the quantity of the second assumption uniquely depends
on (the drug and) the quantity of the first assumption: such a requirement imposes
suitable constraints on consecutive drug assumptions only when they occur during
the same month. We may assume the rationale of this requirement to be the same
as that of Requirement (4).

(8) For any given chemotherapy, the quantities of drugs that are assumed (by
patients) with consecutive assumptions that take place one 7 days after the other
cannot change: for any chemotherapy, such a requirement basically imposes that
(only) the quantities of drugs assumed by patients every 7 days cannot change.

4

3 Temporal data model and temporal views

In the next two sections, we will outline a general framework for the specification
and verification of different kinds of TFD. As a preliminary step, in this section,
we describe the temporal data model we rely on.

To represent TFDs, we will take advantage of a simple temporal relational data
model based on the notion of temporal relation. We assume the time domain 7’ to
be isomorphic to the set of natural numbers with the usual ordering (N, <). Let U
be a set of atemporal attributes and V'I" be a temporal attribute, called valid time
attribute. A temporal relation 7 is a relation on a temporal relation schema R with
attributes U U {V'T'}. We use the notation att(r) to denote the set of (atemporal
and temporal) attributes of the relation schema R of r. Moreover, given a tuple
t € r and an attribute A € R, we denote by t[A] the value that ¢ assumes on A.
The temporal attribute V1" specifies the valid time of a tuple, and it takes its value
over the time domain 7', that is, t[VT] € T.

In the following, we will make use of the fuple relational calculus [9] to de-
fine suitable temporal views on data, that will help us in specifying and analyzing
TFDs without harming the simplicity of the basic temporal data model. In particu-
lar, these views will allow us to easily “move through time” in order to establish a
connection between corresponding tuples valid at different time points. A special
role will be played by the following two temporal views, respectively called next
and nexttuple, that allow one to link tuples that satisfy a specific temporal relation
in order to represent relevant cases of (temporal) evolution.

Given a temporal distance k, with £ > 1, the view next allows one to join
pairs of corresponding tuples at distance £ (for £ = 1, it joins pairs of consecutive
corresponding tuples). More precisely, given a temporal relation schema R, with
attributes U U {V'T'}, a temporal relation r on R, and a pair of tuples ¢,¢ € r,
the application of the view next to r, denoted ng, with Z C U and k > 1, joins
t,t" if (and only if) t[Z] = t'[Z] and t'[VT| = t[VT] + k. Temporal view next is
formally defined as follows.

Definition 1 Let R be a temporal relation schema with attributes U U {VT'},
W = U — Z, W be obtained from W by replacing each attribute A € W by A,
r be a temporal relation on R, and t,t' € r. The relation view X}k, with schema
ZWW U{VT,VT}, is defined as follows:

X5 E{s| A0 Ar(t)AZ) =[Z) AV VT =t[VT] + kA
s[Z] = t[Z] A s[W] = t{W] A s[W] = [W] A
slVT] =tlVT)As[VT] =t'[VT])}
Hereinafter, when no confusion may arise, we will write x’, for Xgl. It is worth
pointing out that, in the definition of ng, we make use of the non-standard (arith-

5

metic) selection condition ¢'[V'T| = t[VT|+ k. However, it is just syntactic sugar,
as the expression for ng can be turned into a standard relational calculus expres-
sion, as shown in detail in the appendix.

Temporal view nexttuple allows one to join pairs of consecutive tuples (with
respect to the values they assume on attribute V'7"). More precisely, given a tem-
poral relation schema R, with attributes U U {V'T'}, a temporal relation r on R,
and a pair of tuples ¢, ¢’ € r, the application of the view nexttuple to r, denoted 77,
with Z C U, joins t, t' if (and only if) ¢[Z] = ¢'[Z] and ¢’ is the tuple immediately
following ¢ with respect to V1'. Temporal view nexttuple is formally defined as
follows.

Definition 2 Let R be a temporal relation schema with attributes U U {VT'},
W = U — Z, W be obtained from W by replacing each attribute A € W by
A, 1 be a temporal relation on R, and t,t' € r. The relation T}, with schema
ZWW U{VT,VT}, is defined as follows:

5 L{u | 3t (r) Ar(t) AtZ = [Z) Au[Z] = t[Z]) Au[W] = t{IV] A

u[W] = t[W] Au[VT] = t{VT] Au[VT] = [VT] A
HVT] < ¢[VT] A =3t (r(t") At Z) = "] Z] A
HVT] < "[VT] A[VT] < ¢ [VT]))}

Temporal view nexttuple allows one to associate a tuple ¢ of r with its first evolu-
tion ¢, that is, it associates ¢ with ¢’ if there exists no t” € r such that t"[Z] = t[Z]
and t{VT)| < t"[VT] < t'[VT].

It is worth emphasizing that temporal views next and nexttuple make it possi-
ble to represent non-trivial aspects of the temporal evolution of data. More pre-
cisely, next takes into account the “synchronous” evolution of data, that is, tu-
ples are joined with the corresponding ones which hold k time points later, while
nexttuple models “asynchronous” data evolutions as it joins tuples with the cor-
responding consecutive ones, which may hold at different time points. As an
example, let us consider the instance of the relation schema Patient given in Table

1. The view xpeii'pnys Joins tuples which have the same values for Pat/d and

Phys and are valid at time points ¢ and ¢ + 1, respectively. The view 75%5"%),,.
joins pairs of tuples such that they have the same values for Pat/d and Phys and
there are no tuples with the same values for Patld and Phys which hold at some

time point in between the valid times of the two tuples.

4 A uniform framework for TFDs

In this section, we propose an original formalism for the specification of TFDs.
We first introduce its syntax and semantics; then, we show that it allows one to

6

express all TFDs dealt with by existing formalisms as well as to cope with new
classes of TFDs.

Definition 3 Ler R be a temporal relation schema with attributes U U {VT}. A
TFD is an expression of the following form:

[E-Exp(R),t-Group| X —Y,

where E-Exp(R) is a relational expression on R, called evolution expression,
t-Group is a mapping N — 2%, called temporal grouping, and X — Y is a
functional dependency. We distinguish two types of TFD:

1. The schema of the expression E-Exp(R) is U U{VT}. Then, X, Y C U.

2. The schema of the expression E-Exp(R) is UUU{VT, V__T}, Then X,Y C
UU and, for each A €Y, both XANU # 0 and XANU # ().

Temporal grouping specifies how to group tuples, on the basis of the values they
assume on temporal attribute V'I' (and on attribute VT, if present), when X — Y
is evaluated.

For the sake of simplicity, we confined ourselves to TFDs involving at most two
consecutive database states. However, Definition 3 can be easily generalized to
the case of tuple evolutions involving n consecutive states.

Evolution expressions E-FExp(R) take advantage of temporal views to select
those tuples, valid at different time points, that must be merged in order to track
the evolution of domain objects over time.

In principle, there are no restrictions on the form that mapping ¢-Group may
assume. However, such a generality is not necessary from the point of view of
applications. In the following, we will restrict ourselves to specific mappings, as
those captured by Bettini et al.’s granularities [2] and Wjisen’s time relations [12].
A time granularity G is a partition of the time domain in groups of indivisible, dis-
joint units, called granules. Classical examples of granularity are Day, Working-
Day, Week, and Month. Various formalisms for representing and reasoning about
time granularities have been proposed in the literature, including Granular Calen-
dar Algebra by Ning et al. [8] and Ultimately Periodic Automata, by Bresolin et
al. [3]. Wijsen’s time relations are subsets of the set {(¢,j) | € N, j € N, ¢ < j}.
As an example, we can define a time relation that, for any ¢ € N, collects all and
only the pairs of time points (7, j) such that j — i < k, for some fixed k. Gran-
ularities can be recovered as special cases of time relations, called chronologies
(it is not difficult to see that there exist quite natural time relations that cannot be
expressed by means of granularities).

We constrain t-Group to take one of the following two forms:

t-Group = G(i)
where G(i) is the i-th granule of granularity G

ef

t-Group = U{(z + «;)} for some n > 1
j=1
where a3 =0,Vj € [l,n]o; €N, andVk € [1,n — 1] ap < apq

In the first case, given a granularity G, ¢-Group groups time points according to
the granule G(i) they belong to. In the second case, t-Group groups time points
into an infinite number of intersecting finite sets. Each i-th group consists of the
1-th time point plus other time points identified by their offset with respect to such
a point.

As in the case of standard FDs, a TFD is a statement about admissible temporal
relations on a temporal relation schema R. We say that a temporal relation r on
the temporal relation schema R satisfies a TFD [E-Exp(R),t-Group]X — Y
if it is not possible that the relation obtained from r by applying the expression
E-Ezp(R) (hereinafter, the evolution relation) features two tuples ¢, ¢ such that
() t[X] = ¥'[X], (i) t[V'T] and ¢'[V'T] (the same for ¢[V'T] and ¢'[V' T}, if present)
belong to the same temporal group, according to the mapping ¢-Group, and (iii)
t[Y] # t'[Y]. This amount to say that the FD X — Y must be satisfied by each
relation obtained from the evolution relation by selecting those tuples whose valid
times belong to the same temporal group.

We partition the set of relevant TFDs into four classes.

e Pure temporally grouping TFD:s.
The evolution expression E-FExzp(R) returns the given temporal relation.
Tuples are grouped on the basis of t-Group.

e Pure temporally evolving TFDs.
The evolution expression E-FExp(R) merges tuples modeling the evolution
of a real-world object. There is no temporal grouping, that is, there is only
one group collecting all tuples of the computed relation.

o Temporally mixed TFDs.
First, the evolution expression E-Fxp(R) merges tuples modeling the evo-
lution of a real-world object; then, temporal grouping is applied to the re-
sulting tuples.

e Temporally hybrid TFDs.
First, the evolution expression E-Fxp(R) selects those tuples of the given

8

temporal relation that contribute to the modeling of the evolution of a real-
world object (that is, it removes isolated tuples); then, temporal grouping is
applied to the resulting set of tuples.

In the following, we will describe in some detail the above classes of TFDs and
we will give some meaningful examples of TFDs belonging to them.

Pure temporally grouping TFDs.

In these TFDs, E-FExp returns the (original) temporal relation r. This force the
FD X — Y, with X, Y C U, to be checked on every (maximal) subset of r
consisting of tuples whose V1" values belong the same temporal group.

Example 2 Let us consider the first three requirements of relation Patient re-
ported in Section 2:

1. for any given drug, a patient may have at most one assumption per day;

2. for any chemotherapy, the quantities of a given drug prescribed to a patient
on two days which are at most 14 days far away cannot be different;

3. for any chemotherapy, the quantities of a given drug administered by as-
sumptions that take place during the same month cannot be different.

The first requirement is captured by the following TFD:
[Patient, {i}|Patld, Drug — Chemo, BG, Phys, Qty

For each time point ¢, the FD Patld, Drug — Chemo, BG, Phys, Q)ty must be
satisfied by the tuples of (the instance of the relation schema) Patient valid at
time 7. As a matter of fact, this forces attributes Patld, Drug to be a snapshot key
for relation schema Patient: the set of tuples of Patient valid at a given time
point (snapshot) must have Patld, Drug as a (standard) key [5].

The second requirement can be encoded as follows:

[Patient,{i,i+ 1,...,1+ 13}| Patld, Chemo, Drug — Qty

In such a way, we force the FD Patld, Chemo, Drug — Qty to be checked at each
time point ¢ on the tuples of (the instance of the relation schema) Patient valid at
time points ¢, 2+ 1,742, .. ., or ¢ + 13, that is, for each ¢, Chemo, Patld, Drug —
(Qty must be satisfied by the tuples belonging to the union of snapshots of the
temporal relation at time instants 7, ..., 7 + 13.

The third requirement can be expressed by means of the following TFD:

[Patient, Month(i)] Chemo, Drug — Qty

9

Pure temporally evolving TFDs.

In these TFDs, the evolution expression E-FExp(R) returns a relation over the
schema UU U{V'T, VT} which is computed by means of join operations on some
attribute subset of U, while temporal grouping considers tuples valid at each time
point in isolation.

Example 3 Let us consider the following three requirements of relation Patient
reported in Section 2:

4. for any pair of assumptions of the same drug by the same patient on two
consecutive days, the quantity of the second assumption uniquely depends
on (the drug and) the quantity of the first assumption,

5. for any pair of assumptions of the same drug prescribed by the same physi-
cian to the same patient on two consecutive days, the quantity of the second
assumption uniquely depends on (the drug and) the quantity of the first as-
sumption,

6. For any pair of consecutive assumptions of the same drug by the same pa-
tient within the same chemotherapy, the quantity of the second assumption
uniquely depends on (the drug and) the quantity of the first assumption.

Let Top(i) be the top granularity collecting all time points in a single nonempty
granule [2]. Requirement (4) can be formalized as follows:

(X Pt ehemor ToP(D)] Drug, Qty — Qty

while Requirement (5) is captured by the following TFD:

[ngttifecztc’hemo,Phyw TOp(I)]DTUg, Qty — Q_ty

TFDs in this class can be viewed as a generalization of Vianu’s dynamic depen-
dencies [10]: the evolution expression allows one to define the evolution mapping
(update mapping, according to Vianu’s terminology) that associates each tuple
valid at a time ¢ with its corresponding tuple (if any) valid at time ¢ + 1 taking
advantage of the values of specific relation attributes. In the relational framework
we propose, evolution mappings are thus expressed by means of suitable joins on
a subset of U. Moreover, TFDs for Requirements (4) and (5) show the possibility
of defining dynamic dependencies according to a number of evolution mappings.

Let us consider now Requirement (6). To cope with it, we need the ability to
join tuples which are possibly not valid at consecutive time points. Consecutive
assumptions of the same drug by the same patient may indeed occur on consecu-
tive time points (this is the case with tuples #8 and #9 in Table 1), but they may

10

also take place on time points which are far away from one another (this is the case
with tuples #1 and #4 in Table 1), and thus we must be able to deal with a kind of
temporal asynchronous evolution. Requirement (6) is encoded by the following
TFD:

[Tlfgf}il?éhemo,Drug7 TOp(I)]DT’ug7 Qty - %

Temporally mixed TFDs.

In these TFDs, the evolution expression F-Exp returns a relation over the schema
UUU{VT,VT} which is computed by means of join operations on some attribute
subset of U, while temporal grouping groups together tuples according to their V7T’
values. In such a way, one can define evolving (that is, dynamic) dependencies
that must hold at all (and only) time points belonging to the same temporal group.

Example 4 Let us now consider the seventh requirement of relation Patient re-
ported in Section 2:

7. For any pair of consecutive assumptions of the same drug by the same pa-
tient within the same month, the quantity of the second assumption uniquely
depends on (the drug and) the quantity of the first assumption.

Such a requirement is encoded by the following TFD:

X et D rugs Month(i)] Drug, Qty — Qty

Temporally hybrid TFDs.

In these TFDs, the evolution expression E-Exp returns a relation over the schema
U U {VT} computed by means of join operations on some attribute subset of
U and further renaming, project, and union operations, while temporal grouping
groups together tuples according to their V1" values.

These TFDs allow one to express requirements on evolving values that must
be preserved by all evolutions. As we will show in Section 6, such a class of
requirements is captured neither by Vianu’s dynamic dependencies nor by the
other “grouping” TFDs proposed in the literature.

Example S5 Let us now consider the last requirement of the relation Patient re-
ported in Section 2:

8. For any given chemotherapy, the quantities of drugs that are assumed (by

patients) with consecutive assumptions that take place one 7 days after the
other cannot change.

11

In this case, grouping tuples which “happen” every seven days and then check-
ing dependency Chemo, Drug — Qty against them is not enough, and thus TFD
[r,{i} U {i + 7} Chemo, Drug — Qty does not help us in representing this last
requirement.

A TFD that takes into consideration the evolution of tuples in an appropriate
way is the following one:

[HeP?ent Top(i)] Chemo, Drug — Qty,

where

HePobert 2 Lt (rfaierh, g () AN [VT] = VT + 7 A
tlUl =t [UAt[VT) =t'[VT]) Vv

W (That1a Drug () ANV = U [VT] + 7 A

t{U] = V[U] A t[VT) = ¢'[VT))}.

The evolution expression H e first joins tuples representing consecutive ad-
ministrations (of a given drug to a given patient), that is, pairs of administrations
with no administrations in between. Then, two sets of tuples, respectively fea-
turing the attribute values of the first and of the second drug administration, are
computed by two existential subqueries. Finally, the two sets are merged (logical
disjunction) to make it possible to specify (and check) the functional dependency.
In such a way, the functional dependency is only checked on tuples referring to
consecutive administrations of a given drug to a given patient that take place on
time points (days) which are 7 unit (days) from one another. As all tuples have to
be considered together, temporal grouping is Top(i).

We conclude the section by providing another example of this new kind of
temporal functional dependency. Let us consider the constraint “employees with
the same role, who will not change it from the current month to the next one, will
get the same (unchanged) salary” that we already mentioned in the introduction.
We need both to join consecutive tuples modeling old and new values for a given
employee (this can be done with Vianu’s DFDs as well) and to compare these old
and new values (no one of existing formalisms for TFDs support these compar-
isons). Given the relation Employee over the schema U = {empld, salary, role},
the above constraint can be encoded by means of the following temporally hybrid
TFD:

[evTmetovee 1% U {i + 1}]role — salary,

where
evtmplovee = L 3¢ (yFrriovee (1) At[U] =

empld,role

Elt/(XEmployee (t/) /\t[U] _

empld,role

12

The evolution expression ev”™!°¥¢¢ joins tuples related to the same employee with
the same role holding at two consecutive time points, taking months as the basic
time unit. Then, two sets of tuples, respectively featuring the attribute values
holding at the first and the second time points, are computed by two existential
subqueries. Finally, the two sets are merged (logical disjunction) to make it pos-
sible to specify (and check) the functional dependency role — salary. In such a
way, tuples describing employees that change their role and, in the new role, get a
salary different from that of the other employees with the same role are allowed,
as they do not appear in ev“mplovee,

S TFD checking

In this section, we show that the problem of checking whether a temporal relation
r satisfies a given (set of) TFD(s) can be reduced to the problem of establishing
whether the evaluation of a suitable relational query on 7 returns the empty rela-
tion [6]. To make the computational steps of the checking procedure explicit, we
adopt the named relational algebra featuring selection, projection, natural join,
set difference, set union, and renaming as its basic operations [6].

Any TFD on a relation schema R can be viewed as an instance of the following
general pattern:

[E-Exp(R),t-Group| X — Y

We can verify whether a given relation R satisfies the TFD by checking the empti-
ness of the result ¢ of the following expression:

q — oond(E-Exp(R) My _5 py_wE-Exp(R))
where IV is the set of attributes of £-Exp(R) and Cnd stands for \/ ,, (A # AN
SameTGroup.

The predicate Same T Group verifies that all the given valid times belong to the
same group, according to the expression t-Group. Thus, if E-Exzp(R) is defined
over the schema UU U{V'T,VT}, then SameTGroup = 3 i(VT € t-Group(i) A
VT € t-Group(i) A VT € t-Group(i) A VT € t-Group(i)); if E-Exp(R) is
defined over the schema UU{V'T'}, then SameTGroup = 3 i(VT € t-Group(i)A
VT € t-Group(i)).

Let us now focus on the two different ways of specifying the temporal group-
ing, considering, for sake of simplicity, the general case of the evolution relation
defined on the schema U U {VT'}. The predicate SameTGroup has to deal ei-
ther with a granularity specification or with intersecting finite sets of time points.

13

When dealing with intersecting finite sets of time points, the predicate consists
of a disjunction of conditions on the relative distances between the involved valid
times. More precisely, if t-Group = J;_ {(i + a;)}, then

SameTGroup = \/(ﬁ =VT + a;)
j=1

In the case of a granularity specification, as we will focus on checking tempo-
ral functional dependencies on any (finite) database, we will assume to deal with
some suitable finite set of granules of a given granularity, that is, those granules
containing some valid tuples. In particular, the considered portion of granularity
G is described by means of a temporal relation Gran defined on the attributes
(G_1d, I,G,, G,), where tuples represent the name of the granularity (G _Id), the
index (/), the starting point (G), and the ending point (G.) of each granule of the
considered granularity. For sake of simplicity, we restrict ourselves to granulari-
ties without gaps inside.

In this case, when ¢t-Group stands for G(7) (let ”G” be the granularity name
in its relational representation), the problem of checking whether the TFD is sat-
isfiable is equivalent to checking whether the following relational algebra query ¢
returns the empty set:

0 0ona((B-Exp(R) ¥_ (pyy 5 E-Eap(R))) ¥ Gran)

where Cnd = Vaey (A £ A)AVT > GoAVT < GoAVT > GoAVT <
G.NG_Id="“G".
It is quite straightforward to prove that checking for emptiness the resulting
relation ¢ is equivalent to say that the given relation R satisfy the considered TFD.
Let us now discuss in detail the checking-for-emptiness approach for each type

of the previously introduced TFDs by providing some examples for each kind of
TFD.

Pure temporally grouping TFDs. The first dependency, which is related to
Requirement (1), can be expressed as follows: |[Patient, {i}|Patld, Drug —
Chemo, BG, Phys, Qty. The check for emptiness on a given relation Patient
can be performed by executing the query ¢:

q < o cna(Patient X = Patient)),

Pat]d:Pa//id/\Drug:@ Pw —w -
where Cnd = (Chemo # Chemo V BG # BG v Phys # Phys V Qty #
Q) AVT = VT.

The second dependency, which is related to Requirement (2), can be repre-
sented as [Patient, {i} U .. U {i + 13}] Chemo, Patld, Drug — Qty. We can es-
tablish whether Patient satisfies it by checking for emptiness the following query

q:

14

q<— o

Qty# @A(W—VT) <13 (Patzent . Chemo= @oAPatId:m/\Drug:ﬁru\g
= Patient).

Pw—w
The third TFD, which is exemplified by Requirement (3), can be expressed as

[Patient, Month(i)] Chemo, Drug — Qty. It can be verified by taking advantage
of the following query:

q < 0cna(Patient X Chemo= Chamon Drug—Dras Py Patient) X Gran),

where Cnd = Qty # Qty AVT > GoAVT < GoAVT > G, AVT <
G. NG_Id = “Month”.

Pure temporally evolving TFDs. Requirement (4) can be expressed by means
of the TED [x pi 7 e pemos TOP(i)] Drug, Qty — Qty which can be checked for
emptiness by means of the query:
q< U@#Q:@(Xllzg?fg%hema NDrug:ﬁu\gAQtyzég/ (pW%WxggigeZ%hemo))'
Similarly, the fifth TED [5% 7 hemo prys: TOP()] Drug, Qty — Qty can be
verified on a relation s by checking for emptiness the following query:
Patien Patien
q < O-%#a(XPaild,é’hemo,Phys MDTug:ﬁ-ru\g/\Qty:@ pWH/VVXPaiId,tChemo,Phys>
Requirement (6) can be expressed by means of the TFD:

[T}I;gﬁf{,léhemo,Drug’ {Z}]D’]"Ug, Qty - %7

which can be checked for emptiness through the query:
_ Patient - .
q < O-Qtyyé Qty/\VT:ﬁ (TPatId7Chemo,Drug MDrug:Drug/\ Qty=Qty
ATPatient)
Pw W TPatId,Chemo,Drug

Temporally mixed TFDs. Requirement (7) can be encoded by means of the
TFD [yPatientPatld,DrugMonth(i)] Drug, Qty — Qty, which can be verified by

checking for emptiness the following query ¢:
o Patient X . o
q< UQTy;AQTyAVTst/\VTSGEAVTZGS/\VTSGE(XpaﬂdaDmg Drug=DrughQty=Qty

Patient
pW_>/V[7XPatId,Drug X 0G_Id=“Month” Grcm)

Temporally hybrid TFDs. Finally, Requirement (8) of Example 5 can be en-
coded by means of the TFD [H e Top(i)] Chemo, Drug — Qty. The corre-
sponding query to check for emptiness is:

. Patient - - e
q< O-Qt’y?éQty(He I><]DT’ug:Drug/\C’hemo:C’hemo Pww
which can be expanded as follows:

HePatient))
’

q < O-Qty;éét\y ((WUU{VT} (O-W:VT—Q—? (T]]jgglif{%rug)) U
Patient)))

PO VT—UvTTOU{VT} (o VI=VT+7 (TPatId,Drug X Drug=DrugA Chemo=Chemo

15

(WUU{VT}(UW:VT+7<T]§gf}§75rug)) U '
PTVT—UvTTOU{VT} (o VT=VT+7 (ngfﬁ%mg))
We conclude the section with a short analysis of the computational complexity
of TFD checking. As TFDs are represented by general expressions of the form:

[E-Exp(R),t-Group] X —Y

the computational cost of checking for the satisfaction of X — Y on the evolution
relation, with respect to the grouping condition ¢-Group, mainly depends on the
structure of the F-Exp(R) expression itself.

Let n and n g be the cardinalities of the relation r and of the evolution relation
E-Exp(R), respectively. The emptiness check consists of the execution of the
join:

E-Exp(R) M,_4 E-Exp(R),

followed by the application of a selection to the resulting relation to verify the
condition on the consequents and on the temporal grouping. In the worst case,
the join reduces to a cartesian product, that can be computed in O(n%). Then,
the subsequent selection operation must be executed n% times (as many times as
the tuples of the resulting relation are). Hence, the overall cost of the emptiness
check is O(n%). As the number ng ranges from n (for pure temporally grouping
TFDs) to O(n?) (for temporally evolving relations), the complexity of the empti-
ness check ranges from O(n?), for pure temporally grouping relations, to O(n?),
for temporally evolving relations.

6 Related work

Various representation formalisms for TFDs have been developed in the litera-
ture [2, 5, 10, 11, 12], which differ a lot in their structure as well as in the un-
derlying data model. All of them basically propose alternative extensions to the
relational model, often introducing non-relational features (this is the case with
Wijsen’s objects [12] and Vianu’s update mappings [10]), making it difficult to
identify their distinctive features and to systematically compare them in order to
precisely evaluate their relative strength and their limitations. In the following,
we take the set of requirements given in Section 2 as a sort of benchmark for their
evaluation. A systematic analysis is provided in the appendix, where we first de-
scribe the most significant TFD formalisms proposed in the literature, following
as much as possible the original formulation given by the authors, and, then, we
formally prove that our proposal actually subsumes all of them. In the following,
we provide a short account of such an analysis. In particular, we show that ex-
isting formalisms significantly differ in the requirements they are able to express

16

and that there exist meaningful requirements they are not able to cope with. As an
example, existing TFD systems are not able to express Requirements (5-7), which
(from the point of view of the conditions they impose) look like minor variations
of Requirement (4).

Let us assume to have a representation of the patient database example in (the
data model underlying) all the TFD systems we are going to analyze. We first
show how to represent Requirements (1-4). As a matter of fact, not all these
requirements can be encoded in all TFD systems.

In [5] Jensen et al. propose a bitemporal data model that allows one to as-
sociate both valid and transaction times with data. Jensen et al.’s TFDs make it
possible to express conditions that must be satisfied at any (valid) time point taken
in isolation. Requirement (1), which prevents any patient from having two or more
assumptions of the same drug during the same day, can be modeled by Jensen et
al. ’s TFDs as follows:

Patld, Drug—" Phys, Qty

A general formalism for TFDs on complex (temporal) objects has been pro-
posed by Wijsen in [12]. It is based on a data model that extends the relational
model with the notion of object identity, which is preserved through updates, and
with the ability of dealing with complex objects, that is, objects that may have
other objects as components. Wijsen’s TFDs have the form ¢ : X —, Y. Their
meaning can be intuitively explained as follows. Let ¢; and ¢, be two objects of
class ¢ valid at time points i and j, respectively, where (i, j) belongs to the time
relation «. If ¢; and ¢, agree on X, then they must agree on Y as well.

For any patient, Requirement (2) forces drug quantities of chemotherapies
to remain unchanged whenever the assumptions take place within 14 days (the
relation depicted in Table 1 violates such a requirement). Such a requirement
constrains the duration of the time span between two assumptions and it can be
modeled using Wijsen’s TFDs as follows:

Patient : Patld, Chemo, Drug — 1;pays QtY,

where 1/Days is a time relation grouping 14 consecutive days.

Bettini, Jajodia, and Wang’s notion of TFD takes advantage of time granu-
larity [2]. Their TFDs allow one to specify conditions on tuples associated with
granules of a given granularity and grouped according to a coarser granularity. It
is not difficult to show that Wijsen’s TFDs actually subsumes Bettini et al.’s TFDs.
More precisely, Bettini et al.’s TFDs are exactly all and only Wijsen’s TFDs on
chronologies (the class TFD-C in Wijsen’s terminology).

Requirement (3) essentially states that, regardless of the patient, for any che-
motherapy and any given month, the administered quantity of a drug is always the

17

same. This requirement can be expressed in Bettini et al.’s formalism for TFDs
by the following TFD on the temporal module schema (Patient, Day):

Chemo, Drug —month Qty

where Month is the granularity grouping days of the same month.
Its representation in Wijsen’s TFD formalism is as follows:

Patient : Chemo, Drug — ponn Qty,

where Month is a time relation grouping days of the same month. It is not difficult
to show that pure temporally grouping TFDs are very close to the TFDs proposed
by Jensen et al. , Wijsen, and Bettini et al. , as witnessed by the above three
temporal functional dependencies.

In [10], Vianu proposes a simple extension to the relational model in order to
describe the evolution of a database over time. He defines a database sequence
as a sequence of consecutive instances of the database, plus “update mappings”
from one instance (the “old” one) to the next one (the “new” instance). Constraints
on the evolution of attribute values of tuples (objects) over time are expressed by
means of dynamic functional dependencies (DFDs), that make it possible to define
dependencies between old and new values of attributes on updates. For example,
Requirement (4) constrains the assumptions of a drug on two consecutive days by
imposing different patients not to assume different quantities of the drug on the
next day, if they assume the same quantity of it on the current day. Assuming that
the update mapping represents the evolution of a tuple for a given patient and a
given drug, Requirement (4) can be expressed by the following DFD, where for

Vv A\
each attribute A, A represents its old value and A its new value:
Vv Vv A\
Drug, Qty— Qty

We conclude the section by an intuitive account of the fact that the last four
requirements cannot be dealt with by existing TFD systems. This is true, in par-
ticular, for Requirements (5-7) that present some similarities with Requirement
(4), which can be easily encoded using Vianu’s DFDs. Consider, for instance, Re-
quirement (5). Such a requirement is based on an update mapping which differs
from the one of Requirement (4) in an essential way. Such a mapping must indeed
associate any tuple involving a patient, a drug, and a physician, valid on a given
day, with a tuple involving the same patient, drug, and physician, valid on the
next day (if any). Unfortunately, Vianu’s DFDs cannot help, as they are based on
a fixed update mapping (that does not allow one to constrain the physician to be
the same). Moreover, Vianu’s update mappings are partial one-to-one mappings,
and thus they cannot be exploited to deal with the case where a tuple, valid on
a given day, must be associated with more than one tuple, valid on the next day.
Requirement (6) constrains consecutive assumptions of a drug possibly involving

18

different delays: Vianu’s update mappings cannot cope with asynchronous up-
dates of different tuples. Requirement (7) cannot be fulfilled by existing TFDs as
well. It indeed requires a sort of combination of Vianu’s DFDs and tuple temporal
grouping supported by Wijsen’s TFDs (and by Bettini et al.’s TFDs).

Requirement (8) deserves a deeper analysis. Basically, it imposes that, for any
chemotherapy, (only) the quantities of drugs assumed by patients every 7 days
cannot change. On the one hand, this constraint cannot be expressed via Vianu’s
DFDs, as they do not allow one to formulate a condition of the form: “something
cannot change in the evolution of the database”. On the other hand, the other TFD
systems have no the capability of “mapping tuples’ evolution” (the evolution of
a database can only be modeled through the union of consecutive states). As an
example, Wijsen’s TFD Patient : Chemo, Drug — 7peys @ty, where the time
relation 7Days groups days which are exactly 7 days far from each other, does
not capture the intended meaning. Consider, for instance, the tuples belonging to
the relation depicted in Table 1. The relation violates such a TFD as the tuple for
patient 3 at time 1 violates it with respect to drug Cyc and chemotherapy CEF,
with respect to time points 1 and 8. On the contrary, according to its intended
meaning, requirement (8) is actually fulfilled by the relation depicted in Table 1,
as the drugs that are assumed by patients every 7 days (Flu by patient 1, and Epi
by patient 2) do not change their quantities from one assumption to the successive
one (7 days later).

7 Conclusions and Future Work

In this paper, we focused our attention on the specification and checking of tem-
poral functional dependencies (TFDs), possibly involving multiple time granu-
larities. To overcome the limitations of existing TFDs, we have proposed a new
general notion of TFD, that subsumes all of them and allows one to cope with tem-
poral requirements they cannot deal with. The simplest TFDs are directly brought
back to atemporal FDs; to manage the most complex ones some additional ma-
chinery is needed. As for the problem of checking whether a temporal relation
satisfies a given set of TFDs, we have shown how to uniformly reduce it to the
problem of checking for emptiness a suitable relational algebra expression over
the considered temporal relation.

References

[1] V. Assikis, A. Buzdar, Y. Yang, and et al. A phase iii trial of sequential
adjuvant chemotherapy for operable breast carcinoma: final analysis with

19

10-year follow-up. Cancer, 97:2716-2723, 2003.

[2] C. Bettini, S. Jajodia, and X. Wang. Time granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, 2000.

[3] D. Bresolin, A. Montanari, and G. Puppis. A theory of ultimately periodic
languages and automata with an application to time granularity. Acta Infor-
matica, 46(5):331-360, 2009.

[4] J. Clifford and D. Warren. Formal semantics for time in databases. ACM
Transaction on Database Systems, 8(2):214-254, 1983.

[5] C.Jensen, R. Snodgrass, and M. Soo. Extending existing dependency theory
to temporal databases. IEEE Transactions on Knowledge and Data Engi-
neering, 8(4):563-581, 1996.

[6] P. C. Kanellakis. Elements of relational database theory. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal Mod-
els and Semantics (B), pages 1073-1156. Elsevier and MIT Press, 1990.

[7] M. Levine, C. Sawka, and D. Bowman. Clinical practice guidelines for the
care and treatment of breast cancer: 8. Adjuvant systemic therapy for women
with node-positive breast cancer (2001 update). Canadian Medical Associ-
ation journal, page 164, 2001.

[8] P. Ning, S. Jajodia, and X. S. Wang. An algebraic representation of calen-
dars. Annals of Mathematics and Artificial Intelligence, 36:5-38, 2002.

[9] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
1. Computer Science Press, 1988.

[10] V. Vianu. Dynamic functional dependency and database aging. Journal of
the ACM, 34(1):28-59, 1987.

[11] J. Wijsen. Design of temporal relational databases based on dynamic and
temporal functional dependencies. In J. Clifford and A. Tuzhilin, editors,
International Workshop on Temporal Databases, Recent Advances in Tem-
poral Databases, pages 61-76. Springer, 1995.

[12] J. Wijsen. Temporal FDs on complex objects. ACM Transactions on
Database Systems, 24(1):127-176, 1999.

[13] J. Wijsen. Temporal dependencies. In L. Liu and M. T. Ozsu, editors, Ency-
clopedia of Database Systems, pages 2960-2966. Springer US, 2009.

20

A Dealing with extended relations

As the additional relational views apparently use arithmetic operations, we will
introduce an extended representation of temporal relations making it evident that
arithmetic expressions occurring in the definition of temporal relational views are
just shorthands (connected to the chosen representation for relations with a tem-
poral dimension).

We call snapshot of the temporal relation r at time ¢, denoted r;, the (atempo-
ral) relation containing all and only the tuples of r valid at time point 7. Formally,
the snapshot of r at time ¢ is defined as follows:

ri ={t] r) AtVT =i}

The extended temporal relation v obtained from a temporal relation 7 is a
temporal relation defined on the set of attributes

att(r”) = att(r) U {PRES?} = U U {VT, PRES?},

where PRES? is a Boolean attribute denoting the presence or absence of a tuple
in the relation 7 at a given time point.

The extension of a temporal relation r is obtained as follows: for each time
point i, if t € r; (that is, if ¢{{V'T] = 1), then a tuple ¥ is inserted in ¥ with
values:

t“IvT) = i
tF[A] = t[A] VAecU
t¥![PRES?] = true

Moreover, for each time point ¢ between the earliest and the latest time points
were some tuple of 7 holds, and each tuple ¢, with ¢ € r; (for some j # ¢) and
t & r;, a tuple s” is inserted in ¥ with values:
sSEIVT] = i
sP[A] = t[A] VAeU
s“[PRES?] = false

r¥ can be derived through the following query:

¥ ={tP |) AEVT =t VT AP.U =t.U ANtE.PRES?) vV
(r() A (r(E) Ar(E") A= (") A VT < £ VT A
=3 (rt") A VT > " VT)ANEVT > ' VT A
tEVT <" VT)AN-FH(r(t) ANt VT =t* VT At.U = t°.U)
A= tE.PRES? NtP.U =t.U)}

21

Thus, for every time point ¢ the snapshot of an extended temporal relation at
time point ¢ is defined as follows:

rF = {tP | PPAE)AEVT =4}

The notion of extended temporal relation resembles that of completed rela-
tion introduced by Clifford and Warren in [4]. This notion of completed relation
has been exploited to complete a relation by adding to its temporal schema a new
Boolean attribute that expresses the presence or absence of tuples (objects) at a
given time point. In the original proposal, such a Boolean attribute, called EX-
ISTS?, is added to the schema of the considered relation to indicate which tuples
are of interest in any state. In those states where a given tuple does not exist,
the attribute EXISTS? assumes value 0 and all the other attributes, but key ones,
assume value |, a distinguished value whose meaning is that the attribute does
not apply. Such an extension allows one to follow tuples (objects) throughout all
of the states of the database. To this end, it is necessary to first collect all the
tuples/objects (identified by their key values) that are present in some state of the
database, and then to add the appropriate “null tuples” to states where no informa-
tion about some tuples/objects is given. Our notion of extended temporal relation
can be viewed as a generalization of the concept of completed relation, when no
key attributes exist (or are defined) for (each state of) the considered temporal
relation.

In the definition of ng, we make use of the non-standard (arithmetic) selection
condition t'.V'T = t.V'T + k. However, this is simply syntactic sugar, as ng can
be turned into a standard relational calculus expression on the extended relation
rE by the following expansion.

For k > 1, let my, be inductively defined as follows:

my ={ul I AT ANwZ =t ZANuZ =t.2
AX =t X AuX =t XA Aw XL =t XA
uwVT =tVT AuVT' =t VT A AuVTF L =t VT A
uw.PRES? = t.PRES? Au.PRES? =t.PRES? A ... A
u.PRES?*™' = t PRES?*7' A
w X =t/ X A\uVT* =t VT Au.PRES?" =t .PRES? A
= (EWYVAN . Z =t Z AN VT >t VT A" VT <t VT))}

while my is rF.

22

As it can be observed from the above expression, my, is defined on the schema
ZXX'X?. . . X*WTVT'VT?...VT*PRES? PRES?' PRES??... PRES?",
where there are £ suitable renominations of attributes PRES?, V'T" and of attribu-
tes in set X.

Taking advantage of this inductive definition, for any fixed £ > 1, we can
define the next view x;" on the schema X X, VTVT as follows:

Xy S| Btmet) A X = mp. X AuwX = mp. XA
wZ =mp.Z NuVT =m VT AuVT = my, VTF
Amy,.PRES? A my. PRES?%)}

The next view is built in such a way that at the first step (k = 1), the relation
¥ is joined with a suitably renamed version of itself and then only tuples whose
(renamed) valid time follows the first one are selected. The resulting relation
(featuring the attributes of the extended relation and the corresponding renamed
ones) is then joined with a suitably renamed version of it. By the nested query (in
m,), we are able to join each tuple in 7 with the corresponding one valid at the
next time point. 1, is then suitably joined to 7 to build ms, and so on, according
to above inductive definition.

B The main proposals for TFDs

In this section, we provide a short overview of the main formalisms for TFDs
(provided with/ devoid of time granularity) proposed in the literature.

Jensen, Snodgrass, and Soo’s TFDs. In [5] Jensen et al. propose a bitempo-
ral data model that allows one to associate both valid and transaction times with
data. The domains of valid and transaction times are the finite sets Dy and
Drr, respectively. A valid time chronon ¢’ is a time point belonging to Dy and
a transaction time chronon ¢! is a time point belonging to Dprr. A bitemporal
chronon ¢® = (c!, ¢¥) is an ordered pair consisting of a transaction time chronon
and a valid time chronon. The schema of a bitemporal relation R, defined on the

set U = {Ay, Ay, ..., A, } of atemporal attributes (called non-timestamp attribu-
tes), is of the form R = (A, As, ..., A,|T), that is, it consists of n atemporal
attributes Ay, Ao, ..., A,, with domain dom(A4;) for each i € [1,n], and an im-

plicit timestamp attribute 7. The domain of 7" is 2Pr7HUCH*Pvr where UC is
a special value that can be assumed by a transaction time chronon to express the
condition “until changed”. For instance, to state that a tuple valid at time ¢" is
current in the database, the bitemporal chronon (UC, ¢”) must be assigned to the
tuple timestamp. As a general rule, they associate a set of bitemporal chronons in

23

the two-dimensional space with every tuple. Such a set, denoted by t°, is called
bitemporal element.

TFDs are FDs that must be satisfied at any bitemporal chronon (¢, ") by
tuples valid at time ¢’ and current at time ¢'. Formally, TFDs are defined as
follows.

Definition 4 Let R® = R(U|T) be a temporal relation schema and X,Y C U.
A database instance 2 of R satisfies a TFD X —TY iff

Ve € Dpp U{UC}Y Ve’ € Dyr V¥s1, 50 € T4 (ph (rP))
(51[X] = 85[X] = s1[Y] = 52[V]),
where the expression 7% (p5(rP)) returns the set of tuples in 2 valid at ¢’ and
current at ¢

Jensen et al.’s TFDs make it possible to express conditions that must be satisfied
at any (valid) time point taken in isolation. As an example, let Emp be a temporal
relation schema with the set of atemporal attributes U = {empld, salary, role}.
The condition “at any time, the salary of an employee uniquely depends on his
role” can be expressed by the TFD role —1 salary.

Bettini, Jajodia, and Wang’s TFDs. Bettini, Jajodia, and Wang’s notion of TFD
takes advantage of time granularity [2]. A time granularity is a partition of a time
domain in groups of indivisible units called granules. Examples of granularities
are Day, Month, and WorkingDay. A time granularity can be formally defined
as follows.

Definition 5 A time granularity is a mapping G from integers to subsets of a
totally ordered time domain (T, <) such that: (1) ifi < j and G(i),G(j) # 0,
then, foralln € G(i)andm € G(j),n <m; (2)ifi < k < jand G(i),G(j) # 0,
then G(k) # (.

The domain of a granularity G is called index set and the elements of its range are
called granules. The image of a time granularity is the union of the granules in
the granularity. A time granularity is associated with each relation schema in the
database according to the following definition.

Definition 6 A temporal module schema is a pair (R, G), where R is a relation
schema and G is a time granularity. A temporal module is a triple (R, G, ¢),
where (R, G) is a temporal module schema and ¢ is a function, called time win-
dowing function, that associates a set of tuples with every granule G (i) (the set of
tuples valid at G(7)).

24

Let G(iy, ... ,iy) be a shorthand for | J, ., G(i;). Bettini, Jajodia, and Wang’s
TFDs are defined as follows. o

Definition 7 Let X and Y be two (finite) sets of attributes and H be a time granu-
larity such that H (i) # () for some i. ATFD X —y Y is satisfied by a temporal
module M = (R, G, ¢) if and only if for all tuples t,,ts and all positive integers
i1, 09, If () 11[X] = to[X], (ii) t1 € ¢(i1) and ty € ¢(iz), and (iii) there exists j
such that G(iy,i2) C H(j), then t,]Y] = to[Y].

Bettini, Jajodia, and Wang’s TFDs allow one to specify conditions on tuples as-
sociated with granules of a given granularity and grouped according to a coarser
granularity. As an example, if we consider the temporal module schema (Emp,
Month), where E'mp is a relation schema with attributes U = {empld, salary,
role} and Month is the granularity that groups time points of the same month, the
condition “for any given year, employees with the same role have the same salary;
however, their salary may change from one year to the next one” is captured by
the TFD role —year salary.

Wijsen’s TFDs. A general formalism for TFDs on complex (temporal) objects
has been proposed by Wijsen in [12]. It is based on a data model that extends
the relational model with the notion of object identity, which is preserved through
updates, and with the ability of dealing with complex objects, that is, objects
that may have other objects as components. The time domain is assumed to
be (isomorphic to) N. A time relation is a subset of N @ N, where the oper-
ation ® is defined as I @ J = { (i,j)| i€ INje JAi<j }, with [,J C
N. Examples of meaningful time relations are Forever = N ® N, Next =
{ (i,j) € Forever| j—i <1 }, and Current = { (i,i)| i€ N }. A time
granularity can be defined as a special case of time relation, called chronology.
For example, the granularity Month can be defined as the smallest set of pairs
(i,7), where i and j belong to the same month and i < j.

Wijsen’s temporal data model is formally defined as follows. Let dom be a set
of atomic values, that is, the union of disjoint domains corresponding to atomic
types, att be a set of attribute names, and \ (¢ att) be a special attribute used
to denote object identity. Moreover, let obj be an infinite set of object identifiers
(OIDs) and class be a set of class names. Given a finite set of class names C,
atypeover C'isaset {A; : 7,4y : 7o,..., A, : T}, where Ay, Ay, ..., A, are
distinct attribute names and each 7;, with 1 < ¢ < n, is either an atomic type or a
class name in C. A schema is a pair (C, p), where C'is a finite set of class names
and p is a total function that maps each class name in C into a type over C. An
OID assignment to C'is a function 7 : C' — p(obj) such that, for every ¢, d € C,
with ¢ # d, m(c) Nw(d) = 0. A tuple of the type {Ay : 71, ..., A, : 7,} over C'is
aset {A; : vy,..., A, : v,} such that, for each i, if 7; € C, then v; € 7(7;) and

25

if 7; 1s an atomic type, then v; is a value in its domain. An instance of a schema
(C, p) is apair I = (7, v), where 7 is an OID assignment to C' and v is a function
over O = { m(c) | cedC } that maps each OID in O to a properly-typed tuple.
Given an instance I = (7, v) of a schema (C, p), an object of class ¢ € C' is a set
{N:0, Ay tvy, ... Ay s v}, where o € T(c) and v(o) = {Ay 1 vy, ..., Ayt un)
For every instance I, there exists a mapping I over C, which associates with each
class ¢ € C the set of objects belonging to it. Objects, tuples, and types can be
viewed as total functions over a suitable subset of att U {\}. The notation [¢t] is
used to denote the domain of the function ¢, that is, an object, a tuple, or a type.
[t]x stands for [t] U {\}. Moreover, if ¢ is a function and X C [¢t], then ¢[X]
denotes the total function ¢’ over X such that, for each x € X, t/(z) = t(z).
A temporal instance is an infinite time series of instances. Formally, a temporal
instance T of a schema (C, p) is an infinite sequence of instances of (C, p). The
it" instance of T is denoted as T; = (m;, v;). For any ¢ € C, an element of T;(c)
is an object of ¢ at time 1.
The notion of TFD is defined as follows.

Definition 8 A TFD over the schema (C, p) is an expression of the form ¢ : X —,
Y, where ¢ € C, «is a time relation, and X, Y C [p(c)], with X # (.

The TFD c : X —, Y is satisfied by a temporal instance T of (C, p) if and
only if, for every (i,j) € a, t; € Ty(c), and ty € T;(c), if t1[X] = to[X], then
t[Y] = to]Y].

The meaning of the TFD ¢ : X —, Y can be intuitively explained as follows. Let
t1 and t5 be two objects of the class ¢ at time points ¢ and j, respectively, where
(i, 7) belongs to the time relation «. If ¢; and ¢, agree on X, then they must agree
on Y as well.

It is not difficult to show that the class of Wijsen’s TFDs subsumes the class of
Bettini et al.’s TFDs. More precisely, Bettini et al.’s TFDs are exactly all and only
the TFDs on chronologies (the class TFD-C in Wijsen’s terminology). In an earlier
work [11], Wijsen introduces a special notation for some relevant subclasses of
TDFs. In particular, he denotes X —pner Y by XNY and X —porever Y by
XGY.

Wijsen’s TFDs allow one to specify conditions on tuples grouped according to
any given time relation. As an example, if we consider the schema ({ Emp}, p),
where p(Emp) = {empld : string, salary : integer, role : string}, integer and
string being atomic types, it is possible to express the condition “employees cannot
have different salaries over two consecutive time points, if their role does not
change (but their salaries may change both if they change their role and if they
are fired and then re-hired, even with the same role')” by means of the TFD Emyp :

"When re-hired, the employee gets a different OID.

26

empld, role N salary.

Vianu’s Dynamic FDs. In [10], Vianu proposes a simple extension to the rela-
tional model in order to describe the evolution of a database over time. According
to it, a temporal database is viewed as a sequence of instances (states) over time.
A change in the state of the database is produced by the execution of an update,
an insertion, or a deletion. A database sequence is a sequence of consecutive in-
stances of the database, together with “update mappings” from one instance (the
“old” one) to the next one (the “new” instance). State and database sequence are
formally defined as follows [10].

Definition 9 Ler N be the set of natural numbers. A set S C N is called initial if
either S = {) ‘ 0<i<n }for somen € Nor S = N. For every initial set S,
let Sy = S — max(S) if max(S) exists, and Sy = S otherwise.

Definition 10 A database sequence over a set of attributes U is a sequence (I,
I;i)ics, where S is an initial set, I; is an instance over U, for every i € S, ;
is a partial one-to-one update mapping from I; to 1,1, for every v € Sy, and
Pmaz(s) = 0, if max(S) exists.

Tuple are viewed as representations of domain objects. Since a tuple and its
updated version represent the same object, tuples must preserve their identity
through updates. This is formally achieved by update mappings: for each tuple x
in I;, p;(x) is the updated version (if any) of x in I; ;. Moreover, each tuple in
I; which does not belong to the domain of p; (dom,,,) is deleted and each tuple in
I; 11 which does not belong to the range of 1; (rng,,) is inserted. Properties of the
evolution of objects over time are expressed by “dynamic” dependencies, which
are defined by means of “action relations” associated with updates. Intuitively,
an action relation is generated by concatenating each tuple in the “old” instance
I with its updated version in I’. According to Vianu’s notation, for each attribute

\Y A
A, A represents its old value and A its new value. For each set U of attributes, let

Vv \ N A
U={A|A€U}and U= {A |A € U}. The notion of action relation is formally
defined as follows.

Definition 11 The action relation associated with an update (I, i, 1) is the rela-
A

tion Ipl' = { T x p(x) | zel }

Constraints on the evolution of attribute values of tuples (objects) over time are ex-

pressed by means of dynamic functional dependencies (DFDs), which are defined
as follows.

27

Definition 12 A DFD over U isan FD X — Y over (}(/} such that, forall A €'Y,
both XA N U+ and XA N U+ 0.

The above condition on DFDs ensures that X — Y does not imply any nontrivial
\Y A
FD over U or U.

Definition 13 A DFD X — Y is bipartite if either X CUJ and Y CUJ, or X CUJ
andY QI} .

\ AN
Informally, a bipartite DFD X —Y imposes to tuples that feature the same values
for the attributes X at time (state) ¢ to feature the same values for the attributes Y
at time (state) ¢ + 1.

Definition 14 An update (1, i, I') satisfies a set A of DFDs, written (I, 1, 1') |=
A, if the action relation Il satisfies A.

Definition 15 Let (U, 3, A) be a DFD schema, where U is a set of attributes, ¥
is a set of FDs over U, and A is a set of DFDs over U. A database sequence
{(L;, pi)ies} satisfies (3, A), denoted {(1;, 1;)ics} E (3,A), if each I;, with
i € S, satisfies ¥ and each update (dom,,,, j1;,7ng,,), with i € Sy, satisfies A.

Notice that, for any update (I, u, I") over U, the action relation 7x/’ does not
Vv N

contain distinct tuples that agree on [/ or on [, as tuples are not duplicated in a
relation.
As an example, the condition: “the new salaries of employees uniquely depend
\ AN A

on their current and previous roles” is captured by the DFD role role — salary
over the set of attributes U = {empld, salary, role}.

C Expressive Power

In this section we show how our framework subsumes the TFDs proposed in the
literature and described in Section B. Wijsen’s TFDs subsumes both Jensen et
al.’s and Bettini et al.’s TFDs and it has been proved by Wijsen that the two TFDs
proposed by Wijsen [12] and Vianu [10] are orthogonal from the point of view of
expressiveness. Then it suffices to prove that our proposal subsumes both Vianu’s
and Wijsen’s TFDs. In order to encode Wijsen’s TFDs we have to fill the gap
between the two data models since the Wijsen’s one is object-based and our is
relational-based. Given a schema (C, p) in the Wijsen’s data model, for every
class ¢ € C we define a temporal schema R“” with attributes [t], U {VT}.
Given a temporal instance T = [(7;, v;)];en Over a schema (C, p), for every class

28

c € O, we define the corresponding instance ¥ of RI“?) as the minimal set of
tuples which satisfy the following condition:

for every i € N and every object o € m;(c) withv;(0) = {Ay 1 vy,..., A, v}
there exists a tuple ¢ € 7} with t[VT] = i, t[\]| = oand forevery 1 < j < n
the condition ¢[A;| = v; holds.

Moreover we assume that for every time relation o C N® N there exists a relation
R, consisting of two attributes / and .J, both with domain N. For our purposes
R, satisfies the condition (i, j) € R, if and only if (¢, j) € a for every i,j € N.
Finally, we can give the following result.

Theorem 1 For every temporal instance T = [(7;, V;)]ien over a schema (C, p)
and every Wijsen’s TFD ¢ : X —, Y on the schema (C,p) we have that c :

X —, Y is satisfied by T if and only if the TFD [R((;C’p), a|X — Y holds on the

instance r! of the temporal schema RO), where « is a mapping which groups

tuples whose valid times are in the « relation.

Proof Both implications can be proved by contradiction in a very straightforward
way. Let us start from the left-to-right implication. Suppose by contradiction that
there exist two tuples 7, and 7, in R\ such that 7,[X] = &,[X], L[] # L[Y]
and (t,[VT],t,[VT]) € a. By definition of 7! there exist two objects t; = {\ :
o, Ay 1 vi,.. . A, vl and ty = {\ 09, Ay vl A, 02} with o) €
T, vr)(€)s 02 € Ty (€), vy (on) = {Ar s g, .o Ayt op}and vy, gy (02) =
{A; :v?,..., A, : v2}. Moreover we have by definition of 7T that t,[X] = t,[X]
and ;Y] # t3]Y], this leads to a contradiction. The right-to-left direction is
specular. Let t; = {\ : o1, A1 : vi,..., A, s vl}and t, = {\ : 09, Ay :
v?,..., A, : v2} two objects for which there exists (i,7) € a with 0, € m;(c),
03 € mi(c), vi(or) = {A1 :vi,..., An v} and v(02) = {Ar v, ... A, s 02
By definition of 7! there exist two tuples 7; and 75 in Y with #;[\] = o0y, {2[\] = 0y,
t1[Aj] = vj and t5[A;] = vF for 1 < j <n, #,[VT] = iand t,[VT] = j. Then we
have #1[X| = #5[X] and #,[Y] # #,[Y] (contradiction).

Now we concentrate ourselves on the Vianu’s DFDs. In [10] the author adopt
a relational-based data-model enriched with an update mapping function p; as
described in Section B; Vianu, keeping an higher level of abstraction, does not
mention how this function is implemented in a real database. We may think that
this function is embedded directly into the relational schema R by adding an ad-
ditional attribute 77 D to the set of atemporal attributes U. The 7'/ D attribute is a
snapshot key for the relation 12 and it means that given any istance r of R we have
that for every ¢ € N the standard functional dependency 7'/D — U holds over
the snapshot {t | r(t) A t[VT] = i}. Given a database sequence {(/;, t4;)ics} for

29

some initial set S, we define the corresponding instance r of a relation schema R
with atemporal attributes U U {T' D} as the smallest set of tuples satisfying the
following conditions:

1. for every i € S and every ¢ € I; there exists a tuple ¢ € r with ¢[U] = ¢[U],
tVT) =1

2. for every ¢+ € S the standard functional dependency 71D — U holds over
the snapshot {¢ | r(t) AN t[VT] = i};

3. forevery i € Sy and for every tuple t € dom,,, we have that there exists two
tuples 7,7 such that £[U] = t[U], ¥ [U] = pu:(t)[U], T[VT] = i, T [VT] = i+1
and {[TID] = T [TID];

4. forevery i € Sy and for every tuple t € I; \ dom,,, we have that the instance
{Flr@ATHVT) =i+ 1ATE (r(@)AT[U] = t{U]AT[VT] =i AT [TID] =
t[TID])} is empty.

Now we are ready to give the following result.

Theorem 2 Let (U, X, A) be a DFD schema, a database sequence {(I;, 1;)ics }

VA VA
satisfies XW—ZY if and only if the corresponding instance 1 of the relational
schema R with attributes U U {TID,V'T} satisfies [x%;), Top(i)]XW — ZY.

Proof The proof is by contradiction for both implications. For the left-to-right
implication we assume by contradiction that the corresponding instance r does
not satisfy the TFD [x%,,, Top(i)]XW — ZY which means that there exists
two tuples in 7; and 7, in the instance rX of %, ,, with £;[XW] = #,[XW] and
1,[ZY] # t,[ZY]. By construction of x%,, we have that there exists four tuples
two natural numbers i and j and four tuples 5%, 5,5 and 5, with 5 [V'T] = i,
SHVT) = i+ 1, 8[VT) = 4, s VT] = j + 1, ${[TID] = 5" TID),
STID] = STTID], 5. (X] = 5X] = B[X], 5 W] = 51 W] = H[7)
and either 52[Z] # 55[Z] or 501 [Y] # 57! [Y] holds. By definition of r we have
that there exist (/;, f1;) and (1, 41;) and two tuples t; € I; and t, € [; with ¢; €
domy,, ty € domy,;, t[X] = t2[X] = HX], p(0)[W] = p;(12)[W] = H[W]
and either t1[Z] # t2[Z] or p;(t1)[Y] # p;(t2)[Y], this leads to a contradiction.
For the right-to-left implication suppose that there exists two natural numbers
i,j € N and two tuples t; € [; and t; € [; with t; € dom,,, to € dom,,,
61 [X] = 6[X] = t1[X], ps(t1) [W] = p;(t2)[W] = t1[W] and either t1[Z] # t5[Z]
or 11;(t1)[Y] # p;j(t2)[Y]. By definition of r, it contains four tuples 37,3,)
and 5" with 5 [VT] = 4, &HVT] = i + 1, S[VT] = j, 57 [VT] = j +
L, i[T1D] = s{"[TID], 5[T1D] = 5" [TID], 5i[X] = 5[X] = t,[X],
517 W] = 5" W] = pu(t1)[W] and either 5[] # 53[Z] or 571 Y] # 5, [Y]

30

holds. By definition of x%;, in its instance rX there exists two tuples ¢; and ¢, with

El [X]_: %2 [X]_: tl[X] and %1 [W] = EQ [W] = ,U/Z(t1>[W] and either %1[Z] 7é EQ[Z]
or 1Y # t5[Y] and this leads to a contradiction.

31

University of Verona -

y Department of Computer Science
=4 Strada Le Grazie, 15

Italy

