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a b s t r a c t 

This paper presents the methods that have participated in the SHREC 2021 contest on retrieval and clas- 

sification of protein surfaces on the basis of their geometry and physicochemical properties. The goal of 

the contest is to assess the capability of different computational approaches to identify different con- 

formations of the same protein, or the presence of common sub-parts, starting from a set of molecular 

surfaces. We addressed two problems: defining the similarity solely based on the surface geometry or 

with the inclusion of physicochemical information, such as electrostatic potential, amino acid hydropho- 

bicity, and the presence of hydrogen bond donors and acceptors. Retrieval and classification performances, 

with respect to the single protein or the existence of common sub-sequences, are analysed according to 

a number of information retrieval indicators. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automatically identifying the different conformations of a given 

et of proteins, as well as their interaction with other molecules, 

s crucial in structural bioinformatics. The well-established shape- 
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unction paradigm for proteins [1] states that a protein of a given 

equence has one main privileged conformation, which is crucial 

or its function. However, every protein during its time evolution 

xplores a much larger part of the conformational space. The most 

table conformations visited by the protein can be experimen- 

ally captured by the NMR technique; this is because the hydrogen 

toms are already included in the atomic model, thus giving less 

mbiguities in the charge assignment. 

Recognising a protein from an ensemble of geometries corre- 

ponding to the different conformations it can assume means cap- 

uring the features that are unique to it and is a fundamental step 

rom the structural bioinformatics viewpoint. It is preliminary to 

he definition of a geometry-based notion of similarity, and, subse- 
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Fig. 1. Example of 4 proteins in 4 different conformations (each row identifies a 

protein). Visualization obtained by using MeshLab [15] . 
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uently, complementarity, between proteins. From the application 

tandpoint, the identification of characteristic features can point 

o protein functional regions and to new target sites for blocking 

he activity of pathological proteins in the drug discovery field. 

hese features can become more specific if one adds to the ge- 

metry of the molecular surface also the information related to the 

ain physicochemical descriptors, such as local electrostatic poten- 

ial [2] , residue hydrophobicity [3] , and the location of hydrogen 

ond donors and acceptors [4] . 

The aim of this track is to evaluate the performance of retrieval 

nd classification of computational methods for protein surfaces 

haracterized by physicochemical properties. Starting from a set 

f protein structures in different conformational states generated 

ia NMR experiments and deposited in the PDB repository [5] , we 

uild their Solvent Excluded Surface (SES) by the freely available 

oftware NanoShaper [6,7] . Differently from previous SHREC tracks 

8–11] we enrich the protein SES triangulations with scalar fields 

epresenting physicochemical properties, evaluated at the surface 

ertices. 

The remainder of this paper is organized as follows. 

ection 2 overviews the previous benchmarks that were aimed 

t protein shape retrieval aspects. Then, in Section 3 we detail 

he dataset, the ground truth and the retrieval and classification 

etrics used in the contest. The methods submitted for evaluation 

o this SHREC are detailed in Section 4 , while their retrieval and 

lassification performances are presented in Section 5 . Finally, 

iscussions and concluding remarks are in Section 6 . 

. Related benchmarks 

The interest of recognising proteins and other biomolecules 

olely based on their structure is a lively challenge in biology and 

he scientific literature is seeing the rise of datasets and methods 

or surface-based retrieval of proteins. The Protein Data Bank (PDB) 

epository [5] is the most widely known public repository for ex- 

erimentally determined protein and nucleic acid structures. The 

DB collects over 175,0 0 0 biological macromolecular 3D structures 

f proteins, nucleic acids, lipids, and corresponding complex as- 

emblies. A rather small number of proteins in the PDB dataset 

re captured with the NMR technique, which is very favourable 

or characterizing the protein also with respect to physicochemi- 

al properties. The PDB offers also a number of visualization tools 

f the contained structures but is not intended to perform either 

equence or structure similarity tasks. 

Previous benchmarks on protein retrieval based on the shape 

f their molecular surfaces were provided within the SHape RE- 

rieval Contest (SHREC). In these cases, the molecular surfaces cor- 

espond to the protein solvent-excluded surface as defined by Lee 

nd Richards [12] and firstly implemented by Connolly [13] . To the 

est of our knowledge, the first contest on protein shape retrieval 

olely based on molecular surfaces was launched in 2017 with 10 

uery models and a dataset of 5,854 proteins [8] . A second contest 

onsidered a dataset of 2,267 protein structures, representing the 

onformational space of 107 proteins [9] . There, the task was to 

etrieve for each surface the other conformations of the same pro- 

ein from the whole dataset. In 2019, the SHREC track on protein 

etrieval [10] envisioned the classification of 5,298 surfaces repre- 

enting the conformational space of 211 individual proteins. The 

eculiarity of this contest was in the classification of the dataset, 

hich took into account two levels of similarity . In addition to the 

ere retrieval of the different conformers of a given protein, the 

valuation also took into account the retrieval of orthologous pro- 

eins (proteins having the same function in different organisms, 

.g., human and murine haemoglobin protein) based on their sur- 

aces. Finally, in 2020 the aim of the SHREC track on protein re- 

rieval [11] moved to the retrieval of related multi-domains pro- 
2 
ein surfaces. Similarly to the 2019 edition, a 2-level classification 

grouping different conformations of the same protein and group- 

ng orthologs together) of the dataset was considered; in contrast 

o previous years, the 2020 edition included the evaluation of par- 

ial similarity, i.e., limited to sub-regions or domains of the en- 

ire molecule, thus moving towards a problem of partial correspon- 

ence between the proteins. 

Compared to the 2019 track on protein retrieval, our benchmark 

iffers in multiple points: 

• Our data set does not limit to geometric information, but takes 

also into account physicochemical properties. Moreover, the 

data set is already split into a training set and a test set. 
• The set of retrieval evaluation measures is considerably ex- 

tended; a set of classification measures is also introduced. 
• We consider two novel ground truths, based on the domain of 

bioinformatics. 

. The benchmark 

During years, we witness the consolidation of the idea that 

o have a more satisfactory answer to the protein shape retrieval 

roblem it is necessary to combine geometry with patterns of 

hemical and geometric features [14] . For this reason, we move 

rom the previous SHREC experiences to build a dataset equipped 

f both characteristics. 

.1. The dataset 

The dataset proposed for this challenge consists of 209 PDB 

ntries, each one containing a protein in different conformations 

xperimentally determined via NMR measurements. This leads to 

bout 5,0 0 0 surfaces, annotated with physicochemical properties. 

ome example of proteins in different conformational states are 

rovided in Fig. 1 . 

Model surfaces were built starting from the PDB files of pro- 

eins used in the 2019 SHREC track [10] . These proteins were ex- 

erimentally captures with the NMR technique and contain also 

rthologous structures thus making possible to consider multi- 

le levels of similarity. NMR structures natively include hydrogen 

toms, which do not need to be modelled. Importantly, these struc- 

ures encompass a number of energetically favourable conforma- 

ions of the same protein, representing important regions of the 

orresponding conformational space. Each individual conformation 
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Fig. 2. Example of protein surface (a) equipped with different physicochemical 

properties: electrostatic potential (b), hydrophobicity (c) and presence of hydrogen 

bond donors and acceptors (d). Visualization obtained by using MeshLab [15] . 

Fig. 3. Distribution of the number of conformations. The two histograms show the 

distributions for the training set (left) and the test set (right). 
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tructure was first separated into a unique PDB file. Then, its 

olecular surface (MS) was calculated and triangulated by means 

f the NanoShaper computational tool, choosing the Connolly Sol- 

ent Excluded Surface model [13] , and default parameters [6] . The 

ertices of the triangulated surfaces were stored in OFF 2 format. 

Each surface model was accompanied by a file with physico- 

hemical information, in TXT format. Each row of the TXT file cor- 

esponds to a vertex of the triangulation in the OFF file (in the 

ame order); each row in the TXT file contains the physicochem- 

cal properties evaluated at the corresponding vertex in the OFF 

le. An example of protein surface equipped with physicochemical 

roperties is provided in Fig. 2 : more specifically, Fig. 2 (a) exhibits 

he original triangulated surface, while Figs. 2 (b-d) represent the 

hree provided physicochemical properties as scalar values on the 

rotein surface. 

The dataset has been subdivided into a training and a test set 

in the proportion of 70%-30%). The distribution of the number of 

onformations per PDB through the training set and the test set is 

hown in Fig. 3 . 

To enrich the MS information we used the electrostatic poten- 

ial, which we computed by solving the Poisson-Boltzmann equa- 

ion (PBE) via the DelPhi finite-differences-based solver [2,16] . One 

f the essential ingredients for the solution of the PBE is a good 

efinition of the MS, which is used to separate the high (solvent) 

rom the low (solute) dielectric regions. In order to guarantee the 

erfect consistency of the approach, we adopted a DelPhi version 

ntegrated with NanoShaper [6] , so as that the potential is eval- 

ated on the same exact surface that separates the solute from 

he solvent. Other necessary ingredients are atom radii and partial 

harges, which have been assigned using the PDB2PQR tool [17] . 

A different kind of additional information mapped on the MS 

as the hydrophobicity [3] of the residues exposed to the solvent. 

n our setting, we assign to each vertex of the MS the hydropho- 

icity of the residue of the closest atom, on the basis of the scale

iven in [3] ; this scale ranges from −4 . 5 (hydrophilic) to 4.5 (hy-

rophobic). 

Lastly, we have computed the location of potential hydrogen 

ond donors and acceptors in the MS. Firstly, vertices of the MS 

hose closest atom is a polar hydrogen, a nitrogen or an oxygen 

ere identified. Then, a value between −1 (optimal position for a 
2 https://segeval.cs.princeton.edu/public/off_ format.html . 

3 
ydrogen bond acceptor) and 1 (optimal position for a hydrogen 

ond donor) was assigned to such vertices depending on the ori- 

ntation between the corresponding heavy atoms (see [4] ). 

.2. The ground truth 

The performances of the methods that participated to this 

HREC contest are evaluated on the basis of two classifications: 

• PDB-based classification . In the dataset selected, there is a num- 

ber of entries having different PDB codes that contain the struc- 

tures of the same protein, possibly interacting with different 

molecules or having a limited number of point mutations. In 

these cases it can be expected that the specific condition in 

which the protein system has been observed impacts on the 

identified conformations and on the corresponding physico- 

chemical properties. The first classification rewards the tech- 

niques that are particularly good at spotting minor differences 

between similar candidates; in this classification, a class is 

made by all the conformations corresponding to the same PDB 

code. For reference, we refer to this ground truth as PDB-based 

classification. 
• BLAST-based classification . Protein sequences fold into unique 

3-dimensional (3D) structures and proteins with similar se- 

quences adopt similar structures [18] . Therefore, on the basis of 

the similarity among the amino acids sequences, we decided to 

relax the strict relationship that two surfaces are similar only if 

they correspond to some conformation of the same PDB code. 

This choice is based on observations coming from the domain 

of bioinformatics, where a sequence similarity beyond a value 

of about 30% , and of sufficient length, has a high likelihood of 

giving rise to the same fold [18] . We derive a second classifica- 

tion and name it BLAST-based classification, since BLASTP is the 

tool that we used to perform the sequence alignment and to 

calculate the sequence similarity [19] . The BLAST-based classi- 

fication represents a classification less fine than the PDB-based 

one, because it is simply based on the similarity between con- 

formations; in this way, not only the different NMR conforma- 

tions found in the same PDB file, but also these of the same 

protein in different PDB files or these pertaining to its mutated 

isoform(s) may be grouped together. The BLAST-based classifi- 

cation presents four levels. In this setting, two structures are: 
• Extremely similar (similarity level 3) , i.e. corresponding to the 

same protein or very closely related protein isoforms: when 

they have a sequence similarity greater than 95% on at least 

the 95% of both sequences. 
• Highly related (similarity level 2) , i.e. they are expected to 

have a similar fold as a whole or in a sub-domain (above 

what in the bioinformatics jargon is called the “twilight 

zone”): when they have a sequence similarity greater than 

35% and at least 50 aligned residuals, but they do not sat- 

isfy the conditions of the previous point. 
• Similar (similarity level 1) , i.e. loosely related proteins: when 

they have a sequence similarity in [28% , 35%] and at least 50 

aligned residuals. 
• Dissimilar (similarity level 0) , i.e. unrelated proteins: when 

none of the previous conditions holds. 

To compare the performance of the methods that make use of 

he physicochemical properties against the simple geometric mod- 

ls, we asked the participants to perform two tasks: 

Task A: only the OFF files of the models are considered (i.e. only 

the geometry is considered); 

Task B: in addition to the geometry, the participant is asked to 

also consider the TXT files (physicochemical matching). 

https://segeval.cs.princeton.edu/public/off_format.html
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Fig. 4. The graph G 3 associated with the test set. Each node represents a commu- 

nity induced by the PDB-based classification, while an edge between two nodes 

occurs whenever the corresponding structures are extremely similar (i.e. they have 

similarity level equal to 3). Since they are all complete graphs, each connected com- 

ponent of G 3 represents a community of the BLAST-based decomposition of level 3. 
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For a given query, the goal of this SHREC track is twofold: for 

ach Task (A and B), to retrieve the most similar objects (retrieval 

roblem) and to classify the query itself (classification problem). 

he closeness of the retrieved structures with the ground truth 

ight be evaluated a-priori on the basis of their PDB code or of 

heir sequence similarity (4-level BLAST classification) [18] . 

Retrieval problem. Each model is used as a query against the 

est of the dataset, with the goal of retrieving the most relevant 

urface. For the retrieval problem, a dissimilarity 1 , 543 × 1 , 543 

atrix was required, each element (i, j) recording the dissimilar- 

ty value between models i and j in the whole dataset. The rel- 

vance with respect to the query of a retrieved surface is eval- 

ated with both the PDB and BLAST classifications previously 

escribed. 

Classification problem. PDB-based and BLAST-based classifica- 

ions define on the training and on the test sets a decomposition 

nto subsets (that will be referred as communities) consisting of 

onformations grouped together on the basis of their similarity. 

he goal of the classification problem is to assign each query of 

he test set to the correct community with respect to the decom- 

ositions induced by the PDB-based and the BLAST-based classifi- 

ations, respectively. 

In the case of the PDB-based classification, each community 

onsists of all the conformations corresponding to the same PDB 

ode. 

In the case of the BLAST-based classification, different commu- 

ity decompositions are obtained depending on the choice of the 

reviously described similarity levels. For each level � (with � = 

 , 1 , 2 , 3 ), it is possible to retrieve a decomposition into commu-

ities referred as BLAST-based community decomposition of level 

 . Independently from the chosen level � , each community of the 

LAST-based decomposition of level � is an aggregation of commu- 

ities induced by the PDB-based classification. 

Having fixed a level � , the communities of the BLAST-based de- 

omposition of level � are computed as it follows. Let us consider 

 graph G � for which each node represents a PDB-based commu- 

ity (i.e. models corresponding to the same PDB code) and such 

hat there exists an edge (u, v ) whenever the structures u and v 
ave a similarity level greater than or equal to � . Moreover, each 

dge (u, v ) is endowed with a weight w (u, v ) coinciding with the

ercentage of sequence similarity between u and v . The clustering 

echnique for retrieving the BLAST-based decomposition of level 

 adopts the following recursive strategy which has been specifi- 

ally designed for the considered framework but it is inspired by 

lassic methods for community detection [20] . Given G � , compute 

he connected components of G � obtained after the removal the 

dge of G � of minimum weight (and so representing a low similar- 

ty score between models). A connected component C is declared 

 BLAST-based community of level � if C is a complete graph (i.e. 

iven any two of its nodes there is an edge connecting them). Oth- 

rwise, keep removing edges (prioritising the ones with the lowest 

eight), compute the connected components and denote them as 

LAST-based community of level � whenever they are complete. 

he procedure ends when all the nodes have been inserted in a 

ommunity. 

It is worth to be noticed that the completeness condition has 

een imposed in order to obtain transitive BLAST-based communi- 

ies. In this way, we have the theoretical guarantee that any two 

tructures belonging to the same BLAST-based community of level 

 have necessarily a similarity level greater than or equal to � . An- 

ther relevant aspect to be mentioned is related to the fact that, 

or � = 3 , the proposed algorithm does not remove any edge since

he connected components of the graph G � are already complete 

see Fig. 4 ). Trivially, the same happens also for � = 0 since the

LAST-based decomposition of level 0 produces just a unique “gi- 

nt” community consisting of the entire dataset. Finally, please no- 
4 
ice that, by increasing the value � , one obtains BLAST-based de- 

ompositions consisting of finer communities. 

Given the PDB and BLAST ground truth for the classification 

roblem, the classification performance of each run is obtained 

hrough the nearest neighbour (1-NN) classifier derived from the 

issimilarity matrices used in the retrieval problem. For each run, 

he output consists of two classification arrays for the test set, with 

5 labels/communities for the PDB-based decomposition and with 

1 labels/communities for the BLAST-based decomposition of level 

 (see Fig. 4 ). In these arrays, the element i is set to j if i is clas-

ified in class j (that is, the nearest neighbour of the surface i be- 

ongs to class j). 

.3. Evaluation measures 

We here presents the retrieval and classification evaluation 

easures that were selected for this benchmark. 

.3.1. Retrieval evaluation measures 

3D retrieval evaluation has been carried out according to stan- 

ard measures, namely precision-recall curves, mean Average Pre- 

ision (mAP), Nearest Neighbour (NN), First Tier (1T), Second Tier 

2T), Normalized Discounted Cumulated Gain (NDCG) and Average 

ynamic Recall (ADR) [21–23] . 

Precision-recall curves and mean average precision. Precision and 

ecall measures are commonly used in information retrieval [22] . 

recision is the fraction of retrieved items that are relevant to the 

uery. Recall is the fraction of the items relevant to the query that 

re successfully retrieved. Being A the set of relevant objects and B 

he set of retrieved object, 

recision = 

| A ∩ B | 
| B | , Recall = 

| A ∩ B | 
| A | . 

ote that the two values always range from 0 to 1. For a visual 

nterpretation of these quantities we plot a curve in the reference 

rame recall vs. precision. We can interpret the result as follows: 

he larger the area below such a curve, the better the performance 

nder examination. In particular, the precision-recall plot of an 

deal retrieval system would result in a constant curve equal to 1. 
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s a compact index of precision vs. recall, we consider the mean 

verage Precision (mAP), which is the portion of area under a pre- 

ision recall-curve: the mAP value is always smaller or equal to 1. 

e-Measure The e-Measure (eM) derives from the precision and 

ecall values for a pre-defined number of retrieved items (32 in 

ur settings), [22,24] . Given the first 32 items for every query, the 

-Measure is defined as e = 

1 
1 
P 

+ 1 
R 

, where P and R represent the pre-

ision and recall values over them. 

Nearest Neighbour, First Tier and Second Tier These evaluation 

easures aim at checking the fraction of models in the query’s 

lass also appearing within the top k retrievals. Here, k can be 

, the size of the query’s class, or the double size of the query’s 

lass. Specifically, for a class with | C| members, k = 1 for the Near-

st Neighbour (NN), k = | C| − 1 for the First Tier (1T), and k =
(| C| − 1) for the Second Tier (2T). Note that all these values nec- 

ssarily range from 0 to 1. In our this contest, we estimate the NN, 

T, ST, and e values using the tools provided in the Princeton Shape 

enchmark [24] . 

Average dynamic recall The idea is to measure how many of the 

tems that should have appeared before or at a given position in 

he result list actually have appeared. The Average Dynamic Recall 

ADR) at a given position averages this measure up to that posi- 

ion. Precisely, we adapt the definition of the ADR to our four level 

LAST classification, slightly modifying the definition used in pre- 

ious datasets equipped with a multi-level classification, such as 

25,26] . For a given query let A be the extremely similar (SR) items, 

 the set of highly related (HR) items, and let C be the set of sim-

lar (MR) items. Obviously A ⊆ B ⊆ C. The ADR is computed as: 

DR = 

1 

| C| 
| C| ∑ 

i =1 

r i , 

here r i is defined as: 

 i = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

|{ SR items in the first i retrieved items }| 
i 

, if i ≤ | A | ; 
|{ HR items in the first i retrieved items }| 

i 
, if | A | < i ≤ | B | ; 

|{ MR items in the first i retrieved items }| 
i 

, if i > | B | . 
Normalized discounted cumulated gain. For its definition we as- 

ume that items with highest similarity score according to the 

LAST classification are more useful if appearing earlier in a search 

ngine result list (i.e. are first ranked); and, the higher their level 

f similarity (extremely similar, highly related, similar and dissim- 

lar) the higher their contribution, and therefore their gain. As a 

reliminary concept we introduce the Discounted Cumulated Gain 

DCG) . Precisely, the DCG at a position p is defined as: 

CG p = rel 1 + 

p ∑ 

i =2 

rel i 
log 2 (i ) 

, 

ith rel i the graded relevance of the result at position i . Obviously, 

he DCG is query-dependent. To overcome this problem, we nor- 

alize the DCG to get the Normalized Discounted Cumulated Gain 

NDCG). This is done by sorting elements of a retrieval list by rel- 

vance, producing the maximum possible DCG till position p, also 

alled ideal DCG (IDCG) till that position. For a query, the NDCG is 

omputed as 

DCG p = 

DCG p 

IDCG p 
. 

t follows that, for an ideal retrieval system, we would have 

DCG p = 1 for all p. 

.3.2. Classification performance measures. 

A set of popular performance metrics in statistical classification 

s derived by the so-called confusion matrix [27] . A confusion ma- 

rix is a square matrix whose order equals the number of classes 
5 
n the dataset (in our case, in the test set). The diagonal element 

M (i, i ) gives the number of items (i.e. molecular surfaces, in our 

ontext) which have been correctly predicted as elements of class 

 . On the contrary, off-diagonal elements count items that are mis- 

abeled by the classifier: in other words, CM (i, j) , with j � = i , repre-

ents the number of items wrongly labeled as belonging to class j

ather than to class i . The classification matrix CM of an ideal clas- 

ification system is a diagonal matrix, so that no misclassification 

ccurs. 

Sensitivity and specificity. These statistical measures are among 

he most widely used in diagnostic test performance. Sensitivity, 

lso called True Positive Rate (TPR), measures the proportion of pos- 

tives which are correctly identified as such (e.g., the percentage of 

ogs correctly classified as dogs). Specificity, or True Negative Rate 

TNR), measures the proportion of negatives which are correctly 

dentified as such (e.g., the percentage of non-dogs correctly clas- 

ified as non-dogs). A perfect classifier is 100% sensitive and 100% 

pecific. 

Positive and negative predicted values. Specificity and sensitiv- 

ty tell how well a classifier can identify true positives and nega- 

ives. But what is the likelihood that a test result is a true positive 

or true negative) rather than a false-positive (or a false-negative)? 

ositive Predictive Value (PPV) measures the proportion of true pos- 

tives among all those items classified as positives. Similarly, Neg- 

tive Predictive Value (NPV) measures the proportion of true nega- 

ives among all those items classified as negatives. 

Accuracy. This metric measures how often the classifier is cor- 

ect: it is the ratio of the total number of correct predictions to the 

otal number of predictions. 

F 1 score It takes into account both PPV and TPR, by computing 

heir harmonic mean: this allows to consider both false positive 

nd false negatives. Therefore, it performs well on an imbalanced 

ataset. 

. Description of methods 

Eight groups from five different countries registered to this 

rack. Five of them proceeded with the submission of their results. 

ach participant was allowed to send us up to three runs for each 

ask, in the form of a dissimilarity matrix per run. All but one sub- 

itted three runs per task; one participant delivered three runs for 

ask A and one for Task B. Overall, Task A has gathered 15 runs, 

hile Task B has 13 runs. 

In the following, we will denote the methods proposed by the 

ve participants as P1, P2, . . . , P5. 

Specifically, 

• method P1 has been proposed by Andrea Giachetti; 
• method P2 has been proposed by Tunde Aderinwale, Charles 

Christoffer, Woong-Hee Shin, and Daisuke Kihara; 
• method P3 has been proposed by Yonghuai Liu, Ekpo Otu, Reyer 

Zwiggelaar, and David Hunter; 
• method P4 has been proposed by Evangelia I. Zacharaki, Eleft- 

heria Psatha, Dimitrios Laskos, Gerasimos Arvanitis, and Kon- 

stantinos Moustakas; 
• method P5 has been proposed by Huu-Nghia Nguyen, Tuan- 

Duy Nguyen, Vinh-Thuyen Nguyen-Truong, Danh Le-Thanh, Hai- 

Dang Nguyen, and Minh-Triet Tran. 

Lastly, Andrea Raffo, Ulderico Fugacci, Silvia Biasotti, and Wal- 

er Rocchia have been the organizers of the SHREC 2021 track on 

etrieval and classification of protein surfaces on the basis of their 

eometry and physicochemical properties. 

The remaining part of this section is devoted to describe in de- 

ail the five proposed methods. 



A. Raffo, U. Fugacci, S. Biasotti et al. Computers & Graphics 99 (2021) 1–21 

Fig. 5. A graphical representation of the strategy adopted in method P1 to obtain untrained and trained descriptors. Joint histograms are obtained from the surface-based 

descriptors, shape only (principal curvature) and attributes (labels derived from K-means clustering of the provided vectors, K = 50 ). Simple histograms are obtained from 

the volumetric symmetry descriptor (APT). Histograms are concatenated in different ways to obtain the different descriptors compared with the Jeffrey Divergence. Trained 

descriptors are obtained by estimating LDA mappings of the descriptors of the training set shapes with known labels. The mappings are used to perform dimensionality 

reduction on the test set elements. 
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.1. P1: Joint histograms of curvatures, local properties and area 

rojection transform 

.1.1. Adopted descriptors and overall strategy 

The proposed approach is based on the estimation of simple 

urface- and volume-based shape descriptors, and on their join- 

ng with the local surface properties. In a previous contest [28] , it 

as been shown that simple joint (2D) histograms of min/max cur- 

atures (JHC) are extremely effective in characterizing patterns of 

lements with approximate spherical symmetry and variable size. 

n the other hand, in a past contest on protein retrieval [10] , we

sed a volumetric descriptor called the Histograms of Area Pro- 

ection Transform (HAPT) [29] to characterize radial symmetries at 

ifferent scales providing good results. 

In method P1, we tested both descriptors and their combina- 

ion to evaluate the similarity of the shapes included in the test 

ataset. Furthermore, having the local information on the physico- 

hemical properties, we can improve the characterization creating 

oint (3D) histograms counting elements with selected properties 

n a space characterized by 2 curvature axes and a “property” di- 

ension. Finally, having a labelled dataset, we evaluated the pos- 

ibility of applying to the descriptor a trained dimensionality re- 

uction based on Linear Discriminant Analysis, e.g., projecting the 

igh-dimensional joint histogram descriptors onto a lower dimen- 

ional space maximizing the separation of the training set classes. 

A visual description of the pipeline adopted in method P1 is 

epicted in Fig. 5 . 

.1.2. Task A 

Joint Histograms of Curvature. A basic technique to distinguish 

urfaces endowed with multiple spherical bumps is to measure 

urvature values. Minimum and maximum curvatures have been 

stimated on the mesh vertices at two different scales. The ranges 

f min curvature and max curvature have been subdivided in 10 

ins estimating the joint histogram (size 100). Concatenating the 

wo joint histograms corresponding to the two smoothing lev- 

ls a final descriptor with 200 elements is obtained. Histograms 

re compared with Jeffrey divergence [30] to obtain dissimilarity 

atrices. 

Histograms of Area Projection Transform. For the mathematical 

ormulation of the technique please refer to the original paper [29] . 

n a few words, the internal part of the shape is discretized on a 

egular grid and for each voxel and for a set of discrete radius val-

es r, it is counted how much of the object surface can be con- 

idered approximately part of a sphere of radius r centered in the 

oxel. Looking at some example protein shapes, we decided to ap- 
6 
ly the technique with voxel size 0.3 and 9 values of r ranging 

rom 0.6 to 3.0 with step 0.3. Then, we binarized the histograms 

ith 12 bins and concatenated the histograms computed at the 9 

cales. This resulted in a HAPT descriptor with 108 elements which 

ave been finally concatenated into a 308-element shape descrip- 

or capturing the distribution of curvatures on the surface and ra- 

ial symmetry inside the volume. The Jeffrey divergence [30] was 

sed to obtain from them the dissimilarity matrices. 

Trained descriptors. As the data comes with a labelled train- 

ng set, it is possible to use it to train the dissimilarity metric to 

aximally separate elements with different labels. This has been 

chieved by using the Fisher’s Linear Discriminant Analysis [31] , 

rojecting the original descriptor onto a C − 1 dimensional space 

where C is the number of classes in the training set) maximiz- 

ng the ratio of the variance between the classes to the variance 

ithin the classes. LDA mapping for high-dimensional descriptors 

as been trained on the training set and used on the test data to 

valuate the effectiveness of the approach. 

For Task A, three different runs adopting method P1 and gener- 

ted as it follows have been proposed. 

• Run 1 (JHC): generated by the Joint Histograms of Curvature 

(two different levels of smoothing) compared with the Jeffrey 

divergence. 
• Run 2 (JHC_HAPT): generated by concatenating Joint His- 

tograms of Curvature and Histograms of Area Projection Trans- 

form compared with Jeffrey divergence. 
• Run 3 (JHC_HAPT_LDA): generated by concatenating JHC and 

HAPT descriptors mapped with trained LDA projection. 

.1.3. Task B 

In method P1, we did not use any prior related to the knowl- 

dge of the meaning of the attributes associated with the mesh 

ertices and we just considered them as generic components of a 

D feature space. The adopted strategy has been to partition this 

eature space in a set of regions, and estimating for each model 

istograms counting the number of vertices with features falling 

n each region. To determine a reasonable partitioning, we just ap- 

lied K-means clustering with K = 50 to the all the dataset vertex 

ttributes and extract corresponding Voronoi cells. Using 50 cells, 

 50-elements histogram to describe shape features is retrieved. 

oining the attribute dimension to the two curvature dimensions, a 

D joint histogram per vertex with 10 × 10 × 50 = 5 , 0 0 0 elements

s obtained. These Joint Histograms of Curvatures and Attributes 

HCA can be directly compared with the Jeffrey divergence. 
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owever, we also tested the combination of JHCA with HAPT and 

he LDA-based dimensionality reduction. 

For Task B, three different runs adopting method P1 and gener- 

ted as it follows have been proposed. 

• Run 1 (JHCA): generated by the Joint Histograms of Curvature 

(single smoothing level) and Attributes (50 centroids) compared 

with the Jeffrey divergence. 
• Run 2 (JHCA_HAPT): generated by concatenating Joint His- 

tograms of Curvature and Attributes and Histograms of Area 

Projection Transform compared with Jeffrey divergence. 
• Run 3 (JHCA_HAPT_LDA): generated by concatenating JHCA and 

HAPT descriptors mapped with trained LDA projection. 

.1.4. Computational aspects 

Experiments have been perfomed on a laptop with an Intel®- 

oreTM i7-9750H CPU running Ubuntu Linux 18.04. The estima- 

ion of the descriptors JHC and JHCA took on average 1.5 seconds 

er model using Matlab code, while the estimation of the HAPT 

escriptor took on average 15 seconds. Other required operations 

ncluded: the descriptor comparison whose computation time was 

egligible; the training of the dissimilarity metric and the LDA 

apping both implemented using Matlab and requiring 1 minute 

n the worst case and 0.1 seconds, respectively; the partitioning 

ased on K-means clustering whose took approximately 30 min- 

tes. 

.2. P2: 3D Zernike descriptor 

.2.1. Adopted descriptors and overall strategy 

The approach adopted in method P2 is based on the 3D Zernike 

escriptor (3DZD). 3DZD is a rotation-invariant shape descriptor 

erived from the coefficients of 3D Zernike-Canterakis polynomi- 

ls [32] . 

3DZD descriptors are adopted as input of a neural network 

hich will return a prediction of the similarity between any pair 

f proteins. In a nutshell, neural networks (NN) are a class of tools 

nabling the estimation of a desired function (in the current case, 

he similarity between proteins) inspired by the biology of a brain. 

Ns can be are typically represented by a directed weighted graph 

onsisting of nodes, called neurons and subdivided into layers, and 

dges connecting neurons of different layers. In a NN, the leftmost 

ayer consists of the so-called input neurons, while the rightmost 

odes are called output neurons. In between, there are the hidden 

ayers. In case a NN has at least two hidden layers, it is called a

eep neural network. Each neuron of a layer takes a series of in- 

uts, depending on the edges pointing to it, and transmits an acti- 

ation value by the edges linking the considered node to a differ- 

nt neuron multiplying this value by the weight of the edge. Input 

eurons receive the features of the input variables and pass them 

o the next layers while, the activation values of output neurons 

ill form the output of the NN. The desired function is obtained 

hrough a training process of the NN in whichthe weights are at- 

ained minimizing a loss function. 

We trained two types of neural network, visually depicted in 

ig. 6 , to output a score that measures the dissimilarity between a 

air of protein shapes, encoded via the 3DZDs. 

• The first framework (Extractor model) was previously used in 

a SHREC track on multi-domain protein shape retrieval, see 

[11] . The network is structured into multiple layers: an encoder 

layer, which converts 3DZD to a vector of 150 features, has 3 

hidden units of size 250, 200, and 150, respectively; a feature 

comparator layer that computes the Euclidean distance, the co- 

sine distance, the element-wise absolute difference, and prod- 

uct; and a fully connected layer with 2 hidden units of size 100 

and 50, respectively. There are multiple hidden units in each 
7 
layer. The ReLU activation function is used in all layers, except 

for the output of the fully connected layer where the sigmoid 

activation function has been preferred, This choice allows to in- 

terpret the output as the probability, for any pair of proteins, to 

be in the same class. 
• The second framework (EndtoEnd model) is similar to the first 

one, except for the removal of the feature comparator layer. The 

output of the encoder layer directly flows into the fully con- 

nected layer and the network is trained end-to-end. 

The network was trained on the training set of 3,585 protein 

tructures that was provided by the organizers. The training set 

as further split into a training set and a Validation set, by us- 

ng respectively 80% and 20% of data (i.e. 2,868 conformations for 

raining and the remaining 717 for Validation). From the 717 × 717 

lassification matrix of the Validation set, 10,436 protein pairs 

ere extracted for the purpose of network Validation. 

A third attempt is made via a simple Euclidean model, where 

he Euclidean distance between pairs of proteins has been com- 

uted directly from the generated 3DZD of the pairs. 

.2.2. Task A 

The performance of the networks on the Validation set was 

sed to determine models to use for inference on the test set. 

raining for Task A was performed on the 3DZDs of shape files 

nly. 

For Task A, three different runs adopting method P2 and gener- 

ted as it follows have been proposed. 

• Run 1 (extractor): generated by the Extractor model. 
• Run 2 (extractor_e2e): generated by the average between Ex- 

tractor and EndtoEnd models. 
• Run 3 (extractor_eucl): generated by the average between Ex- 

tractor and Euclidean models. 

.2.3. Task B 

As for Task A, model selection was carried out on the Validation 

et. Training was performed on input files that concatenate 3DZD 

f shape with 3DZDs of the three physicochemical properties. 

For Task B, three different runs adopting method P2 and gener- 

ted as it follows have been proposed. 

• Run 1 (extractor): generated by the Extractor model. 
• Run 2 (extractor_e2e): generated by the average between Ex- 

tractor and EndtoEnd models. 
• Run 3 (extractor_e2e_eucl): generated by the average between 

Extractor, EndtoEnd, and Euclidean models. 

.2.4. Computational aspects 

For each protein in the dataset, we performed some pre- 

rocessing step to convert the OFF and TXT files provided by the 

rganizers. The mesh and property files were converted to a vol- 

metric skin representation (the Situs file) where points within 

.7 grid intervals were assigned with values interpolated from the 

esh [33] . For the electrostatic features, the interpolated values 

ere the potentials at the mesh vertices. For the shape features, 

 constant value of 1 was assigned to grids which overlap with the 

urface. The resulting Situs files were then fed into the EM-Surfer 

ipeline [34] to compute 3DZD. It took approximately 12 − 13 min- 

tes to pre-process each file. Generating the 3DZD descriptors took 

veragely 8 seconds for each protein on an Intel®Xeon®CPU E5- 

630 0 @ 2.30GHz. 

For Task A, training the extractor model took averagely 6 hours 

nd the EndtoEnd model took about 11 hours. For Task B, train- 

ng the extractor model took about 9 hours and approximately 

4 hours for the EndtoEnd model. Training was performed on a 

uadro RTX 800 GPU. 
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Fig. 6. A graphical representation of the two types of neural network adopted in method P2 to measure the dissimilarity of protein shapes encoded via the 3DZDs. The 

Extractor and the EndtoEnd models differ by presence of the feature comparator layer (depicted inside the blue square brackets). 

Fig. 7. A graphical representation of the strategy adopted in method P3 for Task A. 

Fig. 8. A graphical representation of the strategy adopted in method P3 for Task B. 
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The 3DZD model took averagely 0.22 seconds to predict the dis- 

imilarity between two proteins, using TitanX GPU. The Euclidean 

odel took averagely 0.17 seconds per prediction. Finally, the aver- 

ging of the three matrices was virtually instant and negligible. 

.3. P3: Hybrid Augmented Point Pair Signatures and Histogram of 

rocessed Physicochemical Properties of Protein molecules 

.3.1. Adopted descriptors and overall strategy 

Considering the twofold nature of this challenge, in P3 we 

dopted two separate retrieval strategies for the two different 

asks. For Task A, we used the Hybrid Augmented Point Pair Sig- 

ature (HAPPS) [35] , a 3D geometric shape descriptor. For Task B, 

e adopted the Histogram of Processed Physicochemical Proper- 

ies of Protein molecules descriptor following an Exploratory Data 

nalysis (HP4-EDA). Both the strategies rely on traditionally hand- 

rafted feature extraction from the respective datasets, using the 

nowledge-based approach (i.e. non-learning nor data-driven ap- 

roach). 

The goal of the proposed methods (HAPPS and HP4-EDA) is 

o provide simple, efficient, robust and compact representations, 

escribing both the 3D geometry and physicochemical properties 

f protein surfaces, using statistically-based descriptors. Visual de- 

criptions of the pipelines adopted in method P3 for Tasks A and B 

re depicted in Figs. 7 and 8 , respectively. 
8 
.3.2. Task A 

Each 3D geometrical protein surface in this challenge contains 

n average of 35,0 0 0 vertices and 70,0 0 0 triangular faces. The 

APPS method (first introduced in [35] ) involves a combination of 

ocal and global descriptors. Specifically, the Augmented Point Pair 

eature Descriptor (APPFD), and the Histogram of Global Distances 

HoGD). The proposed HAPPS method is particularly interested in 

roviding a robust, compact, and accurate representation of pro- 

ein structures with as low as N points (i.e., [ N × 3] ) sampled from 

he triangular mesh surface of each input protein model, where 

 = 3 , 500 and N = 4 , 500 . 

Histogram of Global Distances (HoGD). This descriptor involves 

inning a set of normalized vectors δi = ‖ P c − p i ‖ between the 

entroid P c of a given 3D object to all other points, p i on its sur-

ace into a 1D histogram with 

√ 

P ≈ 65 bins, normalized to give 

oGD, following some pre-processing steps, where p i ∈ P and P is 

 3D point cloud object, with a number of points, N = 3 , 500 or

 = 4 , 500 . Such normalized vectors δi are regarded as global fea-

ures whose distribution (histogram) is capable of expressing the 

onfiguration of the entire shape relative to its centroid, and is a 

ich description of the global structure of the shape. Pre-processing 

lso involves applying uniform scale, S in all direction to all points 

n P , such that the root mean square (RMS) distance of each point 

o the origin is 1, and centering P on its centroid, i.e. P = p i − P c . 

Augmented Point Pair Feature Descriptor (APPFD) The APPFD de- 

cribes the local geometry around a point, p i = [ p ix , p iy , p iz ] in P .

ts computation involves a 5-step process: (i) pointcloud sampling 

nd normals estimation; (ii) keypoint, p k i determination; (iii) local 

urface region (i.e. LSP), P i selection; (iv) Augmented Point Pair Fea- 

ure (APPF) extraction per LSP; (v) bucketing of locally extracted 

-dimensional APPF into a multi-dimensional histogram, with the 

umber of bins, b AP P F D = 8 in each feature-dimension which is 

hen flattened and normalised to give 8 6 = 262 , 144 -dimensional 

ingle local descriptor (APPFD) per 3D shape. 

Finally, HoGD is combined with APPFD to give HAPPS, with 

 final feature vector of dimension 262 , 144 + 65 = 262 , 209 (see

ig. 7 ). For more details regarding the HoGD, APPFD and HAPPS 

lgorithms, the reader is referred to [11,35] . 

The APPFD is characterised by four key parameters, which are 

, v s , b AP P F D , and N. r is the radius value used by the nearest-

eighbour algorithm to determine the number of points in a LSP, 

nd is directly proportional to the size of LSP. The voxel-size pa- 

ameter, v s determines the size (big or small) of an occupied voxel- 

rid by the pointcloud down-sampling algorithm [36] . It is in- 

ersely proportional to the number of sub-sampled points (used 

s keypoints). r and v s influence the overall performances of the 

PPFD/HAPPS. 

For Task A, three different runs adopting method P3 and gen- 

rated as it follows varying the values of r, v s , and N have been

roposed. 
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• Run 1 (HAPPS): generated by choosing r = 0 . 40 , v s = 0 . 20 , and

N = 4 , 500 . 
• Run 2 (HAPPS): generated by choosing r = 0 . 50 , v s = 0 . 30 , and

N = 4 , 500 . 
• Run 3 (HAPPS): generated by choosing r = 0 . 50 , v s = 0 . 30 , and

N = 3 , 500 . 

Parameters b AP P F D = 8 and b HoGD = 65 remained the same for all 

hree runs. Overall, the Cosine distance metric between final vec- 

ors gave good approximation of the similarity between the HAPPS 

or Task A datasets. 

.3.3. Task B 

The HP4-EDA method involves a descriptive statistics (DS) of 

he 3-dimensional physicochemical variables or properties, follow- 

ng exploratory data analysis (EDA) of each of these properties. 

Let the three physicochemical properties of the dataset in Task 

 be denoted as f 1 , f 2 , and f 3 , for Electrostatic Potential , Hydropho-

icity , and Position of potential hydrogen bond donors and acceptors , 

espectively. First, we carried out an in-depth EDA of the physic- 

chemical properties to investigate their values distribution, fol- 

owed by data pre-processing (majorly outliers detection and re- 

oval). Next, we investigated the performances of combining some 

S, such as the mean, variance, first and third interquartile val- 

es, and correlation coefficients between these variables as a final 

escriptor, including the construction of histograms of these vari- 

bles, post-processing (see Fig. 8 ). 

Outliers detection and removal. Considering that the presence of 

utliers would adversely affect the performance of any retrieval 

ystem, we checked for the presence of outliers in each of f 1 , f 2 ,

nd f 3 . Unlike f 2 , the f 1 and f 3 variables contain lots of outliers

ith f 3 having almost negligible amount of useful data. Empiri- 

ally, the presence of outliers in a distribution may not necessarily 

ake the observation a “bad data”. For outliers detection and re- 

oval, we adopted the Interquartile Range (IQR) Score, represented 

y the formula IQR = Q 3 − Q 1 , which is a measure of statistical dis-

ersion calculated as the difference between lower ( Q 1 ) and upper 

 Q 3 ) percentiles. Here, any observation that is not in the range of 

Q 1 − 1 . 5 IQR ) and (Q 3 + 1 . 5 IQR ) is an outlier, and can be removed.

e further investigated the effect of using Q 1 = 10 th or 25 th , and

 3 = 75 th or 90 th and recorded better performances with the later 

ption where Q 1 = 10 th and Q 3 = 90 th for the training set, which 

arameter settings were also applied to the test data. 

For Task B, three different runs adopting method P3 and gen- 

rated as it follows by applying statistical description techniques 

or the extraction of statistical features and/or construction of final 

escriptors from the pre-processed data have been proposed. 

• Run 1 (HP4-EDA): generated by binning each pre-processed 

physicochemical variable into a 1D histogram (using 150 bins) 

and combining the final histograms as the final descriptor for 

each input physicochemical surface where matching between 

two descriptors is done using the Earth Mover’s Distance (EMD) 

metric. 
• Run 2 (HP4-EDA): generated by binning each of the pre- 

processed values of f 1 , f 2 , and f 3 into a multi-dimensional his- 

togram, with 5 bins in each feature dimension, where the flat- 

tened and normalised histogram frequencies represent the final 

descriptor for a single input data and descriptors are matched 

using the Kullback Liebner Divergence (KLD) metric. 
• Run 3 (HP4-EDA): generated by first normalizing each of the 

feature (variable) dimensions or columns, and selecting their 

mean , v ariance , Q 1 , Q 3 , and some correlation coefficient values

between f 1 , f 2 , and f 3 to represent a single input physicochem- 

ical surface, with a total of 14-dimensional feature vector, and 

combining the outcome of Run 1 to have a feature vector of di- 
9 
mension 14 + (150 × 3) = 464 as a final descriptor representing 

a single input. 

.3.4. Computational aspects 

For Task A, the HAPPS method has been implemented in Python 

.6 and all experiments have been carried out under Windows 7 

esktop PC with Intel Core i7-4790 CPU @ 3.60GHz, 32GB RAM. It 

ook on average, 0.3 and 20.0 seconds to sample point cloud and 

stimate normals from 3D mesh, and extract features and compute 

APPS, respectively. Matching 1 , 543 × 1 , 543 testing set HAPPS de- 

criptors took 3,212.3 seconds using the Cosine metric, which im- 

lies an average of 2.1 seconds to match any two HAPPS. 

For Task B, the HP4-EDA method has been implemented in 

ython 3.6 and all experimental run have been performed on 

4-bit Windows 10 notebook, Intel Core(TM) i3-5157U CPU @ 

.50GHz, 8GB RAM. The extraction of the features and the com- 

utation of the HP4-EDA descriptors took an average of 0.01 sec- 

nds. Additionally, it took 322.5 seconds to match 1 , 543 × 1 , 543 

P4-EDA descriptors for the testing dataset with both the EMD and 

LD distance metrics, an average of 0.2 seconds to match two HP4- 

DAs. 

.4. P4: Global and Local Feature (GLoFe) fit 

.4.1. Adopted descriptors and overall strategy 

The strategy adopted in method P4 is based on a direct ap- 

roach. Depending on the track, a collection of local and global 

eatures have been calculated. For each feature vector f , a dissim- 

larity matrix d f has been computed, while their weighted combi- 

ation produced the total dissimilarity matrix. The pipeline of the 

dopted strategy is depicted in Fig. 9 . 

The features used for Task A have been 3D shape descrip- 

ors from surface unfolding, a shape index describing local curva- 

ure, the volume of each protein, and the size of an encompassing 

ounding box. Differently, the ones taken into account for Task B 

ave been global histogram characteristics of the three provided 

hysicochemical properties. 

Using the Euclidean distance normalized by the standard devi- 

tion, we calculated the matrices d f that indicate the pairwise dis- 

ance between pairs of observations, for each geometric or physic- 

chemical feature f . For some of them, we slightly modified the 

istance value by examining the inverse consistency of mapping. 

pecifically, for each protein structure j, we identified the first 

 -Nearest Neighbours, i.e. k ∈ N ( j) , where N denotes the set of

eighbours. For each k , we examined whether j ∈ N(k ) . If true, the

orward and inverse retrieval was consistent, thus the certainty in 

stimation of pairwise similarity between j and k was considered 

igh. In this case, we increased by a factor, α, the dissimilarity 

alue in d( j, k ) . The values used in the experiments were | N| = 5

or both forward and inverse mapping and α = 0 . 3 . The final dis-

ance matrix d was constructed from a linear combination of the 

ndividual dissimilarity matrices, i.e. d = 

∑ 

w f · d f . where w f is a 

eight determining the contribution of each feature f . The weights 

ave been empirically estimated by optimizing the classification 

erformance on the training set. 

The classification performance was assessed on the training set 

n order to allow the optimization of the several (hyper)parameters 

f the Methodology. As evaluation criterion, the percentage of pro- 

eins for which the first (or correspondingly the second) closest 

eighbour belonged to the same class has been adopted. 

.4.2. Task A 

For Task A, four local and global geometric features have been 

xtracted. 

3D shape descriptors from surface unfolding. In order to remove 

ranslation and rotation differences across the protein structures, 
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Fig. 9. Processing pipeline of the strategy adopted in method P4. It includes extraction of multiple global and local shape descriptors, non-linear dimensionality reduction 

(NL-DR), calculation of pairwise distances, and fusion of the obtained dissimilarity matrices. 
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4

or each data matrix V ( j) associated with protein j, we performed 

rincipal Component Analysis (PCA) on the mean centered data 

nd replace them by their projection in the principal component 

pace. This results in globally normalized surface data. Since the 

ertex coordinates belong to 2D surfaces lying in the 3D space, a 

imensionality reduction technique to “unfold” the manifold and 

mbed into a 2-dimensional space has been applied. For this pur- 

ose, we used Locality Preserving Projections (LPP) [37] due to the 

lgorithms stability, high performance, and mainly its capability 

o preserve local (neighbourhood) structure. The embedded data 

 

( j) were calculated as Y ( j) = V ( j) · W 

( j) where W 

( j) is the trans- 

ormation matrix that maps the set of vertices of protein j from 

 

3 to R 

2 . Scores in Y ( j) cannot be directly used for protein re-

rieval because of their high number and variable length across 

tructures. Thus, we used as data representation the multi-variate 

ernel density estimate, p Y ( j) ∈ R 

b 1 ×b 2 , where b 1 and b 2 are the 

umber of bins (common for all proteins) for the two columns 

f Y ( j) , respectively. Then, since the obtained kernel density maps 

ere sometimes anti-symmetric, we augmented the whole dataset 

y horizontally and vertically flipping p Y ( j) resulting in 4 repli- 

ates for each protein. Finally, the 4 replicates of p Y ( j) for all pro- 

eins were linearized and concatenated in a big data matrix, in 

rder to learn the manifold of different proteins and their con- 

ormations. The non-linear dimensionality reduction technique t- 

istributed Stochastic Neighbour Embedding (t-SNE) [38] was used 

o calculate 5 scores that model each protein structure in the lower 

imensional space by retaining data similarity as much as possible. 

or indexing purposes, the distance of protein structure j to some 

ther protein structure was defined as the smallest distance across 

he 4 replicates. 

Shape index. The third incorporated geometric feature is the 

hape index which was part of the first pre-processing phase of 

aSIF [14] , a network that combines geometric and physicochem- 

cal properties into a single descriptor. The shape index describes 

he shape of the surface around each vertex with respect to the lo- 

al curvature, which is calculated in a neighbourhood of geodesic 

adius 12 ̊A around it. The proposed neighbourhood size was cho- 
e

10 
en empirically. The shape index of v i is defined according to 

2 

π
tan 

−1 
(

k 1 + k 2 
k 1 − k 2 

)

here k 1 , k 2 (with k 1 ≥ k 2 ) are the principal curvature values in

 i ’s neighbourhood. High shape index values imply that v i ’s neigh- 

ourhood is highly convex while lower values indicate that is 

ighly concave. 

Volume. Since the volume of a protein does not significantly 

hange when the protein obtains a different conformation, it has 

een also used as a feature. Although this feature helps to reduce 

ome possible matches, it has low specificity because the range of 

olumes across different protein classes overlaps for many of them. 

oreover, volume cannot be accurately calculated for the very few 

rotein structures which contain holes. 

Global scale. In order to characterize global scale of the pro- 

ein, we fitted a bounding box on the protein surface defined by 

 vertices in the 3D space. We used as global scale descriptor the 

 eigenvalues of the square matrix produced by multiplying the 

 × 1 vector by its transpose. 

For Task A, three different runs adopting method P4 and gener- 

ted as it follows by a linear combination of the individual dissimi- 

arity matrices of four separate geometric descriptors with weights 

ave been proposed. Specifically, w 1 , w 2 , w 3 , and w 4 refer to un-

olded surface, volume, shape index, and bounding box, respec- 

ively. 

• Run 1 (GLoFe): generated by choosing w 1 = 0 . 22 , w 2 = 0 . 67 ,

w 3 = 0 . 055 , w 4 = 0 . 055 . 
• Run 2 (GLoFe): generated by choosing w 1 = 0 . 22 , w 2 = 0 . 67 ,

w 3 = 0 . 055 , w 4 = 0 . 055 (without using inverse consistency). 
• Run 3 (GLoFe): generated by choosing w 1 = 0 . 25 , w 2 = 0 . 725 ,

w 3 = 0 , w 4 = 0 . 025 (without using inverse consistency). 

.4.3. Task B 

For each of the three provided physicochemical properties, we 

xtracted global histogram characteristics (first order statistics) 
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Table 1 

Computational times required for Tasks A and B by method P4. 

Task Time (mins) 

A Surface unfolding n test 
S = 1 , 543 986 

n train 
S = 3 , 585 2,290 

Augment & DR 83 

Volume 961 

Shape index 85 

Global scale 284 

Dissimilarity matrix calculation 0.005 

Total time 4,689 

B Physicochemical features 1 

Dissimilarity matrix calculation 0.001 

Total time 4,690 
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hat included mean intensity, standard deviation, mode of his- 

ogram (i.e. the most frequent intensity value), kurtosis, skewness, 

nd energy. These six features for each of the three physicochem- 

cal properties provide global information on the distribution of 

ray-level intensities. Among these 18 features, the mode for the 

ocation of hydrogen bond donors and acceptors assumes the same 

alue for all proteins and so it has been discarded. Differently, the 

emaining features has been merged into a 17-dimensional vector 

or each protein. 

For Task B, three different runs adopting method P4 and gen- 

rated as it follows by a linear combination of the geometric 

nd physicochemical dissimilarity matrices with weights have been 

roposed. Specifically, w 5 refers to the physicochemical dissimilar- 

ty matrix and w 6 to the geometric dissimilarity matrix produced 

y the corresponding run of Task A. 

• Run 1 (GLoFe): generated by choosing w 5 = 0 . 065 , w 6 = 0 . 935

(geometric dissimilarity matrix produced by Run 1 in Task A). 
• Run 2 (GLoFe): generated by choosing w 5 = 0 . 065 , w 6 = 0 . 935

(geometric dissimilarity matrix produced by Run 2 in Task A). 
• Run 3 (GLoFe): generated by choosing w 5 = 0 . 075 , w 6 = 0 . 925

(geometric dissimilarity matrix produced by Run 3 in Task A). 

.4.4. Computational aspects 

The experiments on both tracks have been carried out using an 

MD Ryzen 7 3700X 8-core Processor @3.59 GHz PC with 16 GB 

f RAM, except from the extraction of the surface unfolding and 

he physicochemical features which have been carried out using 

n Intel i5-6402P @2.80 GHz CPU with 8 GB of RAM. The Software 

as been written in Matlab 2019b. 

The total time required for obtaining the results for each task 

n the test set is indicated in Table 1 . In addition, an exhaustive

earch procedure (requiring 54 minutes) was followed to optimize 

he weights for fusion of the different dissimilarity matrices based 

n the training set. Notice that the total inference cost (illustrated 

n Table 1 ) corresponds to the time aggregated due to sequen- 

ial calculation of the different feature sets, whereas with a multi- 

hreaded implementation it is reasonable to expect that the total 

omputational time would be significantly decreased. 

.5. P5: Message-Passing Graph Convolutional Neural Networks 

MPGCNNs) and PointNet 

.5.1. Adopted descriptors and overall strategy 

For the meshes in each 3D model of a protein surface, in 

ethod P5 we first sampled 512 points on the surfaces of the 

eshes based on the area of the meshes. Because a sampled point 

ight not be an original vertex in the 3D meshes, the original 
11 
hysical and chemical properties are not valid for newly sampled 

oints. To generate physical and chemical properties for a sampled 

oint p, trilinear interpolation has been performed from the prop- 

rties of the three vertices forming the face that p is on. Then, 

o re-assign the topological structures for sampled points, each 

ode has been connected with their k -Nearest Neighbours based 

n their original coordinates choosing k = 16 . 

In method P5, we adopted a deep learning strategy by exploit- 

ng the availability of protein class labels to optimize the repre- 

entation of protein surfaces with and without textures. The cho- 

en strategy is based on the use of graph neural networks (GNNs). 

NNs are deep learning based methods that operate on the gen- 

ralized graph domain rather than on Euclidean domains like se- 

uences and grids, thanks to the development of graph convolution 

pproximation. As the approximated graph convolution operator is 

omputed based on the information propagated along graph ver- 

ices, the latent feature accommodates better the sparse topology, 

esulting in embeddings that can potentially capture the intrica- 

ies of modeled graphs. In particular, we designed message-passing 

raph convolutional neural networks (MPGCNNs) with the Edge 

onvolution paradigm [39] . A visual description of the pipeline 

dopted in method P5 is depicted in Fig. 10 . 

Edge convolution In the framework of Task A, the initial node 

eatures are the coordinates of sampled points, while in the set- 

ing of Task B, the features are concatenated tuples of coordinates 

nd interpolated physicochemical properties. Each protein surface 

s represented by a k -Nearest Neighbours graph generated in the 

re-processing step with 512 vertices. The module that performs 

he graph message-passing function is the Edge Convolution (Edge- 

onv) layer [39] . In the EdgeConv layer, the information of a vertex 

 after layer l is calculated as x l+1 
i 

= max j∈ N h (x l 
i 
, x l 

j 
) where N is the

eighbouring vertices of vertex i and 

 (x l i , x 
l 
j ) = ReLU(MLP (x l i � x l j )) 

here ReLU is Rectified Linear Unit (in the implementation, 

eakyReLU, a variant of ReLU, has been used), MLP is a standard 

ulti-layer perceptron (MLP), � is the concatenation operator. In 

he implementation of method P5, we adopted a dynamic variant 

f EdgeConv instead of the standard EdgeConv described above. At 

ach Dynamic EdgeConv layer, the each vertex’s k -Nearest Neigh- 

ours is re-calculated in the feature space produced by the pre- 

ious layer, before applying the standard EdgeConv operation. Af- 

er the graph is recomputed, standard EdgeConv operation is per- 

ormed. After the pre-processing phase, the vertex features first go 

hrough 4 layers of Dynamic EdgeConv. The dimensions of output 

eatures for each vertex after these first 4 layers are 6 4, 6 4, 128,

nd 256, respectively. Then, the outputs of these 4 layers are con- 

atenated to become a 512-dimensional vector for each vertex. This 

12-dimensional vector is then fed through another Dynamic Edge- 

onv layer, creating the output vector with 512 dimensions v . The 

eature vector v is pooled using the concatenation of the outputs 

f a max-pooling and a mean pooling layer to generate the first 

raph-level feature vector. This vector is passed through two MLP 

locks with BatchNorm, Leaky-ReLU, and Dropout layers. The re- 

rieval tasks can then be performed by exploiting the L2-distances 

etween the output vectors. 

PointNet. Adopting the same data pre-processing procedure, we 

lso implemented PointNet [40] , a well-known graph-based learn- 

ng strategy for 3D data. In this network architecture, the ver- 

ex features first pass through 2 message-passing modules. Each 

essages-passing module contains a MLP block that uses ReLU as 

ctivation function. The module captures spatial information be- 

ween a node and its neighbours by performing subtractions be- 

ween each pair of the center’s position and its neighbour’s posi- 

ion. After having performed calculation, the information of a ver- 

ex i after layer l is calculated as x l+1 
i 

= max j∈ N h (x l 
j 
, p j , p i ) where
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Fig. 10. The summary of the graph neural networks employed in method P5 optimized over the classification of the training set. The depicted pipelines are used for the 

geometry with physicochemical properties tasks, where a graph has N nodes and each node has 6 initial features. For Task A, there are only 3 initial node features, which 

are the spatial coordinates of points. After training, the 256-dimension vector before the fully-connected layer is used for all the tasks. 

Table 2 

The (approximated) training and extraction times of employed strategies in method 

P5. 

Task Strategy Training Test Set Extr. 

A PointNet 720 mins 0.5 mins 

Dyn. EdgeConv 1,100 mins 3 mins 

B Dyn. EdgeConv 1,100 mins 3 mins 
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is the neighbouring vertices of vertex i and 

 (x l j , p j , p i ) = ReLU(MLP (x l j � (p j − p i ))) 

here p j is the position of the vertex j and p i is the position of

he vertex i . For a MLP block that the vertex features pass through, 

ts output further goes through a ReLU function. After two MLP 

locks, the feature vector is pooled using a single global max- 

ooling layer. Then, retrieval tasks can be performed by the same 

ay as with the Dynamic EdgeConv strategy. 

.5.2. Task A 

For Task A, three different runs adopting method P5 and gener- 

ted as it follows have been proposed. 

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strat- 

egy where distances between output vectors are L2-distances 

between embeddings. 
• Run 2 (PointNet): generated by the PointNet strategy but 

choosing the number of mesh surface sample points as 258 in- 

stead of 512. 
• Run 3 (Ensemble): generated by taking the weighted average 

of embedding distances from the above Dynamic EdgeConv and 

PointNet embedding distances. Specifically, the distances from 

Dynamic EdgeConv are empirically weighted by 0.6, while those 

from PointNet are weighted by 0.4. 

.5.3. Task b 

For Task B, one run adopting method P5 and generated as it 

ollows has been proposed. 

• Run 1 (EdgeConv): generated by the Dynamic EdgeConv strat- 

egy where the concatenation of spatial coordinates and proper- 

ties made up of initial vertex features. The distances between 

output vectors are L2-distances between embeddings. 

.5.4. Computational aspects 

All of the methods have been implemented in Python 3.8, us- 

ng Pytorch [41] and Pytorch Geometric [42] libraries. The exper- 

ments have been carried out a machine with an Intel Core i7- 

700K 6-core CPU Processor @3.70 GHz PC with 32 GB of RAM and 

n NVIDIA TITAN V with 12 GB of VRAM. The training and test set’s 

mbedding extraction used both the CPU and the GPU, whose time 

s represented in Table 2 . The computation of distance matrix only 

sed the CPU and it required approximately 15 minutes for Run 3 

f Task A while just approximately 7 minutes for the other runs. 
12 
. Comparative analysis 

The performances of each run presented in Section 4 are here 

uantitatively evaluated on the basis of the measures described in 

ection 3.3 . We remind the reader that: Task A refers to the mere 

se of geometry, while Task B includes both geometry and physic- 

chemical properties; for any run, the method name and its spe- 

ific settings are given in Section 4 . The performance measures are 

resented for both the PDB and BLAST classifications detailed in 

ection 3.2 . 

An additional analysis, reported in the supplementary material 

n Appendix C , is performed on a 3-level BLAST-based classifica- 

ion: we introduce a further relaxation by merging the classes con- 

aining the same proteins or their isoforms with structures of pro- 

eins that have a significant sequence similarity, according to what 

ntroduced in Section 3.2 . In this case, the BLAST-based decompo- 

ition of level 2 consists of 25 communities. 

.1. Retrieval evaluation measures 

Table 3 summarizes the retrieval performances of all the runs 

ubmitted for evaluation with respect to the PDB classification. 

ore specifically, the table provides the following information: the 

earest Neighbour (NN), the First Tier (1T), the Second Tier (2T), 

he e-measure (eM), the Discounted Cumulated Gain (DCG), and 

he mean Average Precision (mAP). For each task, method and 

etrieval measure, the best performance is highlighted in bold; 

or each task and retrieval measure, the best performance among 

ll methods is highlighted in red. All values are averaged for all 

ueries. Many methods achieve great or excellent performances. 

or instance: 

• For Task A, 10 out of 15 runs have an NN value above 0.9, i.e.

their classification rate is above 90% . 
• For Task B, 11 out of 13 runs have the NN value above 0.9. 

The same methods have mAP and DCG values above, respec- 

ively, 0.6 and 0.8. Precision-Recall plots are provided in Fig. 11 . 

For sake of conciseness, we do not list the analogous values 

f Table 3 and plots in Fig. 11 for the BLAST classification, rather 

e focus on multi-level indicators, such as the ADR values and 

he NDCG plots. Interpreting the elements of a query queue in 

erms identity or isoform , highly related , similar and dissimilar sur- 

aces with respect to the BLAST classification, Table 4 reports the 

verage dynamic recall (ADR) values for the runs of all methods. 

ll the ADR scores, which range from 0 (worst case) to 1 (ideal 

erformance), are averaged over all the models in the dataset. 

A more comprehensive analysis of the retrieval queue with re- 

pect to the BLAST classification is provided by the normalized dis- 

ounted cumulative gain plots in Fig. 12 . The NDCG measure is 

epresented as a function of the rank p. The NDCG values for all 

ueries are averaged to obtain a measure of the average perfor- 

ance for each submitted run. Remind that, for an ideal run, it 

ould be NDCG ≡ 1. The NDCG measure takes BLAST classifica- 
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Table 3 

Summary of results by method and property type (only geometry vs. geometry and physicochemical properties) for the PDB classification. Here: NN = Nearest Neighbour, 

1T = First Tier, 2T = Second Tier, eM = e-Measure, DCG = Discounted Cumulated Gain, mAP = mean Average Precision. For each task and for each measure, the best value 

for each method is in bold. The best among them is highlighted in bold italic. 

Geometry Geometry and physicochemical characterization 

method NN 1T 2T eM DCG mAP method NN 1T 2T eM DCG mAP 

P1 run 1 0.837 0.605 0.778 0.504 0.845 0.675 run 1 0.982 0.873 0.951 0.685 0.971 0.921 

run 2 0.947 0.815 0.940 0.654 0.947 0.877 run 2 0.989 0.922 0.979 0.714 0.985 0.958 

run 3 0.927 0.729 0.884 0.597 0.921 0.806 run 3 0.585 0.364 0.518 0.306 0.670 0.414 

P2 run 1 0.914 0.735 0.888 0.607 0.916 0.802 run 1 0.951 0.815 0.938 0.653 0.949 0.874 

run 2 0.894 0.723 0.880 0.605 0.908 0.791 run 2 0.947 0.800 0.927 0.649 0.942 0.895 

run 3 0.924 0.748 0.889 0.613 0.921 0.813 run 3 0.979 0.839 0.937 0.665 0.962 0.858 

P3 run 1 0.920 0.683 0.836 0.562 0.897 0.756 run 1 0.902 0.696 0.848 0.572 0.893 0.764 

run 2 0.930 0.711 0.858 0.586 0.911 0.782 run 2 0.923 0.592 0.720 0.486 0.847 0.663 

run 3 0.922 0.692 0.846 0.572 0.903 0.767 run 3 0.903 0.683 0.820 0.560 0.887 0.757 

P4 run 1 0.927 0.593 0.716 0.493 0.865 0.684 run 1 0.941 0.684 0.791 0.550 0.901 0.761 

run 2 0.927 0.586 0.705 0.487 0.862 0.675 run 2 0.941 0.676 0.785 0.544 0.899 0.755 

run 3 0.907 0.549 0.672 0.453 0.840 0.634 run 3 0.933 0.653 0.758 0.529 0.888 0.730 

P5 run 1 0.755 0.537 0.734 0.468 0.806 0.541 run 1 0.718 0.532 0.731 0.466 0.798 0.751 

run 2 0.437 0.300 0.477 0.263 0.633 0.485 

run 3 0.713 0.494 0.699 0.435 0.783 0.452 

Fig. 11. Precision-recall curves for Task A (geometry only) and Task B (geometry and physicochemical properties), with respect to the PDB classification. 
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ion performances into larger account than PDB one, as all surfaces 

orresponding to the same PDB code are the same protein for the 

LAST classification. 

In Appendix C , we include the same multi-level indicators, 

amely ADR and NDCG plots, for the 3-level BLAST classification. 

ince this classification aggregates communities that are extremely 

imilar and highly related, the ADR scores slightly increase but the 

verall relationships between the different methods and runs are 

onfirmed. 

.2. Classification performance measures 

Table 5 summarizes the classification performances for both 

asks A and B, when considering the PDB classification; the con- 
13 
usion matrices originating such values are shown, for the sake 

f completeness, in Figs. A.13 and A.14 . More precisely, the table 

ontains the following information: True Positive Rate (TPR), True 

egative Rate (TNR), Positive Predicted Values (PPV), Negative Pre- 

icted Values (NPV), Accuracy (ACC) and F 1 score (F1). One fact we 

an immediately note is that, maybe not surprisingly, methods that 

howed robustness when evaluated with the retrieval measures yet 

xhibit strong performances when tested with classification mea- 

ures. However, we can additionally notice that: 

• All methods have TNR higher than TPR, making them more re- 

liable in correctly finding true negatives rather than true posi- 

tives. 
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Table 4 

Summary of average dynamic recalls (ADRs) for the 4-level BLAST classification. For each task, the best ADR for each method is in bold. The best among them is highlighted 

in bold italic. 

Geometry Geometry and physicochemical properties 

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

run 1 0.640 0.700 0.697 0.681 0.631 run 1 0.809 0.770 0.756 0.719 0.733 

run 2 0.721 0.688 0.706 0.676 0.543 run 2 0.755 0.738 0.804 0.715 - 

run 3 0.729 0.670 0.699 0.660 0.641 run 3 0.635 0.770 0.751 0.704 - 

Fig. 12. Normalized discounted cumulated gain (NDCG) for Task A (geometry only) and Task B (geometry and physicochemical properties), with respect to the 4-level BLAST 

classification. 
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• All methods have NPV higher than TPV: it is more likely for 

these methods to be right when reporting a negative rather 

than a positive. 
• All methods have accuracy over 97 . 5% , although they are not 

equally “accurate” in finding true/false positives/negatives. This 

a sign – rather obvious from the nature of the problem – that 

positives and negatives are not in equal proportion; methods 

showing a greater difference between TPR and TNR (and be- 

tween PPV and NPV) are more inclined to privilege the neg- 

atives (the predominant class) at the expense of the posi- 

tives (the minor class). In our context, accuracy is therefore an 

overoptimistic estimation. 
• F 1 score provides a “better” metric than the accuracy, in the 

sense that it suffers more from imbalance. 

Enriching the protein SES triangulation with physicochemical 

roperties does not always lead to an improvement. For example, 

n the third run by P1 it dramatically decreases the performances. 

n the other hand, run 2 from the same method shows a marked 

mprovement to deal with (true) positives. 

Table 6 summarizes the classification performance for both 

asks A and B, when considering the (4-level) BLAST classifica- 

ion; the confusion matrices originating such values are shown, 

or the sake of completeness, in Figs. B.15 and B.16 . As expected, 

 decrease in the number of classes leads to an improvement of 

he classification measures. However, it is also worth noting that 
14 
his improvement is not the same in all methods: by comparing 

ables 5 and 6 , one can indeed note changes in the best run per

ethod (and in the best overall run). 

The supplementary material, reported in Appendix C , includes 

lassification measures (see Table C.8 ) and the corresponding con- 

usion matrices (see Figs. C.18 and C.19 ) in the case of a 3-level

LAST classification; one can notice that this latter leads to the 

ame considerations as in the 4-level BLAST classification. 

.3. Discussion 

The methods that participated in this SHREC contest are repre- 

entative of various types of approaches to the 3D object retrieval 

roblem, ranging from purely feature-based engineered methods, 

ainly based on features represented with histograms (P1, P3, 

nd P4), to the combination of features and dimensional reduction 

echniques (P1 Run 3), to deep neural networks (P2) and transfer 

earning from deep graph convolutional networks (P5). 

On the one hand, the retrieval performances are positive for 

ll methods, in either the PDB or BLAST classifications. On the 

ther hand, the NDCG and ADR measures are specifically designed 

or interpreting a multi-level dataset classification as in this case, 

nd thus offer a complementary evaluation of the classical re- 

rieval measures (e.g., NN, FT, ST, precision-recall plots, etc.) and 

lassification measures (TPR, TNR, PPV, NPV, ACC, confusion matri- 

es, etc.). These performance indicators show that the highest ADR 
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Table 5 

Summary of statistical measures by method and property type (only geometry vs. geometry and physicochemical properties) for the PDB-based community decomposition. 

Here: TPR = True Positive Rate, TNR = True Negative Rate, PPV = Positive Predictive Value, NPV = Negative Predictive Value, ACC = ACCuracy, F1 = F 1 score. For each task 

and for each measure, the best value for each method is in bold. The best among them is highlighted in bold italic. 

Geometry Geometry and physicochemical properties 

method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1 

P1 run 1 0.8373 0.9967 0.8401 0.9973 0.9941 0.8354 run 1 0.9825 0.9997 0.9860 0.9997 0.9994 0.9832 

run 2 0.9475 0.9991 0.9489 0.9992 0.9983 0.9467 run 2 0.9890 0.9999 0.9921 0.9999 0.9998 0.9893 

run 3 0.9274 0.9990 0.9304 0.9988 0.9974 0.9239 run 3 0.5839 0.9885 0.6086 0.9912 0.9807 0.5727 

P2 run 1 0.9145 0.9979 0.9159 0.9984 0.9965 0.9119 run 1 0.9514 0.9989 0.9525 0.9992 0.9981 0.9504 

run 2 0.8944 0.9975 0.8977 0.9976 0.9954 0.8931 run 2 0.9469 0.9989 0.9470 0.9991 0.9981 0.9460 

run 3 0.9242 0.9983 0.9253 0.9985 0.9969 0.9222 run 3 0.9793 0.9995 0.9819 0.9996 0.9991 0.9791 

P3 run 1 0.9196 0.9985 0.9205 0.9986 0.9971 0.9169 run 1 0.9015 0.9977 0.9037 0.9979 0.9957 0.9007 

run 2 0.9300 0.9982 0.9333 0.9988 0.9971 0.9276 run 2 0.9216 0.9985 0.9238 0.9987 0.9974 0.9207 

run 3 0.9222 0.9982 0.9258 0.9986 0.9969 0.9199 run 3 0.9015 0.9979 0.9005 0.9985 0.9966 0.8987 

P4 run 1 0.9274 0.9983 0.9284 0.9987 0.9971 0.9262 run 1 0.9410 0.9987 0.9424 0.9990 0.9978 0.9406 

run 2 0.9268 0.9983 0.9277 0.9987 0.9971 0.9252 run 2 0.9410 0.9988 0.9422 0.9990 0.9978 0.9409 

run 3 0.9067 0.9979 0.9059 0.9983 0.9963 0.9046 run 3 0.9326 0.9984 0.9336 0.9988 0.9974 0.9323 

P5 run 1 0.7537 0.9944 0.7539 0.9943 0.9892 0.7507 run 1 0.7187 0.9937 0.7215 0.9940 0.9886 0.7160 

run 2 0.4362 0.9870 0.4412 0.9873 0.9754 0.4328 

run 3 0.7123 0.9927 0.7109 0.9930 0.9868 0.7044 

Table 6 

Summary of statistical measures by method and property type (only geometry vs. geometry and physicochemical properties) for the BLAST-based community decomposition 

of level 3. Here: TPR = True Positive Rate, TNR = True Negative Rate, PPV = Positive Predictive Value, NPV = Negative Predictive Value, ACC = ACCuracy, F1 = F 1 score. For 

each task and for each measure, the best value for each method is in bold. The best among them is highlighted in bold italic. 

Geometry Geometry and physicochemical properties 

method TPR TNR PPV NPV ACC F1 method TPR TNR PPV NPV ACC F1 

P1 run 1 0.9086 0.9949 0.9082 0.9959 0.9917 0.9069 run 1 0.9961 0.9998 0.9962 1.0000 0.9997 0.9960 

run 2 0.9890 0.9996 0.9891 0.9996 0.9993 0.9888 run 2 0.9981 1.0000 0.9981 1.0000 1.0000 0.9980 

run 3 0.9844 0.9996 0.9869 0.9997 0.9993 0.9840 run 3 0.8529 0.9904 0.8562 0.9931 0.9854 0.8452 

P2 run 1 0.9760 0.9992 0.9766 0.9993 0.9985 0.9758 run 1 0.9929 0.9997 0.9930 0.9999 0.9996 0.9928 

run 2 0.9728 0.9991 0.9746 0.9991 0.9983 0.9723 run 2 0.9909 0.9998 0.9909 0.9999 0.9997 0.9908 

run 3 0.9767 0.9985 0.9770 0.9989 0.9977 0.9764 run 3 0.9987 0.9999 0.9987 1.0000 0.9999 0.9987 

P3 run 1 0.9689 0.9981 0.9690 0.9985 0.9970 0.9680 run 1 0.9942 0.9996 0.9943 0.9999 0.9995 0.9942 

run 2 0.9747 0.9980 0.9754 0.9989 0.9972 0.9740 run 2 0.9916 0.9997 0.9921 0.9998 0.9996 0.9916 

run 3 0.9721 0.9987 0.9738 0.9985 0.9976 0.9716 run 3 0.9806 0.9981 0.9809 0.9994 0.9980 0.9803 

P4 run 1 0.9799 0.9987 0.9805 0.9991 0.9980 0.9798 run 1 0.9903 0.9995 0.9909 0.9996 0.9992 0.9904 

run 2 0.9793 0.9987 0.9801 0.9990 0.9979 0.9791 run 2 0.9903 0.9995 0.9908 0.9996 0.9991 0.9904 

run 3 0.9734 0.9984 0.9738 0.9987 0.9974 0.9732 run 3 0.9870 0.9993 0.9876 0.9994 0.9988 0.9871 

P5 run 1 0.9209 0.9953 0.9209 0.9958 0.9923 0.9197 run 1 0.9501 0.9975 0.9506 0.9988 0.9968 0.9491 

run 2 0.7168 0.9852 0.7201 0.9853 0.9734 0.7156 

run 3 0.9047 0.9944 0.9031 0.9953 0.9910 0.9019 
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cores vary from 0.729 (geometric) to 0.809 (geometry and pysico- 

hemical properties) being 1 the best possible value for the ADR: 

his confirms that these approaches are good but not optimal. Sim- 

larly, the highest possible area under a NDCG curve equals 1, while 

he best scores in this contribution are around 0.9 (for the Task B). 

In this SHREC contest, a training dataset was explicitly pro- 

ided having with the ground truth based on the PDB classifica- 

ion. The surface distribution in the classes mirrored the distribu- 

ion of classes in the test set, see Fig. 3 ; the number of confor-

ations per PDB ranges from 2 to 160. This highlights one of the 

ifficulties that learning methods have faced, namely the presence 

f classes of very heterogeneous size, which makes prediction very 

ifficult. The severity of the PDB classification is then mitigated by 

he BLAST one, but this classification has been used only for the in- 

erpretation of the results and not previously provided to the par- 

icipants. 

A further difficulty for learning methods is the dataset design 

hoice of using different proteins (and their conformations) be- 

ween training set and test set. This was done to investigate the 

bility of 3D retrieval approaches to reason about and predict the 

onformations of a protein, even if not yet “seen” by the training 
15 
ystem. This probably motivates that the best overall performance 

or the PDB classification was obtained by a technique based on 

ngineered features. This fact is further confirmed by the lower 

rediction ability of the same descriptor when combined with a 

imensional reduction technique as demonstrated by the method 

1 (run 3), which show a particular decrease when the geome- 

ry is enriched with physicochemical properties. Conversely, when 

e consider the BLAST classification, i.e. proteins that share fairly 

ong amino acids sequences are considered similar altogether their 

onformations, we see that learning-based methods improve their 

erformance proportionally more than direct methods, such as the 

1 (run 3) method. In our view, this reflects the fact that similari- 

ies between sequences are reflected in similarities of 3D structure, 

nd with this classification comes greater homogeneity between 

he features of the “extended” classes. 

Additional considerations can be derived from the geometric- 

nly and mixed geometry and physicochemical properties com- 

arison. Not surprisingly, we notice an improvement in the per- 

ormance of the various approaches when switching from runs 

urely geometry-driven (Task A) to runs that consider both ge- 

metry and physicochemical properties (Task B). Nevertheless, the 
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irect comparison between the proposed runs is not always pos- 

ible because for some participants the geometric method may 

ary between the 2 tasks. We notice that the most widely adopted 

olution is the introduction of a histogram for the physicochem- 

cal properties, that is then used as an additional feature vec- 

or whose outcome is combined with the dissimilarity scores 

iven by the geometric description. Furthermore, from the ex- 

eriments available to us, we note that the most significant im- 

rovements are seen for methods that are based on learning. 

his is particularly reflected in the methods P2 and P5. This sug- 

ests that physicochemical properties play an important role in 

he characterisation of a protein but, perhaps, more research is 

till needed to deeply understand their role and how best to in- 

egrate them into engineered descriptors; for instance, considering 

 joint description as currently proposed in P1, that adopts joint 3D 

istograms. 

. Concluding remarks 

In this paper, we have provided a detailed analysis and eval- 

ation of state-of-the-art retrieval and classification algorithms 

ealing with protein similarity assessment based on molecular 

urfaces, which we believe deserve attention from the research 

ommunity. The introduction of physicochemical properties into 

he benchmark, represents an element of originality in the avail- 

ble benchmarks for structural biology and provides a more com- 

lete representation of the protein. To enable the participation of 

earning-based methods, both a training and a test set were pro- 

ided for this benchmark dataset. Moreover, we are aware that in 

ome of the PDB codes we used, the underlying structures may 

orrespond to mutations of the same protein, or be isoform, or 

hare a common fold; for this reason, we performed a multi-level 

erformance analysis, comparing the performance of the proposed 

ethods to both a classification made according to the protein PDB 

ode and an aggregation between proteins made by using BLASTP. 

Beyond the extensive analysis that has been carried out 

hroughout the paper, we hope that the experimental results pre- 

ented here may offer interesting hints for further Investigation. 

or instance, a better and more informed definition of similarity 

an be preliminary to a better and more effective definition of the 

omplementarity between binding biomolecules. 

The benchmark, as well as the dissimilarity matrices that origi- 

ated the results described in Section 5 and in the appendices, are 

vailable at https://github.com/rea1991/SHREC2021 . 
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d

), with respect to the PDB-based community decomposition. 

ical properties), with respect to the PDB-based community decomposition. 
ppendix A. Confusion matrices (PDB-based community 

ecomposition) 

Fig. A.13. Confusion matrices for Task A (geometry only

Fig. A.14. Confusion matrices for Task B (geometry and physicochem
17 
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A

d

h respect to the BLAST-based community decomposition of level 3. 

operties), with respect to the BLAST-based community decomposition of level 3. 
ppendix B. Confusion matrices (BLAST-based community 

ecomposition of level 3) 

Fig. B.15. Confusion matrices for Task A (geometry only), wit

Fig. B.16. Confusion matrices for Task B (geometry and physicochemical pr
18 
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A

r

T

S tion. For each task, the best ADR for each method is in bold. The best among them is 

h

Geometry and physicochemical properties 

P1 P2 P3 P4 P5 

run 1 0.829 0.800 0.800 0.756 0.779 

run 2 0.771 0.768 0.849 0.751 - 

run 3 0.674 0.806 0.810 0.742 - 

T

S eometry and physicochemical properties) for the BLAST-based community decomposition 

o e Predictive Value, NPV = Negative Predictive Value, ACC = ACCuracy, F1 = F 1 score. For 

e t among them is highlighted in bold italic. 

Geometry and physicochemical properties 

method TPR TNR PPV NPV ACC F1 

113 run 1 0.9968 0.9996 0.9968 1.0000 0.9996 0.9967 

902 run 2 0.9993 1.0000 0.9994 1.0000 1.0000 0.9993 

900 run 3 0.7991 0.9796 0.8081 0.9842 0.9689 0.7953 

652 run 1 0.9747 0.9974 0.9733 0.9986 0.9966 0.9733 

485 run 2 0.9780 0.9977 0.9782 0.9981 0.9965 0.9778 

682 run 3 0.9864 0.9976 0.9863 0.9996 0.9976 0.9854 

575 run 1 0.9767 0.9977 0.9784 0.9975 0.9960 0.9771 

671 run 2 0.9825 0.9983 0.9831 0.9986 0.9974 0.9825 

687 run 3 0.9760 0.9980 0.9774 0.9980 0.9966 0.9763 

675 run 1 0.9767 0.9974 0.9762 0.9986 0.9966 0.9760 

678 run 2 0.9786 0.9978 0.9784 0.9984 0.9968 0.9783 

626 run 3 0.9754 0.9971 0.9750 0.9981 0.9960 0.9748 

986 run 1 0.9132 0.9906 0.9125 0.9928 0.9861 0.9120 

175 

963 

F ly) and Task B (geometry and physicochemical properties), with respect to the 3-level 

B

ppendix C. Supplementary material: Performances with 

espect to a 3-level BLAST classification 

able C.7 

ummary of average dynamic recalls (ADRs) for the 3-level BLAST-based classifica

ighlighted in bold italic. 

Geometry 

P1 P2 P3 P4 P5 

run 1 0.677 0.735 0.741 0.728 0.686 

run 2 0.749 0.728 0.751 0.723 0.608 

run 3 0.755 0.715 0.746 0.708 0.698 

able C.8 

ummary of statistical measures by method and property type (only geometry vs. g

f level 2. Here: TPR = True Positive Rate, TNR = True Negative Rate, PPV = Positiv

ach task and for each measure, the best value for each method is in bold. The bes

Geometry 

method TPR TNR PPV NPV ACC F1 

P1 run 1 0.9125 0.9922 0.9123 0.9940 0.9878 0.9

run 2 0.9903 0.9992 0.9904 0.9995 0.9988 0.9

run 3 0.9903 0.9990 0.9905 0.9997 0.9989 0.9

P2 run 1 0.9663 0.9967 0.9648 0.9978 0.9953 0.9

run 2 0.9495 0.9955 0.9484 0.9959 0.9927 0.9

run 3 0.9701 0.9967 0.9680 0.9987 0.9960 0.9

P3 run 1 0.9592 0.9969 0.9579 0.9977 0.9952 0.9

run 2 0.9682 0.9972 0.9675 0.9980 0.9959 0.9

run 3 0.9702 0.9974 0.9697 0.9983 0.9963 0.9

P4 run 1 0.9682 0.9969 0.9675 0.9981 0.9957 0.9

run 2 0.9689 0.9969 0.9679 0.9982 0.9958 0.9

run 3 0.9631 0.9966 0.9627 0.9973 0.9948 0.9

P5 run 1 0.8996 0.9915 0.8996 0.9916 0.9855 0.8

run 2 0.7155 0.9792 0.7250 0.9778 0.9623 0.7

run 3 0.8983 0.9913 0.8965 0.9918 0.9855 0.8

ig. C.17. Normalized discounted cumulated gain (NDCG) for Task A (geometry on

LAST classification. 
19 
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Fig. C.18. Confusion matrices for Task A (geometry only), with respect to the BLAST-based community decomposition of level 2. 

Fig. C.19. Confusion matrices for Task B (geometry and physicochemical properties), with respect to the BLAST-based community decomposition of level 2. 

R

 

 

 

 

[

[

eferences 

[1] Roberts K , Alberts B , Johnson A , Walter P , Hunt T . Molecular biology of the
cell. New York: Garland Science; 2002 . 

[2] Rocchia W, Alexov E, Honig B. Extending the applicability of the nonlin- 
ear poisson-boltzmann equation: multiple dielectric constants and multivalent 

ions. The Journal of Physical Chemistry B 2001;105(28):6507–14. doi: 10.1021/ 

jp010454y . 
[3] Kyte J, Doolittle RF. A simple method for displaying the hydropathic charac- 

ter of a protein. J Mol Biol 1982;157(1):105–32. doi: 10.1016/0022-2836(82) 
90515-0 . 

[4] Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bond- 
ing potential improves prediction of specificity and structure for proteins 

and protein–protein complexes. J Mol Biol 2003;326(4):1239–59. doi: 10.1016/ 

s0 022-2836(03)0 0 021-4 . 
[5] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The

protein data bank. Nucleic Acids Res 20 0 0;28(1):235–42. doi: 10.1093/nar/28.1. 
235 . 

[6] Decherchi S, Rocchia W. A general and robust ray-casting-based algorithm for 
triangulating surfaces at the nanoscale. PLoS ONE 2013;8(4):1–15. doi: 10.1371/ 

journal.pone.0059744 . 

[7] Decherchi S, Spitaleri A, Stone JE, Rocchia W. Nanoshaper-vmd interface: com- 
puting and visualizing surfaces, pockets and channels in molecular systems. 

Bioinform 2019;35(7):1241–3. doi: 10.1093/bioinformatics/bty761 . 
[8] Song N, Craciun D, Christoffer CW, Han X, Kihara D, Levieux G, et al. SHREC’17

Track: protein shape retrieval. 3Dor ’17. In: Proceedings of the Workshop on 3D 
Object Retrieval. Goslar, DEU: Eurographics Association; 2017. p. 67–74. doi: 10. 

2312/3dor.20171055 . 
20 
[9] Langenfeld F, Axenopoulos A, Chatzitofis A, Craciun D, Daras P, Du B, 
et al. SHREC 2018 - Protein shape retrieval. In: Proceedings of the 11th 

Eurographics Workshop on 3D Object Retrieval; 2018. p. 53–61. doi: 10.2312/ 

3dor.20181053 . 
[10] Langenfeld F, Axenopoulos A, Benhabiles H, Daras P, Giachetti A, Han X, et al. 

SHREC19 Protein shape retrieval contest. In: Biasotti S, Lavoué G, Veltkamp R, 
editors. Eurographics Workshop on 3D Object Retrieval. The Eurographics As- 

sociation; 2019 . 
[11] Langenfeld F, Peng Y, Lai YK, Rosin PL, Aderinwale T, Terashi G, et al. SHREC

2020: Multi-domain protein shape retrieval challenge. Computers & Graphics 

2020;91:189–98. doi: 10.1016/j.cag.2020.07.013 . 
12] Richards FM. Areas, volumes, packing, and protein structure. Annu Rev Biophys 

Bioeng 1977;6:151–76. doi: 10.1146/annurev.bb.06.060177.001055 . 
13] Connolly ML. Analytical molecular surface calculation. J Appl Crystallogr 

1983;16(5):548–58. doi: 10.1107/S0021889883010985 . 
[14] Gainza P, Sverrisson F, Monti F, Rodola E, Boscaini D, Bronstein M, et al. 

Deciphering interaction fingerprints from protein molecular surfaces us- 

ing geometric deep learning. Nat Methods 2020;17(2):184–92. doi: 10.1038/ 
s41592- 019- 0666-6 . 

[15] Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G. 
Meshlab: an open-source mesh processing tool. In: Scarano V, Chiara RD, 

Erra U, editors. Eurographics Italian Chapter Conference. The Eurograph- 
ics Association; 2008. p. 129–36. doi: 10.2312/LocalChapterEvents/ItalChap/ 

ItalianChapConf2008/129-136 . 

[16] Wang L, Zhang Z, Rocchia W, Alexov E. Using delphi capabilities to mimic 
protein’s conformational reorganization with amino acid specific dielectric 

constants. Commun Comput Phys 2013;13(1):13–30. doi: 10.4208/cicp.300611. 
120911s . 

http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0001
https://doi.org/10.1021/jp010454y
https://doi.org/10.1016/0022-2836(82)90515-0
https://doi.org/10.1016/s0022-2836(03)00021-4
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1371/journal.pone.0059744
https://doi.org/10.1093/bioinformatics/bty761
https://doi.org/10.2312/3dor.20171055
https://doi.org/10.2312/3dor.20181053
https://doi.org/10.1016/j.cag.2020.07.013
https://doi.org/10.1146/annurev.bb.06.060177.001055
https://doi.org/10.1107/S0021889883010985
https://doi.org/10.1038/s41592-019-0666-6
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.4208/cicp.300611.120911s


A. Raffo, U. Fugacci, S. Biasotti et al. Computers & Graphics 99 (2021) 1–21 

 

[

[

[
[

[

[  

[  

[

[

[

[

[

[

[  

[

[  

[  

[

[

[

[  

[  

[

[17] Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg L, et al. Improvements to
the apbs biomolecular solvation software suite. Protein Sci 2018;27(1):112–28. 

doi: 10.1002/pro.3280 . 
[18] Rost B. Twilight zone of protein sequence alignments. Protein Engineering, De- 

sign and Selection 1999;12(2):85–94. doi: 10.1093/protein/12.2.85 . 
[19] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 

Blast+: architecture and applications. BMC Bioinformatics 2009;10:421. doi: 10. 
1186/1471-2105-10-421 . 

20] Fortunato S . Community detection in graphs. Phys Rep 2010;486(3–5):75–174 . 

21] Veltkamp R., Ruijsenaars R., Spagnuolo M., van Zwol R., ter Haar F.. SHREC 
2006: 3d shape retrieval contest, 2006. Tech. Rep., CS-2006-030. 

22] CJV R . Information retrieval. Newton, MA, USA: Butterworth-Heinemann; 1979 . 
23] Baeza-Yates RA , Ribeiro-Neto B . Modern information retrieval. Boston, MA, 

USA: Addison-Wesley Longman Publishing Co, Inc; 1999 . ISBN 020139829X 
24] Shilane P, Min P, Kazhdan M, Funkhouser T. The princeton shape bench- 

mark. In: Shape Modeling International; 2004. p. 167–78. doi: 10.1109/SMI. 

2004.1314504 . 
25] Biasotti S, Cerri A, Abdelrahman M, Aono M, Hamza AB, El-Melegy M, et al. Re-

trieval and classification on textured 3d models. In: Bustos B, Tabia H, Vande- 
borre JP, Veltkamp R, editors. Eurographics Workshop on 3D Object Retrieval. 

The Eurographics Association; 2014 . ISBN 978-3-905674-58-3 
26] Biasotti S, Cerri A, Aono M, Hamza AB, Garro V, Giachetti A, et al. Retrieval

and classification methods for textured 3D models: a comparative study. Vis 

Comput 2016;32(2):217–41. doi: 10.10 07/s0 0371- 015- 1146- 3 . 
27] Kuhn Max;Johnson K . Applied predictive modeling. Springer New York; 2018 . 

28] Giachetti A, Biasotti S, Moscoso Thompson E, Fraccarollo L, Nguyen Q, 
Nguyen HD, et al. SHREC 2020 Track: river gravel characterization. In: 

Schreck T, Theoharis T, Pratikakis I, Spagnuolo M, Veltkamp RC, editors. Eu- 
rographics Workshop on 3D Object Retrieval. The Eurographics Association; 

2020 . 

29] Giachetti A., Lovato C.. Radial symmetry detection and shape characterization 
with the multiscale area projection transform. Computer Graphics Forum, 31.5, 

Wiley Online Library; 2012. 1669–1678, 10.1111/j.1467-8659.2012.03172.x 
30] Puzicha J, Buhmann J, Rubner Y, Tomasi C. Empirical evaluation of dissimilarity 

measures for color and texture. In: Proceedings of the Seventh IEEE Interna- 
tional Conference on Computer Vision, vol. 2; 1999. p. 1165–72. doi: 10.1109/ 

ICCV.1999.790412 . 
21 
31] Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eu- 
gen 1936;7(2):179–88. doi: 10.1111/j.1469-1809.1936.tb02137.x . 

32] Canterakis N.. 3D Zernike moments and Zernike affine invariants for 3D image 
analysis and recognition.1999. In 11th Scandinavian Conf. on Image Analysis, 

Citeseer; 85–93. 
33] Sael L, Li B, D L, Fang Y, Ramani K, Rustamov R, et al. Fast protein tertiary

structure retrieval based on global surface shape similarity. Proteins Struct 
Funct Bioinf 2008;72(4):1259–73. doi: 10.1002/prot.22030 . 

34] Esquivel-Rodríguez J, Xiong Y, Han X, Guang S, Christoffer C, Kihara D. Nav- 

igating 3d electron microscopy maps with EM-SURFER. BMC Bioinformatics 
2015;16(1):1–9. doi: 10.1186/s12859-015- 0580- 6 . 

35] Otu E, Zwiggelaar R, Hunter D, Liu Y. Nonrigid 3d shape retrieval with HAPPS:
a novel hybrid augmented point pair signature. In: 2019 International Confer- 

ence on Computational Science and Computational Intelligence (CSCI); 2019. 
p. 662–8. doi: 10.1109/CSCI49370.2019.00124 . 

36] Zhou QY , Park J , Koltun V . Open3d: a modern library for 3d data processing.

arXiv preprint arXiv:180109847 2018 . 
37] He X , Niyogi P . Locality preserving projections. Adv Neural Inf Process Syst 

2004;16(16):153–60 . 
38] Hinton G., Roweis S.T.. Stochastic neighbor embedding. NIPS, 2002. Citeseer, 

volume, 15, 833–840, 
39] Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic 

graph CNN for learning on point clouds. Acm Transactions On Graphics (tog) 

2019;38.5:1–12. doi: 10.1145/3326362 . 
40] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: deep learning on point sets for 3d clas-

sification and segmentation. In: Proceedings of the IEEE conference on com- 
puter vision and pattern recognition; 2017. p. 652–60. doi: 10.1109/CVPR.2017. 

16 . 
41] Paszke A , Gross S , Massa F , Lerer A , Bradbury J , Chanan G , et al. Pytorch:

an imperative style, high-performance deep learning library. arXiv preprint 

arXiv:191201703 2019 . 
42] Fey M , Lenssen JE . Fast graph representation learning with pytorch geometric. 

arXiv preprint arXiv:190302428 2019 . 

https://doi.org/10.1002/pro.3280
https://doi.org/10.1093/protein/12.2.85
https://doi.org/10.1186/1471-2105-10-421
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0023
https://doi.org/10.1109/SMI.2004.1314504
https://doi.org/10.1007/s00371-015-1146-3
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0027
https://doi.org/10.1109/ICCV.1999.790412
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1002/prot.22030
https://doi.org/10.1186/s12859-015-0580-6
https://doi.org/10.1109/CSCI49370.2019.00124
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0037
https://doi.org/10.1145/3326362
https://doi.org/10.1109/CVPR.2017.16
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00125-4/sbref0042

	SHREC 2021: Retrieval and classification of protein surfaces equipped with physical and chemical properties
	1 Introduction
	2 Related benchmarks
	3 The benchmark
	3.1 The dataset
	3.2 The ground truth
	3.3 Evaluation measures
	3.3.1 Retrieval evaluation measures
	3.3.2 Classification performance measures.


	4 Description of methods
	4.1 P1: Joint histograms of curvatures, local properties and area projection transform
	4.1.1 Adopted descriptors and overall strategy
	4.1.2 Task A
	4.1.3 Task B
	4.1.4 Computational aspects

	4.2 P2: 3D Zernike descriptor
	4.2.1 Adopted descriptors and overall strategy
	4.2.2 Task A
	4.2.3 Task B
	4.2.4 Computational aspects

	4.3 P3: Hybrid Augmented Point Pair Signatures and Histogram of Processed Physicochemical Properties of Protein molecules
	4.3.1 Adopted descriptors and overall strategy
	4.3.2 Task A
	4.3.3 Task B
	4.3.4 Computational aspects

	4.4 P4: Global and Local Feature (GLoFe) fit
	4.4.1 Adopted descriptors and overall strategy
	4.4.2 Task A
	4.4.3 Task B
	4.4.4 Computational aspects

	4.5 P5: Message-Passing Graph Convolutional Neural Networks (MPGCNNs) and PointNet
	4.5.1 Adopted descriptors and overall strategy
	4.5.2 Task A
	4.5.3 Task b
	4.5.4 Computational aspects


	5 Comparative analysis
	5.1 Retrieval evaluation measures
	5.2 Classification performance measures
	5.3 Discussion

	6 Concluding remarks
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowlgedgments
	Appendix A Confusion matrices (PDB-based community decomposition)
	Appendix B Confusion matrices (BLAST-based community decomposition of level 3)
	Appendix C Supplementary material: Performances with respect to a 3-level BLAST classification
	References


