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A Flexible Simple Temporal Network with Uncertainty (FTNU) represents temporal con-
straints between time-points. Time-points are variables that must be set (executed) satisfy-
ing all the constraints. Some time-points are contingent. It means that they are set by the
environment and only observed by the system executing the network. The ranges repre-
senting temporal constraints associated with contingent time-points (guarded ranges)
can be shrunk during execution only to some extent to have more flexibility in the execu-
tion of the network. Subsets of time-points/constraints may be executed/considered in dif-
ferent contexts according to some observed conditions. The main issue here consists of
determining whether all the time-points, under the control of the system, are executable
in a way that all the specified constraints are satisfied for any possible occurrence of con-
tingent time-points and any possible context. Such property is called controllability. Even
though an algorithm was proposed for checking the controllability of such networks, we
show that such an algorithm has a limit. Indeed, it does not determine the right bounds
for guarded links, and, therefore, it doesn’t permit the system to exploit the potential flex-
ibility of the network. We then propose a new constraint-propagation algorithm for check-
ing controllability, prove that such a new algorithm determines the right guarded ranges,
and it is sound-and-complete. Thus, it can be used also for executing the network, by lever-
aging its flexibility.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the temporal constraint community, the concept of controllability, originally proposed in [1] and then refined in [2], has
been extensively studied and applied in different domains [3–5]. Within a set of temporal constraints, each of them speci-
fying an admissible range of temporal distances between two time-point variables, we may distinguish contingent and re-
quirement constraints. While the last ones represent the usual constraints, connecting time-points both controlled by the
system executing the network (i.e., assigning the values of such ordinary time-points), contingent constraints are between
an ordinary time-point (called activation time-point) and a contingent one, which will occur within the specified range
but will be set by the environment. The system, once executed the activation time-point, can only observe the occurrence
of the corresponding contingent time-point. According to this interpretation, ranges of contingent constraints cannot be
restricted during any execution of the network. On the other side, ordinary time-points will be executed by the system to
properly manage the occurrence of contingent time-points, i.e., to satisfy all the given constraints. A network is controllable
if such an execution exists. Recently, some research efforts highlighted the lack of flexibility in specifying contingent con-
straints. Indeed, in many real-world contexts, contingent constraints could be restricted to some extent, still preserving
the property of not being under the control of the system [6–8]. Thus, the concept of guarded link was proposed. It has an
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unshrinkable core, i.e., a standard contingent constraint, surrounded by a shrinkable range (external range). During an exe-
cution, before the activation of a guarded link, the range can be shrunk (preserving the core) if it is necessary to execute the
network correctly. Once the activation time-point is executed, the unshrinkable core is expanded to the external range,
allowing the environment to use any value in such an expanded range.

Previous contributions introduced guarded links for Simple Temporal Constraint Networks with Uncertainty, i.e., STNPSU
[6,8], and Conditional Temporal Constraint Networks with Uncertainty, allowing the representation of different execution
scenarios, i.e., CSTNPSU [7]. The proposed algorithms for checking the controllability of such networks mainly verify the con-
trollability of the networks by focusing on unshrinkable core ranges of guarded links. Thus, they are not able to explicitly
consider the flexibility introduced by guarded links. Here, we prove that such algorithms were not able to derive the suitable
external ranges for guarded links (and thus for the requirement constraints) when there are two or more guarded links.

In this paper, we propose Flexible simple Temporal Networks with Uncertainty (FTNUs) and a different algorithm for check-
ing dynamic controllability. The main original contributions of our proposal can be summarized as in the following:

� we introduce FTNUs, which generalize and extend our preliminary proposal of CSTNPSUs [7];
� we propose a sound-and-complete algorithm checking the dynamic controllability of FTNUs. It solves the issue related to
the derivation of the suitable external ranges.
� the new checking algorithm we propose is also able to find maximal allowed unshrinkable ranges for guarded links before
their activation, thus making it applicable at runtime in real-world domains;
� finally, we extensively discuss a real-world scenario taken from a clinical domain, to motivate and build our proposal on
solid foundations.

The paper is organized as follows. Section 2 discusses some literature of interest for our work, dealing with flexibility for
temporal constraint networks. Section 3 introduces informally FTNUs through the discussion of a motivating scenario from a
clinical domain. Section 4 to 5 formally describe our proposal of FTNU and related checking algorithm. Section 6 proposes an
analysis and a controllable execution of the motivating scenario presented in Section 3, through TNEditor, a software appli-
cation for designing and checking FTNUs and other kinds of temporal constraint networks. Finally, Section 7 concludes with a
summary and sketches some future research directions.
2. Related work

Here we focus on the main contributions dealing with the specification and verification of temporal constraints, and
explicitly considering uncertainty and flexibility. After the proposal of Simple Temporal Networks (STNs) [9], where it is pos-
sible to represent temporal constraints as duration ranges between time-points and check their consistency, further studies
addressed a different kind of uncertainty on top of STNs, either related to temporal constraints or different/alternative exe-
cution paths, respectively. It is worth noting that the concept of flexibility is interpreted according to different flavors.
2.1. Flexibility and simple temporal networks

Flexibility in STNs refers to the property of having different possible schedules for a temporal plan, as the allowed delays
between time-points are multiple.

In [10,11] an explicit characterization of flexibility for STNs is proposed, by taking into account the extension of ranges of
possible values for time-points. Different flexibility metrics are discussed. Intuitively, a flexibility measure has to take into
account both the number of possible values for time-points and the dependencies between values of different time-points,
that make some time-points strictly bound to other ones, i.e., rigid [12]. Thus, the focus is on computing a range for any time-
point, such that for every time-point one can freely choose a specific value inside its allowed range, without the risk of vio-
lating any existing constraint. Moreover, such ranges have to be independent. Indeed, for any time-point, choosing its value
within the derived range has to be without any consequence for the choice of values for other time-points. This notion of
independence is the ground for the definition of a flexibility metric for STNs [10].

Flexibility metrics for STNs is also the topic discussed in [13]. Flexibility has been dealt with by considering the measures
of an STN solution space (and its related geometric properties). Such an approach also motivated a set of desiderata for gen-
eral flexibility metrics. Two new geometrically-inspired flexibility metrics are also proposed. The first one captures the pro-
portion of valid schedules that are most at risk of becoming invalidated when perturbed, while the second one evaluates how
many schedules can remain consistent even when there is some kind of perturbation.

In Simple Temporal Problems with Preferences (STPPs) [14], the lack of flexibility of hard temporal constraints is solved
by adding preferences to the temporal constraints. A preference function associates a preference value to each constraint
between time-points. Constraint propagation and consistency checking are suitably extended to deal with such kinds of con-
straints and, under some general conditions for preference functions, consistency checking is tractable.

Moving to interval-based qualitative temporal constraints, an extension to the well known Allen’s interval algebra is pro-
posed in [15] to deal with some kind of flexibility. In this case, the paper focuses on qualitative temporal knowledge
expressed through binary relations between intervals and proposes an extension of the classical Interval Algebra (IA) to deal
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also with flexibility and uncertainty. To this end, different types of temporal constraints are introduced, i.e., (i) soft con-
straints, allowing the designer to specify preferences among the possible solutions for a scheduling; (ii) constraints with
a priority, specifying the ‘‘importance” of having the constraint satisfied; (iii) uncertain constraints, expressed through con-
straints with priorities related, in this case, to their degree of plausibility. In such a fuzzy approach, the consistency of a con-
straint network is a gradual notion and a solution is ranked with a degree of satisfaction.

In [16], the authors propose a system for generalizing and robustly executing a plan enriched with temporal constraints,
expressed through an STN. When unexpected changes in the represented world happen, the system allows one to select from
numerous valid (sub)plan fragments that are consistent with the temporal constraints. Moreover, it can consider repeating
parts of a plan, or it could omit the execution of some actions, as necessary. In these flexible changes to the original tempo-
rally constrained plan, the possible ambiguities of some original temporal constraints are suitably solved. Such an approach
allows avoiding unnecessary replanning and rescheduling.
2.2. Introducing choices to make STNs more flexible

Choices/decisions are introduced in some proposals dealing with temporal planning to allow the system to change the
specific set of time-points to schedule, to accommodate some possible unexpected situations.

Drake [17,18] is a system managing the verification and the execution of temporal plans. It allows the representation of
choices by Labeled STNs, which consist of labeled constraints, according to the values of some discrete decision variables.
Labeled STNs are equivalent to Disjunctive Temporal Networks (DTNs) [18,19]. The authors proved that, in general, Drake
finds a dispatchable solution, which is more compact by over two orders of magnitude when compared with the equivalent
one found by previous methods for DTNs. Drake maintains a high degree of flexibility by deferring choice until execution
time. This way, autonomous systems executing the plan may avoid following predefined plans and wait for uncertainty
unfolding before making decisions.

In [20,21] STNs are extended to represent decisions. Simple Temporal Networks with Decisions (STNDs) extend STNs by
adding decision time-points: when they are executed, a truth-value for an associated Boolean proposition is set. According to
this truth value, only a subset of time-points and constraints have to be executed, according to their associated labels. Deci-
sions, as choices, are under the control of the system executing the network. Thus, decisions can be considered as a kind of
flexibility mechanism, allowing alternative solutions for scheduling. An STND is consistent if at least a truth assignment to
decision time-points allows a consistent execution of the associated STN. In [20] the authors prove that checking whether a
given STND is consistent is a problem solvable in singly exponential (with respect to the number of decision time-points)
deterministic time. In [21], the authors propose STND-HSCC2 (and implement it with a first experimental evaluation), a
hybrid SAT-based consistency checking algorithm for STNDs that rules out inconsistent scenarios as early as possible, and
provides all consistent scenarios (i.e., truth value assignments to decision time-points) and the related execution schedules.
The algorithm is hybrid because a SAT-solver and a shortest path algorithm work in an intertwined way. Moreover, the
authors prove that disjunctive temporal networks (DTNs) and STNDs are equivalent.
2.3. Flexibility and duration uncertainty

Simple Temporal Networks with Uncertainty (STNUs, [2]) add uncontrollable, non-shrinkable durations between time-
points. The main property of such networks is that of controllability, i.e., the capability of executing the temporal network
by satisfying all the given constraints for any possible occurrence of the uncontrollable (contingent) time-points.

Further approaches have been proposed introducing some kind of flexibility in temporal constraints. In [22] the notions of
controllability of STNUs are extended to handle preferences and propose a model named Simple Temporal Problems with Pref-
erences and Uncertainty (STPPUs). Preferences are modeled as functions, assigning a preference value to the range of values
associated with the constraint between two time-points. An example of such preference could be the fuzzy one, returning
values in the range 0;1½ �. In the case of STPPUs, the consistency degree of the solutions must be taken into account, to identify
the best solution with respect to the preferences, together with the satisfaction of the constraints. Here, the authors show
that if all preference functions are semi-convex and a finite number of preferences is considered, testing the dynamic con-
trollability of an STPPU network with respect to a preference threshold a has polynomial time complexity.

Recently, Simple Temporal Networks with Partially Shrinkable Uncertainty (STNPSUs) have been proposed in [6,8], where
uncontrollable durations are made more flexible, i.e., partially shrinkable. Then, such kind of flexible contingent constraints
has been studied to support a compact representation of temporal features for business sub-processes. Here, we will deepen
in a more general context such concept of flexibility, i.e., referring to the capability of making contingent links partially redu-
cible, still maintaining the property of being controllable.

In [23], STNUs are acknowledged as a way of representing temporal flexible plans. The focus of this contribution is on the
problem of assigning bounds to requirement constraints. Such assignment must guarantee the dynamic controllability of the
given network, but has also to be optimal with respect to the minimization of the total cost associated with the constraint
bounds. This optimization problem is NP-hard, even for a linear cost function on the difference between the lower and upper
bounds of the temporal distance between time-points.
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2.4. Flexibility and condition-related uncertainty

Besides that related to uncontrollable time-points, another source of uncertainty is connected to conditions, allowing one
to represent different execution scenarios depending on the truth values of some observable condition. Conditional Simple
Temporal Networks (CSTNs) are proposed in [24]. Here, an observation time-point is a special type of time-point having asso-
ciated a proposition. When executed, it allows the environment to set the proposition truth value. Thus, proposition truth
values are decided by the environment at runtime. Dynamic consistency analysis guarantees that a strategy exists, which
allows the execution of all (relevant) time-points satisfying all (relevant) temporal constraints, for any possible combination
of proposition truth values revealed during the execution. The Conditional Temporal Problem (CTP), i.e., determining
whether a CSTN is dynamically consistent, was already introduced in [25], where authors propose a solution based on the
use of Disjunctive Temporal Networks.

In [26] CTPs are extended to deal with some kind of flexibility, expressed through fuzzy preferences. temporal constraints
have been enriched with preferences and simple Boolean conditions are extended to fuzzy rules, activating the occurrence of
some events based on fuzzy thresholds. Activation time-points (i.e., observation time-points) for events have associated
preferences too. The concept of dynamic consistency has been extended accordingly, together with an algorithm to check it.

When dealing with flexibility for conditions, another approach could consist of extending temporal constraint networks
also with decisions. They introduce a kind of flexibility, as different time-points can be selected for execution, according to
the scenarios induced by uncontrollable conditions. This way, decisions may accommodate a schedule according to a possi-
bly restricted subset of constraints, leading to a successful execution of the network. In this case, it is necessary to consider
the potential interplay that occurs between controllable decisions and uncontrollable conditions. In [20] Conditional Simple
Temporal Networks with Decisions (CSTNDs) are proposed. A CSTND may contain both contingent propositional time-points
(associated with conditions) and controllable propositional time-points (associated with decisions). Decisions concur to
define a scenario and their values are decided by the agent during the execution of the network, to dynamically manage dif-
ferent possible executions of the network, induced by uncontrollable observations. Here, the authors prove that checking
whether any CSTND is dynamically consistent is a PSPACE-complete problem. Then, algorithms addressing two special
classes of CSTNDs are proposed for CSTNDs containing decisions only, and for those where all decisions are set before start-
ing the execution of the network, respectively.
2.5. Adding flexibility for durations and conditions

Let us finally consider contributions where flexibility is added, for temporal networks where both uncontrollable dura-
tions and conditions have been considered. Conditional Simple Temporal Networks with Uncertainty (CSTNUs) generalize
both STNUs and CSTNs and allow the representation of both kinds of uncertainties simultaneously [27–29].

Conditional Simple Temporal Networks with Uncertainty and Decisions (CSTNUDs) are introduced in [30,31], where the
authors consider the problem of temporal planning with uncertainty on both durations and execution paths. Moreover, they
provide the semantics of dynamic controllability as a two-player game. The first player models the controller, while the sec-
ond player models the environment, which represents the source of uncertainty. Accordingly, they reduce the verification of
dynamic controllability to the characterization of a controller for a Timed Game Automaton (TGA). Thus, they provide an
encoding from CSTNUDs into TGAs. An experimental evaluation of the proposed algorithm is then provided.

The semantics of dynamic controllability is given again through a two-player game also in [32], where the focus is on
temporally-flexible reactive programs. The executive sets values for controllable time-points and makes choices for control-
lable choice points. Alternatively, the environment sets values for uncontrollable time-points and makes choices for uncon-
trollable choice (i.e., conditions) points. Obviously, the executive is allowed to observe what happened in the past till the
current time, to dynamically schedule future controllable time-points and choices, accordingly. The execution of
temporally-flexible reactive programs depends on the runtime state. Exceptions are thrown and caught at runtime in
response to violated timing constraints. Successful program executions happen when exceptions are suitably handled. In this
case, the concept of dynamic controllability has been extended and consists of guaranteeing that a program execution will
complete, despite runtime constraint violations and uncertainty in runtime state. The dynamic controllability problem is
framed as an AND/OR search tree over possible program executions. Only a subset of the possible executions that guarantees
dynamic controllability is derived and represented as an AND/OR solution subtree.

Eventually, a preliminary proposal extending STNPSUs with conditional constraints introduces Conditional Simple Tempo-
ral Networks with Partially Shrinkable Uncertainty CSTNPSUs) [7]. In this case flexible contingent constraints are represented
through guarded links, but controllability is mainly checked similarly as for CSTNUs, without completely considering the
flexibility introduced by guarded links.
3. Introducing FTNUs through a motivating scenario

To motivate our proposal and to exemplify the different constructs of FTNUs, let us introduce a high-level specification of
an excerpt of a clinical guideline related to the management of Adult Stroke Emergency [33].
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Such guideline collects statements and suggestions from experts on how to deal with patients possibly having had a
stroke, who require urgent treatments under specific temporal constraints.

The guideline suggests at the beginning four sequential (possibly complex) activities: Stroke Recognition, Prehospital Man-
agement, General and Neurologic Assessment, and Imaging Computed-Tomography Scan. Such activities correspond to the first 5
boxes discussed in the considered guideline [33], to acquire all the needed information for the following decision-making
actions.

After the computed-tomography (CT) scan, two alternative paths are possible according to whether the CT Scan shows a
hemorrhage. If there is a hemorrhage, it is necessary to have a consultation with a Neurologist or Neurosurgeon, followed by
the appropriate care of the patient with a hemorrhage. Otherwise, the guideline recommends determining whether the
patient is eligible for fibrinolytic therapy. If the patient is suitable for fibrinolysis, the drug Recombinant Tissue Plasminogen
Activator (rtPA) is administered to the patient and, then, some patient management actions after such therapy have to be
considered. On the other side, if the patient cannot afford fibrinolysis, a therapy based on Aspirin is administered and, then,
stroke-management actions follow. After such fast actions, the patient has to be admitted to the Stroke Unit. Several tem-
poral constraints have to hold when such actions are executed. Indeed, to treat the patient properly, for example, a maxi-
mum delay of 3 hours is allowed between the stroke recognition and the end of the fibrinolytic therapy.

The complex activity General and Neurologic Assessment is then further detailed. It starts with an assessment of the vital
signs of the patient. If the patient is hypoxemic, then oxygen has to be provided. Then, glucose is checked and, in case, hypo-
glycemia is treated. After these two preliminary possible treatments, a neurologic assessment is performed followed by an
electrocardiogram.

All these actions need to be represented also with respect to their temporal features. They consist of temporal constraints
that have to be satisfied, to guarantee the clinically successful completion of each step of the guideline. The temporal con-
straints we will consider here have been set according to the guideline specification, and the temporal constraints graphi-
cally represented in the diagram in [page S819] [33].

Such temporal constraints will help clinical stakeholders in planning their work, as they can be aware of how long pre-
vious steps will take and how much freedom they have for performing their clinically relevant tasks. A further aspect we
have to take into account is that activity durations are not completely under the control of the system supervising the exe-
cution of the guideline, as these activities are carried out by clinicians and their duration could vary according to patient-
specific conditions.

Therefore, we need to formally represent such guidelines by considering both flexible temporal constraints and possibly
different sets of actions when executing the guideline.

In this regard, let us now consider the basic features of FTNUs, the temporal networks we propose to model the (tempo-
ral) plans subtended by such clinical guideline.

An FTNU is a directed weighted graph, whose nodes represent real-valued variables (time-points), usually corresponding
to the occurrence of events like the start or end of activities. We say that a time-point is executedwhen a value is assigned to
it. An executed time-point cannot be re-executed.

Fig. 1 shows a graphical representation of the FTNU corresponding to the complex activity General and Neurologic Assess-
ment, previously described. Time-points may represent either the start or the end of single activities. For example, VS and VE

represent the start and the end of vital signs assessment, respectively. Certain time-points may be defined at design time as
contingent time-points, meaning that their values are decided by the environment at runtime instead of the system executing
the network. In our example, all the time-points corresponding to the end of activities are contingent, as they are executed
by the medical stakeholders. Some time-points may be defined as observation time-points. Each observation time-point is
associated with a propositional letter (boolean variable) that is set by the environment when the time-point is executed.
Usually, we use ‘?’ as a suffix, to denote the observation time-point (e.g., R?) of a proposition letter (e.g., r). In Fig. 1 time-
points P? and Q? represent when hypoxemia and hypoglycemia states for the given patient become known, respectively.
Other time-points correspond to either splitting or merging points for alternative execution paths. For example, time-
point Sp represents when condition p (‘‘is the patient hypoxemic?”) is checked and different actions may be taken accord-
ingly. Finally, two special time-points represent the beginning (Z) and the ending (E) of the network execution, respectively.

Two different kinds of edges may be specified in an FTNU. Edges A——I
½x;y�

B, called requirement links, represent a lower and

an upper bound constraint on the distance between the two time-points it connects; for example, Z———I
½0;25�

E represents a con-
straint expressing that E, i.e., the end of the assessments, must occur between 0 and 25 time-units after the occurrence of Z,
i.e., the starting time of the assessment: 0 6 E� Z 6 25.

For the second kind of edges, each contingent time-point has one special incoming edge, called its guarded link and drawn
as a double line, that represents the constraint that the environment has to satisfy when it decides to execute the contingent

time-point. For example, VS¼¼¼¼¼¼I
½ 2;4½ � 6;8½ ��

VE is the guarded link associated with contingent time-point VE, corresponding to the
end of vital signs assessment, where VS is an ordinary time-point called the activation time-point, corresponding in this case
to the start of the vital signs assessment. Label

�
2;4½ � 6;8½ �

�
corresponds to the quasi-contingent duration range 2;8½ � aug-

mented with two guards, the lower guard, having value 4, and the upper guard, having value 6 [6]. During the execution,
the duration range x; y½ �, where x P 2 and y 6 8, allowed for executing the assessment of the vital signs may be modified
by the system, complying with the corresponding guards, i.e., x 6 4 and y P 6 until the activation of the link. The activation
788



Fig. 1. The FTNU representing an excerpt of the clinical guideline for the management of Adult Stroke Emergency. Different time-points are represented by
Uppercase letters (possibly with subscript S, for starting time-points of an activity, or E, for ending time-points of an activity). Here V corresponds to vital
sign assessment; O corresponds to oxygen provision; G corresponds to glucose checking; H corresponds to hypoglycemia treatment; N corresponds to
neurologic assessment; Em corresponds to making an electrocardiogram. Special time-points Z and E represent the first and the last time-points to be
executed, respectively. Time-points denoted by X represent either splitting points or merging points, according to different execution scenarios. Execution
scenarios are represented through labels associated with time-points and edges. More particularly, refer to time-points to be executed in every scenario and
to constraints that have to hold in every possible execution. p represents the scenario where the patient is hypoxemic, while q corresponds to the scenario
where the patient has hypoglycemia. Grey parts contain time-points related to the start and end of some external activities, which are not under the control
of the system as for their duration (expressed as a flexible contingent constraint). Edges with alphanumeric labels represent temporal constraints between
the connected time-points.
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of the link triggers just after the execution of the activation time-point VS. Suppose that the duration range is
�
3;4½ � 6;6½ �

�
just

after the execution of VS. Then,
�
3;3½ � 6;6½ �

�
� 3;6½ � becomes the (pure) contingent range of the link, and it is made available

to the physician for executing VE. That means, once VS is executed, the physician can assess the vital signs of the patient in a
time span from 3 to 6 time-units, which corresponds to set VE to any value such that VE � VS 2 3;6½ � holds. The specific exe-
cution time of VE is uncontrollable since it is decided by the environment, i.e., the physicians, and it will be known only when
it happens.

Each node/requirement link may have a propositional label that specifies when the node/requirement link has to be exe-
cuted/satisfied. In particular, at the start of an execution, all the propositions specified in the network have no values. As soon
as an observation time-point is executed, the corresponding proposition is set. As soon as all the propositions present in a
label are set, the label assumes a truth value: ? or >. If the label is associated with a node, the node has to be considered for
the execution only when the label value is >. If the label is associated with a constraint, the constraint is ignored only when
the label value becomes ?. The full specification of proposition values is called scenario.

More formally, givenasetP ofpropositional letters, apropositional label ‘ is anyconjunctionof literals,wherea literal is either
apropositional letterp 2 P or its negation:p. The empty label is denotedby⊡� . The label universe ofP, denotedbyP�, is the set of
all labelswhose literals are drawn fromP. Two labels ‘1; ‘2 2 P� are consistent if and only if their conjunction ‘1 ^ ‘2 is satisfiable
and a consistent label ‘1 entails a consistent label ‘2 (written ‘1 � ‘2) if and only if all literals in ‘2 appear in ‘1 too.
4. Flexible Temporal Constraint Networks

Concerning to the different kinds of flexibility previously introduced, in this paper we will explicitly focus on making con-
tingent constraints more flexible, i.e., shrinkable, to be able to deal with two different uncertainties, namely that coming
from uncontrollable durations and that related to uncontrollable conditions (i.e., observations).

Flexible simple Temporal Networks are an extension of CSTNPSUs [7], which are in their turn based on CSTNUs [27–29].
FTNUs extend contingent links for enabling a more flexible temporal constraint management.

4.1. Formal definition

We propose a formal definition of FTNUs that is a specialization of the one proposed in [7]: here it is required also that the
set of nodes always contains a special node, Z, that represents the first node to execute.
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A Flexible simple Temporal Network with Uncertainty (FTNU) is a tuple T ;P;OT ;O; L; C;Gð Þ, where

� T is a set of real-valued variables. Such variables are the time-points of the network. T always contains the time-point Z
that is assumed to be the first time-point to be executed, i.e., its value is set by the executing agent;
� P ¼ fp; q; r; s; . . .g is a finite set of propositional letters.
� OT # T is a set of observation time-points.
� O : P ! OT is a bijection that, given a propositional letter, assigns a unique observation time-point to it. The truth value
of a proposition is set by the environment when its observation time-point is executed. Usually, if r is a proposition, its
observation time-point has the name R?.
� L : T ! P� is a function that assigns a propositional label to each time-point X 2 T . A (propositional) label is a conjunction
of literals. A true-valued label of a node indicates that the node has to be executed.

� C is a set of labeled requirement links. Each requirement link is denoted as ðu 6 Y � X 6 v;aÞ or as X———I
½u;v �;a

Y;
X;Y 2 T ;u; v 2 R with u 6 v and a 2 P�. A requirement link has to be satisfied when its label has (will have) a true-
value. In other words, a requirement link can be ignored only when its label becomes false during an execution.

� G is a set of guarded links. Each guarded link is represented as ðA;
h
x; x0½ � y0; y½ �

i
;CÞ or as A ¼¼¼¼¼¼I

�
x;x0½ � y0 ;y½ �

�
C; A and C are time-

points, called activation and contingent time-points, respectively; x; y 2 R are the external bounds; x0; y0 2 R are the guards.
x; y½ � is called external range of the guarded link. It must hold 0 < x 6 x0 6 y0 6 y <1, and LðAÞ ¼ LðCÞ. Moreover, if

ðAi;

�
xi; x0i
� �

y0i; yi
� ��

;CiÞ and ðAj;

�
xj; x0j
h i

y0j; yj
h i�

;CjÞ are two different guarded links in G, Ci and Cj will be distinct time-

points.
� For each labeled constraint ðu 6 Y � X 6 v ;aÞ; a � LðYÞ ^ LðXÞ. Such a property is called constraint label coherence [24].
� For each literal q or :q appearing in a; a � LðOðqÞÞ. Such a property is called constraint label honesty [24].
� For each Y 2 T , if literal q or :q appears in LðYÞ, then LðYÞ � LðOðqÞÞ, and OðqÞ has to occur before Y, i.e.,
ð� 6 Y � OðqÞ 6 þ1; LðYÞÞ 2 C for some � > 0. Such a property is called time-point label honesty [24].

We assume that the environment/external agent decides the duration of a guarded link once the activation time-point has
been executed without any further restriction or condition. Therefore, guarded links can be represented without any propo-
sitional label. Indeed, if it is necessary to have different guarded link durations according to some condition, it is always pos-
sible to layout different guarded links, one for each possible duration, in different paths that belong to different scenarios,
one for any possible condition value. Between two ordinary time-points, it is possible to have more requirement links, each
with a different propositional label. Such requirement links represent the different possible constraints that must be satisfied
by the two time-point assignments according to the resulting scenario of an execution. For example, let us consider two
time-points, X and Y, that have to be executed in any scenario (their label is), and that are involved in two requirement links,

X———I
1;10½ �;p

Y and X ———I
5;10½ �;:pq

Y . The requirement link X———I
1;10½ �;p

Y dictates that in all scenarios in which p is >, the values of X and Y

must satisfy the constraint ð1 6 Y � X 6 10Þ, while the requirement link X ———I
5;10½ �;:pq

Y requires that in all scenarios in which p is
? and q is >, the values of X and Y must satisfy the constraint ð5 6 Y � X 6 10Þ, a more restrictive constraint.

The three properties about labels–constraint label coherence, constraint label honesty, and time-point label honesty–are nec-
essary to guarantee that the label specification allows having scenarios in which it is possible to consider time-points and
constraints with well-defined labels and without label inconsistencies.

Since Z has to be the first time-point to be executed, we assume that, for each time-point X 2 T such that X–Z, there is a

requirement constraint of the form Z———I
½0;1�;⊡

X. For sake of clarity, we will not explicitly represent most of such constraints in
the graphical representation of FTNUs.

If a time-point X is executed at time t, then such execution is represented by adding Z———I
½t;t�;⊡

X to the network.
4.2. The DC-checking problem

An execution strategy is a function that determines a schedule for the time-points of a network. Considering FTNUs, a dy-
namic execution strategy is a function that determines a schedule considering the values that the environment sets to the
propositional letters and to the contingent time-points as time passes.

A dynamic execution strategy for an FTNU is viablewhen it guarantees that all relevant constraints will be not violated, no
matter which truth values for propositions (scenario) and durations for guarded links (situation) are incrementally acquired
over time.

An FTNU that admits a viable dynamic execution strategy is said dynamically controllable (DC). Given an FTNU, the DC-
checking problem consists of verifying whether it is DC. Usually, such a problem is considered at design time.

There are two important results found in two different kinds of temporal constraint networks, discussed in [29,34], that
allow us to characterize better the DC-checking problem for FTNUs.
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Fig. 2. The distance graph associate to the FTNU depicted in Fig. 1.
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The first result is related to Conditional Simple Temporal Networks (CSTNs), temporal constraint networks that can be
viewed as FTNUs where there are no guarded links. In [34], the authors showed that the DC-checking problem can be also
defined for CSTNs and that it is PSPACE-complete. Therefore, it is straightforward to state that the DC-checking problem in
FTNUs is PSPACE-hard.

The second one is related to the Conditional Simple Temporal Networks with Uncertainty (CSTNUs), networks that can be
viewed as FTNUs where guarded links have no flexibility (i.e., the external range is equal to the unshrinkable range in each
guarded link). In [29], the authors showed that for solving the CSTNU DC-checking problem and for executing a CSTNU
instance, it is possible to consider a streamlined representation of a CSTNUwhere nodes are not labeled, i.e., labels are present
only on requirement links. Such an alternative representation does not require any transformation. It simply requires ignor-
ing the node labels because it is shown that if the network is represented considering the constraint label coherence, constraint
label honesty, and time-point label honesty properties, then node labels are redundant, and they can be ignored without loss of
generality.1 Since ignoring node labels makes simpler the analysis of the DC-checking problem, hereinafter we consider only
streamlined FTNUs for such a goal. Fig. 4a depicts an example of a streamlined FTNU.

To solve the DC-checking problem, an FTNU is represented in an equivalent form, i.e., as a distance graph, similarly to the
approach in [7]. Given an FTNU, its distance graph D ¼ ðT ; EÞ is a graph having the same set of nodes and edges determined

considering the bounds of all requirement/guarded ranges of the original links [6,7,35]. In particular, for each link S——I
½x;y�;‘

T of

an FTNU instance, in the corresponding distance graph there are two ordinary edges: S ��!hy; ‘i T for constraint ðT � S 6 y; ‘Þ, and

S  ��h�x; ‘i
T for constraint ðS� T 6 �x; ‘Þ (note the change of arrow style). For each guarded link between a pair of time-points A

and C, in the distance graph there are two ordinary edges representing the external bounds as just described and two other
edges, called lower and upper-case edges. Such edges are useful for representing the contingent property of contingent time-

points as temporal constraints. In particular, a lower-case edge, A ����!hc:x0 ; ⊡i
C, represents the property that the contingent time-

point C cannot be forced to be set to an instant greater than the instant x0 after A. In other words, it is not possible to have a

constraint A  ���h�x00 ; ⊡i
C, with x0 < x00, in the network. As regards upper-case edges, an upper-case edge, A  ����hC:�y0 ; ⊡i

C, represents
the fact that C cannot be forced to be set to an instant less than y0 after A. In other words, it is not possible to have a constraint

A ��!hy00 ; ⊡i C, with y00 < y0, in the network. The lower/upper-case edges are necessary to determine the DC property of the net-
work following the approach proposed by Morris et al. [35].

Fig. 2 depicts the distance graph associated with the streamlined FTNU in Fig. 1. To represent a distance graph compactly,
we represent different edges from a source X to a destination Y as a single edge with more labeled values separated by ‘;’ (cf.
the edges representing contingent links in Fig. 2).
1 Although the streamlined result allows a simplification of FTNU definition, we prefer to maintain the specification of node labels because node labels are
useful for checking the constraint label coherence, constraint label honesty, and time-point label honesty properties, and for deciding, at runtime, which nodes to
execute in a faster way.
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5. A new DC-checking algorithm for FTNUs

The DC-checking problem for FTNUs can be solved by creating an equivalent more explicit network adding new equiva-
lent constraints. If during such a process, a negative cycle is found, the network is not DC for sure, otherwise, at least one
solution is present in the resulting network. Such a solution can be calculated in an incremental way, reacting to the out-
comes of observations and execution time of contingent time-points.

The new constraints are added using some propagation rules. In [7], we extended the constraint-propagation algorithm
proposed by Hunsberger and Posenato for the DC-checking problem in CSTNUs [29] to solve the same problem in CSTNPSUs
(a well-defined CSTNPSU is equivalent to an FTNU). The algorithm proposed in [7] works on the distance graph of a given
FTNU and, applying the propagation rules in Table 1, it recursively adds new edges until either a negative cycle is found
or no new constraint is added.

The new DC-checking algorithm for FTNUs, Algorithm 1, is a correct extension of the algorithm proposed in [7]: our ver-
sion considers also another set of rules (see Table 2) because the rules in Table 1 are not sufficient, as we will show in the
following.

Algorithm 1. FTNU-DC-Check(G)

As regards rules in Table 1, they fall into two main types. The first type consists of rules rG1–rG
�
4 that extend the edge-

generation rules proposed in [35] for STNUs; the second type is composed of two label-modification rules, rM1–rM2, that
‘‘clean” propositional labels considering the edges from observation nodes to Z.

If a rule determines a new edge, the new associated label, e.g., ‘‘0, is the conjunction of the labels of its parent edges, e.g., ‘
and ‘0. When the conjunction determines an unsatisfiable label (e.g., p:rq:q), then the new edge is not generated (or kept).
The @ symbol represents a conjunction, possibly empty, of one or more upper-case names of contingent nodes.

A generated edge containing a labeled value having a non-empty @ is called conjunct-upper-case edge and represents an

extension of the wait constraint introduced by Morris [2]. For example, the conjunct-upper-case edge Z  ����h@:�v ; ⊡i
Y stands for

the following extended wait constraint: as long as all the contingent time-points in @ do not occur, Y must be executed at or after v
time units from the beginning of the execution. If any contingent time-point in @ occurs at time t < v , then the constraint is
satisfied for any occurrence of Y at a time P t, i.e., all the contingent time-points specified in @ are in a disjunctive condition
for disabling the wait. Thus, all rules only determine new ordinary or conjunct-upper-case edges.

Rule rG�4, as well as rM1 and rM2, can handle also a new kind of labels, named q-labels, that can contain special literals,
named q-literals [29]. If q 2 P, then ?q is a q-literal. ?q is > only when the value of proposition q is not set, i.e., unknown.
The concept of the propositional label is extended to q-literal as follows: ‘‘a q-label is a conjunction of literals and/or q-
literals”. Q� denotes the set of all q-labels [29]. To represent the conjunction of literals and q-literals, we prefer to introduce
a new operator, called H operator. Informally, if constraint Ci has label q, and constraint Cj has label :q, then both Ci and Cj

must hold as long as q is unknown, which is represented by qH:q ¼ ?q.
In the following, we summarize the main scope of each rule to give an idea of how the set can help to find a more explicit

constraint network. In such a summary, we will present some example using the FTNU depicted in Fig. 3a: it is a modified
excerpt of Fig. 2 where we require that 1) observation time-point P?must be executed at most 3 time units before contingent
time-point VE and not after it, and 2) the overall execution time (i.e., the constraint between Z and VE) may have different
values according to observation p. Such modifications are set to show the effect of some rules more effectively.

Rule rG1 is a specialization of the standard rule that determines the minimal distance between two time-points. It
considers the new distance only when labeled values have consistent propositional labels. Since positive distances to Z
are meaningless, the rule does not generate edges with positive weights. Fig. 3b depicts the new values determined by
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Table 1
Edge-generation rules (1) of FTNU-DC-Check algorithm.

Table 2
(Additional) edge-generation rules (2) of FTNU-DC-Check algorithm.
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the application of rG1 to triples ðVE;VS;ZÞ, and ðP?;VE; ZÞ. Even though value h�2; ⊡i is redundant, we reported it only for
showing the bare application of the rule. Value h�2; ⊡i is redundant because h�5; pi and h�7;:pi represent all possible sce-
narios, and they are more restrictive than h�2; ⊡i. An efficient implementation of the rule should add only significative val-
ues to an edge. Rule rG1 determines that P? has to occur at least 2 time units after Z in case p is true, 4 time units otherwise.
This is apparently quite strange because the value of p is revealed only after the execution of P?. Rule rM1 will fix these values
removing the literal p and :p as shown in Fig. 3e.

Rule rG2 is a specialization of rule rG1 when one edge is a lower-case one. The interesting thing about this rule is that the
new edge is a new ordinary/conjunct-upper-case one meaning that lower-case edges are not propagated. The rule determi-
nes the minimal distance of the activation time-point from Z considering the minimal distance of the corresponding contin-
gent time-point and the minimal duration of the contingent link. Fig. 3c shows the new values determined by applying rG2.
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Fig. 3. Modified excerpt from Fig. 2 for showing some rule propagations.
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Such values are added to the edge ðVS;ZÞ. Let us consider the value h�3;:pi. It is the result of the combination of the minimal
contingent duration hve :4; ⊡i and the minimal distance of VE h�7;:pi. In other words, since in scenario :p, the contingent
time-point VE has to occur at least 7 time units after the start Z and the minimal duration of the contingent link is 4 time unit,
the activation time point has to occur at least 3 time unit after the start in scenario :p. The new values h�1; pi and h�3;:pi
make the value h0; ⊡i redundant (and it should be removed in an efficient implementation of the rules).

Rule rG3 is still a specialization of rule rG1. In this case, the rule dictates how to combine an upper-case edge with an
ordinary/conjunct-upper-case edge to generate a new conjunct-upper-case one. If the new edge is generated, then its labeled
value contains a conjunct-upper-case label augmented by the contingent name associated with the upper-case edge. Fig. 3d
depicts the new values for the edge ðVE; ZÞ determined by applying rG3. They represent the latest execution times for the
contingent time-point VE in different scenarios when the guarded link duration assumes its upper-guard value. Also in this
case we depicted the redundant value hVE : �6; ⊡i, determined considering the redundant value h0; ⊡i in ðVC ;ZÞ.

The scope of rG�4 is to simplify an already present edge removing a contingent name from its labeled value. In short, it

checks if a contingent time-point C, whose name is present in a conjunct-upper-case edge Z  ����hC@:�v ; bi
Y , can occur before

the time v. If no, then the contingent time-point name can be dropped by the conjunct-upper-case label C@ because it is

meaningless. Such simplification is realized by adding the edge Z  ������h@@0 :�v ; bHci
Y . If C can occur after time v, then the added edge

represents the fact that, in any case, it is necessary to wait till the occurrence of C for evaluating the original constraint

Z ����hC@:�v ; bi
Y . Since the occurrence of C depends also on the constraint of the associated activation time-point A to Z, the

new edge has to consider also the labeled value of this last constraint, from which the presence of @0 and c.
The second type of propagation rules, composed of rM1 and rM2, has the scope to manage the uncertainty related to

observation nodes in a similar way as the rule rG�4 manages the uncertainty associated with the contingent links.
Rule rM1 simplifies the propositional label of edges from observation time-points to Z. For example, let assume that there

is the edge Z �����h@:�w; b p
	
i
P?, where ~p 2 fp;:p; ?pg. Such an edge represents that P? can be executed at time t P w after Z when b~p

is not false. Since ~p can be evaluated only when P? is executed, it cannot contribute to the truth-value of label b~p. Therefore,

the literal ~p can be removed from the label. Edges like Z  ����h@:�w; b p
	
i
P? are possible because of results of the application of other

propagation rules. Fig. 3e depicts the new values for the edge ðP?;ZÞ determined by applying rM1. The values h�2; pi and
h�4;:pi become h�2; ⊡ii and h�4; ⊡ii. Since �4 is more restrictive of �2, only h�4; ⊡ii is considered.

Rule rM2 is the generalization of rM1 to other time-points. In summary, if an edge from Y to Z has a label containing a
proposition letter p that cannot have a truth-value at the time represented by the constraint, then a new constraint can
be added where the label does not depend on the proposition p.
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As introduced at the start of the section, the algorithm applies the rules and checks whether newly added edges deter-
mine a negative semi-reducible cycle in the graph [36]. A cycle in a distance graph is called semi-reducible when it is a path
made of ordinary or conjunct-upper-case edges only, and it starts and ends at the same time-point [36]. A negative semi-
reducible cycle is a semi-reducible cycle that has the sum of all edge weights (considered without their labels) negative.
A negative semi-reducible cycle represents the set of constraints (the ones making the cycle) that cannot be all satisfied
in at least one possible execution of the network. Therefore, when a negative semi-reducible cycle is found, the algorithm
returns that the network is not DC. Fig. 3f depicts a negative semi-reducible cycle on Z determined by applying rG1. The rule

applied on Z  ��hVE :�9;:piVE ��h8;:pi
Z, determines the negative loop in Z with value hVE :�1;:pi. Such a value means that in scenarios

:p, when contingent time-point VE occurs at its upper-guard time (that must be always guaranteed), a constraint is violated.
The negative semi-reducible cycle is already present in the original graph (i.e., Z;VE;VS;Z), but only applying the rules it
becomes explicit.

Example 1. To better illustrate the importance of all propagation rules, let us consider the streamlined FTNU depicted in
Fig. 4a and its distance graph depicted in Fig. 4b. The FTNU contains three contingent links that have to occur satisfying some
temporal constraints that depend on the condition p. After executing the DC-checking algorithm that considers only rules in
Table 1, the graph is updated with new edges and values as partially shown in Fig. 5a, where we reported the most significant
new values/edges. The new graph contains the negative semi-reducible cycle Z� X � Z. Therefore, the corresponding FTNU
cannot be DC. To verify the uncontrollability, let us consider an execution where contingent time-points C1 and C2 occur 10
and 7 time-units after their activation time-point, respectively (10 and 7 are the upper guards of the two guarded links), and
contingent time-point C0 occurs 3 time-units after its activation time-point (3 is the lower guard of the guarded link). In such
an execution, any possible value of X violates a constraint at least. This unsuccessful execution occurs for any possible
schedule of other controllable time-points, i.e., A0;A1;A2, and P?. For example, considering the schedule
A0 ¼ 0;C0 ¼ 3;A1 ¼ 4;A2 ¼ 6; P? ¼ 12;C2 ¼ 13, and C1 ¼ 14 (the values of contingent time-points Ci are decided by the

environment), X should be executed within 10 for satisfying the constraint C0 ��!h7; pi X, but in this way the constraint X ��!h2; :piC2

would be violated in case p ¼? at time 12. If X is executed at 12, then it violates the constraint C0 ��!h7; pi X in case that p ¼ >.
Moreover, delaying the execution of non-contingent time-points does not solve the issue. In this case, for example, delaying
the execution of A0 would push forward the execution of A1 and, then, of the other ones.
5.1. Deriving the right ranges

The algorithm proposed in [7] is sound and correct but it is easy to verify that it lacks the ability to determine the right
external ranges of guarded links. The right external ranges are not necessary for checking the DC property, but without them,
a DC network can be always successfully executed considering only the cores of guarded links. In other words, it is not pos-
sible to consider the possible flexibility represented by the guarded links. Therefore, a more meaningful approach consists of
having an algorithm that checks the DC property and, in the case of a DC instance, finds the right guarded ranges to execute
the network exploiting the flexibility of such guarded links.

For example, let us consider the FTNU of Fig. 4b. If we replace the constraint C0 ��!h7; pi X with C0 ��!h8; pi X, it is possible to verify
that the network becomes DC if all guarded ranges are slightly restricted. Indeed, in the execution shown in Example 1 where
the guarded links are restricted to their core (C0 occurs at its minimum while C1 and C2 occur at their maximum), X can be

executed at 11 satisfying both constraints C0 ��!h8; pi X and X ��!h2; :piC2 before knowing the value of p. Fig. 5b depicts the distance
graph after the successful DC checking of the modified network. The algorithm, using only rules in Table 1, determines cor-
rectly that the new network is DC but does not determine the right guarded ranges for the guarded links and, therefore, the
Fig. 4. Non-DC FTNU and corresponding distance graph.
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network admits unsuccessful executions. For example, a possible wrong execution consists of executing A0 at 0 (i.e., adding

Z ��!h0; ⊡i A0). Then, a new DC check determines that the guarded range of A0 � C0 remains
�
1;3½ � 10;15½ �

�
and, therefore, it is

possible to assign the maximal range,
�
1;1½ � 15;15½ �

�
, as the range for the execution of the contingent time-point C0. The prop-

agation of such a new range determines a negative cycle, i.e., the new range makes the network not DC!
To verify the DC of an FTNU and derive the right guarded ranges, it is necessary to consider additional rules. In these rules,

we have to consider a new kind of edge that we name conjunct-lower-case edge. Such a kind of edge stems from the lower-
case edges, originally proposed by Morris [35]. We extend the original meaning and use of such constraints to a more general
case. In the original proposal, a lower-case edge was used to forbid the increase of the lower bound between the activation
point and the contingent one of a contingent link. We extend such meaning according to two different perspectives:

1. a lower-case edge of a contingent link is extended to the origin Z, i.e., it represents the upper bound to the occurrence of a
contingent time-point C in the case the environment decides to set C using the lower guard value of the guarded link.
Then, such an upper bound can be forward propagated to other time-points. Such a new kind of constraint assumes
an important meaning when it is propagated to the activation time-points of other guarded links.

2. as we have to consider possibly multiple interdependent guarded links, the lower-case label has been extended from a
single lower-case letter to a conjunction of lower-case letters.

Intuitively, a conjunct-lower-case edge from Z to an activation time-point A, Z ����!hk:v ; ‘i
A, specifies that A must be executed

before or at v in scenario ‘ when each contingent time-point Di referenced in the conjunct-lower-case label k (di 2 k) occurs
at its lower guard time, i.e., at time Ai þ x0i, where Ai and x0i is in ðAi; ½xi; x0i� ½y0i; yi�

� �
; DiÞ. The proposed rules allow the mean-

ingful propagation and integration of such kind of constraints with the other ones, to check the DC property, and to derive
the right bounds for the guarded links.

The new rules are of two types.
The first one consists of rules rG5, rG6, and rG7 (cf. Table 2). Such rules determine, for each time-point, the conjunct-lower-

case edge from Z in a similar way as done for conjunct-upper-case ones by rules rG1–rG3 in Table 1.
The second type consists of rules rG8 and rG9 that, for each guarded link, determine the right external range (i.e., bounds x

and y in guarded links like ðAi;
�
½x; x0� ½y0; y�

�
; CiÞ combining the values of the conjunct-lower-case edges and conjunct-upper-

case ones related to the activation time-point and the contingent one of the considered guarded link, respectively.

As an example for the rule rG9, let us consider the conjunct-lower-case edge Z ����!hde:10; pi
A and the conjunct-upper-case edge

Z  ����hF:�15; pi
C. The edge Z ����!hde:10; pi

A represents an upper bound for executing A in scenarios where p is > and when contingent

time-points D and E occur at their lower guarded time. The edge Z ����hF:�15; pi
C represents a lower bound for executing C in sce-

narios where p is > and when contingent time-point F occurs at its upper guarded time. Let us suppose that the guarded link
between A and C is ðA;

�
½1;7� ½10;20�

�
; CÞ. In an execution in which 1) proposition p assumes > value, 2) contingent time-

points D and E occurs at their lower guarded time while 3) contingent time-point F occurs at its upper guarded time, A must
be scheduled at an instant t such that t 6 10 while C must occur at a time t0 P 15. In ðA;

�
½1;7� ½10; 20�

�
; CÞ the lower bound

is 1 that can be increased to 7 at maximum. If we let the lower bound to 1, in the case A is executed at 10, the environment

can decide to execute C at 11 violating the constraint Z  ����hF:�15; pi
C in the case F does not occur before or at 11 (and when p is >).

To avoid such a possibility, it is sufficient to set the lower external bound of the guarded link to 10� 15 ¼ �5, as done by the

rule setting the edge A ����h�5; ⊡i
C, to have the guarantee that any allowed duration for the updated guarded link

ðA;
�
½5;7� ½10;20�

�
; CÞ does not violate the constraint Z  ����hF:�15; pi

C.

An alternative interpretation of conjunct-lower-case/upper-case edges. Both conjunct-lower-case edges and conjunct-upper-
case ones can be viewed as special upper/lower bounds edges for executing time-points. Indeed, given a time-point A, the

conjunct-lower-case edge Z ����!hk:v ; ‘i
A represents the lowest upper bound for A that can be set between Z and time-point A

and has to be dynamically verified when all the contingent time-points referenced in k are executed at their lower guarded

time. If a requirement constraint Z ����h�w; ‘i
A with w > v is added to the FTNU, then the network cannot be DC because this

new constraint is not satisfied at least in a possible execution of the network, i.e., in an execution where contingent time-
points in k occurs at their lower guarded time in scenario ‘. Such an execution is possible because all contingent time-
points can always occur at their lower guarded time.

Analogously, given a time-point A, the conjunct-upper-case edge Z ����h@:�v ;‘i
A represents the greatest lower bound of A that

can be set between Z and A and has to be dynamically verified when all the involved contingent time-points are executed at

their upper guarded time (it is analogous to the lower guarded time). If an ordinary constraint Z ����!hw;‘i
A with w < v is added

to the FTNU, then the network cannot be DC.
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Fig. 5. An example of a non dynamic-controllable FTNU instance, (a), and of a dynamic controllable one, (b).

R. Posenato and C. Combi Information Sciences 584 (2022) 784–807
5.2. Soundness

In this section, we show the soundness of rules rG5–rG7 and rules rG8–rG9 (cf. Table 2).
The proofs for rules rG5–rG7 are similar to the proofs given for rules rG1–rG3 in [29]. Therefore, we preliminarily recall

some necessary definitions given in [29] adjusted for FTNUs.
We already introduced that a scenario s is an assignment of a truth value for each proposition in P; a partial scenario is a

scenario limited to a subset of the propositions.
A situationx enumerates a value (duration) for each guarded link, while a partial situation enumerates a duration for some

guarded links. We represent the duration of the i-th guarded link in situation x as x i½ �.
As in [27–29], by drama, we denote a scenario & situation pair like ðs;xÞ that specifies all the environment choices in the

execution of the network.
Given a drama ðs;xÞ relative to an FTNU instance S, the ‘‘application” of the drama ðs;xÞ to S determines a projection of

S; PrjðS; s;xÞ, that results to be a Simple Temporal Network (STN [9]). The application consists of:

� removing all the constraints whose labels are false under s;
� removing all other labels (that must be true) preserving the values;
� for each guarded link in the original FTNU, replacing all four edges representing it in the distance graph S by two ordinary

edges representing the duration specified by x, i.e., Ai �!x i½ �
Ci, and Ai ���x½i�

Ci.

For example, Fig. 6 depicts two projections of DC FTNU associated with the distance graph in Fig. 5b: one on the drama
ðs1;x1Þ ¼ ðfp ¼ >g; fx 0½ � ¼ 3;x 1½ � ¼ 10;x 2½ � ¼ 7gÞ and the other one on the drama ðs2;x1Þ ¼ ðfp ¼?g; fx 0½ � ¼ 3;
x 1½ � ¼ 10;x 2½ � ¼ 7gÞ.

A schedule is a function, w : T ! R that associates a real value, assumed as the execution time, to each time-point in T . For
historical reasons, the value determined by a schedule w for a time-point X 2 T is denoted as w½ �X . We denote byW the set of
schedules for T .
Fig. 6. Two different projections of FTNU depicted in Fig. 5b.
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Let OT ¼ fP1?; . . . ; Pk?g be a set of observation time-points. A permutation p over ð1;2; . . . ; kÞ determines an order for the
considered observation time-points. For any Pi 2 OT , let pðPiÞ 2 f1;2; . . . ; kg be the position of Pi in the permutation p; and
letPk be the set of all permutations over ð1;2; . . . ; kÞ. This order is necessary to state in which order to propagate the value of
some propositions when two or more observation time-points must be executed at the same time. Let I be the set of all pos-
sible scenarios, and X the set of all possible situations.

A p-execution strategy for an FTNU S instance with k observation time-points is a function, r : ðI 
XÞ ! ðW
PkÞ, such
that for each drama r ¼ ðs;xÞ 2 I 
X, rðs;xÞ is a pair ðwr ;prÞ such that wr : T ! R is a schedule, and pr 2 Pk determines an
order of dependency among the observation time-points.

To make easier the specification of the following definitions, the definition of pr is extended to other types of time-points
in the following way: prðCiÞ ¼ 0 for each contingent time-point Ci, and prðYÞ ¼ 1 for each non-contingent, non-observation
time-point Y. In other words, while any contingent time-point Ci is not depending on any other time-point (therefore,
prðCiÞ ¼ 0), any non-observation and non-contingent time-point Y has to be considered after all the observation time-
points executed at the same time (therefore, prðXÞ ¼ 1).

For example, limited to the dramas rt ¼ ðs1;x1Þ ¼ ðfp ¼ >g; fx1 0½ � ¼ 3;x1 1½ � ¼ 10;x1 2½ � ¼ 7gÞ and
rf ¼ ðs2;x1Þ ¼ ðfp ¼?g; fx1 0½ � ¼ 3;x1 1½ � ¼ 10;x1 2½ � ¼ 7gÞ that induce the projections depicted in Fig. 6, a p-execution strat-
egy r0 could define the two pairs STrt ¼ ðwrt ;prt Þ and STrf ¼ ðwrf

;prf Þ:
Given a strategy r, we define it viable if, for each drama r ¼ ðs;xÞ, the schedule wr is a solution to the STN given by the
projection PrjðS; s;xÞ.

To characterize the dynamic aspect of the controllability property, it is necessary to introduce the concept of history that
collects the values of occurred contingent time-points, and the values of the assigned propositions before a given instant t.

Let S be an FTNU instance with k observation time-points; r ¼ ðs;xÞ a drama; r a p-execution strategy for S;
ðwr ;prÞ ¼ rðs;xÞ; d 2 f1;2; . . . ; k;1g; and t 2 R.

The p-history of ðt; dÞ for the drama ðs;xÞ and strategy r is defined as Hðt; d; s;x;rÞ ¼ ðHs;HxÞ where:
Hs ¼ ðp; sðpÞÞjP? 2 OT ; wr½ �P? 6 t; and prðP?Þ < d
� �

;

Hx ¼ ðA;C; wr½ �C � wr½ �AÞ j ðA; ½x; x0� ½y0; y�½ �; CÞ 2 G; and wr½ �C 6 t
� �

:

Hs is the set of the truth values of all propositions p observed before time t in the schedule wr , as well as those observed at
time t if P? is ordered before position d by the permutation pr . Hx specifies the durations of all guarded links such that the
associated contingent time-point occurred at or before time t in the schedule wr .

As an example, considering the two above dramas rt and rf and the instant t ¼ 11, the p-history of ð11;1Þ for the drama
rt;Hð11;1; s1;x1;r0Þ, is equal to the history Hð11;1; s2;x1;r0Þ, relative to the drama rf since
Hs1 ¼ Hs2 ¼ fg;
Hx1 ¼ x1 0½ � ¼ 3;x1 1½ � ¼ 10;x1 2½ � ¼ 7f g:
The definition of dynamic execution is based on the fact that an execution strategy must consider only the history to
schedule non-contingent time-points.

Definition 1 (p-Dynamic Execution Strategy). A p-execution strategy, r, for an FTNU S, is called p-dynamic if for every pair of
dramas, ðs1;x1Þ and ðs2;x2Þ, and every non-contingent time-point X:
let:
 ðw1;p1Þ ¼ rðs1;x1Þ and ðw2;p2Þ ¼ rðs2;x2Þ,

let:
 t ¼ w1½ �X , and d ¼ p1ðXÞ 2 f1;2; . . . ; jOT j þ jGj;1g.

if:
 Hðt; d; s1;x1;rÞ ¼ Hðt; d; s2;x2;rÞ

then:
 w2½ �X ¼ t and p2ðXÞ ¼ d.
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Hence, if in the drama ðs1;x1Þ the schedule r executes Y at t (and position d), and its history is the same to the one relative

to the drama ðs2;x2Þ at time t, then r must also execute Y at t (and position d).

As an example, the above strategy r0 is a viable strategy but not dynamic because at instant 11 the two considered dramas
rt and rf have the same p-history but in drama rt wrt

� �
X ¼ 0 while in drama rf

�
wrf

�
X
¼ 11. To be dynamic, r0 should define a

schedule that sets X at 11 in the drama rt, i.e., wrt

� �
X ¼ 11.

Now, the most important definitions for the following soundness proofs.

Definition 2 (Satisfy an original constraint). . Given an FTNU S and a labeled constraint ðY � X 6 d; ‘Þ where ‘ 2 P�, a p-
execution strategy r satisfies the labeled constraint ðY � X 6 d; ‘Þ if, for each drama ðsj;xjÞ, it holds that

� either sjð‘Þ ¼?
� or w½ �Y � w½ �X 6 d,

where ðw;pÞ ¼ rðsj;xjÞ.
As regards guarded links, r satisfies the guarded link ðAi; ½xi; x0i� ½y0i; yi�

� �
; CiÞ if, for each drama ðsj;xjÞ, it sets w½ �Ai

such that
w½ �Ci
� w½ �Ai

¼ xj i½ �. In such a case, we also say that r satisfies the lower-case and upper-case edges associated with that
guarded link.

From the previous definitions, we can characterize a viable p-dynamic execution strategy in a simpler way. Given an
FTNU S, a viable p-dynamic execution strategy r must satisfy all the original labeled-constraints in S (before any constraint
propagation) and all the original lower- and upper-case edges in S.

In general, a constraint-propagation rule is defined sound if, whenever a viable and dynamic r satisfies the pre-existing
edge(s) in that rule, rmust also satisfy the edge generated by that rule. Now, the rules rG5–rG7 in Table 2 only generate edges
leaving from Z, which represent upper-bound constraints, having possibly multiple lower-case (LC) letters. Therefore, to
prove the soundness of such rules, it is necessary to define how a viable and dynamic r satisfies an upper-bound constraint
containing conjunct-lower-case labels.

Definition 3 (Satisfy an Upper-Bound Constraint). Given an FTNU S and a labeled upper-bound constraint Z ����!hk:v; ‘i
A, where

‘ 2 P�, and k is a conjunction of lower-case contingent names, a p-execution strategy r satisfies the upper-bound constraint

Z ��!hk:v ;‘i A if for each drama ðs;xÞ, any of the following conditions holds, where ðw;pÞ ¼ rðs;xÞ:

1. w½ �A 6 v;
2. for some Ci 2 k, where ðAi; ½xi; x0i� ½y0i; yi�

� �
; CiÞ 2 G, x i½ � > x0i (i.e., the ith guarded link does not take on its lower guard

duration);
3. for some p 2 ‘, sðpÞ ¼?;
4. for some :p 2 ‘, sðpÞ ¼ >.

Let us consider a labeled upper-bound constraint defined at design time: Z �!hv ;‘i Y . Since such a constraint is present in the
network before any propagation, ‘ 2 P�. For such a constraint, clause 2. in Definition 3 does not apply. Therefore, satisfaction
reduces to: w½ �Y 6 v or sð‘Þ ¼?. Thus, Definition 3 reduces to Definition 2 for original labeled-edges that happen to be upper-
bound edges.

More generally, it will be useful to note that for any upper-bound edge to Y labeled by hk :v; ‘i, where ‘ 2 P�, satisfaction
(i.e., Definition 3) reduces to:

(i) w½ �Y 6 v;
(ii) for some Ci 2 k, where ðAi; ½xi; x0i� ½y0i; yi�

� �
; CiÞ 2 G, x i½ � > x0i; or

(iii) sð‘Þ ¼?.

Now it is possible to formalize the concept of soundness.

Definition 4 (Soundness). A constraint-propagation rule is sound if whenever a viable and p-dynamic execution strategy r
satisfies the rule’s pre-existing (parent) edges, it also satisfies the rule’s generated (child) edge.

The soundness of rules in Table 1 was proved in previous articles.

Lemma 1 ([7,29].). Rules rG1–rM2 in Table 1 are sound.

Therefore, here we show the soundness of rules rG5–rG9 in Table 2.
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Lemma 2. Rules rG5–rG9 from Table 2 are sound.
Proof. In the following, we present the proof for rules rG6–rG8; the proofs for rG5 and rG9 can be easily derived from the ones
of rG6–rG8.

Let r be a viable and p-dynamic strategy that satisfies the parent edges in the considered rule.

Rule rG6.

Let ðs;xÞ be any drama in which all Ci 2 k occur exactly at the instant corresponding to their lower guard (i.e., x i½ � ¼ x0i)
and such that sðbÞ ¼ >; and let ðw;pÞ ¼ rðs;xÞ. Since r satisfies the parent constraint from Z to A, it follows that w½ �A 6 v .
Next, since C takes on its minimum duration, then w½ �C ¼ w½ �A þ x0 6 v þ x0. Thus, r satisfies the generated edge from Z to C.

Rule rG7.

Let us assume that r does not satisfy the generated edge from Z to A in rule rG7. By Definition 3, there is some drama ðs;xÞ
such that all the following conditions hold:

(: i) w½ �A > v � y0;
(: ii) 8Di 2 k, where ðEi; ½xi; x0i� ½y0i; yi�

� �
; DiÞ 2 G; x½i� ¼ x0i; and

(: iii) sðbÞ ¼ >.

Condition (: iii) holds because it holds in the parent constraint. Then, since r satisfies the parent constraint from Z to C by
assumption, (: ii) holds and w½ �C 6 v . In x the contingent link AC can have a value 6 y0 6 y. Let x0 be the same as x except
that the contingent link AC takes on its upper guard value y0, i.e., w0½ �C � w0½ �A ¼ y0; and let ðw0;p0Þ ¼ rðs;x0Þ. Since C R k, (: ii)
also holds for x0; thus, w0½ �C 6 v must hold. And, since the only difference between ðs;xÞ and ðs;x0Þ is the duration of the
contingent link AC, the first difference between w and w0 must occur when C executes, which happens after A executes. Thus,
w½ �A ¼ w0½ �A ¼ w0½ �C � y0 6 v � y0, contradicting (: i).

Rule rG8.

Let ðs;xÞ be any drama for which:

� all contingent time-points Di 2 @ occur exactly at the instant corresponding to their upper guard (i.e., x i½ � ¼ y0i),
� all contingent time-points Ej 2 k occur exactly at the instant corresponding to their lower guard (i.e., x j½ � ¼ x0j),
� sðaÞ ¼ >,
� and sðbÞ ¼ >.

Such drama is possible because @ and k have no common contingent time-point. Let ðw;pÞ ¼ rðs;xÞ. Since r satisfies the
parent constraints, it follows that w½ �A P v 0 and w½ �C 6 v . Moreover, since C is a contingent time-point, the relation
w½ �C 6 v means that A is surely executed before v � y0 in the partial situation k and partial scenario b. Otherwise, C cannot
be executed in any instant in x0; y0½ � after A in the partial situation k, i.e., the parent constraints belong to a not-DC instance.
Therefore, w½ �C � w½ �A must be 6 v � v 0. Note that if drama ðs;xÞ did not allow the execution of C at any instant t 2 x0; y0½ � after
A, then the application of rules rG1–rG3 would be sufficient to find a negative semi-reducible cycle in such a drama [29]. Thus,
r satisfies the generated constraint from A to C.
Theorem 1. Rules rG1–rM2 from Table 1 and rules rG5–rG9 from Table 2 are sound.
Proof. Lemma 1 shows the soundness of rules rG1–rM2 from Table 1.
Lemma 2 shows the soundness of rules rG5–rG9 from Table 2. h
5.3. Completeness

The completeness of the new algorithm we proposed here, Algorithm1 may be given extending the completeness proof
for CSTNU presented in [29]. We recall, as a lemma, a previous result useful for proving the theorem.

Let us consider an FTNU instance S and let S� be the FTNU distance-graph obtained by successfully executing Algorithm 1
with input S.

Let S�CSTN be the graph obtained from S� by 1) deleting all conjunct-lower-case edges and lower-case one and 2) removing
all conjunct-upper-case labels from the labeled values. In other words, all conjunct-upper-case edges become ordinary
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Fig. 7. An example of an AllMax Conditional Simple Temporal Network where only the most important edges are represented. It is relative to the DC
distance graph depicted in Fig. 5b.
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edges, replacing possible already present ordinary edges. S�CSTN is called AllMax Conditional Simple Temporal Network (CSTN)
because it preserves observation nodes (conditions) while does not contain all uncertainties (guarded links). S�CSTN is useful
for showing that the early execution strategy (detailed in proof of Theorem 2) can always determine which nodes to execute
with respect to the current scenario [37, Spreading Lemma].

As an example, Fig. 7 depicts the AllMax Conditional Simple Temporal Network relative to the DC distance graph depicted
in Fig. 5b.

In the completeness proof, we consider both S� and S�CSTN . Considering S
�
CSTN does not require any extra computation as

shown by the following lemma.

Lemma 3. Given an FTNU instance S that is successfully checked by Algorithm 1, the corresponding AllMax CSTN S�CSTN is fully
propagated and DC.
Proof. Ignoring conjunctive upper-/lower-case labels in rules rG1–rG9 from Tables 1 and 2 for FTNUs reduces them to the
three fundamentals rules used for checking CSTNs [37]. Since S� is fully propagated without negative cycles having consis-
tent labels by hypothesis, then S�CSTN must be fully propagated without negative cycles and, hence, DC. h

The execution of a time-point Y at time t in an FTNU is represented by adding two edges Z ����!ht;CPSi
Y Z  ����h�t;CPSi

Y in S and in
S�, where CPS stands for current partial scenario, i.e., the label containing all the observed literals associated to the already
executed observation time-points.

Now, it is possible to introduce the completeness theorem.

Theorem 2. The set of rules rG1–rG9 from Table 1 and Table 2 is complete for DC checking of FTNUs.
Proof. Given an FTNU S, let S� be the FTNU distance-graph obtained by successfully executing Algorithm 1 with input S;
then, let S�CSTN be the corresponding AllMax CSTN that is fully propagated and DC (Lemma 3).

For sake of brevity, hereinafter, every time we add a new edge into S�, we implicitly consider that the same edge is also
added to S�CSTN .

Let CPS be the current partial scenario. At the start of execution CPS = ⊡.
Let T u be the set of unexecuted time-points. At start T u ¼ T n fZg.
Consider the following earliest-first strategy r for S.

For each Y 2 T u, we determine its effective lower bound as ELBðYÞ ¼max fv j 9 Z ����h�v ;ai
Y in S�CSTN ; applða;CPSÞg, where

applða;CPSÞ holds if a is applicable given the current partial scenario CPS. In particular, applða;CPSÞ holds if each proposition p
that appears in both a and CPS appears as the same literal in both [24].

Let ðK;vÞ be the first execution decision: ‘‘if nothing happens before time K, then execute the time-points in v”, where
K ¼minfELBðYÞ j Y 2 T ug; and v ¼ fY 2 T u j ELBðYÞ ¼ Kg. In [37], the authors showed that such a strategy can execute any
DC CSTNU instance (i.e., it is sufficient to show the completeness of the DC checking algorithm for CSTNUs). Here, we show
that such a strategy can execute any DC FTNU instance.

Given the first execution decision, there are two possibilities:

Case 1: No contingent time-point executes before time K

We call a guarded link active when its activation time-point is already executed but its contingent time-point has not yet

occurred. For each active ðAi; ½x�i ; x�i � ½y�i ; y�i �
� �

; CiÞ, raise the contingent time-point lower bound to Z  ����hK�ai ;CPSiCi, where
ai ¼ rðsÞ½ �Ai

in S�. This cannot introduce any new constraints because K� ai 2 x�i ; y
�
i

� �
; thus, S� is still DC [29]. Since no ELB
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values have changed, ðK;vÞ is the earliest-first decision also for the CSTN S�CSTN . Then, time-points in v are executed. The
execution of time-points in v requires particular attention only when they are activation time-points because the execution
of each of such time-points must update the external bounds of the relative guarded link.

Therefore, the execution of time-points in v consists of the following steps:

1. for each observation time-point Xi 2 v (any order among concurrent observation time-points is allowed [37]):
(a) execute Xi at time K;
(b) update the CPS to include the value of proposition O�1ðXiÞ;

2. If CPS changed:
(a) delete any labeled values that are inconsistent with the updated CPS in S�.

3. for each activation time-point Ai 2 v (let us denote the original guarded link associate to Ai as ðAi; ½x�i ; x0i� ½y0i; y�i �
� �

; CiÞ:
(a) execute Ai at time K;
(b) propagate such execution (i.e., the new two added edges) in S� using rules in Table 1 and Table 2. Such propagation

can modify the external bounds x�i and y�i to x��i and y��i , respectively.

(c) update the bounds of edges Ai �������!hci :x0i ; ⊡i;hy
�
i
; ⊡i

Ci and Ai ���������hCi :�y0i ; ⊡i;h�x
�
i
; ⊡i

Ci in S� (they represent the guarded link

ðAi; ½x�i ; x0i� ½y0i; y�i �
� �

; CiÞ to Ai ���������!hci :x��i ; ⊡i;hy��
i
; ⊡i

Ci and Ai ����������hCi :�y��i ; ⊡i;h�x��
i
; ⊡i

Ci; this update makes the guarded link a contingent
one with the largest allowed range;

4. for each other time-point Yi 2 v, execute Yi at time K;
5. propagate such executions using rules in Table 1 and Table 2, i.e., update labeled values in the original S� updated with

the new constraints representing executions and new ranges for activated guarded links.
6. remove any executed time-points from T u;

It is necessary to show that inserting the constraints related to the execution of time-points (made in steps 1.(a), 3.(a) and
4.) and the update of constraints in step 3.(c) cannot introduce any negative cycle into any relevant STN projection.

Since for non-activation time-points the proof is very similar to the one presented in [37], here we consider only the case
relative to activation time-points. In particular, we prove that, after each execution of an activation time-point, the
modification of the bounds of the edges corresponding to its guarded link cannot introduce any negative cycle into any
relevant STN projection.

Suppose a negative cycle with consistent label is discovered in the modified S� after a guarded link ðAi;
�
½x�; x0� ½y0; y��

�
; CiÞ

has been updated to ðAi;
�
½x�; x�� ½y�; y��

�
; CiÞ (Ai was set to K). There are three possibilities. The negative cycle is determined

by 1) lowering x0 to x� or 2) by increasing y0 to y� or 3) making both the two updates.
Let us consider the case ‘‘lowering x0 to x�”.

The edge Ai ����!hci :x� ; ⊡iCi must be present in the negative cycle, otherwise it means that a negative cycle was present before the
update contradicting the hypothesis that the network is DC.

Fig. 8a depicts the negative cycle induced by lowering the lower guard x0 to x�. We removed all non-important details like

edge Z ����h�K; CPSi
Ai, and propositional labels. It holds that Kþ x� � l�w < 0, i.e., x� < lþw� K.

Fig. 8b depicts the network just after the execution of Ai. The upper bound to A is K. The lower bound for C induced by
node E is �l�w, determined by rule rG1. By rule rG9, �x� 6 �l�wþK, i.e., x� P lþw�K, contradicting the hypothesis.

It is easy to verify that a similar proof can be given if E is a contingent time-point and, therefore, the lower bound for Ci

can be a conjunct-upper-case lower bound.

Let us consider the case ‘‘increasing y0 to y�”.

Analogously to case 1), the edge Ai ����hCi :�y� ; ⊡iCi must be present in the negative cycle.
Fig. 9a depicts the negative cycle induced by lowering the upper guard y0 to y� :�K� y� þ lþw < 0, i.e., y� > lþw�K.

Fig. 9b depicts the network just after the execution of Ai. The lower bound for A is �K. The upper bound for C induced by
node E is lþw, determined by rule rG5. By rule rG8, y� 6 lþw�K, contradicting the hypothesis.

The case in which both the previous cases occur it is proved combining the two previous analysis since they are
complementary.

Case 2: A contingent time-point Ci executes at some time t 6 K

Let d ¼ t � rðsÞ½ �Ai
is the observed duration for the guarded link ðAi;

�
½x�; x�� ½y�; y��

�
; CiÞ. The semantics associated with

the execution of contingent time-points guarantees that d 2 x�; y�½ �.
Update S� in the following way:

1. Update the edges Ai ���������!hci :x�i ; ⊡i;hy
�
i
; ⊡i

Ci and Ai  ���������hCi :�y�i ; ⊡i;h�x
�
i
; ⊡i

Ci to Ai ��!hd; ⊡iCi and Ai ���h�d; ⊡i
Ci; This update makes explicit the

occurrence of Ci in the network.
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Fig. 8. A negative cycle in the modified (left) and DC original (right) FTNU S� before the lower guard update.

Fig. 9. A negative cycle in the modified (left) and DC original (right) FTNU S� before the upper guard update.
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2. Delete any conjunct-upper-case value h@ :v ; bi from S� for which C 2 @.2

3. For each X 2 T u, insert a lower-bound constraint, Z ����ht; CPSi
X. This is useful only for the time-points for which their ELB

value could have been determined by a conjunct-upper-case edge having C in @. Setting such a lower bound makes expli-
cit that X can be executed at or after t.

4. Propagate the new constraints in S� using rules in Table 1 and Table 2.

After such first step, the earliest-first strategy r re-executes the step considering the remaining time-points till there is any
time-point unexecuted.
6. An example of FTNU DC-checking and execution

In this section, we present an example of how our FTNU DC checking algorithm can be used 1) to check the Adult Stroke
FTNU (see Fig. 1) and 2) to update the guarded links during an execution of the instance.

Fig. 2 depicts the distance graph of the Adult Stroke FTNU presented in Fig. 1. The distance graph is the alternative rep-
resentation of an FTNU instance that the DC checking algorithm accepts as input.

The Adult Stroke FTNU is DC and, after the execution of the DC checking algorithm, its distance graph is updated by the
algorithm adding/updating, for each time-point, the two edges to/from Z. Each of such edges gives information about the
possible execution times for the considered time-point with respect to the possible scenario and/or execution time of con-
tingent time-points (wait constraints).

Fig. 10 shows a screenshot of TNEditor, an application that allows the management and checking of different constraint
networks, as STNs, STNUs, CSTNs, CSTNUs and FTNUs [38, Version 4.3]. As regards FTNUs, the application is able to execute the
DC checking by considering only the non-redundant labeled values. In the screenshot, on the left, there is the editor-window
where it is possible to edit a network instance; on the right, there is the windowwhere the program shows the instance after
the execution of one of the different possible checking algorithms, in this case the FTNU DC-checking algorithm. The selection
of which algorithm to apply is done by the user pushing a button on the command bar present on the lower part of the main
window of TNEditor. In particular, in the right part of Fig. 10, there is the resulting distance-graph obtained by applying the
FTNU DC-checking algorithm to the distance graph of the Adult Stroke FTNU instance, represented on the left part.

In the checked Adult Stroke FTNU network, all the external bounds of the guarded links are not modified with respect to
all their original values. This means that there are one or more possible executions where all or part of guarded links can be
executed with their maximal designed range.

Let us consider a fragment of a possible execution, focusing on two guarded links: ðVs;
�
½2;4� ½6;8�

�
;VeÞ and

ðGs;
�
½1;1� ½2;4�

�
; GeÞ. We adopt here a mixed strategy–not an early execution one–just to show that the checked network

allows the possibility of other execution strategies. Indeed, the early execution strategy, i.e., ‘‘execute any time-point as soon
as you are allowed to execute it”, is often used in checking the controllability of temporal constraint network with uncer-
tainty, as it avoids to compute the overall allowed ranges for all time-points [39,40] and simplifies the proof of soundness
and completeness of checking algorithms, as in our case. However, other execution strategies could be relevant in several
application domains. For example, the dual late execution strategy, i.e., ‘‘execute any time-point at the last allowed moment”
has the effect of delaying as much as possible the execution of time-points, thus allowing the maximum amount of time for
‘‘preparing” such execution. In general, execution strategies different from the early-execution one require more computa-
tion (at run-time) to decide the right value for time-points.
2 Since we are considering an early execution strategy, conjunct-lower-case edges (that determine upper bounds to the execution time for time-points) are
not considered.
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Fig. 10. The distance graph in Fig. 2 after the execution of the DC checking algorithm.
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Here, we empirically show how the network evolves through an execution strategy we named ‘‘mixed”, as it sometimes
delays the execution of time-points within the allowed ranges. The execution starts setting Z ¼ 0. Then, the only time-point
that can be executed is Vs since it is the only one with no negative outgoing edge to other time-points different from Z. Read-
ing the values on the two edges connecting Vs and Z, it results that the time range for Vs is 0;4½ �. The early execution strategy
dictates to execute Vs at 0, but it is simple to verify that any value in 0;4½ � is admissible. Let us assume that Vs is executed at

4. The execution is ‘‘done” updating the edge Z ����h0; ⊡i
Vs to Z ����h�4; ⊡i

Vs and adding the edge Z ����!h4; ⊡i
Vs. Since Vs is the activa-

tion time-point for the guarded link ðVs;
�
½2;4� ½6;8�

�
; VeÞ, it is necessary to update the guarded range before the activation of

the guarded link; therefore, the DC checking algorithm is executed and, then, the guarded link ðVs;VeÞ fixed to its external
range. The resulting range for ðVs;VeÞ is ðVs;

�
½2;2� ½6;6�

�
; VeÞ. After such a set, the DC checking algorithm is executed again

to propagate such a new range. The DC check updates the guarded link ðGs;GeÞ as ðGs;
�
½1;1� ½2;3�

�
; GeÞ (see Fig. 11). The

restriction of ðVs;VeÞ range is due to the presence of constraint Z ����!h10; ⊡i
Ve while the restriction of ðGs;GeÞ range is due to

the presence of constraint Z ���!h25; ⊡ i
E.

Let us consider that the environment executes the contingent time-point Ve at time 10, its last possible allowed instant.
Such occurrence is ‘‘stored” in the network, replacing the 4 values in the two edges between Vs and Ve (representing the con-

tingent link) by the value 6, i.e., Vs ��!h6; ⊡i Ve and Vs ����h�6; ⊡ i
Ve.

Then, another execution of the DC checking algorithm propagates such occurrence to the rest of the network; it results
that the guarded link ðGs;

�
½1;1� ½2;3�

�
; GeÞ maintains its bounds.

At instant 10, the only time-point that can be considered for the execution is P? since it is the only time-point having as

preceding nodes Ve and Z: P? ���!h�1; ⊡i
Ve, and P? ����!h�11; ⊡i

Z. Since there exists also the edge Z ����!h11; ⊡i
P? that fixes an upper bound for

the execution of P?; P? must be executed at 11.
Once P is executed, let us assume the environment fixes p ¼?. Then, all the constraints and time-points related to the

scenarios where p ¼ >must be deleted. Fig. 12 shows the resulting distance graph after p assumed value ?: the constraints
and time-points associated with scenarios with p ¼ > and literal :p in the remaining labels have been removed.
Fig. 11. The updated of the guarded links ðVs;VeÞ and ðGs;GeÞ in Fig. 2 after the activation of the guarded link ðVs ;VeÞ.
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Fig. 12. The distance graph in Fig. 2 after the execution of observation time-point P? where p is set to ?.
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Executing the DC-checking algorithm at the instant 11, the previously restricted guarded link ðGs;
�
½1;1� ½2;3�

�
; GeÞ is now

left to its original range, i.e., ðGs;
�
½1;1� ½2;4�

�
; GeÞ because of the execution of P? at 11 and the ‘‘removal” of constraints

related to scenarios having p ¼ > ‘‘relaxes” the remaining constraints.
Time-point Sp can be now executed because it is the only time-point having its preceding nodes already executed:

Sp ��!h0; ⊡iP? and Sp���!h�11; ⊡i
Z. Since there is also the constraint Z �������!h14; qi;h16; ⊡i

Sp, Sp must be executed before 14 in order to guarantee
that this last constraint is satisfied also in case that q will be >. Q? is not yet executed, but the DC checking algorithm is able
to determine all constraints with respect to all possible scenarios that may occur.

Let us assume that Sp is executed at 12, i.e., the constraints between Z and Sp becomes Z ����h�12; ⊡i
Sp and Z ���!h12; ⊡i

Sp,
respectively.

Then, Jp can be considered. The edges Z ������!h14; qi;h16; ⊡i
Js limit the time range for executing Jp to 12;14½ �.

Let us consider, as the last step of this example, what occurs executing Jp and Gs at different instants. The execution of

both time-points Jp and Gs at 12 allows the preservation of guarded link ðGs;
�
½1;1� ½2;4�

�
; GeÞ, while the execution of Jp at

13 forces the execution of Gs at 13 and the reformulation of the guarded link ðGs;GeÞ as ðGs;
�
½1;1� ½2;3�

�
; GeÞ. As the last pos-

sible execution time for Jp, if it is executed at 14, then it is necessary to execute Gs at 14 and to reformulate the guarded link

to its core (no flexibility), i.e., ðGs;
�
½1;1� ½2;2�

�
; GeÞ.

The rest of the execution is managed in a similar way. Updating the remaining constraints after each time-point execution
guarantees that guarded link ranges are always correct and updated to their maximal extensions to guarantee the maximal
allowed flexibility.
7. Conclusions

In this paper, we considered the problem of checking controllability for temporal constraint networks, where contingent
links are allowed to be shrunk until a predefined contingent core. Such a problem was previously discussed for other tem-
poral constraint models, i.e., CSTNPSUs and STNPSUs. Here, as a first contribution, we proved that such algorithms do not
derive the right ranges for guarded links in such models. Thus, those algorithms cannot be considered for executing FTNU
networks, exploiting the nature of guarded links.

Then, we proposed here a new kind of temporal constraint networks, i.e., FTNUs, that improve and refine the previously
proposed CSTNPSUs, and a new set of propagation rules that, besides checking whether a network is controllable, are also
able to derive the right bounds of guarded links. Such bounds allow us to directly execute the network resulting from DC
checking. At any execution of an activation time-point, the new rules determine the right bounds of the corresponding
guarded link, making it a fully-fledged contingent link. An implementation of the new DC-checking algorithm is available
as a proof-of-concept [38].
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Currently, the proposed execution algorithm runs the DC-checking algorithm at each step of an execution, which is quite
expensive and not always necessary. Therefore, as for future work, we plan to work towards a more efficient execution algo-
rithm, to avoid runtime redundant computations and to allow the application of different execution strategies. An optimized
execution algorithm is important for making possible the application of FTNUs in real contexts, as temporal business process
management.
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