SoftwareX 17 (2022) 100905

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

CSTNU Tool: A Java library for checking temporal networks)

Roberto Posenato

Check for
updates

Department of Computer Science, University of Verona, Verona, Italy

ARTICLE INFO

Article history:

Received 17 August 2021

Received in revised form 4 November 2021
Accepted 18 November 2021

Keywords:

Temporal constraint network
Consistency check

Dynamic controllability check
Constraint propagation algorithm

ABSTRACT

This paper presents CSTNU Tool, a Java library for representing and checking different kinds of
temporal constraint networks. In particular, CSTNU Tool offers an optimized implementation of some
constraint-propagation algorithms to check the dynamic consistency/controllability (DC) of Conditional
Simple Temporal Networks (CSTNs), Conditional Simple Temporal Networks with Uncertainty (CSTNUs),
and Flexible Simple Temporal Networks with Uncertainty (FTNUs). The optimization is with respect to
the management of labeled values that are present in conditional and flexible networks.

The library offers also a simple GUI application to build/manage and check temporal networks in an
intuitive way, and some Java programs for generating random temporal networks according to some
input parameters.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

4.3

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00153

Code Ocean compute capsule
Legal Code License
Code versioning system used

Software code languages, tools, and services used

https://codeocean.com/capsule/7405126/
LGPL-3.0-or-later, CCO-1.0

SVN

Java. Bash for utility scripts (not necessary)

Compilation requirements, operating environments & dependencies Java > 11
If available Link to developer documentation/manual https://profs.scienze.univr.it/posenato/svn/sw/CSTNU/trunk/README.md

Project web site
Support email for questions

https://profs.scienze.univr.it/~posenato/software/cstnu/
roberto.posenato@univr.it

Software metadata

Current software version

Permanent link to executables of this version

Legal Software License

Computing platforms/Operating Systems
Installation requirements & dependencies
If available, link to user manual

Support email for questions

4.3
https://profs.scienze.univr.it/~posenato/software/cstnu/bin/CstnuTool-4.3.tgz
LGPL-3.0-or-later, CC0-1.0

Unix-like, Linux, OS X, Microsoft Windows

Java > 11

http://profs.scienze.univr.it/~posenato/software/cstnu
roberto.posenato@univr.it

1. Motivation and significance

years, different proposals have been presented to address specific
requirements that frequently arise in real-world applications.

Constraint-based temporal reasoning has been widely used in The most commonly used formalism is the Simple Temporal

some applications across heterogeneous domains [1]. Over the

E-mail address: roberto.posenato@univr.it.

Network (STN) model, in which a set of real-valued variables,
called time-points, are subject to binary difference constraints [2].
Time-points represent the occurrence of events while binary dif-
ference constraints represent the minimal/maximal allowed dis-

URL: https://www.di.univr.it/?ent=persona&id=102. tance between pairs of events.

https://doi.org/10.1016/j.s0ftx.2021.100905

2352-7110/© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100905
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100905&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00153
https://codeocean.com/capsule/7405126/
https://profs.scienze.univr.it/posenato/svn/sw/CSTNU/trunk/README.md
https://profs.scienze.univr.it/~posenato/software/cstnu/
mailto:roberto.posenato@univr.it
https://profs.scienze.univr.it/~posenato/software/cstnu/bin/CstnuTool-4.3.tgz
http://profs.scienze.univr.it/~posenato/software/cstnu
mailto:roberto.posenato@univr.it
mailto:roberto.posenato@univr.it
https://www.di.univr.it/?ent=persona&id=102
https://doi.org/10.1016/j.softx.2021.100905
http://creativecommons.org/licenses/by/4.0/

Roberto Posenato

(a) S graph

SoftwareX 17 (2022) 100905

X
«
2,7
// O
7 —11([3
\\\3
,1\\
Y

(b) S APSP graph. Dashed edges are added by

the Floyd-Warshall algorithm. The red value is
the new value for the original constraint Y — X <

5.

Fig. 1. S graph representations.

Example 1. Let S be an STN defined by time-points X, Y, and Z
and the following temporal constraints

Y-X<5
X-Y<-1
Z—-X<0
Y-Z2<3

Usually, Z is a special time-point that represents the first executed
time-point and whose value is fixed at 0. In this way, expression
like Z—X < 0and Y—Z < 3 can be simplified as unary constraints
X >0and Y — Z < 3, respectively.

Therefore, S represents the fact that the temporal distance
between Y and X must be in [1, 5], the distance between Y and
Z must be in [0, 3], and the distance between X and Z must be
non-negative.

The main problem regarding STN is the consistency problem,
i.e., to check if an STN admits time-point assignments that satisfy
all temporal constraints of the network.

An efficient way to represent an STN is to use a graph, called
STN/distance graph, where vertices represent time-points and
edges represent binary constraints, i.e., an edge X——Y rep-
resents the constraint Y — X < § [2]. Given an STN, checking
its consistency is equivalent to determine all-pairs-shortest-paths
(APSP) matrix of its graph using an algorithm like Floyd—Warshall
or Johnson [2]: the STN is consistent if and only if the main
diagonal of ASPSP matrix is non-negative, i.e., there is no negative
cycle in the graph. Moreover, since the APSP matrix contains the
minimal distances between any pair of time-points, the corre-
sponding graph represents the minimal STN graph equivalent to
the original one.

Example 2. Fig. 1(a) shows the graph associated to the pre-
vious S. Fig. 1(b) depicts the APSP graph obtained executing
Floyd-Warshall algorithm. Dashed edges represent the implicit
constraints obtained propagating the original constraints. As re-
gards constraint XY , the algorithm determines that the
constraint must be restricted to value 3 because values in (3, 5]
are not admissible by other constraints.

Beyond STNs, a significant amount of research has focused
on temporal reasoning in the presence of uncertainty. Temporal
uncertainty arises, for example, when the duration of some ac-
tivities can be only observed in real-time by the executor of the
network. A contingent link represents an interval whose duration
is bounded but uncontrollable, i.e., its value is decided by an ex-
ternal agent during execution; Usually, a contingent link between
two time-points X and Y is represent as (X, [[, u], Y), where | and
u are real values and range [I, u] represents the possible durations
of the contingent link. X is set (or, equivalently, is executed)

by the executor of the network while Y is only observed once
the external agent executes it. Y is said contingent time-point.
An STN containing contingent links is called a Simple Temporal
Network with Uncertainty (STNU) [3]. In STNUs, the consistency
problem is replaced by the dynamically controllable (DC) problem,
i.e., to check if there exists a strategy for executing the non-
contingent time-points such that all constraints are guaranteed to
be satisfied no matter how the durations of the contingent links
turn out during execution [4].

Example of possible applications of STNU are in the field of
robot control [5], web-services compositions [6], and business
processes [7,8].

Example 3. Fig. 2(a) shows the graph associated to the STNU &’
defined by time-points X, Y, and Z, the contingent link (X, [1, 5],
Y), and the following temporal constraints

Z—-X<0
Y-7Z<3.

The representation of a contingent link using edges was pro-
posed by Morris and Muscettola [9]: the upper bound of the
contingent range is represented as Y-Y=20.X | called upper-
case (label) constraint, while the lower bound is represented
as XYLy | called lower-case (label) constraint. Upper-case
constraints can be propagated assuming the meaning of wait
constraints. For example, D-Y=1% ,X means that “D must
wait the occurrence of Y or at least 10 units after the execu-
tion of X for being executed”. Morris and Muscettola determined
the first polynomial-time DC checking algorithm for STNU [9].
It can be viewed as an extension of the Floyd-Warshall algo-
rithm in which also upper/lower case constraints are considered/
propagated. Then, many other propagation-based algorithms have
been proposed to make the DC check even faster [9-16].

The above S’ is not dynamic controllable. Indeed, contingent
link (X, [1,5],Y) guarantees that Y can occur 5 units after the
occurrence of X while constraint Y < 3 requires that Y must
occur within 3 units after Z. Since X cannot be executed before Z,
it is not possible to guarantee that Y can occur at any admissible
time (3,5] after X without violating the constraint Y < 3.
Fig. 2(b) shows the graph obtained by the execution of Morris
and Muscettola DC checking algorithm [9]. The wait X—X-=2.x
is equivalent to a negative loop in STNs, i.e., S’ is not dynamic
controllable.

Although STNUs have been successful in some domains, other
domains require also constraints with condition. For example,
in the health-care domain, medical tests on a patient frequently
generate information in real-time that can affect which pathway
that patient will follow [17]. Different pathways have different set

Roberto Posenato

7 (vi-5)||(y:1)

(a) 8’ graph where the contingent link is repre-
sented by an upper-case constraint (red) and a
lower-case one (red).

SoftwareX 17 (2022) 100905

(b) Negative loop in &’ graph determined by
Morris-Muscettola DC checking algorirthm [9].

Fig. 2. S’ graph and its derived graph.

of constraints. It has to be guaranteed that any possible execution
of the temporal network strictly satisfies all specified tempo-
ral constraints no matter which test outcomes are observed.
The Conditional Simple Temporal Network (CSTN) model allows
the representation of temporal constraints in conjunction with
scenarios [18].
In detail, in a CSTN there can be boolean observations p, q, 1, s,
.., each of them is associated to a proper time-point, called
observation time-point. During an execution, when an observa-
tion time-point is executed, e.g., P?, then the associated boolean
observation, e.g., p, is set to T/L by the environment.

A conjunction of some literals of the boolean observations
is called (propositional) label. A label is T if and only if all its
literal are T after that all observations have been set. A complete
assignment of the observations of a CSTN is a scenario.

For example, label p—q is true if and only if after the execution
of the corresponding observation time-points, p = T and g = L.

Each constraint in a CSTN may be associated to a label that
represents the condition for considering the constraint. For exam-
ple, X-{&:P~0 .y represents the constraint Y — X < § that must
be satisfied in all scenarios in which p—qis T.

It is possible to have more conditional constraints between the
same pair of time-points, each of them having a different label.
Therefore, a CSTN graph can be a multi-graph.

As shown in [19], it is more efficient to represent the possible
different conditional constraints between a pair of time-points
as one constraint with a set of labeled values because it is pos-
sible to maintain minimal the size of such a set by applying a
set of minimization rules derived from Assumption-based Truth
Maintenance Systems (ATMS) [19]. For example, if in a CSTN
network there are the boolean observation p and g, the edge
X—{10.p20).4.9) ¥ represents two constraints:

1. Y — X < 10 that must be satisfied in scenario where p—q
is T, and
2. Y —X < 4 that must be satisfied in scenarios where q is T.

Adding the labeled value (4, —q) to the edge, it results that the
constraint < 4 must be considered in all scenarios (qv—q=T =
[), and it is the most restrictive in the set. Therefore, the edge can
be simplified as X-42y .

A CSTN is said to be dynamically consistent (DC) if it admits
a strategy that, reacting to the past observation, guarantees the
satisfaction of all relevant constraints no matter which outcomes
are observed during execution.

According to the delay by which an executor can acquire the
value of observations, there are different kinds of dynamic consis-
tency. For example, the Instantaneous Reaction (IR) assumption
says that an executor can react instantaneously when an obser-
vation is set executing a time-point at the same instant if it is
necessary; the e-DC says that an executor can react after a delay
& > 0. In [20] there is a survey of the different kinds of dynamic
consistency and their relations.

In the literature, there are different DC checking algorithms
for CSTNs based on the conditional constraint propagation [18,
20-25].

Example 4. Fig. 3(a) shows the graph associated to the CSTN s”
defined by time-points P?, Y, and Z, with P? observation time-
point of p, and the following conditional temporal constraints

Y —P?<5,—p
P?—Y <-6,p
Z-P?<0,0
Y—-Z<3,-p

Fig. 3(b) depicts the graph after the execution of the
Hunsberger-Posenato DC checking algorithm [20]. S” is DC. The
cycle between P? and Y is not a negative cycle because the two
constraints are not in the same scenarios. The algorithm deter-
mines the minimal constraints for an early-execution strategy.
Considering the edges from time-points to Z, it is possible to
determine the dynamic scheduling: Z and P? must be executed
at 0; at the execution of P?, p is set; then, Y must be executed at
0if p = 1, at 6 otherwise.

The Conditional Simple Temporal Network with Uncertainty
(CSTNU) model extends the CSTN one allowing the representation
of contingent links [26-30]. Fig. 5 depicts an interesting CSTNU
instance where there are 3 contingent links and some conditional
constraints that determine when activate such contingent link
according to the p value.

The Flexible Simple Temporal Networks with Uncertainty (FTNU)
model, also known as Conditional Simple Temporal Network with
Partially Shrinkable Uncertainty (CSTNPSU), extends the CSTNU
model allowing each contingent link to be partially shrunk at
design/execution time [31-33]. The idea is to allow the represen-
tation of an ideal duration range of a task that can be partially
modified before the start of the task if this permits to satisfy
network constraints.

In detail, in FTNUs contingent links are represented as guarded
links. A guarded link (X, [[I, [1[u/, u]], ¥), with0 < [<I' < u' <
u < oo, is a “contingent link” (X, [[, u], Y) that it can be shrunk
before its activation, i.e., before X is executed. The value I can be
raised to I’ at the most, while u can be decreased to u’ at the most.
Let I*, u* the values of I, u, respectively, when X is executed. Then,
the guarded link becomes a contingent one with range [I*, u*],
and it is activated.

Despite the variety of applications of such models, imple-
mentations of methods for solving the consistency/controllability
problem cannot be found in publicly available libraries.

The CSTNU Tool library' focuses on the solution of the con-
sistency/controllability problem for the above-mentioned models

1 The reason of CSTNU in the name is that CSTNU model was the only one
considered in the initial releases.

Roberto Posenato SoftwareX 17 (2022) 100905

0,0 P?
©.0) P? (0,
Z <767p> <57 ﬁp)
(37 _‘p) Y

(b) The 8" graph determined by Hunsberger-
Posenato DC checking algorirthm assuming
IR [20].

(a) 8" graph where P? is the observation time-
point of p.

Fig. 3. s” graph and its derived graph.

offering the implementation of different DC checking algorithms
for each model. Users can interact with CSTNU Tool in two forms:
using classes/methods from the Java package, aimed for advance
users; using the integrated graphical editor to create/modify, and
check a temporal constraint network easily, aimed for beginners.

2. CSTNU Tool: Software description
2.1. Software architecture

The CSTNU Tool is a Java library that runs in any JVM > 11.
The library is composed by two main packages: it.univr.di.
labeledvalue and it.univr.di.cstnu.

Package it.univr.di.labeledvalue contains classes for
representing and managing set of labeled values.

Package it.univr.di.cstnu contains classes for represent-
ing and managing some kinds of temporal constraint networks.
It is divided in three sub-packages: graph, algorithms, and
visualization. The graph sub-package contains classes for
managing the graph of a temporal constraint network where
nodes/edges can contain sets of labeled values. The algorithms
sub-package is the core of the library; it contains a class for each
kind of considered temporal constraint network that allows rep-
resenting and checking of temporal constraint network instances.
Moreover, it contains two Java programs for generating random
CSTNs/STNUs of different types and sizes. The visualization
sub-package contains the GUI application TNEditor to create/
modify/visualize and check any kind of the networks mentioned
above. The GUI of TNEditor is based on JUNG library [34].

2.2. Software functionalities

Each instance of a temporal constraint network is represented
as an object of the corresponding class in it.univr.di.cstnu.
algorithms. Such an object contains the graph as an object of
the class it.univr.di.cstnu .graph.TNGraph and some in-
formation about how to check the consistency/controllability. The
check of the consistency/controllability property is done by the
method checkConsistency()/checkControllability().
Some classes offer different implementations of consistency/
controllability checks. A specific implementation can be selected
by a method before calling the check method. To ease the se-
lection of the appropriate combination of checking algorithm,
the kind of DC (e.g., IR, &, etc.), and some other settings, there
are some derived classes where such selection is pre-defined.
The consistency/controllability check method always returns an
object that describes the final status of the check, some statistics
about the execution, and, in case of an inconsistent network,
node(s) where an inconsistency was found.

Fig. 4 shows an excerpt of the UML class diagram of the
it.univr.di.cstnu package where there are the classes for

representing: (1) all kinds of possible temporal constraint net-
works (framed in blue), (2) result of a consistency/controllability
check (framed in green), and (3) loading/saving the graph (framed
in orange). Classes framed in violet are the CSTN sub-classes
where some settings about the checking algorithm are already
fixed.

Table A.1 in Appendix A summarizes the classes and their
possible checking methods.

Package it.univr.di.cstnu.labeledvalue allows the
representation and management of sets of labeled values in their
minimal cardinality guaranteeing that each operation on a set has
a linear-order computational cost.

3. Illustrative examples

We now provide an illustrative example of how to load and
check the CSTNU instance shown in Fig. 5.

CSTNU Tool can load/save temporal constraint networks in
GraphML format [35]. (In Appendix B, we present how tempo-
ral constraint networks are coded in GraphML in CSTNU Tool
library.) Therefore, let us assume that the considered CSTNU
instance is stored as a GraphML document in the file named
“cstnuSoftwareX.cstnu”.

The following simple Java program, using the CSTNU Tool
library, loads the instance, executes the checks, and prints the
result in the console.

1| public static void main(String([] args) {

2 File graphSource = new
File("cstnuSoftwareX.cstnu");

3 TNGraphMLReader <CSTNUEdge> loader = new
TNGraphMLReader<>() ;

4 TNGraph<CSTNUEdge> graph = null;

5 System.out.print ("Loading the network...");

6 try {

7 graph = loader.readGraph(graphSource,
EdgeSupplier.DEFAULT_CSTNU_EDGE_CLASS) ;

8 } catch (IOException |
ParserConfigurationException | SAXException e) {

9 System.err.println("Format error in the
instance source file: " + e.getMessage());

10 System.exit (1) ;

11 }

12 System.out.print ("done.\nChecking its dynamic
controllability...");

13 CSTNU cstnu = new CSTNU(graph);

14 CSTNUCheckStatus checkStatus = null;

15 try {

16 checkStatus =
cstnu.dynamicControllabilityCheck () ;

17 } catch (WellDefinitionException e) {

18 System.err.println("The cstnu instance is not
well defined: " + e.getMessage());

19 System.exit (1) ;

20 }

21 System.out.print ("done\n" + checkStatus);

22| }

Roberto Posenato

SoftwareX 17 (2022) 100905

3

|
/

checkStatus

«»

STNCheckStatus

A |

1 ¥
] «.n
TNGraph

«.»

TNGraphMLReader

TNGraphMLWriter

—

STNUCheckStatus CSTNCheckStatus

1

1
1 | checkstatus

’s

4w

checkStatus

cstnu

1
€.
AbstractCSTN

A 1

1f |
STN STNU

1

CSTNPSU CSTNU2UppaalTiga

T
///7 CSTNEpsilon [

CSTNwoNodeLabel

abels

I

CSTNEpsilon3RwoNodeLabels

I

CSTN2CSTNO

[

CSTNIR CSTNU2CSTN

CSTNIR3R

I

CSTNIR3RwoNodeLabels

abels

i J
Fig. 4. Excerpt of the UML Class Diagram of the CSTNU Tool library.
(8, p) (2, —p) (Co:—17,0) Rule Labeled Letter Removal has been applied 12
(70)(2 2 times.
Py o @2:175> The global execution time has been 78681000 ns
—~ || & (70.07 s)
dils r P? | - -
|7 = S : 5 The instance results to be controllable. The implemented check
=l 7 /%/ e ing algorithm for CSTNU determines also all constraints that must
AV A\ (c1:1,0) c be considered for a correct execution of the instance and adds
— them to the graph.
0 (—4,00) =10,y 1 grap

Fig. 5. A CSTNU instance. Constraints in gray regions represent contingent links.

To create an object of the CSTNU class, it is necessary to give
the graph representing the network as a constructor parameter.
The graph (object of TNGraph<CSTNUEdge>) can be loaded from
a file using the helper class TNGraphMLReader (Line 3 and Line
7). Once the CSTNU object is created (Line 13), it is sufficient
to call the method checkControllability() to verify the
controllability of the instance (Line 16).

The check returns a CSTNUCheckStatus object containing
the controllability status of the instance and some other statistics.
All the information can be obtained in text form (Line 21). The
output of an execution is:

Loading the network...done.

Checking its dynamic controllability...done

The check is finished after 3 cycle(s).

The controllability check has determined that given
network is dynamic controllable.

Some statistics:

Rule RO has been applied O times.

Rule R3 has been applied 9 times.

Rule Labeled Propagation has been applied 139 times.

Rule Labeled z! has been applied 30 times.

Rule Labeled Lower Case has been applied 1 times.

Rule Labeled Cross-Lower-Case has been applied 1
times.

Using the program TNEditor, the checking task is even sim-
pler. Fig. 6 depicts the screenshot of the program after the check
of the sample instance has been completed. In general, on the left
part of the program window, there is the editor-window where
it is possible to load/create/edit a network instance; on the right
part, there is the window where the program shows the instance
after the execution of one of the different possible manipulating/
checking algorithms. The selection of which algorithm to apply is
done by the user pushing a button on the command bar present
on the lower part of the program window. In the screenshot,
the right part shows the completed graph obtained by applying
the CSTNU DC-checking algorithm to the sample CSTNU instance,
represented on the left part.

4. Impact and conclusions

In this work we described CSTNU Tool, a Java library for
analyzing temporal constraint networks. CSTNU Tool offers an
efficient implementation of dynamically-controllable/consistent
checking algorithms for temporal constraint network models like
CSTN, CSTNU, and FTNU.

As regards the impact of the library, it can serve for different
purposes to researchers, and in application settings:

o Applications. In different fields there is a significant interest
in considering temporal aspects for planning, scheduling,

Roberto Posenato

et e
File
File 20210811SoftwareX.cstnu: #nodes: 9, #edges: 12, #obs: 1, #contingent: 3
Edge type: class it.univr.di.cstnu.graph.CSTNUEdgePluggable
a202;{(7, @) }
c0x; {(8,) } €2, {(2, ~p) 2a2;{(1,m)}
a8
S
58
]
28

TRANSFORMING

Layout input graph

SoftwareX 17 (2022) 100905

Simple (C)STN(U) Editor. CSTN Version 7.0 - November, 07 2019. CSTNU Version 6.4 - January, 12 2021

Input Graph big viewer

@mmhmm

a202;;LL{(C2, 1, @)}
_ omEny ~Xe2i{(2.p)} P ©€2a2;; ULi{(C2, 7, m))
5 i
=~ - G)
58 9 2 e
22 o @ & S L
§ g O/,.o 00} & @9 AV BQ.O s
e = Lo s GBI R =
I3 7 SO 1% 5
2 g X} & ¥ ® i
7 A0 ((80,8)) k& 120,)} Ui g
A0_Z:{(0,0)) = et o
2N 7:) ~C1:{(80, m)) >
S
) G O o)
e, W o

MB\\:\" A
o

Derived Graph big viewer TRANSFORMING Help

CSTNU Init

Propagate only to Z Propag: also as std ¢

CSTNU Check

One Step CSTNU Check CSTNU2CSTN Check CSTNPSU/FTNU Check CSTNU Help

Fig. 6. TNEditor screenshot after the controllability check of the sample instance has been finished.

etc. and making temporal reasoning using temporal con-
straint networks for their simplicity and “efficiency” with
respect other models. For example, in the field of planning/
scheduling for robots [19,36-42], and in the field of business
processes [32,43-47]. A critical aspect in such systems is the
lack of efficient libraries for executing temporal reasoning
efficiently. This library would contribute in building effi-
cient solutions for such systems offering efficient algorithms
for some temporal constraint network models. The tool has
been already considered in [48-50].

e Introduction to temporal constraint networks. The GUI
TNEditor may help researchers in the study and simulation
of temporal constraint networks. For example, the inter-
twining of conditional constraints and contingent links is
not as simple as it seems. TNEditor helps to understand
such an intertwining, possible inconsistencies, and how it is
possible restore the controllability modifying constraints in
a fast way.

o Test of new checking algorithms. In the field of tempo-

ral reasoning, temporal constraint networks like STN/STNU
represent an interesting model because they admit solving
some problems efficiently. Although for richer models like
CSTN such an efficiency is not possible [51], some researches
have shown that some CSTN DC checking algorithms are
practically efficient in many benchmarks [20,25]. The algo-
rithms in CSTNU Tool library can be used either as a core for
more advanced algorithms or as reference for different new
algorithms.
Page http://profs.scienze.univr.it/~posenato/software/cstnu/
benchmarkWrapper.html presents the performances of the
implemented algorithms in some benchmarks that are freely
available.

In future work we plan to integrate CSTNU Tool library with
implementations of feasibility and dynamic scheduling algorithms.
Feasibility algorithms solve the problem of finding all inconsis-
tencies. Dynamic scheduling algorithms allow the execution of a
network in real-time.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

I would like to thank Francesca Zerbato for comments on the
manuscript.

Funding

This work was partially supported by the INAAM-GNCS Project
2020 “Automated Reasoning about Time in Medical and Business
Applications”.

Appendix A. Classes and possible checking methods

Table A.1 summarizes the classes and their possible check-
ing methods. The full list of the methods and corresponding
method parameters is presented in http://profs.scienze.univr.it/
~posenato/software/cstnu/apidocs.

Appendix B. Representation of temporal constraint network
in graphml format

GraphML is an XML application for representing graphs of
different types [35] in a very flexible way. In consists of two parts:
a language core to describe the structural properties of a graph,
and a flexible extension mechanism to add application-specific
data.

In the language core, there are the elements graph, node, and
edge by which it is possible to describe the topology of a graph.

The GraphML-Attributes extension allows the definition of node/
edge attributes in the same XML document where the graph is
defined.

In the CSTNU Tool library, it is assumed that a GraphML
document describing a temporal constraint network uses the
following attributes (we report here the most significant):

http://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html
http://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html
http://profs.scienze.univr.it/~posenato/software/cstnu/benchmarkWrapper.html
http://profs.scienze.univr.it/~posenato/software/cstnu/apidocs
http://profs.scienze.univr.it/~posenato/software/cstnu/apidocs
http://profs.scienze.univr.it/~posenato/software/cstnu/apidocs

Roberto Posenato

Table A.1
Summary of implemented checking algorithms.

Class

Checking algorithm

STN

Floyd-Warshall
Bellman-Ford (single sink)
Bannister-Eppstein
Dijkstra

Johnson

Yen (single sink)

BFCT

STNU

Morris14
RUL™
RUL20

CSTN

HPC15

HP16 (for e-reaction)
HP18 (3 rules)

HP20 (potential)

CSTNU

HP18
HP18 OnlyToZ
CSTNU2CSTN

CSTNPSU

PC20

(FTNU)

For the CSTN class, HP18 can be configured to work assuming different kind

of reaction of the system with respect to the uncertainty of conditions, i.e.,
standard-/ €-/ w- semantics.

(6,

the attribute "LabeledValues" as shown in the following listing:

<key id='"Obs" for="node'>
<desc>Proposition Observed. Value specification:
[a-zA-F]</desc>
</key>
<key id='Label" for="node'>
<desc>Label. Format: [—[a-zA-F]|[a-zA-F]]+|0(</desc>
<default>[</default>
</key>
<key id='Potential" for='"node'>
<desc>Labeled Potential Values. Format: {[('node name',
'integer', 'label') 1+}|{}</desc>
</key>
<key id='Type" for='"edge'>
<desc>Type: Possible values:
contingent|requirement |derived|internal.</desc>
<default>normal</default>
</key>
<key id='LowerCaseLabeledValues" for="edge"™
<desc>Labeled Lower-Case Values. Format: {[('node name',
'integer', 'label') 1+}|{}</desc>
</key>
<key id='"UpperCaselLabeledValues" for="edge'
<desc>Labeled Upper-Case Values. Format: {[('node name',
'integer', 'label')]+}|{}</desc>
</key>
<key id='Value" for="edge'>
<desc>Value for STN edge. Format: 'integer'</desc>
</key>
<key id='LabeledValues" for="edge'
<desc>Labeled Values. Format: {[('integer', 'label')
1+}1{}</desc>
</key>

Therefore, for example, to assign the labeled values (8, p) and
q) to the edge from node CO to node X, it is sufficient to add

<edge id="cOx" source="CO" target="X">
<data key='"LabeledValues">{(8, p), (6, q) }</data>
</edge>

References

[1] Bartdk R, Morris RA, Venable KB. An introduction to constraint-based

temporal reasoning. Synthesis lectures on artificial intelligence and ma-
chine learning, vol. 8, Morgan & Claypool Publishers; 2014, p. 1-121.
http://dx.doi.org/10.2200/S00557ED1V01Y201312AIM026.

[2] Dechter R, Meiri I, Pearl J. Temporal constraint networks. Artificial

Intelligence 1991;49(1-3):61-95. http://dx.doi.org/10.1016/0004-3702(91)
90006-6.

3

[4

(5

[6

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

SoftwareX 17 (2022) 100905

Vidal T, Fargier H. Handling contingency in temporal constraint net-
works: from consistency to controllabilities.] Exp Theor Artif Intell
1999;11(1):23-45. http://dx.doi.org/10.1080/095281399146607.

Morris PH, Muscettola N, Vidal T. Dynamic control of plans with tem-
poral uncertainty. In: 17th international joint conference on artificial
intelligence. 2001. p. 494-502.

Karpas E, Levine SJ, Yu P, Williams BC. Robust execution of plans for
human-robot teams. In: 25th international conference on automated
planning and scheduling. 2015. p. 342-346.

Franceschetti M, Eder]. Checking temporal service level agreements
for web service compositions with temporal parameters. In: 2019 IEEE
international conference on web services. IEEE; 2019, p. 443-5.
Franceschetti M, Eder]. Designing decentralized business processes with
temporal constraints. In: Advanced information systems engineering. 2020,
p. 51-63. http://dx.doi.org/10.1007/978-3-030-58135-0_5.

Franceschetti M, Eder]. Negotiating temporal commitments in cross-
organizational business processes. In: 27th international symposium on
temporal representation and reasoning. LIPIcs, vol. 178, Dagstuhl; 2020, p.
4:1-4:15. http://dx.doi.org/10.4230/LIPIcs.TIME.2020.4.

Morris PH, Muscettola N. Temporal dynamic controllability revisited. In:
20th national conference on artificial intelligence. 2005. p. 1193-1198.
Morris P. A structural characterization of temporal dynamic controllability.
In: Principles and practice of constraint programming, Vol. 4204. 2006, p.
375-89. http://dx.doi.org/10.1007/11889205_28.

Hunsberger L. A faster execution algorithm for dynamically controllable
STNUs. In: 20th internationl symposium on temporal representation and
reasoning. 2013.

Hunsberger L. A faster algorithm for checking the dynamic controllabil-
ity of simple temporal networks with uncertainty. In: 6th international
conference on agents and artificial intelligence. 2014.

Morris P. Dynamic controllability and dispatchability relationships. In:
Integration of Al and OR techniques in constraint programming. CPAIOR
2014.. LNCS, vol. 8451, Springer; 2014, p. 464-79. http://dx.doi.org/10.
1007/978-3-319-07046-9_33.

Hunsberger L. New techniques for checking dynamic controllability of sim-
ple temporal networks with uncertainty. In: 6th international conference
on agents and artificial intelligence, revised selected papers. Lecture notes
in computer science, vol. 8946, 2015, p. 170-93.

Morris P. The mathematics of dispatchability revisited. In: 26th int. conf.
on automated planning and scheduling. 2016. p. 244-252.

Cairo M, Rizzi R. Dynamic controllability made simple. In: 24th interna-
tional symposium on temporal representation and reasoning. LIPIcs, vol.
90, 2017, p. 8:1-8:16. http://dx.doi.org/10.4230/LIPIcs.TIME.2017.8.

Combi C, Gambini M, Migliorini S, Posenato R. Representing business
processes through a temporal data-centric workflow modeling language:
An application to the management of clinical pathways. IEEE Trans Syst
Man Cybern Syst 2014;44(9):1182-203. http://dx.doi.org/10.1109/TSMC.
2014.2300055.

Hunsberger L, Posenato R, Combi C. A sound-and-complete propagation-
based algorithm for checking the dynamic consistency of conditional
simple temporal networks. In: 22nd int. symp. on temporal representation
and reasoning. 2015, p. 4-18. http://dx.doi.org/10.1109/TIME.2015.26.
Conrad PR, Williams BC. Drake: An efficient executive for temporal plans
with choice.] Artif Intell Res (JAIR) 2011;42:607-59, URL http://dx.doi.org/
10.1613/jair.3478.

Hunsberger L, Posenato R. Simpler and faster algorithm for checking the
dynamic consistency of conditional simple temporal networks. In: 26th int.
joint conf. on artificial intelligence. 2018, p. 1324-30. http://dx.doi.org/10.
24963/ijcai.2018/184.

Hunsberger L, Posenato R. Checking the dynamic consistency of conditional
temporal networks with bounded reaction times. In: 26th int. conf. on
automated planning and scheduling. 2016, p. 175-83, URL http://www.
aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108.

Cairo M, Hunsberger L, Posenato R, Rizzi R. A streamlined model of
conditional simple temporal networks - semantics and equivalence results.
In: 24th int. symp. on temporal representation and reasoning. LIPIcs, vol.
90, 2017, p. 10:1-10:19. http://dx.doi.org/10.4230/LIPIcs. TIME.2017.10.
Cairo M, Combi C, Comin C, Hunsberger L, Posenato R, Rizzi R, et al
Incorporating decision nodes into conditional simple temporal networks.
In: 24th int. symp. on temporal representation and reasoning. LIPIcs, vol.
90, 2017, p. 9:1-9:18. http://dx.doi.org/10.4230/LIPIcs.TIME.2017.9.
Hunsberger L, Posenato R. Reducing €-DC checking for conditional simple
temporal networks to DC checking. In: 25th int. symp. on temporal
representation and reasoning. LIPIcs, vol. 120, 2018, p. 15:1-15:15. http:
//dx.doi.org/10.4230/LIPIcs.TIME.2018.15.

Hunsberger L, Posenato R. Faster dynamic-consistency checking for condi-
tional simple temporal networks. In: 30th int. conf. on automated planning
and scheduling, Vol. 30. 2020, p. 152-60, URL https://www.aaai.org/ojs/
index.php/ICAPS/article/view/6656.

http://dx.doi.org/10.2200/S00557ED1V01Y201312AIM026
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1080/095281399146607
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb6
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb6
http://dx.doi.org/10.1007/978-3-030-58135-0_5
http://dx.doi.org/10.4230/LIPIcs.TIME.2020.4
http://dx.doi.org/10.1007/11889205_28
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb11
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb11
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb11
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb11
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb11
http://dx.doi.org/10.1007/978-3-319-07046-9_33
http://dx.doi.org/10.1007/978-3-319-07046-9_33
http://dx.doi.org/10.1007/978-3-319-07046-9_33
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb14
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.8
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1109/TSMC.2014.2300055
http://dx.doi.org/10.1109/TIME.2015.26
http://dx.doi.org/10.1613/jair.3478
http://dx.doi.org/10.1613/jair.3478
http://dx.doi.org/10.1613/jair.3478
http://dx.doi.org/10.24963/ijcai.2018/184
http://dx.doi.org/10.24963/ijcai.2018/184
http://dx.doi.org/10.24963/ijcai.2018/184
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13108
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.10
http://dx.doi.org/10.4230/LIPIcs.TIME.2017.9
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.15
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.15
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.15
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6656
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6656
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6656

Roberto Posenato

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Combi C, Hunsberger L, Posenato R. An algorithm for checking the dynamic
controllability of a conditional simple temporal network with uncertainty.
In: 5th int. conf. on agents and artificial intelligent, Vol. 2. 2013, p. 144-56.
http://dx.doi.org/10.5220/0004256101440156.

Combi C, Hunsberger L, Posenato R. An algorithm for checking the dynamic
controllability of a conditional simple temporal network with uncertainty
- revisited. In: Agents and artificial intelligence. Communications in com-
puter and information science (CCIS), vol. 449, Springer; 2014, p. 314-31.
http://dx.doi.org/10.1007/978-3-662-44440-5_19.

Cimatti A, Hunsberger L, Micheli A, Posenato R, Roveri M. Sound and
complete algorithms for checking the dynamic controllability of temporal
networks with uncertainty, disjunction and observation. In: 21st int. symp.
on temporal representation and reasoning. 2014, p. 27-36. http://dx.doi.
org/10.1109/TIME.2014.21.

Cimatti A, Hunsberger L, Micheli A, Posenato R, Roveri M. Dynamic con-
trollability via timed game automata. Acta Inform 2016;53(6-8):681-722.
http://dx.doi.org/10.1007/s00236-016-0257-2.

Hunsberger L, Posenato R. Sound-and-complete algorithms for checking
the dynamic controllability of conditional simple temporal networks with
uncertainty. In: 25th int. symp. on temporal representation and reasoning.
LIPIcs, vol. 120, 2018, p. 14:1-14:17. http://dx.doi.org/10.4230/LIPIcs. TIME.
2018.14.

Combi C, Posenato R. Extending conditional simple temporal networks
with partially shrinkable uncertainty. In: 25th international symposium on
temporal representation and reasoning. LIPIcs, vol. 120, Dagstuhl; 2018, p.
9:1-9:15. http://dx.doi.org/10.4230/LIPIcs.TIME.2018.9.

Posenato R, Lanz A, Combi C, Reichert M. Managing time-awareness in
modularized processes. Soft Syst Model 2019;18(2):1135-54. http://dx.doi.
org/10.1007/s10270-017-0643-4.

Posenato R, Combi C. Adding flexibility to uncertainty: Flexible simple
temporal networks with uncertainty (FTNU). Inform Sci 2022;584:784-807.
http://dx.doi.org/10.1016/j.ins.2021.10.008.

O’Madadhain Jea. JUNG: Java universal network/graph framework. 2016,
https://github.com/jrtom/jung.

Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS. Graphml
progress report structural layer proposal. In: Graph drawing. 2002, p.
501-12. http://dx.doi.org/10.1007/3-540-45848-4_59, URL http://graphml.
graphdrawing.org/.

Muscettola N, Nayak P, Pell B, Williams B. Remote agent: To
boldly go where no Al system has gone before. Artificial Intelligence
1998;103(1-2):5-47. http://dx.doi.org/10.1016/s0004-3702(98)00068-x.
Frank], Jonsson A. Constraint-based attribute and interval planning. Con-
straints 2003;8(4):339-64. http://dx.doi.org/10.1023/A:1025842019552.
Benton], Coles A, Coles A. Temporal planning with preferences and
time-dependent continuous costs. In: Proceedings of the twenty-second
international conference on automated planning and scheduling. 2012, p.
2-10, URL https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/
4699/4708.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

SoftwareX 17 (2022) 100905

McGann C, Py F, Rajan K, Thomas H, Henthorn R, et al. A deliberative
architecture for AUV control. In: Proc. - ieee int. conf. robot. autom.. 2008,
p. 1049-54. http://dx.doi.org/10.1109/ROBOT.2008.4543343.

Nunes E, Gini M. Multi-robot auctions for allocation of tasks with temporal
constraints. In: Proc. natl. conf. artif. intell., Vol. 3. Al Access Foundation;
2015, p. 2110-6.

Maniadakis M, Hourdakis E, Trahanias P. Time-informed task planning in
multi-agent collaboration. Cogn Syst Res 2016. http://dx.doi.org/10.1016/j.
cogsys.2016.09.004.

Hofmann AG, Williams BC. Temporally and spatially flexible plan execution
for dynamic hybrid systems. Artificial Intelligence 2017;247:266-94. http:
//dx.doi.org/10.1016/j.artint.2015.02.007, Application of STN.

Eder], Panagos E, Rabinovich M. Workflow time management revisited. In:
Seminal contributions to information systems engineering. Springer; 2013,
p. 207-13. http://dx.doi.org/10.1007/978-3-642-36926-1_16.
Cheikhrouhou S, Kallel S, Guermouche N, Jmaiel M. A survey on
time-aware business process modeling. Tech. rep, Centre pour la commu-
nication scientifique directe; 2013, URL http://hal.archives-ouvertes.fr/hal-
00800444/.

Lanz A, Weber B, Reichert M. Time patterns for process-aware information
systems. Requir Eng 2014;19(2):113-41. http://dx.doi.org/10.1007/s00766-
012-0162-3.

Lanz A, Posenato R, Combi C, Reichert M. Controlling time-awareness in
modularized processes. In: Enterprise, business-process and information
systems modeling, 17th international conference, BPMDS 2016, 21st inter-
national conference, EMMSAD 2016. 2016, p. 157-72. http://dx.doi.org/10.
1007/978-3-319-39429-9_11.

Posenato R, Zerbato F, Combi C. Managing decision tasks and events in
time-aware business process models. In: Business process management -
16th international conference. LNCS, vol. 11080, Springer; 2018, p. 102-18.
http://dx.doi.org/10.1007/978-3-319-98648-7_7.

Liu D, Wang H, Qi C, Zhao P, Wang]. Hierarchical task network-based
emergency task planning with incomplete information, concurrency and
uncertain duration. Knowled-Based Syst 2016;112:67-79. http://dx.doi.org/
10.1016/J.KNOSYS.2016.08.029.

Eder], Franceschetti M, Kopke J. Controllability of business processes with
temporal variables. In: Proceedings of the 34th ACM/SIGAPP symposium
on applied computing. ACM; 2019, p. 40-7. http://dx.doi.org/10.1145/
3297280.3297286.

Ocampo-Pineda M, Posenato R, Zerbato F. TimeAwareBPMN-Js: an editor
and temporal verification tool for time-aware BPMN processes. SoftwareX
2022;?27?:22?-2?7. http://dx.doi.org/10.1016/j.s0ftx.2021.100939.

Cairo M, Rizzi R. Dynamic controllability of conditional simple temporal
networks is PSPACE-complete. In: 23rd int. symp. on temporal represen-
tation and reasoning. 2016, p. 90-9. http://dx.doi.org/10.1109/TIME.2016.
17.

http://dx.doi.org/10.5220/0004256101440156
http://dx.doi.org/10.1007/978-3-662-44440-5_19
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1109/TIME.2014.21
http://dx.doi.org/10.1007/s00236-016-0257-2
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.14
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.14
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.14
http://dx.doi.org/10.4230/LIPIcs.TIME.2018.9
http://dx.doi.org/10.1007/s10270-017-0643-4
http://dx.doi.org/10.1007/s10270-017-0643-4
http://dx.doi.org/10.1007/s10270-017-0643-4
http://dx.doi.org/10.1016/j.ins.2021.10.008
https://github.com/jrtom/jung
http://dx.doi.org/10.1007/3-540-45848-4_59
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://dx.doi.org/10.1016/s0004-3702(98)00068-x
http://dx.doi.org/10.1023/A:1025842019552
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699/4708
http://dx.doi.org/10.1109/ROBOT.2008.4543343
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb40
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb40
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb40
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb40
http://refhub.elsevier.com/S2352-7110(21)00156-4/sb40
http://dx.doi.org/10.1016/j.cogsys.2016.09.004
http://dx.doi.org/10.1016/j.cogsys.2016.09.004
http://dx.doi.org/10.1016/j.cogsys.2016.09.004
http://dx.doi.org/10.1016/j.artint.2015.02.007
http://dx.doi.org/10.1016/j.artint.2015.02.007
http://dx.doi.org/10.1016/j.artint.2015.02.007
http://dx.doi.org/10.1007/978-3-642-36926-1_16
http://hal.archives-ouvertes.fr/hal-00800444/
http://hal.archives-ouvertes.fr/hal-00800444/
http://hal.archives-ouvertes.fr/hal-00800444/
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/s00766-012-0162-3
http://dx.doi.org/10.1007/978-3-319-39429-9_11
http://dx.doi.org/10.1007/978-3-319-39429-9_11
http://dx.doi.org/10.1007/978-3-319-39429-9_11
http://dx.doi.org/10.1007/978-3-319-98648-7_7
http://dx.doi.org/10.1016/J.KNOSYS.2016.08.029
http://dx.doi.org/10.1016/J.KNOSYS.2016.08.029
http://dx.doi.org/10.1016/J.KNOSYS.2016.08.029
http://dx.doi.org/10.1145/3297280.3297286
http://dx.doi.org/10.1145/3297280.3297286
http://dx.doi.org/10.1145/3297280.3297286
http://dx.doi.org/10.1016/j.softx.2021.100939
http://dx.doi.org/10.1109/TIME.2016.17
http://dx.doi.org/10.1109/TIME.2016.17
http://dx.doi.org/10.1109/TIME.2016.17

	CSTNU Tool: A Java library for checking temporal networks
	Motivation and significance
	CSTNU Tool: Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact and conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Classes and possible checking methods
	Appendix B. Representation of temporal constraint network in GraphML format
	References

