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Abstract— The Sit-to-Stand (STS) test is used in clinical
practice as an indicator of lower-limb functionality decline,
especially for older adults. Due to its high variability, there is
no standard approach for categorising the STS movement
and recognising its motion pattern. This paper presents
a comparative analysis between visual assessments and
an automated-software for the categorisation of STS, rely-
ing on registrations from a force plate. 5 participants
(30 £+ 6 years) took part in 2 different sessions of visual
inspections on 200 STS movements under self-paced and
controlled speed conditions. Assessors were asked to iden-
tify three specific STS events from the Ground Reaction
Force, simultaneously with the software analysis: the start
of the trunk movement (Initiation), the beginning of the
stable upright stance (Standing) and the sitting movement
(Sitting). The absolute agreement between the repeated
raters’ assessments as well as between the raters’ and
software’s assessment in the first trial, were considered as
indexes of human and software performance, respectively.
No statistical differences between methods were found for
the identification of the Initiation and the Sitting events at
self-paced speed and for only the Sitting event at controlled
speed. The estimated significant values of maximum dis-
crepancy between visual and automated assessments were
0.200[0.039; 0.361] s in unconstrained conditions and 0.340
[0.014; 0.666] s for standardised movements. The software
assessments displayed an overall good agreement against
visual evaluations of the Ground Reaction Force, relying,
at the same time, on objective measures.

Index Terms— Sensors activity recognition, kinematics,
sensor systems.

|. INTRODUCTION

ERFORMANCE-BASED tests are important clinical
tools used to identify functional decline in older adults
and patients with either neurological or motor impairments [1].
Among them, the Sit-to-Stand test (STS) is strictly corre-
lated with functional capacity and with independence in the
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activities of daily living [2]-[9]. Furthermore, its simplic-
ity allows it to be performed both in clinical and in-home
environments across a broad range of patients’ functional
conditions [1], [5] For these reasons, the STS movement is
widely used in clinical research and practice, either as a single
test [10]-[12] or as part of evaluation scales like the Short
Physical Performance Battery [13]. Nonetheless, diversely
from gait, a standardised categorisation for the STS motion
pattern has yet to be established, due to its intrinsic variability.
Furthermore, the lack of consensus in the definitions and
measurement methodologies increases the uncertainty even
in the definition of those events that normally are generally
recognisable. For instance, the lifting of the thighs from the
chair is defined across the literature as the peak instant of the
horizontal [14] and vertical components [15] of the Ground
Reaction Force (GRF), the time of maximum anterior head
movement [16] or through a sensor-equipped chair [17].

In an attempt to describe a general model of the move-
ment, Nuzik [18] divided the STS into two phases through
the analysis of camera recordings, i.e. the flexion phase,
consisting of the forward flexion of trunk and hip, and the
extension phase, characterised by the lifting from the chair
to the extension of knees, hips, and ankles. In later years,
a finer sub-categorisation was introduced by Schenkman and
colleagues [19]. They identified other two phases, with the use
of a motion capture system, i.e. a “momentum transfer phase”
between the flexion phase and the extension phase, when
the inertia is transferred from the trunk flexion to the upper
body, and a “stabilisation phase” when the hip is completely
extended, and all the movements associated with stabilisation
from rising are completed. Differently, Etnyre and colleagues
analysed the kinetics of the STS under several conditions to
recognise eleven invariably occurring events in the GRE, i.e.
six in the vertical direction, three in the fore-aft direction, and
two in the medial-lateral direction [20].

In general, despite the large amount of data obtained from a
wide variety of sensors and technologies, it is still not possible
to identify a univocal approach for a standardised definition
of the STS motion pattern. Kinematic parameters proved to
be strongly affected by the high within-between individuals’
variability, limiting the performance of automated techniques
to the recognition of dynamic transitions and static positions.
On the contrary, kinetic variables permit a finer discretisation
of the movement, but they still depend too much on visual
evaluations to obtain reliable results [20], [21].

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE |
DESCRIPTIVE CHARACTERISTICS OF THE HAR DATASETS
HARI1 HAR2
19 N° participants 20
2643 Age [years] 2744
[9/10] Gender [M/F] [11/9]
63+10 Weight [kg] 67+15
171+£9 Height [cm] 172+9

According to the previous statements, to establish an objec-
tive method for describing commonly occurring events in STS
it is essential to assure quantitative and repetitive measures to
be used as a reference in clinical practice and research.

Il. METHODS

Objective: This study aims at evaluating the discrepancies
between the performance of human assessment as well as
a custom automated algorithm in the recognition of specific
events of the STS movement identified from GRF profiles. The
routine implementation is described in detail in an additional
document (see Additional File 1).

A. Definition of the Datasets

We evaluated the performance of the proposed method on
two Human Activity Recognition datasets (HAR1 and HAR2),
collected at the REHELab (University Campus of Savona,
Via Magliotto 2, 17100, Savona, Italy). Both HARI and
HAR?2 represent a series of sequential movements collected
from a convenience sample of healthy young adults (Table I).
The inclusion criteria for eligible participants were: good
health, absence of musculoskeletal or neurological disorders
and, ability to easily rise from a chair. Each participant had
to sign an informed consent.

Participants performed the STS repetitions on a force plate
(Kistler Winterthur, Switzerland). During the execution of the
movement, a custom-made chair equipped with an electronic
switch was able to record the time instants of rising (Seat
Off) and sitting (Seat On). The aim of using a custom-made
chair was to standardise the participants’ position in each
performance. The height of the chair was, therefore, regulating
according to participants’ height to reach a 90° knee flexion
while sitting. In both datasets, participants had to execute two
different tasks:

o To perform 10 repetitions of a single STS transition at

self-paced speed (SP);

o To perform 10 repetitions of a single STS transition
at a controlled speed (CT) with duration marked by a
repetitive 4-second acoustic feedback, composed by a
succession of 3 tones and a pause.

Between each repetition, one-minute break was necessary to
reboot the STS software and to avoid participants from getting
tired. For the same reasons, and to explain the execution of CT
trial, five-minutes break was necessary between the SP and the
CT trials. The different strategies of motor control involved in
the two tasks outlined two typical profiles of the Ground Reac-
tion Force (GRF). According to the definition of STS events
given by Etnyre and colleagues [20] in SP trials, an initial
deflection from the baseline was observed (Initiation). After
reaching the lowest level in the force recording (Peak-counter),
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Fig. 1. GRF profiles of SP and CT trials with identification of STS events
and phases.

the GRF raise to a global maximum (Peak) and subsequently
levelled to a normal postural sway (Standing). Diversely,
CT trials were characterised by a more gradual increase in
the GRF following the progressive inclination of the trunk
and the raising movement from the chair. Examples of force
profiles for both SP and CT trials are displayed in Fig. 1.
Hence, the STS movement pattern was categorised in 4
sequential phases (Fig. 1):
« the Resting phase, identified as the initial sitting position;
o the Trunk Leaning phase, starting from the Initiation
event to the Seat Off instant;
« the Raising phase, delimited from the Seat Off to the
Standing event as the first instant of steady postural sway;
« the Standing phase, characterised by a stable upright
position until the beginning of the sitting movement.
The two datasets are the result of two consecutive studies.
Hence, some minor modification in the execution protocol of
the exercise must be disclosed and taken into account. These
changes are due to the progressive methodological improve-
ment of the general work, which relies on previous empirical
evidence to reduce possible future bias. The summary of the
protocol differences between the two datasets is reported in
Table II.

B. Evaluation of the Software Performance

In the lack of a proper gold standard approach, visual
inspection remains the most reliable method to recognise STS
events and phases on the base of GRF values [20]. Hence,
simultaneously with the software analysis, five participants
aged (30 £ 6) years visually identified the beginning of
the trunk movement (Initiation event) and the limits of the
stable stance (Standing and Sitting events) from the force
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TABLE Il
PRoTOCOL DIFFERENCES BETWEEN HAR1 AND HAR2 DATASETS

HARI1

HAR2

In SP trials some participants tended to start the movement too early
not allowing the registration of an appropriate resting phase.

In SP trials participants had to wait 3 seconds from the start of the
acquisition before starting the movement.

In SP trials some participants tended to sit-down without having
reached a sufficient stable standing phase.

In SP trials participants had to wait 3 seconds in standing phase to reach
balance stability.

In CT trials participants considered the Stand-to-Sit transition as a
single returning phase, starting from the beginning of the Sitting
event until reaching the resting phase.

In CT trials participants were asked to control the descending movement,
identifying two returning phases: a “Sitting” phase, starting from the
beginning of the sitting movement until registration of the “seat-on”

signal; a “Trunk Raising phase, where participants raise the trunk until
reaching the resting phase. This was done in anticipation of future efforts in
categorising the Stand-to-Sit transition.

TABLE Il
RATERS’ DESCRIPTIONS

Age [years] | Professional background Academic Level
29 Bioengineer MSc/PhD student
27 Physicist MSc/PhD student
40 Physiotherapist PhD
25 Bioengineer MSc/Research Fellow
30 Psychologist MSc/PhD student

profiles of 200 STS sequences. The ages of the assessors
are reported in Table II together with their professional and
academic background.

As a measure of reliability, assessments were repeated
in 2 distinct sessions, separated in time by a minimum interval
of 1 hour. STS sequences were drawn randomly from a
total pool of 742 acquisitions (HAR1 + HAR2) and were
maintained across the measurement trials. This information
was not made explicit to avoid possible learning effects.
Among the 200 pooled sequences, 100 referred to SP trials,
and 100 referred to CT trials. Before the first session, raters
were briefly trained to recognise the onset of each event on five
force profiles accordingly to the definitions given by Etnyre
and colleagues [20], and an explanatory summary was always
available in the form of MATLAB live script throughout
all the measurements. All assessors were physiotherapists,
bioengineers and PhD candidates with clinical experience in
physiotherapy and expertise in movement analysis.

C. Data Analysis

Considering the possible sources of variability across differ-
ent datasets, the similarity between movements was assessed
using a correlation-based method, by comparing all the reg-
istered STS sequences with each other. This was done to
evaluate the possible homogeneity of results obtainable from a
combined analysis of the HAR1 and HAR?2 datasets. For each
pair of trials:

« through a cross-correlation operation, the relative lags that
maximised the similarity between the two GRF profiles
were found;

« the Pearson’s Correlation Coefficient (p) between the two
STS trials, was calculated after shifting the respective
GREF profiles according to the lags found in the first step.

This process was carried out separately for the SP and the CT
trials. Distributions of p were extrapolated for each dataset
comparison (i.e., HAR1 vs HAR2, HARI vs HARI, HAR2 vs
HAR?2) and descriptive statistics were reported in terms of
median and 95% Confidence Intervals (CI). Both the absolute

agreement between the repeated raters’ assessments as well
as between the raters’ and the software’s assessment in the
first trial, were evaluated through a non-parametric version
of Bland-Altman statistics [22]. The former and the latter
were considered as a quality index of the human’s and the
software’s measuring performance, respectively. Normal dis-
tributions were tested using the Kolmogorov-Smirnov test and,
furtherly investigated using the skewness and kurtosis indexes.
To correct the analysis for possible outliers not directly con-
nected to the evaluation of the raters or the performance of the
software, data observations that fell outside 1.5 interquartile
ranges above the upper quartile (75-th percentile) or below
the lower quartile (25-th percentile), were visually inspected.
In particular, wrong identifications resulting from an erro-
neous right mouse click, early movements or a malfunction
of the electronic switch were eliminated. We calculated the
systematic bias and the Limits of Agreement as the median of
the absolute differences between assessments and the respec-
tive 2.5-th and 97,5-th percentile scores. The upper Limits
of Agreement (ULoA) represented the maximum estimated
error between the measures. The CI of the above-specified
parameters were also calculated using a percentile bootstrap
method based on 10k samples [23]. The percentile method was
chosen for its conservative nature, as it tends to produce wider
CI less sensitive to population value and sample size [24].
To compare the maximum errors made between raters’ and
human-software’s agreement, we used a two-tailed two-sample
t-test [25], exploring the significant differences between mea-
sures. Every ULoAs and respective CI were approximated
to normal distributions characterised by mean values u; and
standard deviation o; [26] calculated in Eq. 1 and Eq. 2.

The choice of the lower or upper confidence limit is
guided by the need to calculate the largest standard error
to obtain a more conservative approximation. The statistical
analysis was stratified by considering the different STS events
separately, dividing the results obtained in SP and CT trials.
Bland-Altman statistics was implemented in MATLAB as a
modified version of the BlandAltman.m function developed by
Ran Klein from the Department of Nuclear Medicine of the
Ottawa Hospital [27]. The two-tailed two-sample t-test was
executed with the online “Comparison of means calculator”
tool from Medcalc Statistical Software [28].

I1l. RESULTS

The results of the correlation-based analysis, for testing
the homogeneity of the combined dataset, are displayed in
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Fig. 2. Correlograms of the p coefficients for each pairwise comparison
between the trials in HAR1 and HAR2.
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Fig. 3. Histograms of the Pearson’s Correlation Coefficients in within and
between datasets comparison. The median is indicated by the dashed
red line and the ClI are indicated by the dotted black line.

the correlograms in Fig 2 and the descriptive distributions
(medians and CI) of p are illustrated in the histograms in
Fig 3.

In general, the correlograms highlighted strong homogeneity
across the combined dataset, with high correlations (=1)
across all CT trials comparing STS sequences from the
same (HAR1 vs HAR1, HAR2 vs HAR2) or from different
dataset (HAR1 vs HAR2) and sequences from the same
or different participants. In SP trials, the correlations were
moderate to strong, significantly lower than CT trials. How-
ever, the descriptive distributions of p in the within-between
comparisons for both CT and SP trials were comparable both
in terms of descriptive statistics and shape.

The Bland-Altman plots relating to the identification of the
Initiation, Standing and Sitting events are shown respectively
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Fig. 4. Bland-Altman plots depicting the raters’ agreement (left) and the
human-software’s agreement (right) of the identification of the Initiation
event in SP trials (upper plots) and CT trials (lower plots).

in Fig. 4, Fig. 5 and Fig. 6 and the summary of the descriptive
statistics of bias and the ULoAs (CI) are reported in Table IV.

In both SP and CT trials, for all STS events, participants
showed significantly lower identification bias in the repeated
assessments, compared to the difference displayed against
the measurements performed by the software. Moreover,
the raters’ agreement in the identification of the STS events
significantly decreases in CT trials with a consequent increase
in the value of the systematic error.

The results of the two-tailed two-sample t-test are sum-
marised in Table V.

Significant differences in ULoAs between raters’ evaluation
and Human-Software assessments were found in the Stand-
ing event identification for both SP (0.200s [0.039; 0.361],
p > 0.05) and CT (0.300s [0.017; 0.583], p > 0.05) trials.
A significant difference (p > 0.05) of 0.340s [0.014; 0.666]
was also found in the Initiation event identification in CT trials.

IV. DISCUSSION

This work aimed at evaluating the performance of a new
automated approach for the recognition of clinically relevant
events in the STS and at comparing its performance to the
human visual assessment. The results obtained offer a dou-
ble contribution in prospective researches since not only we
quantified the discrepancy between the two methods, but we
also compared it against the maximum error made in repeated
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TABLE IV
DESCRIPTIVE STATISTICS FOR BIAS AND ULOA FOR EVERY COMPARISON. (*)P < 0.05 FOR NOT OVERLAPPING CI
SP trials CT trials
Events Raters’ Agreement Human-Software Raters’ Agreement Human-Software
Bias [s] ULOoA [s] N Bias [s] ULOoA [s] N Bias [s] ULOoA [s] N Bias [s] ULOoA [s] N
. 0.06 0.36 0.14 0.46 0.14 0.62 0.18 0.96
Initiation | 16 55 0,061 | [0.30-046] | 92 | [0.12-0.15] | 0.39-0.58] | *°° | [0.12-0.16] | [0.54-0.84] | **% | [0.16-020] | [0.84-1207 | #°
. 0.10 0.62 0.30 0.82 0.16 1.30 0.44 1.60
Standing |10 08.0.10] | 0.48-0.741 | *®® | 10.28:0.321 | [0.74-0.86] | *°° | [0.16:020] | [1.10-1.70] | *3* | [0.40-0.48] | 1.40-1.70] | 43
e 0.08 0.42 0.20 0.48 0.14 0.69 0.20 0.81
Sitting 1 10,06-0.08] | 0.34-0471 | *°7 | [0.18:022] | [0.46:0.60] | *** | [0.12-:0.14] | [0.60-0.861 | *°! | [0.18:0.22] | [0.66-0.861 |
TABLE V
TwO-TAILED TWO-SAMPLE T-TEST RESULTS. DIFFERENCES WITH P-VALUES < 0.05 WERE CONSIDERED STATISTICALLY SIGNIFICANT (x)
SP trials CT trials
Initiation | Standing | Sitting | Initiation | Standing | Sitting
Difference [s] 0.100 0.200 0.060 0.340 0.300 0.120
95% CI [s] -0.056 0.039 -0.084 0.014 0.017 -0.107
¢ S 0.256 0.361 0.204 0.666 0.583 0.347
t-statistic 1.255 2.440 0.816 2.045 2.079 1.037
df 980 981 989 974 975 979
p-value 0.209 0.015 (%) 0.414 0.041 (*) | 0.038 (*) 0.300
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Rarers’ agreement Human-Software Rarers’ agreement Human-Software
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Fig. 5. Bland-Altman plots depicting the raters’ agreement (left) and the
human-software’s agreement (right) of the identification of the Standing
event in Task A (upper plots) and Task B (lower plots).

visual measures. Despite the significant lower systematic bias
in repeated evaluations, the comparison between visual assess-
ments and the proposed approach showed similar values of
maximum absolute error.

More specifically no statistical differences were found in
the identification of the Initiation and the Sitting events in
SP trials and in the identification of only the Sitting event in
CT trials. The worsening of the observed agreement during
CT movements was generally in line with our expectation,
as ULoAs values could be affected by uncertainties due to
the kinetic modifications resulting from the standardisation
of the movement. As an example, the initial GRF’s signal
deflection effect has been related to the contraction of the
hip flexor muscles accompanied by an early lifting of the
thigs and a short discharge on the load of the feet [46]. This

°

Mean seconds [5] Mean seconds [s]

Fig. 6. Bland-Altman plots depicting the raters’ agreement (left) and the
human-software’s agreement (right) of the identification of the Standing
event in SP trials (upper plots) and CT trials (lower plots).

effect is highly dependent on each individual’s movement
strategy [20]. Previous studies on the STS movement in
both healthy younger people and older adults outlined two
main movement strategies [18], [19], [47]-[51]. The first is
typically observed in younger people since it implies high
balance control and greater momentum on the lower limbs.
The second is typically used by the elderly, who firstly perform
an accentuated flexion of the trunk toward the knees, moving
the centre of mass over the feet. This strategy is slower but
presents a reduction of global instability. When the person
is forced to get up in a controlled way, the strategy used
resembles the elderly’s one. This causes two effects on the
deflection phenomenon on the GRF signal. The first is that its
amplitude becomes smaller, since the lifting is delayed after
the trunk flexion and consequently the hip muscles contraction



JOB et al.: QUANTITATIVE COMPARISON OF HUMAN AND SOFTWARE RELIABILITY 775

is reduced. The second is that the discharges phases on the
GRF become two: the first when the person begins to lean
forward, the second when the desired inclination has been
reached and the thrust preceding the lift-off occurs. These
two effects contribute to the reduction in the detectability
of the Initiation event, which appears less pronounced in the
controlled lift.

Another important consideration highlights the intrinsic
subjectiveness of human evaluations [29]. One could consider
the slightest oscillation either as an extension of a contiguous
static phase or as the limit of a movement transition. Moreover,
visual assessments can vary across repeated measures and
differ in individuals, depending on their professional expe-
rience [30], [31].

Nonetheless, with a maximum estimated discrepancy
of 0.200 s [0.039; 0.361] and 0.340 s [0.014; 0.666] respec-
tively for normal and standardised speed, the analysed routine
may not be suitable for evaluations on a single patient,
where the expertise of health professionals plays a key role
in the diagnosis process, often requiring a high level of
abstraction [29]. However, the capacity of automatically and
objectively handling big quantity of data, would free health
professionals from the encumbrance of the processing, with
a reasonable margin of error. Moreover, it is also true that
a great quantity of data collected through sensor systems
is inherently noisy, and for this reason, its analysis should
consider and handle some degree of uncertainty [32]. In this
context, the presented algorithm can be used as an objective
labelisation procedure for artificial intelligence methods to
provide reliable ground truth data for supervised classification
tasks in the field of big data analytics and Human Activity
Recognition [33], [34].

This is the first study that aims at comparing human and
automated assessments in the identification of the events that
divide the different phases of the STS movement, relying on
data collected through a force plate. Previous works [35]-[39]
evaluated the performances of various algorithms developed
for the identification of Sit-to-Stand and Stand-to-Sit postural
transitions using data acquired from inertial sensors. A recent
paper of Atrsaei and colleagues [40] validated the accuracy of
a new routine based on a single device against visual assess-
ments on-camera recordings of STS movements, obtaining
levels of agreement above 94%, in terms of positive predictive
values and sensitivity. As a direct comparison with the present
study, the use of inertial sensors is usually preferable since
they can be also applied in non-clinical environments [41].
However, their measurements are strongly influenced by the
inter- and intra-individual variability of the movement [20],
[42], limiting the recognition of the STS motion pattern
to the simple discrimination of static and dynamic phases.
Conversely, our choice to use a force plate has some doubtless
limitations in terms of costs and portability but the strong
advantage of providing easier interpretable results, on which
it is possible to identify clinically significant movement events
and phases. Under this point of view, supported by the recent
advances in the field of machine learning, it is possible to con-
sider this data as a valid ground-truth reference to train specific
IMU-based approaches in a finer recognition of the STS. This

transition could allow the development of accessible, wearable
rehabilitation tools, combining the discriminating power of
gold-standard instruments with the limited dimensions and
costs of inertial sensors.

The results highlighted in this work should be appraised
in consideration of some limitations. The population chosen
to perform the STS was young and did not suffer from any
musculoskeletal and neurological conditions. This allowed for
evaluating the difference in the discrepancies of the STS
performance assessment in a population whose movement
patterns are not hindered by the abovementioned conditions.
Similarly, also the standardisation of posture at the beginning
of the trials could have restricted the applicability of the
presented evidence. Both the setting of the starting position
and the individuals’ characteristics influence the STS motion
strategy and consequently, the value of the vertical GRF and
the successful outcome of the movement [20], [43], [44].
Hence, future studies should investigate if the presence of
different conditions (e.g., different uses of the arms during
the rising, different fatigue condition of the participants etc.)
and different population groups might widen the discrepancies
in the assessment of STS performance. Moreover, the limited
sample size and the heterogeneous professional background
of the raters could have impacted the final estimate of the
visual measurements. Further evaluations performed by a
larger sample of qualified health professionals could provide a
more precise picture of the reliability of the proposed method.

V. CONCLUSION

The presented algorithm displayed an overall good agree-
ment against visual assessments in the identification of sig-
nificant STS events from values of vertical Ground Reaction
Force. By providing objective and fast measures, this auto-
mated method can be applied for the analysis of a large amount
of data to identify specific trends and patterns in patients’
movement. Further studies should be undertaken to validate
its accuracy across different types of patients’ conditions.
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