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Abstract
Malware detection is a crucial aspect of software security. Cur-
rent malware detectors work by checking for “signatures,” which
attempt to capture (syntactic) characteristics of the machine-level
byte sequence of the malware. This reliance on a syntactic approach
makes such detectors vulnerable to code obfuscations, increasingly
used by malware writers, that alter syntactic properties of the mal-
ware byte sequence without significantly affecting their execution
behavior.

This paper takes the position that the key to malware identifi-
cation lies in their semantics. It proposes a semantics-based frame-
work for reasoning about malware detectors and proving properties
such as soundness and completeness of these detectors. Our ap-
proach uses a trace semantics to characterize the behaviors of mal-
ware as well as the program being checked for infection, and uses
abstract interpretation to “hide” irrelevant aspects of these behav-
iors. As a concrete application of our approach, we show that the
semantics-aware malware detector proposed by Christodorescu et
al. is complete with respect to a number of common obfuscations
used by malware writers.

Categories and Subject Descriptors F.3.1 [Theory of Computa-
tion]: Specifying and Verifying and Reasoning about Programs.
Mechanical verification. [Malware Detection]

General Terms Security, Languages, Theory, Verification

Keywords malware detection, obfuscation, trace semantics, ab-
stract interpretation.
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1. Introduction
Malware is a program with malicious intent that has the potential to
harm the machine on which it executes or the network over which
it communicates. A malware detector identifies malware. A misuse
malware detector (or, alternately, a signature-based malware de-
tector) uses a list of signatures (traditionally known as a signature
database [22]). For example, if part of a program matches a signa-
ture in the database, the program is labeled as malware [26]. Mis-
use malware detectors’ low false-positive rate and ease of use have
led to their widespread deployment. Other approaches for identi-
fying malware have not proved practical as they suffer from high
false positive rates (e.g., anomaly detection using statistical meth-
ods [19, 20]) or can only provide a post-infection forensic capabil-
ity (e.g., correlation of network events to detect propagation after
infection [15]).

Malware writers continuously test the limits of malware detec-
tors in an attempt to discover ways to evade detection. This leads
to an ongoing game of one-upmanship [23], where malware writers
find new ways to create undetected malware, and where researchers
design new signature-based techniques for detecting such evasive
malware. This co-evolution is a result of the theoretical undecid-
ability of malware detection [2,5]. This means that, in the currently
accepted model of computation, no ideal malware detector exists.
The only achievable goal in this scenario is to design better detec-
tion techniques that jump ahead of evasion techniques and make
the malware writer’s task harder.

Attackers have resorted to program obfuscation for evading
malware detectors. Of course, attackers have the choice of creat-
ing new malware from scratch, but that does not appear to be a
favored tactic [25]. Program obfuscation transforms a program, ei-
ther manually or automatically, by inserting new code or modify-
ing existing code to make understanding and detection harder, at the
same time preserving the malicious behavior. Obfuscation transfor-
mations can easily defeat signature-based detection mechanisms. If
a signature describes a certain sequence of instructions [26], then
those instructions can be reordered or replaced with equivalent in-
structions [29, 30]. Such obfuscations are especially applicable on
CISC architectures, such as the Intel IA-32 [16], where the instruc-
tion set is rich and many instructions have overlapping semantics.
If a signature describes a certain distribution of instructions in the
program, insertion of junk code [17, 27, 30] that acts as a nop so
as not to modify the program behavior can defeat frequency-based
signatures. If a signature identifies some of the read-only data of
a program, packing or encryption with varying keys [13, 24] can
effectively hide the relevant data. Therefore, an important require-
ment of a robust malware detection technique is to handle obfusca-
tion transformations.

Program semantics provides a formal model of program behav-
ior. Therefore addressing the malware-detection problem from a se-
mantic point of view could lead to a more robust detection system.



Preliminary work by Christodorescu et al. [4] and Kinder et al. [18]
on a formal approach to malware detection confirms the potential
benefits of a semantics-based approach to malware detection. The
goal of this paper is to provide a formal semantics-based frame-
work that can be used by security researchers to reason about and
evaluate the resilience of malware detectors to various kinds of ob-
fuscation transformations. This paper makes the following specific
contributions:

• We present a formal definition of what it means for a detector to
be sound and complete with respect to a class of obfuscations.
We also provide a framework which can be used by malware-
detection researchers to prove that their detector is complete
with-respect-to a class of obfuscations. As an integral part of
the formal framework, we provide a trace semantics to charac-
terize the program and malware behaviors, using abstract inter-
pretation to “hide” irrelevant aspects of these behaviors.
• We show our formal framework in action by proving that the

semantic-aware malware detector AMD proposed by Christo-
dorescu et al. [4] is complete with respect to some common
obfuscations used by malware writers. The soundness of AMD

was proved in [4].

2. Preliminaries
Let P be the set of programs. An obfuscation is a program trans-
former, O : P → P. Code reordering and variable renaming are
two common obfuscations. The set of all obfuscations is denoted
by O.

A malware detector is D : P × P → {0, 1}: D(P,M) = 1
means that P is infected with M or with an obfuscated variant
of M . Our treatment of malware detectors is focused on detecting
variants of existing malware. When a program P is infected with a
malware M , we write M ↪→ P . Intuitively, a malware detector is
sound if it never erroneously claims that a program is infected, i.e.,
there are no false positives, and it is complete if it always detects
programs that are infected, i.e., there are no false negatives. More
formally, these properties can be defined as follows:

DEFINITION 1 (Soundness and Completeness). A malware detec-
torD is complete for an obfuscationO ∈ O if and only if ∀M ∈ P,
O(M) ↪→ P ⇒ D(P,M) = 1. A malware detector D is sound
for an obfuscation O ∈ O if and only if ∀M ∈ P, D(P,M) =
1⇒ O(M) ↪→ P .

Note that this definition of soundness and completeness can be ap-
plied to a deobfuscator as well. In other words, our definitions are
not tied to the concept of malware detection. Most malware detec-
tors are built on top of other static-analysis techniques for problems
that are hard or undecidable. For example, most malware detec-
tors [4,18] that are based on static analysis assume that the control-
flow graph for an executable can be extracted. As shown by re-
searchers [21], simply disassembling an executable can be quite
tricky. Therefore, we want to introduce the notion of relative sound-
ness and completeness with respect to algorithms that a detector
uses. In other words, we want to prove that a malware detector is
sound or complete with respect to a class of obfuscations if the
static-analysis algorithms that the detector uses are perfect.

DEFINITION 2 (Oracle). An oracle is an algorithm over programs.
For example, a CFG oracle is an algorithm that takes a program
as an input and produces its control-flow graph.

DOR denotes a detector that uses a set of oracles OR.1 For
example, let ORCFG be a static-analysis oracle that given an exe-
cutable provides a perfect control-flow graph for it. A detector that
uses the oracle ORCFG is denoted as DORCFG . In the definitions
and proofs in the rest of the paper we assume that oracles that a
detector uses are perfect.

DEFINITION 3 (Soundness and completeness relative to oracles).
A malware detector DOR is complete with respect to an obfusca-
tionO, ifDOR is complete for that obfuscationO when all oracles
in the set OR are perfect. Soundness of a detector DOR can be
defined in a similar manner.

2.1 A Framework for Proving Soundness and Completeness
of Malware Detectors

When a new malware detection algorithm is proposed, one of the
criteria of evaluation is its resilience to obfuscations. Unfortunately,
identifying the classes of obfuscations for which a detector is re-
silient can be a complex and error-prone task. A large number of
obfuscation schemes exist, both from the malware world and from
the intellectual-property protection industry. Furthermore, obfusca-
tions and detectors are defined using different languages (e.g., pro-
gram transformation vs program analysis), complicating the task of
comparing one against the other.

We present a framework for proving soundness and complete-
ness of malware detectors in the presence of obfuscations. This
framework operates on programs described through their execu-
tion traces—thus, program trace semantics is the building block of
our framework. Both obfuscations and detectors can be elegantly
expressed as operations on traces (as we describe in Section 3 and
Section 4).

In this framework, we propose the following two step proof
strategy for showing that a detector is sound or complete with
respect to an obfuscation or a class of obfuscations.

1. [Step 1] Relating the two worlds.
Let DOR be a detector that uses a set of oracles OR. Assume
that we are given a program P and malware M . Let S JP K and
S JMK be the set of traces corresponding to P and M , respec-
tively. In Section 3 we describe a detector DTr which works in
the semantic world of traces. We then prove that if the oracles in
OR are perfect, the two detectors are equivalent, i.e, for all P
andM in P,DOR(P,M) = 1 iffDTr (S JP K ,S JMK) = 1.
In other words, this step shows the equivalence of the two
worlds: the concrete world of programs and the semantic world
of traces.

2. [Step 2] Proving soundness and completeness in the se-
mantic world.
After step 1, we prove the desired property (e.g., completeness)
about the trace-based detector DTr , with respect to the chosen
class of obfuscations. In this step, the detector’s effects on the
trace semantics are compared to the effects of obfuscation on
the trace semantics. This also allows us to evaluate the detector
against whole classes of obfuscations, as long as the obfusca-
tions have similar effects on the trace semantics.

The requirement for equivalence in step 1 above might be too
strong if only one of completeness or soundness is desired. For
example, if the goal is to prove only completeness of a malware
detector DOR, then it is sufficient to find a trace-based detector
that classifies only malware and malware variants in the same way
as DOR. Then, if the trace-based detector is complete, so is DOR.

1 We assume that detector D can query an oracle from the set OR, and
the query is answered perfectly and in O(1) time. These types of relative
completeness and soundness results are common in cryptography.



Syntactic Categories:

n ∈ N (integers)
X ∈ X (variable names)
L ∈ L (labels)
E ∈ E (integer expressions)
B ∈ B (Boolean expressions)
A ∈ A (actions)
D ∈ E ∪ (A× ℘(L)) (assignment r-values)
C ∈ C (commands)
P ∈ P (programs)

Syntax:

E ::= n | X | E1 op E2 (op ∈ {+,−, ∗, /, . . .})
B ::= true | false | E1 < E2

| ¬B1 | B1 && B2

A ::= X := D | skip | assign(L, X)
C ::= L : A→ L′ (unconditional actions)
| L : B → {LT , LF } (conditional jumps)

P ::= ℘(C)

Semantics:
ARITHMETIC EXPRESSIONS

E : A×X → Z⊥ ∪ (A× ℘(L))
E JnK ξ = n
E JXK ξ = m(ρ(X)) where ξ = (ρ, m)
E JE1 op E2K ξ = if (E JE1K ξ ∈ Z and E JE2K ξ ∈ Z)

then E JE1K ξ op E JE2K ξ; else ⊥

Value Domains:

B = {true, false} (truth values)
n ∈ Z (integers)
ρ ∈ E = X→ L⊥ (environments)
m ∈M = L→ Z ∪ (A× ℘(L)) (memory)
ξ ∈ X = E ×M (execution contexts)

Σ = C×X (program states)

BOOLEAN EXPRESSIONS

B : B×X → B⊥
B JtrueK ξ = true
B JfalseK ξ = false
B JE1 < E2K ξ = if (E JE1K ξ ∈ Z and E JE2K ξ ∈ Z) then E JE1K ξ < E JE2K ξ; else ⊥
B J¬BK ξ = if (B JBK ξ ∈ B) then ¬B JBK ξ; else ⊥
B JB1 && B2K ξ = if (B JB1K ξ ∈ B and B JB2K ξ ∈ B) then B JB1K ξ ∧B JB2K ξ; else ⊥

ACTIONS

A : A×X → X
A JskipK ξ = ξ

A JX := DK ξ = (ρ, m′) where ξ = (ρ, m), m′ = m[ρ(X)← δ], and δ =

{
D if D ∈ A× ℘(L)
E JDK (ρ, m) if D ∈ E

A Jassign(L′, X)K ξ = (ρ′, m) where ξ = (ρ, m) and ρ′ = ρ[X  L′]

COMMANDS
The semantic function C : Σ → ℘(Σ) effectively specifies the transition relation between states. Here, lab JCK denotes the label for the command C, i.e.,
lab JL : A→ L′K = L and lab JL : B → {LT , LF }K = L.

C JL : A→ L′K ξ = {(C, ξ′) | ξ′ = A JAK ξ, lab JCK = L′, 〈act JCK : suc JCK〉 = m′(L′)} where ξ′ = (ρ′, m′)

C JL : B → {LT , LF }K ξ = {(C, ξ) | lab JCK =

{
LT if B JBK ξ = true
LF if B JBK ξ = false }

Figure 1. A simple programming language.

Labels:
lab JL : A→ L′K = L
lab JL : B → {LT , LF }K = L
lab JP K = {lab JCK |C ∈ P}

Successors of a command:
suc JL : A→ L′K = L′

suc JL : B → {LT , LF }K = {LT , LF }
Action of a command:

act JL : A→ L2K = A

Variables:
var JL1 : A→ L2K = var JAK
var JP K =

⋃
C∈P var JCK

var JAK = {variables occuring in A}
Memory locations used by a program:

Luse JL : A→ L′K = Luse JAK
Luse JP K =

⋃
C∈P Luse JCK

Luse JAK = {locations occuring in A} ∪ ρ(var JAK)

Commands in sequences of program states:
cmd J{(C1, ξ1), . . . , (Ck, ξk)}K = {C1, . . . , Ck}

Figure 2. Auxiliary functions for the language of Figure 1.

2.2 Abstract Interpretation
The basic idea of abstract interpretation is that program behavior
at different levels of abstraction is an approximation of its formal
semantics [8, 9]. The (concrete) semantics of a program is com-
puted on the (concrete) domain 〈C,≤C〉, i.e., a complete lattice
which models the values computed by programs. The partial or-
dering ≤C models relative precision: c1 ≤C c2 means that c1 is
more precise (concrete) than c2. Approximation is encoded by an
abstract domain 〈A,≤A〉, i.e., a complete lattice, that represents
some approximation properties on concrete objects. Also in the
abstract domain the ordering relation ≤A denotes relative preci-
sion. As usual abstract domains are specified by Galois connec-
tions [8, 9]. Two complete lattices C and A form a Galois con-
nection (C,α, γ,A), also denoted C −→←−α

γ
A, when the func-

tions α : C → A and γ : A → C form an adjunction, namely
∀a ∈ A,∀c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a) where α(γ)
is the left(right) adjoint of γ(α). α and γ are called, respectively,
abstraction and concretization maps. A tuple (C,α, γ,A) is a Ga-
lois connection iff α is additive iff γ is co-additive. This means that
whenever we have an additive(co-additive) function f between two
domains we can always build a Galois connection by considering



the right(left) adjoint map induced by f . Given two Galois con-
nections (C,α1, γ1, A1) and (A1, α2, γ2, A2), their composition
(C,α2 ◦α1, γ1 ◦γ2, A2) is a Galois connection. (C,α, γ,A) spec-
ifies a Galois insertion, denoted C →−→←−α

γ
A, if each element of A

is an abstraction of a concrete element in C, namely (C,α, γ,A)
is a Galois insertion iff α is surjective iff γ is injective. Abstract
domains can be related to each other w.r.t. their relative degree of
precision. We say that an abstraction α1 : C → A1 is more con-
crete then α2 : C → A2, i.e., A2 is more abstract than A1, if
∀c ∈ C : γ1(α1(c)) ≤C γ2(α2(c)).

2.3 Programming Language
The language we consider is a simple extension of the one in-
troduced by Cousot and Cousot [10], the main difference being
the ability of programs to generate code dynamically (this facil-
ity is added to accommodate certain kinds of malware obfusca-
tions where the payload is unpacked and decrypted at runtime).
The syntax and semantics of our language are given in Figure 1.
Given a set S, we use S⊥ to denote the set S ∪ {⊥}, where ⊥ de-
notes an undefined value.2 Commands can be either conditional or
unconditional. A conditional command at a label L has the form
‘L : B → {LT , LF },’ where B is a Boolean expression and LT

(respectively, LF ) is the label of the command to execute when
B evaluates to true (respectively, false); an unconditional com-
mand at a label L is of the form ‘L : A → L1,’ where A is an
action and L1 the label of the command to be executed next. A
variable can be undefined (⊥), or it can store either an integer or
a (appropriately encoded) pair (A,S) ∈ A × ℘(L). A program
consists of an initial set of commands together with all the com-
mands that are reachable through execution from the initial set.
In other words, if Pinit denotes the initial set of commands, then
P = cmd

r⋃
C∈Pinit

(⋃
ξ∈X C ∗(C, ξ)

)z
, where we extend C to

a set of program states, C (S) =
⋃

σ∈S C (σ). Since each com-
mand explicitly mentions its successors, the program need not to
maintain an explicit sequence of commands. This definition allows
us to represent programs that generate code dynamically.

An environment ρ ∈ E maps variables in dom(ρ) ⊆ X to
memory locations L⊥. Given a program P we denote with E(P )
its environments, i.e. if ρ ∈ E(P ) then dom(ρ) = var JP K. Let
ρ[X  L] denote environment ρ where label L is assigned to
variable X . The memory is represented as a function m : L →
Z⊥ ∪ (A × ℘(L)). Let m[L ← D] denote memory m where
element D is stored at location L. When considering a program
P , we denote with M(P ) the set of program memories, namely
if m ∈ M(P ) then dom(m) = Luse JP K. This means that
m ∈ M(P ) is defined on the set of memory locations that are
affected by the execution of program P (excluding the memory
locations storing the initial commands of P ).

The behavior of a command when it is executed depends on its
execution context, i.e., the environment and memory in which it is
executed. The set of execution contexts is given by X = E ×M. A
program state is a pair (C, ξ) whereC is the next command that has
to be executed in the execution context ξ. Σ = C× X denotes the
set of all possible states. Given a state s ∈ Σ, the semantic function
C (s) gives the set of possible successor states of s; in other words,
C : Σ → ℘(Σ) defines the transition relation between states. Let
Σ(P ) = P × X (P ) be the set of states of a program P , then we
can specify the transition relation C JP K : Σ(P ) → ℘(Σ(P )) on
program P as:
C JP K (C, ξ) ={

(C′, ξ′)
∣∣(C′, ξ′) ∈ C (C, ξ), C′ ∈ P, and ξ, ξ′ ∈ X (P )

}
.

2 We abuse notation and use⊥ to denote undefined values of different types,
since the type of an undefined value is usually clear from the context.

Let A∗ denote the Kleene closure of a set A, i.e., the set of finite
sequences over A. A trace σ ∈ Σ∗ is a sequence of states s1...sn

of length |σ| ≥ 0 such that for all i ∈ [1, n): si ∈ C (si−1). The
finite partial traces semantics S JP K ⊆ Σ∗ of program P is the
least fixpoint of the function F :

F JP K (T ) = Σ(P ) ∪ {ss′σ|s′ ∈ C JP K (s), s′σ ∈ T}

where T is a set of traces, namely S JP K = lfp⊆F JP K. The
set of all partial trace semantics, ordered by set inclusion, forms
a complete lattice.

Finally, we use the following notation. Given a function f :
A → B and a set S ⊆ A, we use f|S to denote the restriction of
function f to elements in S∩A, and frS to denote the restriction
of function f to elements not in S, namely to Ar S.

3. Semantics-Based Malware Detection
Intuitively, a program P is infected by a malware M if (part of)
P ’s execution behavior is similar to that of M . In order to detect
the presence of a malicious behavior from a malware M in a
program P , therefore, we need to check whether there is a part (a
restriction) of S JP K that “matches” (in a sense that will be made
precise) S JMK. In the following we show how program restriction
as well as semantic matching are actually appropriate abstractions
of program semantics, in the abstract interpretation sense.

The process of considering only a portion of program semantics
can be seen as an abstraction. A subset of a program P ’s labels
(i.e., commands) labr JP K ⊆ lab JP K characterizes a restriction
of program P . In particular, let varr JP K and Luser JP K denote,
respectively, the set of variables occurring in the restriction and the
set of memory locations used:

varr JP K =
⋃
{var JCK | lab JCK ∈ labr JP K}

Luser JP K =
⋃
{Luse JCK | lab JCK ∈ labr JP K}.

The set of labels labr JP K induces a restriction on environment
and memory maps. Given ρ ∈ E(P ) and m ∈ M(P ), let
ρr = ρ|varrJP K and mr = m|LuserJP K denote the restricted
set of environments and memories induced by the restricted set of
labels labr JP K. Let Σr =

{
(C, (ρr,mr))

∣∣lab JCK ∈ labr JP K
}

be the set of restrected program states. Define αr : Σ∗ → Σ∗

that propagates restriction labr JP K on a given a trace σ =
(C1, (ρ1,m1))σ

′:

αr(σ) =

 ε if σ = ε
(C1, (ρ

r
1,m

r
1))αr(σ

′) if lab JC1K ∈ labr JP K
αr(σ

′) otherwise

Given a function f : A → B we denote, by a slight abuse of no-
tation, its pointwise extension on powerset as f : ℘(A) → ℘(B),
where f(X) = {f(x)|x ∈ X}. Note that the pointwise exten-
sion is additive. Therefore, the function αr : ℘(Σ∗) → ℘(Σ∗r)
is an abstraction that discards information outside the restriction
labr JP K. Moreover αr is surjective and defines a Galois insertion:
〈℘(Σ∗),⊆〉 →−→←−

αr

γr
〈℘(Σ∗r),⊆〉. Let αr(S JP K) be the restricted

semantics of program P .
Observe that program behavior is expressed by the effects that

program execution has on environment and memory. Consider a
transformation αe : Σ∗ → X ∗ that, given a trace σ, discards from
σ all information about the commands that are executed, retaining
only information about changes to the environment and effects on
memory during execution:

αe(σ) =

{
ε if σ = ε
ξ1αe(σ

′) if σ = (C1, ξ1)σ
′



Two traces are considered to be “similar” if they are the same under
αe, i.e., if they have the same sequence of effects on the restrictions
of the environment and memory defined by labr JP K. This seman-
tic matching relation between program traces is the basis of our ap-
proach to malware detection. The additive function αe : ℘(Σ∗)→
℘(X ∗) abstracts from the trace semantics of a program and defines
a Galois insertion: 〈℘(Σ∗),⊆〉 →−→←−

αe

γe
〈℘(X ∗),⊆〉.

Let us say that a malware is a vanilla malware if no obfuscating
transformations have been applied to it. The following definition
provides a semantic characterization of the presence of a vanilla
malware M in a program P in terms of the semantic abstractions
αr and αe.

DEFINITION 4. A program P is infected by a vanilla malware M ,
i.e., M ↪→ P , if:

∃labr JP K ∈ ℘(lab JP K) : αe(S JMK) ⊆ αe(αr(S JP K)).

A semantic malware detector is a system that verifies the presence
of a malware in a program by checking the truth of the inclusion
relation of the above definition. In this definition, the program
exhibits behaviors that, under the restricted semantics, match all
of the behaviors of the vanilla malware. We will later consider
a weaker notion of malware infection, where only some (not all)
behaviors of the malware are present in the program (Section 5).

4. Obfuscated Malware
To prevent detection malware writers usually obfuscate the mali-
cious code. Thus, a robust malware detector needs to handle possi-
bly obfuscated versions of a malware. While obfuscation may mod-
ify the original code, the obfuscated code has to be equivalent (up
to some notion of equivalence) to the original one. Given an ob-
fuscating transformation O : P → P on programs and a suitable
abstract domain A, we define an abstraction α : ℘(X ∗) → A that
discards the details changed by the obfuscation while preserving
the maliciousness of the program. Thus, different obfuscated ver-
sions of a program are equivalent up to α ◦ αe. Hence, in order to
verify program infection, we check whether there exists a seman-
tic program restriction that matches the malware behavior up to α,
formally if:

∃ labr JP K ∈ ℘(lab JP K) :

α(αe(S JMK)) ⊆ α(αe(αr(S JP K))).

Here αr(S JP K) is the restricted semantics for P ; αe(αr(S JP K))
retains only the environment-memory traces from the restricted
semantics; and α further discards any effects due to the obfuscation
O. We then check that the resulting set of environment-memory
traces contains all of the environment-memory traces from the
malware semantics, with obfuscation effects abstracted away via
α.

EXAMPLE 1. Let us consider the fragment of program P that com-
putes the factorial of variable X and its obfuscation O(P ) ob-
tained inserting commands that do not affect the execution context
(at labels L2 and LF+1 in the example).

P O(P )

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : F := F × 2− F → L3

L3 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : X := X × 1→ LF+2

LF+2 : F := F ×X → L3

LT : ....

A suitable abstraction here is the one that observes modifications
in the execution context, namely α((ρ1,m1)(ρ2,m2)...(ρn,mn))
returns α((ρ2,m2)...(ρn,mn)) if (ρ1 = ρ2) ∧ (m1 = m2) and
(ρ1,m1)α((ρ2,m2)...(ρn,mn)) otherwise.

4.1 Soundness vs Completeness
The extent to which a semantic malware detector is able to dis-
criminate between infected and uninfected code, and therefore the
balance between any false positives and any false negatives it may
incur, depends on the abstraction function α. We can provide se-
mantic characterizations of the notions of soundness and complete-
ness, introduced in Definition 1, as follows:

DEFINITION 5. A semantic malware detector on α is complete for
a set O of transformations if and only if ∀O ∈ O:

O(M) ↪→ P ⇒
{
∃labr JP K ∈ ℘(lab JP K) :
α(αe(S JMK)) ⊆ α(αe(αr(S JP K)))

A semantic malware detector on α is sound for a set O of transfor-
mations if and only if:

∃labr JP K ∈ ℘(lab JP K) :
α(αe(S JMK)) ⊆ α(αe(αr(S JP K)))

}
⇒

{
∃O ∈ O :
O(M) ↪→ P.

It is interesting to observe that, considering an obfuscating transfor-
mation O, completeness is guaranteed when abstraction α is pre-
served by obfuscationO, namely when ∀P ∈ P : α(αe(S JP K)) =
α(αe(S JO(P )K)).

THEOREM 1. If α is preserved by the transformation O then the
semantic malware detector on α is complete for O.

However, the preservation condition of Theorem 1 is too weak
to imply soundness of the semantic malware detector. As an ex-
ample let us consider the abstraction α> = λX.> that loses all
information. It is clear that α> is preserved by every obfuscating
transformation, and the semantic malware detector on α> classifies
every program as infected by every malware. Unfortunately we do
not have a result analogous to Theorem 1 that provides a property
of α that characterizes soundness of the semantic malware detector.
However, given an abstraction α, we characterize the set of trans-
formations for which α is sound.

THEOREM 2. Given an abstraction α, consider the set O of trans-
formations such that: ∀P, T ∈ P:

(α(αe(S JT K)) ⊆ α(αe(S JP K)))
⇒ (∃O ∈ O : αe(S JO JT KK) ⊆ αe(S JP K)).

Then, a semantic malware detector on α is sound for O.

4.2 A Semantic Classification of Obfuscations
Obfuscating transformations can be classified according to their
effects on program semantics. Given s, t ∈ A∗ for some set A,
let s � t denote that s is a subsequence of t, i.e., if s = s1s2 . . . sn

then t is of the form . . . s1 . . . s2 . . . sn . . ..

4.2.1 Conservative Obfuscations
An obfuscation O : P → P is a conservative obfuscation if
∀σ ∈ S JP K ,∃δ ∈ S JO(P )K such that: αe(σ) � αe(δ). Let
Oc denote the set of conservative obfuscating transformations.

When dealing with conservative obfuscations we have that a
trace δ of a program P presents a malicious behavior M , if there
is a malware trace σ ∈ S JMK whose environment-memory evo-
lution is contained in the environment-memory evolution of δ,
namely if αe(σ) � αe(δ). Let us define the abstraction αc :
℘(X ∗) → (X ∗ → ℘(X ∗)) that, given an environment-memory



sequence s ∈ X ∗ and a set S ∈ ℘(X ∗), returns the elements t ∈ S
that are subtraces of s:

αc[S](s) = S ∩ SubSeq(s)

where SubSeq(s) = {t|t � s} denotes the set of all subsequences
of s. For any S ∈ ℘(X ∗), the additive function αc[S] defines a Ga-

lois connection: 〈℘(X ∗),⊆〉 −→←−
αc[S]

γc[S]

〈℘(X ∗),⊆〉. The abstrac-

tion αc turns out to be a suitable approximation when dealing with
conservative obfuscations. In fact the semantic malware detector on
αc[αe(S JMK)] is complete and sound for the class of conservative
obfuscations Oc.

THEOREM 3. Considering a vanilla malware M we have that
∃Oc ∈ Oc such that Oc(M) ↪→ P iff ∃ labr JP K ∈ ℘(lab JP K)
such that:

αc[αe(S JMK)](αe(S JMK)) ⊆
αc[αe(S JMK)](αe(αr(S JP K))).

Many obfuscating transformations commonly used by malware
writers are conservative; a partial list of such conservative obfus-
cations is given below. It follows that Theorem 3 is applicable to a
significant class of malware-obfuscation transformations.

– Code reordering. This transformation, commonly used to avoid
signature matching detection, changes the order in which com-
mands are written, while maintaining the execution order
through the insertion of unconditional jumps.

– Opaque predicate insertion. This program transformation con-
fuses the original control flow of the program by inserting
opaque predicates, i.e., a predicate whose value is known a pri-
ori to a program transformation but is difficult to determine by
examining the transformed program [7].

– Semantic NOP insertion. This transformation inserts commands
that are irrelevant with respect to the program semantics.

– Substitution of Equivalent Commands. This program transfor-
mation replaces a single command with an equivalent one, with
the goal of thwarting signature matching.

The following result shows that the composition of conservative
obfuscations is a conservative obfuscation. Thus, when more than
one conservative obfuscation is applied, it can be handled as a
single conservative obfuscation.

LEMMA 1. Given O1,O2 ∈ Oc then O1 ◦ O2 ∈ Oc.

EXAMPLE 2. Let us consider a fragment of malwareM presenting
the decryption loop used by polymorphic viruses. Such a fragment
writes, starting from memory locationB, the decryption of memory
locations starting at location A and then executes the decrypted
instructions. Let Oc(M) be a conservative obfuscation of M :

M Oc(M)

L1 : assign(LB , B)→ L2

L2 : assign(LA, A)→ Lc

Lc : cond(A)→ {LT , LF }
LT : B := Dec(A)→ LT1
LT1 : assign(π2(B), B)→ LT2
LT2 : assign(π2(A), A)→ LC

LF : skip→ LB

L1 : assign(LB , B)→ L2

L2 : skip→ L4

Lc : cond(A)→ {LO, LF }
L4 : assign(LA, A)→ L5

L5 : skip→ Lc

LO : P T → {LN , Lk}
LN : X := X − 3→ LN1
LN1 : X := X + 3→ LT

LT : B := Dec(A)→ LT1
LT1 : assign(π2(B), B)→ LT2
LT2 : assign(π2(A), A)→ Lc

Lk : . . .
LF : skip→ LB

Given a variable X , the semantics of π2(X) is the label expressed
by π2(m(ρ(X))), in particular π2(n) = ⊥, while π2(A,S) = S.
Given a variable X , let Dec(X) denote the execution of a set of
commands that decrypts the value stored in the memory location
ρ(X). The obfuscations are as follows: L2 : skip → L4 and
L5 : skip→ Lc are inserted by code reordering;LN : X := X+
3 → LN1 and LN1 : X := X − 3 → LT represent semantic nop
insertion, and LO : PT → {LN , Lk} true opaque predicate in-
sertion. It can be shown that αc[αe(S JMK)](αe(S JOc(M)K)) =
αc[αe(S JMK)](αe(S JMK)), i.e., our semantics-based approach
is able to see through the obfuscations and identify O(M) as
matching the malware M .

4.2.2 Non-Conservative Obfuscations
A non-conservative transformation modifies the program semantics
in such a way that the original environment-memory traces are not
present any more. A possible way to tackle these transformations
is to identify the set of all possible modifications induced by a non-
conservative obfuscation, and fix, when possible, a canonical one.
In this way the abstraction would reduce the original semantics to
the canonical version before checking malware infection.

Another possible approach comes from Theorem 1 that states
that if α is preserved by O then the semantic malware detector on
α is complete w.r.t.O. Recall that, given a program transformation
O : P→ P, it is possible to systematically derive the most concrete
abstraction preserved by O [12]. This systematic methodology can
be used in presence of non-conservative obfuscations in order to
derive a complete semantic malware detector when it is not easy to
identify a canonical abstraction.

Moreover in Section 5 we show how it is possible to handle a
class of non-conservative obfuscations through a further abstraction
of the malware semantics.

In the following we consider a non-conservative transformation,
known as variable renaming, and propose a canonical abstraction
that leads to a sound and complete semantic malware detector.

Variable Renaming Variable renaming is a simple obfuscating
transformation, often used to prevent signature matching, that re-
places the names of variables with some different new names. As-
suming that every environment function associates variable VL to
memory location L, allows us to reason on variable renaming also
in the case of compiled code, where variable names have disap-
peared. Let Ov : P × Π → P denote the obfuscating transforma-
tion that, given a program P , renames its variables according to a
mapping π ∈ Π, where π : var JP K → Names is a bijective
function that relates the name of each program variable to its new
name.

Ov(P, π) =

C
∣∣∣∣∣∣
∃C′ ∈ P : lab JCK = lab JC′K
suc JCK = suc JC′K
act JCK = act JC′K [X/π(X)]


where A[X/π(X)] represents action A where each variable name
X is replaced by π(X). Recall that the matching relation between
program traces considers the abstraction αe of traces, thus it is
interesting to observe that:

αe(S JOv(P, π)K) = αv[π](αe(S JP K))

where αv : Π→ (X ∗ → X ∗) is defined as:

αv [π]((ρ1, m1) . . . (ρn, mn)) = (ρ1 ◦π−1, m1) . . . (ρn ◦π−1, mn).

In order to deal with variable renaming obfuscation we introduce
the notion of canonical variable renaming π̂. The idea of canon-
ical mappings is that there exists a renaming π : var JP K →
var JQK that transforms program P into program Q, namely such
that Ov(P, π) = Q, iff αv[π̂](αe(S JQK)) = αv[π̂](αe(S JP K)).
This means that a program Q is a renamed version of program P



Input: A list of context sequences Z̄ , with Z ∈ αe(S JP K).
Output: A list Rename[Z] that associates canonical variable

Vi to the variable in the list position i.

Rename[Z] = List(hd(Z̄))
Z̄ = tl(Z̄)
while (Z̄ 6= ∅) do

trace = List(hd(Z̄))
while (trace 6= ∅) do

if (hd(trace) 6∈ Rename[Z]) then
Rename[Z] = Rename[Z] : hd(trace)

end
trace = tl(trace)

end
Z̄ = tl(Z̄)

end
Algorithm 1: Canonical renaming of variables.

iff Q and P are indistinguishable after canonical renaming. In the
following we define a possible canonical renaming for the variables
of a given a program.

Let {Vi}i∈N be a set of canonical variable names. The set L of
memory locations is an ordered set with ordering relation≤L. With
a slight abuse of notation we denote with ≤L also the lexicograph-
ical order induced by ≤L on sequences of memory locations. Let
us define the ordering ≤Σ over traces Σ∗ where, given σ, δ ∈ Σ∗,
σ ≤Σ δ if |σ| ≤ |δ| or |σ| = |δ| and lab(σ1)lab(σ2)...lab(σn) ≤L

lab(δ1)lab(δ2)...lab(δn), where lab(〈ρ,C〉) = lab JCK. It is clear
that, given a program P, the ordering≤Σ on its traces induces an or-
der on the set Z = αe(S JP K) of its environment-memory traces,
i.e., given σ, δ ∈ S JP K : σ ≤Σ δ ⇒ αe(σ) ≤Z αe(δ). By
definition, the set of variables assigned in Z is exactly var JP K,
therefore a canonical renaming π̂P : var JP K → {Vi}i∈N, is such
that αe(S JOv JP, π̂P KK) = αv[π̂P ](Z). Let Z̄ denote the list of
environment-memory traces of Z = αe(S JP K) ordered following
the order defined above. Let B be a list, then hd(B) returns the
first element of the list, tl(B) returns list B without the first ele-
ment, B : e (e : B) is the list resulting by inserting element e at
the end (beginning) of B, B[i] returns the i-th element of the list,
and e ∈ B means that e is an element of B. Note that program ex-
ecution starts from the uninitialized environment ρuninit = λX.⊥,
and that each command assigns at most one variable. Let def (ρ)
denote the set of variables that have defined (i.e., non-⊥) values
in an environment ρ. This means that considering s ∈ X ∗ we
have that def (ρi−1) ⊆ def (ρi), and if def (ρi−1) ⊂ def (ρi) then
def (ρi) = def (ρi−1) ∪ {X} where X ∈ X is the new variable
assigned to memory location ρi(X). Given s ∈ X ∗, let us define
List(s) as the list of variables in s ordered according to their as-
signment time. Formally, let s = (ρ1,m1)(ρ2,m2)...(ρn,mn) =
(ρ1,m1)s

′:

List(s) =

 ε if s = ε
X : List(s′) if def (s2) r def (s1) = {X}
List(s′) if def (s2) r def (s1) = ∅

Given Z = αe(S JP K) we rename its variables following the
canonical renaming π̂P : var JP K → {Vi}i∈N that associates the
new canonical name Vi to the variable of P in the i-th position in
the list Rename[Z] defined in Algorithm 1. Thus, the canonical
renaming π̂P : var JP K→ {Vi}i∈N is defined as follows:

π̂P (X) = Vi ⇔ Rename[Z][i] = X (1)

The following result is necessary to prove that the mapping π̂P

defined in Equation (1) is a canonical renaming.

LEMMA 2. Given two programs P,Q ∈ P let Z = αe(S JP K)
and Y = αe(S JQK). The followings hold:

• αv[π̂P ](Z) = αv[π̂Q](Y) ⇒ ∃π : var JP K → var JQK :
αv[π](Z) = Y
• (∃π : var JP K→ var JQK : αv[π](Z) = Y) and (αv[π](s) =
t⇒ (Z̄[i] = s and Y[i] = t))⇒ αv[π̂P ](Z) = αv[π̂Q](Y)

Let Π̂ denote a set of canonical variable renaming, the additive
function αv : Π̂ → (℘(X ∗) → ℘(X ∗c )), where Xc denotes
execution contexts where environments are defined on canoni-
cal variables, is an approximation that abstracts from the names
of variables. Thus, we have the following Galois connection:

〈℘(X ∗),⊆〉 −→←−
αv [Π̂]

γv [Π̂]

〈℘(X ∗c ),⊆〉. The following result, where

π̂M and π̂Pr denote respectively the canonical rename of the mal-
ware variables and of restricted program variables, shows that the
semantic malware detector on αv[Π̂] is complete and sound for
variable renaming.

THEOREM 4. ∃π : Ov(M,π) ↪→ P iff

∃labr JP K ∈ ℘(lab JP K) :

αv[π̂M ](αe(S JMK)) ⊆ αv[π̂Pr ](αe(αr(S JP K))).

4.3 Composition
In general a malware uses multiple obfuscating transformations
concurrently to prevent detection, therefore we have to consider
the composition of non-conservative obfuscations (Lemma 1 re-
gards composition of conservative obfuscations). Investigating the
relation between abstractions α1 and α2, that are complete(sound)
respectively for obfuscations O1 and O2, and the abstraction that
is complete(sound) for their compositions, i.e. for {O1 ◦ O2,O2 ◦
O1}, we have obtained the following result.

THEOREM 5. Given two abstractions α1 and α2 and two obfusca-
tions O1 and O2 then:

1 if the semantic malware detector on α1 is complete for O1,
the semantic malware detector on α2 is complete for O2, and
α1 ◦ α2 = α2 ◦ α1, then the semantic malware detector on
α1 ◦ α2 is complete for {O1 ◦ O2,O2 ◦ O1};

2 if the semantic malware detector on α1 is sound forO1, the se-
mantic malware detector on α2 is sound for O2, and α1(X) ⊆
α1(Y ) ⇒ X ⊆ Y , then the semantic malware detector on
α1 ◦ α2 is sound for O1 ◦ O2.

Thus, in order to propagate completeness through composition
O1 ◦ O2 and O2 ◦ O1 the corresponding abstractions have to be
independent. On the other side, in order to propagate soundness
through composition O1 ◦ O2 the abstraction α1, corresponding
to the last applied obfuscation, has to be an order-embedding,
namely α1 has to be both order-preserving and order-reflecting,
i.e., α1(X) ⊆ α1(Y ) ⇔ X ⊆ Y . Observe that, when composing
a non-conservative obfuscationO, for which the semantic malware
detector on αO is complete, with a conservative obfuscation Oc,
the commutation condition of point 1 is satisfied if and only if
(αe(σ) � αe(δ))⇔ αO(αe(σ)) � αO(αe(δ)).

EXAMPLE 3. Let us consider Ov(Oc(M), π) obtained by obfus-
cating the portion of malware M in Example 2 through variable
renaming and some conservative obfuscations:



Ov(Oc(M), π)
L1 : assign(D, LB)→ L2

L2 : skip→ L4

Lc : cond(E)→ {LO, LF }
L4 : assign(E, LA)→ L5

L5 : skip→ Lc

LO : P T → {LT , Lk}
LT : D := Dec(E)→ LT1
LT1 : assign(π2(D), D)→ LT2
LT2 : assign(π2(E), E)→ Lc

Lk : . . .
LF : . . .

where π(B) = D,π(A) = E. It is possible to show that:

αc[αv[Π̂](αe(S JMK)](αv[Π̂](αe(S JMK))) ⊆
αc[αv[Π̂](αe(S JMK))](αv[Π̂](αe(αr(S JOv(Oc(M), π)K)))).

Namely, given the abstractions αc and αv on which, by definition,
the semantic malware detector is complete respectively for Oc and
Ov , the semantic malware detector on αc ◦ αv is complete for the
composition Ov ◦ Oc.

5. Further Malware Abstractions
Definition 4 characterizes the presence of malwareM in a program
P as the existence of a restriction labr JP K ∈ ℘(lab JP K) such
that αe(S JMK) ⊆ αe(αr(S JP K)). This means that program P
is infected by malware M if P matches all malware behaviors.
This notion of malware infection can be weakened in two different
ways. First, we can abstract the malware traces eliminating the
states that are not relevant to determine maliciousness, and then
check if program P matches this simplified behavior. Second, we
can require program P to match a proper subset of malicious
behaviors. Furthermore these two notions of malware infection can
be combined by requiring program P to match the interesting states
of the interesting behaviors of the malware. It is clear that a deeper
understanding of the malware behavior is necessary in order to
identify both the set of interesting states and the set of interesting
behaviors.

Interesting States. Assume that we have an oracle that, given a
malware M , returns the set of its interesting states. These states
could be selected based on a security policy, for example, the states
could represent the result of network operations. This means that, in
order to verify if P is infected byM , we have to check whether the
malicious sequences of interesting states are present in P . Let us
define the trace transformation αInt(M) : Σ∗ → Σ∗ that considers
only the interesting states in a given trace σ = σ1σ

′:

αInt(M)(σ) =

 ε if σ = ε
σ1αInt(M)(σ

′) if σ1 ∈ Int(M)
αInt(M)(σ

′) otherwise

The following definition characterizes the presence of malware M
in terms of its interesting states, i.e., through abstraction αInt(M).

DEFINITION 6. A program P is infected by a vanilla malware M
with interesting states Int(M), i.e.,M ↪→Int(M) P , if ∃labr JP K ∈
℘(lab JP K) such that:

αInt(M)(S JMK) ⊆ αInt(M)(αr(S JP K)).

Thus we can weaken the standard notion of conservative transfor-
mation by saying that O : P → P is conservative w.r.t. Int(M)
if ∀σ ∈ S JMK ,∃δ ∈ S JO(P )K such that αInt(M)(σ) =
αInt(M)(δ).

When program infection is characterized by Definition 6, the se-
mantic malware detector on αInt(M) is complete and sound for the
obfuscating transformations that are conservative w.r.t. Int(M ).

THEOREM 6. Let Int(M) be the set of interesting states of a
vanilla malware M , then there exists an obfuscation O conser-
vative w.r.t. Int(M) such that O(M) ↪→Int(M) P iff ∃labr JP K ∈
℘(lab JP K) such that:

αInt(M)(S JMK) ⊆ αInt(M)(αr(S JP K)).

It is clear that transformations that are non-conservative may
be conservative w.r.t. Int(M), meaning that knowing the set of
interesting states of a malware allows us to handle also some non-
conservative obfuscations. For example the abstraction αInt(M)

allows the semantic malware detector to deal with reordering of
independent instructions, as the following example shows.

EXAMPLE 4. Let us consider the malware M and its obfuscation
O(M) obtained by reordering independent instructions.

M O(M)
L1 : A1 → L2

L2 : A2 → L3

L3 : A3 → L4

L4 : A4 → L5

L5 : A5 → L6

L1 : A1 → L2

L2 : A3 → L3

L3 : A2 → L4

L4 : A4 → L5

L5 : A5 → L6

In the above example A2 and A3 are independent, meaning that
A JA2K (A JA3K (ρ,m)) = A JA3K (A JA2K (ρ,m)). Consider-
ing malware M , we have the trace σ = σ1σ2σ3σ4σ5 where:
- σ1 = 〈L1 : A1 → L2, (ρ,m)〉,
- σ5 = 〈L5 : A5 → L6,

(A JA4K (A JA3K (A JA2K (A JA1K (ρ,m)))))〉,
while considering the obfuscated version, we have the trace δ =
δ1δ2δ3δ4δ5, where:
- δ1 = 〈L1 : A1 → L2, (ρ,m)〉,
- δ5 = 〈L5 : A5 → L6,

(A JA4K (A JA2K (A JA3K (A JA1K (ρ,m)))))〉.
Let Int(M) = {σ1, σ5}. Then αInt(M)(σ) = σ1σ5 as well as
αInt(M)(δ) = δ1δ5, which concludes the example. It is obvious
that δ1 = σ1, moreover δ5 = σ5 follows from the independence of
A2 and A3.

Interesting Behaviors. Assume we have an oracle that given a
malware M returns the set T ⊆ S JMK of its behaviors that
characterize the maliciousness of M . Thus, in order to verify if
P is infected by M , we check whether program P matches the
malicious behaviors T . The following definition characterizes the
presence of malware M in terms of its interesting behaviors T .

DEFINITION 7. A program P is infected by a vanilla malware M
with interesting behaviors T ⊆ S JMK, i.e., M ↪→T P if:

∃labr JP K ∈ ℘(lab JP K) : αe(T ) ⊆ αe(αr(S JP K)).

It is interesting to observe that, when program infection is charac-
terized by Definition 7, all the results obtained in Section 4 still
hold if we replace S JMK with T .

Clearly the two abstractions can be composed. In this case a
program P is infected by a malware M if there exists a pro-
gram restriction that matches the set of interesting sequences
of states obtained abstracting the interesting behaviors of the
malware, i.e., ∃labr JP K ∈ ℘(lab JP K) : αe(αInt(M)(T )) ⊆
αe(αInt(M)(αr(S JP K))).

To conclude, we present a matching relation based on (interest-
ing) program actions rather than environment-memory evolutions.
In this case we consider the syntactic information contained in pro-
gram states. The main difference with purely syntactic approaches
is the ability of observing actions in their execution order and not
in the order in which they appear in the code.



Obfuscation Completeness of AMD

Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

Table 1. List of obfuscations considered by the semantics-aware
malware detection algorithm, and the results of our completeness
analysis.

Interesting Actions. Sometimes a malicious behavior can be
characterized in terms of the execution of a sequence of bad ac-
tions. Assume we have an oracle that given a malware M returns
the set Bad ⊆ act JMK of actions capturing the essence of the
malicious behaviour. In this case, in order to verify if program P is
infected by malwareM , we check whether the execution sequences
of bad actions of the malware match the ones of the program.

DEFINITION 8. A program P is infected by a vanilla malware M
with bad actions Bad , i.e., M ↪→Bad P if:

∃labr JP K ∈ ℘(lab JP K) : αa(S JMK) ⊆ αa(αr(S JP K))

Where, given the set Bad ⊆ act JMK of bad actions, the abstrac-
tion αa returns the sequence of malicious actions executed by each
trace. Formally, given a trace σ = σ1σ

′:

αa(σ) =

 ε if σ = ε
A1αa(σ′) if A1 ∈ Bad
αa(σ′) otherwise

Even if this abstraction considers syntactic information (program
actions), it is able to deal with some sort of obfuscations. In fact
considering the sequence of malicious actions in a trace it observes
actions in their execution order, and not in the order in which they
are written in the code. Thus, ignoring for example unconditional
jumps, it is able to deal with code reordering.

6. Case Study: Completeness of Semantics-Aware
Malware Detector AMD

An algorithm called semantics-aware malware detection was pro-
posed by Christodorescu, Jha, Seshia, Song, and Bryant [4]. This
approach to malware detection uses instruction semantics to iden-
tify malicious behavior in a program, even when obfuscated.

The obfuscations considered in [4] are from the set of conser-
vative obfuscations, together with variable renaming. The paper
proved the algorithm to be oracle-sound, so we focus in this sec-
tion on proving its oracle-completeness using our abstraction-based
framework. The list of obfuscations we consider (shown in Table 1)
is based on the list described in the semantics-aware malware de-
tection paper.

Description of the Algorithm The semantics-aware malware de-
tection algorithm AMD matches a program against a template de-
scribing the malicious behavior. If a match is successful, the pro-
gram exhibits the malicious behavior of the template. Both the tem-
plate and the program are represented as control-flow graphs during
the operation of AMD .

The algorithm AMD attempts to find a subset of the program
P that matches the commands in the malware M , possibly after
renaming of variables and locations used in the subset of P . Fur-
thermore, AMD checks that any def-use relationship that holds in
the malware also holds in the program, across program paths that
connect consecutive commands in the subset.

A control-flow graph G = (V,E) is a graph with the vertex
set V representing program commands, and edge set E represent-
ing control-flow transitions from one command to its successor(s).

For our language the control-flow graph (CFG) can be easily con-
structed as follows:

• For each command C ∈ C, create a CFG node annotated with
that command, vlabJCK. Correspondingly, we write C JvK to
denote the command at CFG node v.
• For each command C = L1 : A → S, where S ∈ ℘(L), and

for each label L2 ∈ S, create a CFG edge (vL1 , vL2).

Consider a path θ through the CFG from node v1 to node vk,
θ = v1 → . . . → vk. There is a corresponding sequence of com-
mands in the program P , written P |θ = {C1, . . . , Ck}. Then we
can express the set of states possible after executing the sequence of
commands P |θ as C k JP |θK (C1, (ρ,m)), by extending the transi-
tion relation C to a set of states, such that C : ℘(Σ) → ℘(Σ). Let
us define the following basic functions:

mem J(C, (ρ,m))K = m

env J(C, ρ,m))K = ρ

The algorithm takes as inputs the CFG for the template, GT =
(V T , ET ), and the binary file for the program, File JP K. For each
path θ in GT , the algorithm proceeds in two steps:

1. Identify a one-to-one map from template nodes in the path θ to
program nodes, µθ : V T → V P .
A template node nT can match a program node nP if the top-
level operators in their actions are identical. This map induces
a map νθ : XT × V T → XP from variables at a template
node to variables at the corresponding program node, such that
when renaming the variables in the template commandC
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This step makes use of the CFG oracle ORCFG that returns
the control-flow graph of a program P , given P ’s binary-file
representation File JP K.

2. Check whether the program preserves the def-use dependencies
that are true on the template path θ.
For each pair of template nodes mT , nT on the path θ, and
for each template variable xT defined in act
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where mT → vT
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path θ in the template CFG. λ is therefore a program path
connecting the program CFG node corresponding to mT with
the program CFG node corresponding to nT . We denote by
T |θ =
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commands corresponding to the template path θ.
The def-use preservation check can be expressed formally as
follows:
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(env JsK ,mem JsK) .

This check is implemented in AMD as a query to a semantic-
nop oracle ORSNop . The semantic-nop oracle determines
whether the value of a variable X before the execution of a
code sequence ψ ⊆ P is equal to the value of a variable Y after
the execution of ψ.

The semantics-aware malware detector AMD makes use of two
oracles, ORCFG and ORSNop , described in Table 2. ThusAMD =
DOR, for the set of oracles OR = {ORCFG ,ORSNop}. Our goal
is then to verify whether AMD is OR-complete with respect to



Oracle Notation
CFG oracle ORCFG (File JP K)

Returns the control-flow graph of the program P , given
its binary-file representation File JP K.

Semantic-nop oracle ORSNop(ψ,X, Y )
Determines whether the value of variable X before the
execution of code sequence ψ ⊆ P is equal to the value
of variable Y after the execution of ψ.

Table 2. Oracles used by the semantics-aware malware detection
algorithm AMD . Notation: P ∈ P, X, Y ∈ var JP K , ψ ⊆ P .

the obfuscations from Table 1. Since three of those obfuscations
(code reordering, semantic-nop insertion, and substitution of equiv-
alent commands) are conservative, we only need to check OR-
completeness of AMD for each individual obfuscation. We would
then know (from Lemma 1) if AMD is also OR-complete with re-
spect to any combination of these obfuscations.

We follow the proof strategy proposed in Section 2.1. First,
in step 1 below, we develop a trace-based detector DTr based
on an abstraction α, and show that DOR = AMD and DTr are
equivalent. This equivalence of detectors holds only if the oracles
in OR are perfect. Then, in step 2, we show that DTr is complete
w.r.t. the obfuscations of interest.

Step 1: Design an Equivalent Trace-Based Detector We can
model the algorithm for semantics-aware malware detection using
two abstractions, αSAMD and αAct. The abstraction α that char-
acterizes the trace-based detector DTr is the composition of these
two abstractions, α = αAct◦αSAMD . We will show that DTr is
equivalent AMD = DOR, when the oracles in OR are perfect.

The abstraction αSAMD , when applied to a trace σ ∈ S JP K,
σ = (C′1, (ρ

′
1,m

′
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n)), to a set of variable maps

{πi}, and a set of location maps {γi}, returns an abstract trace:

αSAMD(σ, {πi}, {γi}) = (C1, (ρ1,m1)) . . . (Cn, (ρn,mn))
if ∀i, 1 ≤ i ≤ n : act JCiK = act JC′iK [X/πi(X)]

∧ lab JCiK = γi(lab JC′iK)
∧ suc JCiK = γi(suc JC′iK)
∧ ρi = ρ′i ◦ π−1

i

∧mi = m′
i ◦ γ−1

i .

Otherwise, if the condition does not hold,αSAMD(σ, {πi}, {γi}) =
ε. A map πi : var JP K → X renames program variables such that
they match malware variables, while a map γi : lab JP K → L
reassigns program memory locations to match malware memory
locations.

The abstraction αAct simply strips all labels from the com-
mands in a trace σ = (C1, (ρ1,m1))σ

′, as follows:

αAct(σ) =

{
ε if σ = ε
(act JC1K , (ρ1,m1))αAct(σ

′) otherwise

DEFINITION 9 (α-Semantic Malware Detector). An α-semantic
malware detector is a malware detector on the abstraction α, i.e.,
it classifies the program P as infected by a malware M , M ↪→ P ,
if

∃labr JP K ∈ ℘(lab JP K) : α(S JMK) ⊆ α(αr(S JP K)).

By this definition, a semantic malware detector (from Definition 4)
is a special instance of the α-semantic malware detector, for α =
αe. Then let DTr be a (αAct◦αSAMD)-semantic malware detector.

PROPOSITION 1. The semantics-aware malware detector algo-
rithm AMD is equivalent to the (αAct◦αSAMD)-semantic mal-
ware detector DTr . In other words, ∀P,M ∈ P, we have that
AMD(P,M) = DTr (S JP K ,S JMK).

The proof has two parts, to show that AMD(P,M) = 1 ⇒
DTr (S JP K ,S JMK) = 1, and then to show the reverse. For the
first implication, it is sufficient to show that for any path θ in the
CFG of M and the path χ in the CFG of P , such that θ and
χ are found as related by the algorithm AMD , the corresponding
traces are equal when abstracted by αAct◦αSAMD . The proof for
the second implication proceeds by showing that any two traces
σ ∈ S JMK and δ ∈ S JP K, that are equal when abstracted by
αAct◦αSAMD , have corresponding paths through the CFGs of M
and P , respectively, such that these paths satisfy the conditions in
the algorithm AMD . Both parts of the proof depend on the oracles
used by AMD to be perfect.

Now we can define the operation of the semantics-aware mal-
ware detector in terms of its effect on the trace semantics of a pro-
gram P .

DEFINITION 10 (Semantics-Aware Malware Detection). A pro-
gram P is infected by a vanilla malware M , i.e. M ↪→ P , if:

∃labr JP K ∈ ℘(lab JP K), {πi}i≥1, {γi}i≥1 :

αAct(αSAMD(S JMK , {πi}, {γi})) ⊆
αAct(αSAMD(αr(S JP K), {πi}, {γi})).

Step 2: Prove Completeness of the Trace-Based Detector We are
interested in finding out which classes of obfuscations are handled
by a semantics-aware malware detector. We check the validity
of the completeness condition expressed in Definition 5. In other
words, if the program is infected with an obfuscated variant of the
malware, then the semantics-aware detector should return 1.

PROPOSITION 2. A semantics-aware malware detector is complete
on αSAMD w.r.t. the code-reordering obfuscation OJ :

OJ (M) ↪→ P ⇒

∃labr JP K ∈ ℘(lab JP K , {πi}i≥1, {γi}i≥1 :
αAct(αSAMD(S JMK , {πi}, {γi})) ⊆
αAct(αSAMD(αr(S JP K), {πi}, {γi}))

The code-reordering obfuscation inserts skip commands into
the program and changes the labels of existing commands. The
restriction αr “eliminates” the inserted skip commands, while
the αAct abstraction allows for trace comparison while ignoring
command labels. Thus, the detectorDTr isOR-complete w.r.t. the
code-reordering obfuscation. Similar proofs confirm that DTr is
OR-complete w.r.t. variable renaming and semantic-nop insertion.

PROPOSITION 3. A semantics-aware malware detector is complete
on αSAMD w.r.t. the variable-renaming obfuscation Ov .

PROPOSITION 4. A semantics-aware malware detector is complete
on αSAMD w.r.t. the semantic-nop insertion obfuscation ON .

Additionally, DTr is OR-complete on αSAMD w.r.t. a limited
version of substitution of equivalent commands, when the com-
mands in the original malware M are not substituted with equiv-
alent commands.

Unfortunately, DTr is not OR-complete w.r.t. all conservative
obfuscations, as the following result illustrates.

PROPOSITION 5. A semantics-aware malware detector is not com-
plete on αSAMD w.r.t. all conservative obfuscations Oc ∈ Oc.

The cause for this incompleteness is the fact that the abstraction
applied by DTr still preserves some of the actions from the pro-
gram. Consider an instance of the substitution of equivalent com-
mands obfuscating transformation OI that substitutes the action
of at least one command for each path through the malware (i.e.,
S JMK∩S JOI(M)K = ∅). For example, the transformation could



modify the command at M ’s start label. Such an obfuscation, be-
cause it affects at least one action of M on every path through the
program P = OI(M), will defeat the detector.

7. Related Work
There is a considerable body of literature on existing techniques for
malware detection: Szor gives an excellent summary [26].

Code obfuscation has been extensively studied in the context of
protecting intellectual property. The goal of these techniques is to
make reverse engineering of code harder [3, 6, 7, 11, 12, 21]. Cryp-
tographers are also pursuing research on the question of possibility
of obfuscation [1, 14, 28]. To our knowledge, we are not aware of
existing research on formal approaches to obfuscation in the con-
text of malware detection.

8. Conclusions and Future Work
Malware detectors have traditionally relied upon syntactic ap-
proaches, typically based on signature-matching. While such ap-
proaches are simple, they are easily defeated by obfuscations. To
address this problem, this paper presents a semantics-based frame-
work within which one can specify what it means for a malware
detector to be sound and/or complete, and reason about the com-
pleteness of malware detectors with respect to various classes of
obfuscations. As a concrete application, we have shown that a
semantics-aware malware detector proposed by Christodorescu et
al. is complete with respect to some commonly used malware ob-
fuscations.

Given an obfuscating transformation O, we assumed that the
abstraction αO is provided by the malware detector designer. We
are currently investigating how to design a systematic (ideally au-
tomatic) methodology for deriving an abstraction αO that leads to a
sound and complete semantic malware detector. We observed that
if the abstraction αO is preserved by the obfuscation O then the
malware detection is complete, i.e. no false negatives. However,
preservation is not enough to eliminate false positives. Hence, an
interesting research task consists in characterizing the set of se-
mantic abstractions that prevents false positives.

For future work in designing malware detectors, an area of great
promise is that of detectors that focus on interesting actions. De-
pending on the execution environment, certain states are reachable
only through particular actions. For example, system calls are the
only way for a program to interact with OS-mediated resources
such as files and network connections. If the malware is character-
ized by actions that lead to program states in an unique, unambigu-
ous way, then all applicable obfuscation transformations are con-
servative. As we showed, a semantic malware detector that is both
sound and complete for a class of conservative obfuscations exists,
if an appropriate abstraction can be designed. In practice, such an
abstraction cannot be precisely computed—a future research task is
to find suitable approximations that minimize false positives while
preserving completeness.

One further step would be to investigate whether and how model
checking techniques can be applied to detect malware. Some works
along this line already exist [18]. Observe that the abstraction α,
actually defines a set of program traces that are equivalent up toO.
In model checking, sets of program traces are represented by for-
mulae of some linear/branching temporal logic. Hence, we aim at
defining a temporal logic whose formulae are able to express nor-
mal forms of obfuscations together with operators for composing
them. This would allow to use standard model checking algorithms
to detect malware in programs. This could be a possible direction
to follow in order to develop a practical tool for malware detection
based on our semantic model. We expect this semantics-based tool
to be significantly more precise than existing virus scanners.
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