
A Semantics-Based Approach to Malware
Detection

MILA DALLA PREDA
University of Verona, dallapre@sci.univr.it
and
MIHAI CHRISTODORESCU and SOMESH JHA
University of Wisconsin, Madison, {mihai,jha}@cs.wisc.edu
and
SAUMYA DEBRAY
University of Arizona, Tucson, debray@cs.arizona.edu

Malware detection is a crucial aspect of software security. Current malware detectors work by
checking for signatures, which attempt to capture the syntactic characteristics of the machine-level
byte sequence of the malware. This reliance on a syntactic approach makes current detectors
vulnerable to code obfuscations, increasingly used by malware writers, that alter the syntactic
properties of the malware byte sequence without significantly affecting their execution behavior.

This paper takes the position that the key to malware identification lies in their semantics.
It proposes a semantics-based framework for reasoning about malware detectors and proving
properties such as soundness and completeness of these detectors. Our approach uses a trace
semantics to characterize the behavior of malware as well as that of the program being checked
for infection, and uses abstract interpretation to “hide” irrelevant aspects of these behaviors. As
a concrete application of our approach, we show that (1) standard signature matching detection
schemes are generally sound but not complete, (2) the semantics-aware malware detector proposed
by Christodorescu et al. is complete with respect to a number of common obfuscations used by
malware writers and (3) the malware detection scheme proposed by Kinder et al. and based
on standard model-checking techniques is sound in general and complete on some, but not all,
obfuscations handled by the semantics-aware malware detector.

Categories and Subject Descriptors: F.3.1 [Theory of Computation]: Specifying and Verifying and Reasoning
about Programs. —Malware Detection

General Terms: Security, Languages, Theory, Verification

The work of M. Dalla Preda was partially supported by the MUR grant “InterAbstract” and by the FIRB grant
“Abstract Interpretation and Model Checking for the verification of embedded systems”.

The work of M. Christodorescu and S. Jha was supported in partby the National Science Foundation under grants
CNS-0448476 and CNS-0627501.

The work of S. Debray was supported in part by the National Science Foundation under grants EIA-0080123,
CCR-0113633, and CNS-0410918.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, eitherexpressed or implied, of the above government agencies
or the U.S. Government.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, July2008, Pages 1–50.

2 · Mila Dalla Preda et al.

Additional Key Words and Phrases: malware detection, obfuscation, trace semantics, abstract
interpretation

1. INTRODUCTION

The termmalware(malicious software) refers to a program with malicious intent designed
to damage the machine on which it executes or the network overwhich it communicates.
The growth in the complexity of modern computing systems makes it difficult, if not im-
possible, to avoid bugs. This increases the possibility of malware attacks that usually
exploit such vulnerabilities in order to damage the system.Furthermore, as the size and
complexity of a system grows, it becomes more difficult to analyze it and prove that it is
not infected. Thus, the threat of malware attacks is an unavoidable problem in computer
security, and thereforeit is crucial to detect the presence of malicious code in software
systems.

A considerable body of literature on malware detection techniques exists – Ször pro-
vides an excellent summary [Ször 2005].Misuse detection, also calledsignature-based
detection, represents one of the most popular approaches to malware detection. This de-
tection scheme is based on the assumption that malware can bedescribed through patterns
(also called signatures). In fact, a misuse detection scheme classifies a programP as in-
fected by a malware when the malware signature – namely the sequence of instructions
characterizing a malware – occurs inP [Morley 2001; Ször 2005]. In general, signature-
based algorithms detect known malware, but are ineffectiveagainst unknown malicious
programs, since no signature is available for them. To tackle this limitation, anti-virus
companies strive to update the signature lists as often as possible. Thanks to their low false
positive rate and ease of use, misuse detectors are widely used.

Malware writers resort to sophisticated hiding techniques, often based on code obfusca-
tion, in order to avoid misuse detection [Nachenberg 1997].In particular, recent develop-
ments in malware technology have led to the so-calledmetamorphic malware. The basic
idea of metamorphism is that each successive generation of amalware changes the syntax
while leaving the semantics almost unchanged in order to foil misuse detection systems.
Thus, it is not surprising that hackers often use code obfuscation in order to automatically
generate metamorphic malware. In fact, it is possible to design obfuscations that transform
a malicious program, either manually or automatically, by inserting new code or modifying
existing code in order to make detection harder while preserving the malicious behavior.
If a signature describes a certain sequence of instructions[Ször 2005], then those instruc-
tions can be reordered or replaced with equivalent instructions [z0mbie 2001b; 2001a].
Such obfuscations are especially applicable on CISC architectures, such as the Intel IA-
32 [Intel Corporation 2001], where the instruction set is rich and many instructions have
overlapping semantics. If a signature describes a certain distribution of instructions in
the program, insertion of junk code [Ször and Ferrie 2001; Jordan 2002; z0mbie 2001b]
that acts as a nop so as not to modify the program behavior can defeat frequency-based
signatures. If a signature identifies some of the read-only data of a program, packing or
encryption with varying keys [Rajaat 1999; Detristan et al.2003] can effectively hide the
relevant data. Of course, attackers have the choice of creating new malware from scratch,
but that does not appear to be a favored tactic [Symantec Corporation 2006].Therefore, an
important requirement of a robust malware detection technique is to handle obfuscating

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 3

transformations.
The reason why obfuscation can easily foil signature matching lies in the syntactic nature

of this approach that ignores program functionality. In fact, code obfuscation changes the
malware syntax but not its intended behavior, which has to bepreserved. Formal methods
for program analysis, such as semantics-based static analysis and model checking, could
be useful in designing more sophisticated malware detection algorithms that are able to
deal with obfuscated versions of the same malware. For example, in [Christodorescu et al.
2005] the authors put forward a semantics-aware malware detector that is able to handle
some of the obfuscations commonly used by hackers, while in [Kinder et al. 2005] the
authors introduce an extension of the CTL temporal logic, which is able to express some
malicious properties that can be used to detect malware through standard model checking
algorithms. These preliminary works confirm the potential benefits of a formal approach
to malware detection.

We believe that addressing the malware-detection problem from a semantic point of
view could lead to a more robust detection system. In fact, different obfuscated versions of
the same malware have to share (at least) the malicious intent, namely the maliciousness
of their semantics, even if they might express it through different syntactic forms. The
goal of this work is to provide a formal semantics-based framework that can be used by
security researchers to reason about and evaluate the resilience of malware detectors to
various kinds of obfuscation transformations. In particular, this work makes the following
contributions:

—A formal definition of what it means for a malware detector tobe sound and complete
with respect to a class of obfuscations.

—A framework for proving that a detector is complete and/or sound with-respect-to a class
of obfuscations.

—A trace semantics to characterize the program and malware behaviors, using abstract
interpretation to “hide” irrelevant aspects of these behaviors.

—A series of case studies to evaluate the power of our formal framework by proving sound-
ness and completeness of some well known detection schemes.
—Signature-based detection is proven to be generally soundbut not complete.
—Semantics-aware malware detection proposed in [Christodorescu et al. 2005] is proven

to be complete with respect to some common obfuscations usedby malware writers
(soundness is proved in [Christodorescu et al. 2005]).

—The model checking-based detection scheme proposed in [Kinder et al. 2005] is
proved to be sound in general and complete on some, but not all, obfuscations handled
by the semantics-aware malware detector.

The results presented in this work are an extended and reviewed version of [Dalla Preda
et al. 2007].

2. OVERVIEW

The precision of a malware detector is usually expressed in terms of soundness and com-
pleteness properties. In the following we formally define what it means for a malware
detector to be sound and complete with respect to a class of obfuscations. Moreover, we
provide an informal description of a proof strategy that canbe used to certify soundness
and completeness of existing detection schemes.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

4 · Mila Dalla Preda et al.

Following a standard definition, anobfuscating transformationO : P → P is a potent
program transformer that preserves the functionality of programs [Collberg et al. 1998],
where potent means that the transformed program is more complex, i.e., more difficult to
understand, than the original one. LetO denote the set of all obfuscating transformations.
A malware detectorcan be seen as a functionD : P × P → {0, 1} that, given a program
P and a malwareM , decides if programP is infected with malwareM . For example,
D(P,M) = 1 means thatP is infected withM or with an obfuscated variant ofM . Our
treatment of malware detectors focuses on detecting variants of existing malware. When
a programP is infected with a malwareM , we writeM →֒ P . Intuitively, a malware
detector issoundif it never erroneously claims that a program is infected, i.e., there are no
false positives, and it iscompleteif it always detects programs that are infected, i.e., there
are no false negatives.

DEFINITION 1. A malware detectorD is completefor an obfuscationO ∈ O if ∀M ∈
P, O(M) →֒ P ⇒ D(P,M) = 1. A malware detectorD is soundfor an obfuscation
O ∈ O if ∀M ∈ P,D(P,M) = 1⇒ O(M) →֒ P .

Note that this definition of soundness and completeness can be applied to a deobfuscator
as well. In other words, our definitions are not tied to the concept of malware detection.

Many malware detectors are built on top of other static-analysis techniques for problems
that are hard or undecidable. For example, malware detectors that are based on static
analysis [Kinder et al. 2005; Christodorescu et al. 2005] assume that the control-flow graph
for an executable can be extracted. As shown by researchers [Linn and Debray 2003],
simply disassembling an executable can be quite tricky. Therefore, we want to introduce
the notion ofrelative soundness and completenesswith respect to algorithms that a detector
uses. In other words, we want to prove that a malware detectoris sound or complete with
respect to a class of obfuscations if the static-analysis algorithms that the detector uses are
perfect.

DEFINITION 2. An oracle is an algorithm over programs. For example, aCFG oracle
is an algorithm that takes a program as an input and produces its control-flow graph.

DOR denotes a detector that uses a set of oraclesOR.1 For example, letORCFG be a
static-analysis oracle that given an executable provides aperfect control-flow graph for it.
A detector that uses the oracleORCFG is denoted asDORCFG . In the definitions and proofs
in the rest of the paper we assume that oracles that a detectoruses are perfect. Soundness
(resp. completeness) with respect to perfect oracles is also calledoracle-soundness(resp.
oracle-completeness).

DEFINITION 3. A malware detectorDOR is oracle-completewith respect to an obfus-
cationO, if DOR is complete for that obfuscationO when all oracles in the setOR are
perfect.Oracle-soundnessof a detectorDOR can be defined in a similar manner.

A Framework for Proving Soundness and Completeness of Malware Detectors

When a new malware detection algorithm is proposed, one of the criteria of evaluation is
its resilience to obfuscations, both current and future. A malware writer who has access

1We assume that detectorD can query an oracle from the setOR, and the query is answered perfectly and in
O(1) time. These types of relative completeness and soundness results are common in cryptography.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 5

to the detection algorithm and to its inner workings can use such knowledge in order to
design ad-hoc obfuscation tools to bypass detection. As themalware detection problem
is in general undecidable, for any given malware detector itis always possible to design
an obfuscation transformation that defeats that detector.Unfortunately, identifying the
classes of obfuscations for which a detector is resilient can be a complex and error-prone
task. A large number of obfuscation schemes exist, both fromthe malware world and
from the intellectual-property protection industry. Furthermore, obfuscations and detectors
are defined using different languages (e.g., program transformation vs program analysis),
complicating the task of comparing one against the other.

We present a formal framework for proving soundness and completeness of malware
detectors in the presence of obfuscations. The basic idea isto describe programs through
their execution traces—thus, program trace semantics is the building block of our frame-
work. In Section 4 and Section 5 we describe how both obfuscations and detectors can
be elegantly expressed as operations on traces. In this setting it is interesting to consider
soundness and completeness of malware detectors with respect to classes of transforma-
tions that share similar effects on program trace semantics. For this reason we introduce
a classification of obfuscation techniques based on the effects these transformations have
on program trace semantics and we investigate soundness andcompleteness of malware
detectors with respect to these families of obfuscations (see Section 6 and Section 7).

In this framework, we propose the following two stepproof strategyfor showing that a
detector is sound or complete with respect to an obfuscationor a class of obfuscations.

(1) [Step 1] Relating the two worlds.
Consider a malware detectorDOR that uses a set of oraclesOR. Let S JP K and
S JMK denote the trace semantics of programP and malwareM respectively. De-
scribe a detectorDTr that works in the semantic world of traces and classifies a pro-
gramP as infected by a malwareM if S JP K matches certain properties ofS JMK.
Prove that if the oracles inOR are perfect, then the two detectors are equivalent, i.e.,
for all P andM in P, DOR(P,M) = 1 iff DTr(S JP K ,S JMK) = 1. In other
words, this step shows the equivalence of the two worlds: theconcrete world of pro-
grams and the semantic world of traces.

(2) [Step 2] Proving soundness and completeness in the semantic world.
We are now ready to prove the desired property (e.g., completeness) about the trace-
based detectorDTr with respect to the chosen class of obfuscations. In this step, the
detector’s effects on trace semantics are compared to the effects of obfuscation on
trace semantics. This also allows us to evaluate the detector against whole classes of
obfuscations, as long as the obfuscations have similar effects on the trace semantics.

The requirement for equivalence in step 1 above might be too strong if only one of com-
pleteness or soundness is desired. For example, if the goal is to prove only completeness of
a malware detectorDOR, then it is sufficient to find a trace-based detector that classifies
only malware and malware variants in the same way asDOR. Then, if the trace-based
detector is complete, so isDOR.

Observe that the proof strategy presented above works underthe assumption that the
set of oraclesOR used by the detectorDOR are perfect. In fact, the equivalence of the
semantic malware detectorDTr to the detection algorithmDOR is stated and proved under
the hypothesis of perfect oracles. This means that when the oracles inOR are perfect then:

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

6 · Mila Dalla Preda et al.

—DOR is sound w.r.t. obfuscationO ⇔ DTr is sound w.r.t. obfuscationO

—DOR is complete w.r.t. obfuscationO ⇔ DTr is complete w.r.t. obfuscationO

Consequently, the proof of soundness/completeness ofDTr with respect to a given obfus-
cationO implies soundness/completeness ofDOR with respect to obfuscationO and vice
versa. However, even when the oracles used by the detection schemeDOR are not per-
fect it is possible to deduce some properties ofDOR by analyzing its semantic counterpart
DTr . LetDTr denote the semantic malware detection algorithm which is equivalent to the
detection schemeDOR working on perfect oracles. In general, by relaxing the hypothesis
of perfect oracles, we have that the malware detectorDOR is less precise than its (ideal)
semantic counterpartDTr . This means that:

—DOR is sound w.r.t. obfuscationO ⇒ DTr is sound w.r.t. obfuscationO

—DOR is complete w.r.t. obfuscationO ⇒ DTr is complete w.r.t. obfuscationO

In this case, by proving thatDTr is not sound/complete with respect to a given obfuscation
O we prove as well thatDOR is not sound/complete with respect toO. On the other hand,
even if we are able to prove thatDTr is sound/complete with respect to an obfuscationO
we cannot say anything about the soundness/completeness ofDOR with respect toO.

3. PRELIMINARIES

3.1 Abstract Interpretation

The basic idea of abstract interpretation is that program behavior at different levels of ab-
straction is an approximation of its formal semantics [Cousot and Cousot 1979; 1977].
The (concrete) semantics of a program is computed on the (concrete) domain〈C,≤C〉,
i.e., a complete lattice modeling the values computed by programs. The partial ordering
≤C models relative precision:c1 ≤C c2 means thatc1 is more precise (concrete) thanc2.
Approximation is encoded by an abstract domain〈A,≤A〉, i.e., a complete lattice, that rep-
resents some approximation properties on concrete objects. Also in the abstract domain the
ordering relation≤A denotes relative precision. As usual, abstract domains arespecified by
Galois connections [Cousot and Cousot 1979; 1977]. Two complete latticesC andA form

a Galois connection(C,α, γ,A), also denotedC −→←−α

γ
A, when the functionsα : C → A

andγ : A→ C form an adjunction, namely∀a ∈ A, ∀c ∈ C : α(c) ≤A a⇔ c ≤C γ(a)
whereα (γ) is the left (right) adjoint ofγ (α). α andγ are called, respectively, abstraction
and concretization maps. Given a Galois connection, the abstraction map can be uniquely
determined using the concretization map and vice versa [Cousot and Cousot 1992]. In fact
∀c ∈ C we can define the functionα(c) =

∧
{a ∈ A|c ≤C γ(a)}, while ∀a ∈ A we can

define the functionγ(a) =
∨
{c ∈ C|α(c) ≤A a}. This means thatα maps each element

c ∈ C in the smallest element inA whose image byγ is greater thanc as regards≤C .
On the other side,γ maps each elementa ∈ A in the greatest element inC whose image
by α is lower thana as regards≤A. A tuple (C,α, γ,A) is a Galois connection iffα is
additive iff γ is co-additive. This means that whenever we have an additive(co-additive)
functionf between two domains we can always build a Galois connection by considering
the right (left) adjoint map induced byf . Given two Galois connections(C,α1, γ1, A1)
and(A1, α2, γ2, A2), their composition(C,α2 ◦ α1, γ1 ◦ γ2, A2) is a Galois connection.

(C,α, γ,A) specifies a Galois insertion, denotedC →−→←−α

γ
A, if each element ofA is an

abstraction of a concrete element inC, namely(C,α, γ,A) is a Galois insertion iffα is

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 7

Syntactic Categories:

n ∈ N (integers)
X ∈ X (variable names)
L ∈ L (labels)
E ∈ E (integer expressions)
B ∈ B (Boolean expressions)
A ∈ A (actions)
D ∈ E ∪ (A× ℘(L)) (assignment r-values)
C ∈ C (commands)
P ∈ P (programs)

Syntax:

E ::= n | X | E1 op E2 (op ∈ {+,−, ∗, /, . . .})
B ::= true | false | E1 < E2

| ¬B1 | B1 && B2

A ::= X := D | skip | assign(L, X)
C ::= L : A→ L′ (unconditional actions)
| L : B → {LT , LF } (conditional jumps)

P ::= ℘(C)

Fig. 1. A simple programming language.

surjective iffγ is injective. Abstract domains can be related to each other with respect to
their relative degree of precision. In particular, we say that an abstractionα1 : C → A1 is
more concrete thanα2 : C → A2, i.e.,A2 is more abstract thanA1, denotedα1 ⊑ α2 or
A1 ⊑ A2, if ∀c ∈ C : γ1(α1(c)) ≤C γ2(α2(c)).

3.2 Programming Language

The language we consider is a simple extension of the one introduced in [Cousot and
Cousot 2002], the main difference being the ability of programs to generate code dynami-
cally (this facility is added to accommodate certain kinds of malware obfuscations where
the payload is unpacked and decrypted at runtime). The syntax and semantics of our lan-
guage are given in Fig. 1 and Fig. 2 (Fig. 3 provides some auxiliary functions used in the
definitions of the semantics). Given a setS, we useS⊥ to denote the setS ∪ {⊥}, where
⊥ represents an undefined value.2 Commands can be either conditional or unconditional.
A conditional command at a labelL has the form ‘L : B → {LT , LF },’ whereB is
a Boolean expression andLT (respectively,LF) is the label of the command to execute
whenB evaluates totrue (respectively,false); an unconditional command at a labelL is
of the form ‘L : A → L1,’ whereA is an action andL1 the label of the command to
be executed next. A variable can be undefined (⊥), or it can store either an integer or a
(appropriately encoded) pair(A,S) ∈ A×℘(L). LetC n(C, ξ) = C (C n−1(C, ξ)) denote
the fact that the semantic functionC has been appliedn times starting from state(C, ξ),
where functionC is extended to sets of states,C (S) =

⋃
σ∈S C (σ). Let C

∗ denote the
closure ofC . A program consists of an initial set of commands together with all the com-
mands that are reachable through execution from the initialset. In other words, ifPinit

2We abuse notation and use⊥ to denote undefined values of different types, since the typeof an undefined value
is usually clear from the context.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

8 · Mila Dalla Preda et al.

Value Domains:

B = {true, false} (truth values)
n ∈ Z (integers)
ρ ∈ E = X→ L⊥ (environments)
m ∈M = L→ Z ∪ (A× ℘(L)) (memory)
ξ ∈ X = E ×M (execution contexts)

Σ = C× X (program states)

Semantics:
ARITHMETIC EXPRESSIONS

E : A× X → Z⊥ ∪ (A× ℘(L))
E JnK ξ = n
E JXK ξ = m(ρ(X)) whereξ = (ρ, m)
E JE1 op E2K ξ = if (E JE1K ξ ∈ Z andE JE2K ξ ∈ Z)

thenE JE1K ξ op E JE2K ξ; else⊥

BOOLEAN EXPRESSIONS

B : B× X → B⊥

B JtrueK ξ = true
B JfalseK ξ = false
B JE1 < E2K ξ = if (E JE1K ξ ∈ Z andE JE2K ξ ∈ Z) thenE JE1K ξ <
E JE2K ξ; else⊥
B J¬BK ξ = if (B JBK ξ ∈ B) then¬B JBK ξ; else⊥
B JB1 && B2K ξ = if (B JB1K ξ ∈ B andB JB2K ξ ∈ B) thenB JB1K ξ ∧
B JB2K ξ; else⊥

ACTIONS

A : A× X → X
A JskipK ξ = ξ
A JX := DK ξ = (ρ,m′) whereξ = (ρ, m), m′ = m[ρ(X) ← δ], and δ =


D if D ∈ A× ℘(L)
E JDK (ρ, m) if D ∈ E

A Jassign(L′, X)K ξ = (ρ′, m) whereξ = (ρ,m) andρ′ = ρ[X ; L′]

COMMANDS

The semantic functionC : Σ→ ℘(Σ) effectively specifies the transition relation between states.
Here,lab JCK denotes the label for the commandC, i.e.,lab JL : A→ L′K = L and
lab JL : B → {LT , LF }K = L.

C JL : A→ L′K ξ = {(C, ξ′) | ξ′ = A JAK ξ, lab JCK = L′, 〈act JCK :
suc JCK〉 = m′(L′)} whereξ′ = (ρ′, m′)

C JL : B → {LT , LF }K ξ = {(C, ξ) | lab JCK =



LT if B JBK ξ = true
LF if B JBK ξ = false

}

Fig. 2. Semantics for our simple programming language of Fig. 1.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 9

LABELS

lab JL : A→ L′K = L
lab JL : B → {LT , LF }K = L
lab JP K = {lab JCK |C ∈ P}
SUCCESSORS OF A COMMAND

suc JL : A→ L′K = L′

suc JL : B → {LT , LF }K = {LT , LF }
ACTION OF A COMMAND

act JL : A→ L2K = A

VARIABLES

var JL1 : A→ L2K = var JAK
var JP K =

S

C∈P
var JCK

var JAK = {variables occurring inA}
MEMORY LOCATIONS USED BY A PROGRAM

Luse JL : A→ L′K = Luse JAK
Luse JP K =

S

C∈P
Luse JCK

Luse JAK = {locations occurring inA} ∪ ρ(var JAK)
COMMANDS IN SEQUENCES OF PROGRAM STATES

cmd J{(C1, ξ1), . . . , (Ck, ξk)}K = {C1, . . . , Ck}

Fig. 3. Auxiliary functions for the language of Fig. 1.

denotes the initial set of commands, thenP = cmd
r⋃

C∈Pinit

(⋃
ξ∈X C

∗(C, ξ)
)z

. Since

each command explicitly mentions its successors, a programdoes not need to maintain
an explicit sequence of commands. This definition allows us to represent programs that
generate code dynamically.

An environmentρ ∈ E maps variables indom(ρ) ⊆ X to memory locationsL⊥. Given
a programP we denote withE(P) its environments, i.e., ifρ ∈ E(P) thendom(ρ) =
var JP K. Let ρ[X ; L] denote environmentρ where labelL is assigned to variableX .
The memoryis represented as a functionm : L → Z⊥ ∪ (A × ℘(L)). Letm[L ← D]
denote memorym where elementD is stored at locationL. When considering a program
P , we denote withM(P) the set of program memories, namely ifm ∈ M(P) then
dom(m) = Luse JP K. This means thatm ∈ M(P) is defined on the set of memory
locations that are affected by the execution of programP (excluding the memory locations
storing the initial commands ofP).

The behavior of a command when it is executed depends on itsexecution context, i.e.,
the environment and memory in which it is executed. The set ofexecution contexts is given
byX = E ×M. A program stateis a pair(C, ξ) whereC is the next command that has to
be executed in the execution contextξ. Σ = C × X denotes the set of all possible states.
Given a states ∈ Σ, the semantic functionC (s) gives the set of possible successor states
of s; in other words,C : Σ → ℘(Σ) defines the transition relation between states. Let
Σ(P) = P ×X (P) be the set of states of a programP , then we can specify the transition
relationC JP K : Σ(P)→ ℘(Σ(P)) on programP as:

C JP K (C, ξ) =
{
(C′, ξ′)

∣∣(C′, ξ′) ∈ C (C, ξ), C′ ∈ P, andξ, ξ′ ∈ X (P)
}
.

Let A∗ denote the Kleene closure of a setA, i.e., the set of finite sequences overA. A
traceσ ∈ Σ∗ is a sequence of statess1...sn of length|σ| ≥ 0 such that for alli ∈ [1, n):
si ∈ C (si−1). Thefinite partial traces semanticsS JP K ⊆ Σ∗ of programP is the least
fix point of the functionF :

F JP K (T) = Σ(P) ∪ {ss′σ|s′ ∈ C JP K (s), s′σ ∈ T }

whereT is a set of traces, namelyS JP K = lfp⊆F JP K. The set of all partial trace seman-
tics, ordered by set inclusion, forms a complete lattice.

Finally, we use the following notation. Given a functionf : A → B and a setS ⊆ A,
we usef|S to denote the restriction of functionf to elements inS∩A, andfrS to denote
the restriction of functionf to elements not inS, namely toAr S.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

10 · Mila Dalla Preda et al.

4. SEMANTICS-BASED MALWARE DETECTION

Intuitively, a programP is infected by a malwareM if (part of) P ’s execution behavior
is similar to that ofM . Therefore, in order to detect the presence of a malicious behavior
from a malwareM in a programP , we need to check whether there is a part (a restriction)
of S JP K that “matches” (in a sense that will be made precise)S JMK. In the follow-
ing we show howprogram restrictionas well assemantic matchingcan be expressed as
appropriate abstractions of program semantics, in the abstract interpretation sense.

Program restriction.Given a programP , the process of considering only a portion of
program semantics can be clearly seen as an abstraction ofS JP K. In particular, a subset
of a programP ’s labels (i.e., commands)labr JP K ⊆ lab JP K characterizes arestriction
of programP . In this setting, letvar r JP K andLuser JP K denote, respectively, the set of
variables occurring and the set of memory locations used in the restriction:

varr JP K =
⋃
{var JCK | lab JCK ∈ labr JP K}

Luser JP K =
⋃
{Luse JCK | lab JCK ∈ labr JP K}.

This means that the setlabr JP K of labels induces a restriction on environment and mem-
ory maps. In particular, givenρ ∈ E(P) andm ∈ M(P), let ρr = ρ|varrJP K and
mr = m|LuserJP K denote the restricted set of environments and memories induced by
the subsetlabr JP K of labels, and letΣr =

{
(C, (ρr,mr))

∣∣lab JCK ∈ labr JP K
}

be the
set of restricted program states. Given a traceσ ∈ S JP K, let us define the abstraction
αr : Σ∗ → Σ∗ that propagates the program restriction specified bylabr JP K on the trace
σ = (C1, (ρ1,m1))σ

′:

αr(σ) =






ǫ if σ = ǫ
(C1, (ρ

r
1,m

r
1))αr(σ

′) if lab JC1K ∈ labr JP K
αr(σ

′) otherwise

In fact, from the above definition,αr(σ) corresponds exactly to the subsequence ofσ
given by the states inΣr. In the following, given a functionf : A → B we denote, by a
slight abuse of notation, its pointwise extension on powerset asf : ℘(A) → ℘(B), where
f(X) = {f(x)|x ∈ X}. Note that the pointwise extension is additive. Therefore,the
functionαr : ℘(Σ∗) → ℘(Σ∗

r) defines an abstraction of sets of traces (i.e., program se-
mantics) that discards information outside restrictionlabr JP K. Moreover,αr is surjective
and defines a Galois insertion:

〈℘(Σ∗),⊆〉 →−→←−
αr

γr

〈℘(Σ∗
r),⊆〉

Given a programP and a restrictionlabr JP K ∈ ℘(lab JP K), let αr(S JP K) be there-
stricted semanticsof programP and letPr = {C ∈ P | lab JCK ∈ labr JP K} be the
program obtained by considering only the commands ofP with labels inlabr JP K. If Pr is
a program, namely if it is possible to compute its semantics,thenS JPrK (I) = αr(S JP K),
whereI is the set of possible program states thatP can assume when it executes the first
command ofPr.

Semantic matching.Let us observe that the effects of program execution on the execu-
tion context, i.e., on environments and memories, express program behavior more than the
particular sequence of commands that cause such effects (infact different sequences of

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 11

commands may produce the same sequence of modifications on environments and memo-
ries). Thus, the idea is to define a (semantic) matching relation between traces based on ex-
ecution contexts rather than commands. Let us consider the transformationαe : Σ∗ → X ∗

that, given a traceσ, discards fromσ all information about the commands that are executed,
retaining only information about the execution context:

αe(σ) =

{
ǫ if σ = ǫ
ξ1αe(σ

′) if σ = (C1, ξ1)σ
′

Two tracesσ andδ are considered to be “similar” if they are indistinguishable with respect
to αe, namely if they have the same sequence of effects on environments and memories,
i.e., if αe(σ) = αe(δ). This semantic matchingrelation between program traces is the
basis of our approach to malware detection, since it allows us to abstract from program
syntax and concentrate on program behaviors. The additive functionαe : ℘(Σ∗)→ ℘(X ∗)
defines the following Galois insertion:

〈℘(Σ∗),⊆〉 →−→←−
αe

γe

〈℘(X ∗),⊆〉

It follows that abstractionαr models program restriction, while abstractionαe models
the semantic matching relation between program traces. In this contest, a malware is called
avanilla malwareif no obfuscating transformations have been applied to it. The following
definition provides a semantic characterization of the presence of a vanilla malwareM in
a programP in terms of abstractionsαr andαe.

DEFINITION 4. A programP is infectedby a vanilla malwareM , i.e.,M →֒ P , if:

∃labr JP K ∈ ℘(lab JP K) : αe(S JMK) ⊆ αe(αr(S JP K))
Following this definition we have that a programP is infected by malwareM , when it
exhibits behaviors that, under abstractionsαr andαe, match all of the behaviors of the
vanilla malwareM . It is clear that this is a strong requirement and that the notion of
program infection can be weakened in many ways (see Section 7.2 for some examples).

In general, we say that asemantic malware detectoris a system that verifies the presence
of a malware in a program by checking the truth of the inclusion relation of Definition 4.

5. OBFUSCATED MALWARE

Since malware writers usually obfuscate malicious code in order to prevent detection, a
robust malware detector needs to handle possibly obfuscated versions of a malware. While
obfuscation may modify the original code, the obfuscated code has to be equivalent (up to
some notion of equivalence) to the original one. Given an obfuscating transformationO :
P → P on programs and a suitable abstract domainA, our idea is to define an abstraction
α : ℘(X ∗) → A that discards the details changed by the obfuscation while preserving the
maliciousness of the program. Thus, the trace semantics of different obfuscated versions
of a program are equivalent up toα ◦ αe. Hence, in order to verify program infection,
we check whether there exists a semantic program restriction that matches the malware
semantics up toα ◦ αe, formallyM →֒ P if:

∃ labr JP K ∈ ℘(lab JP K) : α(αe(S JMK)) ⊆ α(αe(αr(S JP K))). (1)

Hereαr(S JP K) is the restricted semantics for programP ; αe denotes the abstraction that
retains only the environment-memory traces; andα is the abstraction that further discards

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

12 · Mila Dalla Preda et al.

any effects due to obfuscationO. Then, the above condition checks whether the abstraction
of the restricted program semantics matches the abstract malware semantics, with obfus-
cation effects abstracted away viaα.

In this setting, abstractionα allows us to ignore obfuscation and focus only on the mali-
cious intent. A semantic malware detector onα refers to a semantic detection scheme that
verifies infection according to equation (1).

EXAMPLE 1. Let us consider the fragment of programP that computes the factorial of
variableX and its obfuscationO JP K obtained inserting commands that do not affect the
execution context (at labelsL2 andLF+1 in the example).

P O JP K

L1 : F := 1→ L2

L2 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1→ L2

L2 : F := F × 2− F → L3

L3 : (X = 1)→ {LT , LF }
LF : X := X − 1→ LF+1

LF+1 : X := X × 1→ LF+2

LF+2 : F := F ×X → L3

LT :

It is clear thatA JF := F × 2− F K ξ = ξ andA JX := X × 1K ξ = ξ for all ξ ∈ X . Thus,
an abstractionα able to deal with the insertion of such semantic nop commands, is the one
that observes modifications in the execution context, formally let ξi = (ρi,mi):

α(ξ1, ξ2, ..., ξn) =






ǫ if ξ1, ξ2, ..., ξn = ǫ
α(ξ2, ..., ξn) if ξ1 = ξ2
ξ1α(ξ2, ..., ξn) otherwise

In fact it is possible to show thatα(αe(S JP K)) = α(αe(αr JO JP KK)).

5.1 Soundness vs Completeness

According to the notion of infection of equation (1) we have that the extent to which a
semantic malware detector onα is able to discriminate between infected and uninfected
code, and therefore the balance between any false positivesand any false negatives it may
incur, depends on the abstraction functionα. On the one hand, by augmenting the degree
of abstraction ofα we increase the ability of the detector to deal with obfuscation but,
at the same time, we increase the false positives rate, namely the number of programs
erroneously classified as infected. On the other hand, a moreconcreteαmakes the detector
more sensitive to obfuscation, while decreasing the presence of programs miss-classified
as infected. In the following we provide a semantic characterization of the notions of
soundness and completeness with respect to a setO ⊆ O of obfuscating transformations.

DEFINITION 5. A semantic malware detector onα is complete forO if ∀O ∈ O:

O(M) →֒ P ⇒ ∃labr JP K ∈ ℘(lab JP K) : α(αe(S JMK)) ⊆ α(αe(αr(S JP K)))

A semantic malware detector onα is sound forO if:

∃labr JP K ∈ ℘(lab JP K) :

α(αe(S JMK)) ⊆ α(αe(αr(S JP K)))

}
⇒ ∃O ∈ O : O JMK →֒ P

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 13

In particular, completeness for a classO of obfuscating transformations means that, for
every obfuscationO ∈ O, when programP is infected by a variantO JMK of a malware,
then the semantic malware detector is able to detect it (i.e., no false negatives). On the
other side, soundness with respect to the classO of obfuscating transformations means
that when the semantic malware detector classifies a programP as infected by a malware
M , then there exists an obfuscationO ∈ O, such that programP is infected by the variant
O JMK of the malware (i.e., no false positives). In the following,when considering a class
O of obfuscating transformations, we will also assume that the identity function belongs
to O, in this way we include in the set of variants identified byO the malware itself. It
is interesting to observe that, considering an obfuscatingtransformationO, completeness
is guaranteed when abstractionα is preserved by obfuscationO, namely when∀P ∈ P :
α(αe(S JP K)) = α(αe(S JO(P)K)).

THEOREM 1. If abstractionα : ℘(X ∗) → A is preserved by the transformationO,
namely if ∀P ∈ P : α(αe(S JP K)) = α(αe(S JO(P)K)), then the semantic malware
detector onα is complete forO.

PROOF. In order to show that the semantic malware detector onα is complete forO,
we have to show that ifO JMK →֒ P then there existslabr JP K ∈ ℘(lab JP K) such
thatα(αe(S JMK)) ⊆ α(αe(αr(S JP K))). If O JMK →֒ P , it means that there exists
labr JP K ∈ ℘(lab JP K) such thatPr = O JMK. By definitionO JMK is a program, thus
S JO JMKK = S JPrK = αr(S JP K). Moreover, we have thatα(αe(αr(S JP K))) =
α(αe(S JPrK)) = α(αe(S JO JMKK)) = α(αe(S JMK)), where the last equality follows
from the hypothesis thatα is preserved byO. Thus,α(αe(S JMK)) = α(αe(αr(S JP K)))
which concludes the proof.

However, the preservation condition of Theorem 1 is too weakto imply soundness of the
semantic malware detector. As an example let us consider theabstractionα⊤ = λX.⊤ that
loses all information. It is clear thatα⊤ is preserved by every obfuscating transformation,
and the semantic malware detector onα⊤ classifies every program as infected by every
malware. Unfortunately we do not have a result analogous to Theorem 1 that provides
a property ofα that characterizes soundness of the semantic malware detector. However,
given an abstractionα, we can characterize the set of transformations for whichα is sound.

THEOREM 2. Given an abstractionα, consider the setO ⊆ O such that:∀P, T ∈ P:

(α(αe(S JT K)) ⊆ α(αe(S JP K)))⇒ (∃O ∈ O : αe(S JO JT KK) ⊆ αe(S JP K)).
Then, a semantic malware detector onα is sound forO.

PROOF. Suppose that these existslabr JP K ∈ ℘(lab JP K) such thatα(αe(S JMK)) ⊆
α(αe(αr(S JP K))), sinceM,P, Pr ∈ P andαr(S JP K) = S JPrK, then by definition
of set O we have that:∃O ∈ O : αe(S JO JMKK) ⊆ αe(αr(S JP K)), and therefore
O JMK →֒ P .

5.2 A semantic classification of obfuscations

Let us introduce a classification of obfuscations based on the effects that these transfor-
mations have on program trace semantics. In particular, we distinguish between transfor-
mations that add new instructions while maintaining the structure of the original program
traces (calledconservative), and transformations that insert new instructions causing major

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

14 · Mila Dalla Preda et al.

changes to the original semantic structure (callednon-conservative). Given two sequences
s, t ∈ A∗ for some setA, lets � t denote thats is asubsequenceof t, i.e., ifs = s1s2 . . . sn
thent is of the form. . . s1 . . . s2 . . . sn The idea is that an obfuscating transformation
is aconservativeobfuscation if every traceσ of the semantics of the original program is a
subsequence of some traceδ of the semantics of the obfuscated program.

DEFINITION 6. An obfuscating transformationO : P→ P is conservativeif:

∀σ ∈ S JP K , ∃δ ∈ S JO(P)K : αe(σ) � αe(δ)

An obfuscation that does not satisfy the conservativeness property defined above is said to
benon-conservative.

6. CONSERVATIVE OBFUSCATIONS

Let Oc denote the set of conservative obfuscating transformations. When dealing with
conservative obfuscations we have that a traceδ of a programP presents a malicious
behaviorM , if there is a malware traceσ ∈ S JMK whose environment-memory evolution
is “contained” in the environment-memory evolution ofδ, namely ifαe(σ) � αe(δ). Let
us define the abstractionαc : ℘(X ∗) → (X ∗ → ℘(X ∗)) that, given an environment-
memory sequences ∈ X ∗ and a setS ∈ ℘(X ∗), returns the elementst ∈ S that are
sub-traces ofs:

αc[S](s) = S ∩ SubSeq(s)

whereSubSeq(s) = {t|t � s} denotes the set of all subsequences ofs. For anyS ∈
℘(X ∗), the additive functionαc[S] defines a Galois connection:

〈℘(X ∗),⊆〉 −→←−
αc[S]

γc[S]
〈℘(X ∗),⊆〉

The abstractionαc defined above turns out to be a suitable approximation when dealing
with conservative obfuscations. In fact the semantic malware detector onαc[αe(S JMK)]
is complete and sound for the class of conservative obfuscationsOc.

THEOREM 3. Considering a vanilla malwareM we have that a semantic malware de-
tector onαc[αe(S JMK)] is complete and sound forOc, namely:
Completeness:

∀Oc ∈ Oc : Oc JMK →֒ P ⇒ ∃labr JP K ∈ ℘(lab JP K) :

αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(αr(S JP K)))
Soundness:

∃labr JP K ∈ ℘(lab JP K) :

αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(αr(S JP K)))⇒
∃Oc ∈ Oc : Oc JMK →֒ P

PROOF. Completeness: LetOc ∈ Oc, if Oc JMK →֒ P it means that∃ labr JP K ∈
℘(lab JP K) such thatPr = Oc JMK. Such restriction is the one that satisfies the condition
on the right. In fact,Pr = Oc JMK means thatαr(S JP K) = S JOc JMKK. We have to
show:αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(S JOc JMKK)). By definition
of conservative obfuscation for each traceσ ∈ S JMK there existsδ ∈ S JOc JMKK such

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 15

P OJ JP K

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X − 1 → LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1 → L2

L2 : skip → L3

LF : X := X − 1 → LF+1

LF+1 : skip → L4

L3 : (X = 1) → {LT , LF }
LT :
L4 : F := F × 2 − F → L3

Fig. 4. Code reordering

that: αe(σ) � αe(δ). Considering suchσ andδ we show thatαc[αe(S JMK)](αe(σ)) ⊆
αc[αe(S JMK)](αe(δ)), in fact by definition ofαc we have thatαc[αe(S JMK)](αe(δ)) =
αe(S JMK)∩SubSeq(αe(δ)) andαc[αe(S JMK)](αe(σ)) = αe(S JMK)∩SubSeq(αe(σ)).
Sinceαe(σ) � αe(δ), it follows that SubSeq(αe(σ)) ⊆ SubSeq(αe(δ)). Therefore,
αc[αe(S JMK)](αe(σ)) ⊆ αc[αe(S JMK)](αe(δ)), which concludes the proof.
Soundness: By hypothesis there existslabr JP K ∈ ℘(lab JP K) for which it holds that
αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(αr(S JP K))). This means that∀σ ∈
S JMK we have that:αc[αe(S JMK)](αe(σ)) ⊆ αc[αe(S JMK)](αe(αr(S JP K))), which
means thatαe(σ) ∈ {αc[αe(S JMK)](αe(δ)) | δ ∈ αr(S JP K)}. Thus,∀σ ∈ S JMK,
there existsδ ∈ αr(S JP K) such thatαe(σ) � αe(δ) and this means thatPr is a conserva-
tive obfuscation of malwareM , namely∃Oc ∈ Oc such thatOc JMK →֒ P .

Thus, in order to deal with conservative obfuscations of a malware M , the semantic
malware detector has to computeαc[αe(S JMK)](αe(αr(S JP K))), namely the intersec-
tion αe(S JMK) ∩ {SubSeq(δ) | δ ∈ αe(αr(S JP K))}. We expect the number of sub-
sequences of the traces inαe(αr(S JP K)) to be quite large. Hence, a practical way
for computingαc[αe(S JMK)](αe(αr(S JP K))) is to check for eachσ ∈ αe(S JMK) if
there exists aδ ∈ αe(αr(S JP K)) such thatσ � δ. This can be done without gen-
erating the set{SubSeq(δ) | δ ∈ αe(αr(S JP K))}, by incrementally searching inδ for
successive environment-memory elements ofσ. For example, let us consider a mali-
cious behaviourσ = σ0...σn ∈ αe(S JMK), and let us denote a traceδ = δ0...δm
whosej-th element isδj as δ = ηδjµ whereη = δ0...δj−1 andµ = δj+1...δm. Let
X0 = {δjµ | ∃δ = ηδjµ ∈ αe(αr(S JP K)) : δj = σ0}, and let us defineXi =
{σ0...σi−1δjµ | ∃σ0...σi−1ηδjµ ∈ Xi−1 : δj = σi}. It is clear that ifXi 6= ∅ for all
i ∈ [0, n] then there existsδ ∈ αe(αr(S JP K)) such thatσ � δ, otherwise the malicious
behaviourσ is not present inαe(αr(S JP K)) and the program is not classified as infected.

It turns out that many obfuscating transformations commonly used by malware writers
are conservative; a partial list of such conservative obfuscations is given below, together
with a proof sketch of their conservativeness. It follows that Theorem 3 is applicable to a
significant class of malware-obfuscation transformations.

Code reordering.This transformation, commonly used to avoid signature matching de-
tection, changes the order in which commands are written, while maintaining the execution
order through the insertion of unconditional jumps (see Fig. 4 for an example). Observe
that, in the programming language introduced in Section 3.2, an unconditional jump is
expressed as a commandL : skip → L′ that directs the flow of control of the program

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

16 · Mila Dalla Preda et al.

to a command labeled byL′. Let P be a program,P = {Ci : 1 ≤ i ≤ N}. The code
reordering obfuscating transformationOJ : P → P insertsL : skip → L′ commands
after selected commands from the programP . LetR ⊆ P be a set ofm ≤ N commands
selected by the obfuscating transformationOJ , i.e., |R| = m. Theskip commands are
then inserted after each one of them selected commands inR. Let us define the subsetS
of commands ofP that contains the successors of the commands inR:

S =
{
C′ ∈ P

∣∣∃C ∈ R : lab JC′K ∈ suc JCK
}

Effectively, the code reordering obfuscating transformation adds askip command between
a commandC ∈ R and its successorC′ ∈ S. Defineη : C → C, a command-relabeling
function, as follows:

η (L1 : A→ L2) = NewLabel (L \ {L1}) : A→ L2

whereNewLabel(H) returns a label from the setH ⊆ L. We extendη to a set of com-
mandsT = {. . . , Li : A→ Lj , . . . }:

η(T) =
{
. . . ,NewLabel(L′) : A→ Lj, . . .

}

whereL′ = L \ {. . . , Li, . . . }. We can define the set ofskip commands inserted by this
obfuscating transformation:

Skip(S) =
{
L : skip→ L′

∣∣∃C ∈ S : L = lab JCK , L′ = lab Jη(C)K
}

Then,OJ JP K = (P \ S) ∪ η(S) ∪ Skip(S). Considering the effects that code reordering
has on program trace semantics, we have that for each trace inthe original programσ =
〈C1, (ρ1,m1)〉 ... 〈Cn, (ρn,mn)〉 ∈ S JP K, there exists a trace in the obfuscated program
δ ∈ S JOJ JP KK of the form

δ = 〈SK, (ρ1,m1)〉
∗ 〈C′

1, (ρ1,m1)〉 . . . 〈SK, (ρn,mn)〉
∗ 〈C′

n, (ρn,mn)〉

where the original commands (act JCiK = act JC′
iK) are interleaved with any number of

skip commandsSK ∈ Skip(S). Thus,αe(σ) � αe(δ) andOJ ∈ Oc.

Opaque predicate insertion.This program transformation confuses the original control
flow of the program by inserting opaque predicates, i.e., a predicate whose value is known
a priori to a program transformation but is difficult to determine by examining the trans-
formed program [Collberg et al. 1998]. In the following, we give an idea of why opaque
predicate insertion is a conservative transformation by considering the three major types
of opaque predicates: true, false and unknown (see Fig. 5 foran example of true opaque
predicate insertion). In the considered programming language atrue opaque predicateis
expressed by a commandL : PT → {LT , LF }. SincePT always evaluates totrue the
next command label is alwaysLT . When a true opaque predicate is inserted after com-
mandC the sequence of commands starting at labelLT is the sequence starting atsuc JCK
in the original program, while some buggy code is inserted starting form labelLF . Let
OT : P→ P be the obfuscating transformation that inserts true opaquepredicates, and let
P ,R, S andη be defined as in the code reordering case. In fact, transformationOT inserts
opaque predicates between a commandC in R and its successorC′ in S. Let us define the

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 17

P OT JP K

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X − 1 → LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LO}
LO : PT → {LF , LB}
LF : X := X − 1 → LF+1

LF+1 : F := F ×X → L2

LB : buggy code
LT : ...

Fig. 5. True opaque predicate insertion at labelLO

set of commands encoding opaque predicatePT inserted byOT as:

TrueOp(S) =

{
L : PT → {LT , LF}

∣∣∣∣
∃C ∈ S :
L = lab JCK , LT = lab Jη(C)K

}

Bug(TrueOp(S)) =




B1...Bk

∣∣∣∣∣∣

B1...Bk ∈ ℘(C)
∃L : PT → {LT , LF} ∈ TrueOp(S) :
lab JB1K = LF






whereB1...Bk is a sequence of commands expressing some buggy code. Then:

OT JP K = (P \ S) ∪ η(S) ∪TrueOp(S) ∪ Bug(TrueOp(S))

Observing the effects on program semantics we have that for each traceσ ∈ S JP K, such
thatσ = 〈C1, (ρ1,m1)〉 ... 〈Cn, (ρn,mn)〉 there existsδ ∈ S JOT JP KK such that:

δ = 〈OP, (ρ1,m1)〉
∗ 〈C′

1, (ρ1,m1)〉 〈OP, (ρ2,m2)〉
∗
... 〈OP, (ρn,mn)〉

∗ 〈C′
n, (ρn,mn)〉

whereOP ∈ TrueOp(S), act JCiK = act JC′
iK. Thusαe(σ) � αe(δ) andOT ∈ Oc. The

same holds for the insertion offalse opaque predicates.
An unknown opaque predicateP ? sometimes evaluates totrue and sometimes evaluates

to false, thus thetrue andfalse branches have to exhibit equivalent behaviors. Usually,
in order to avoid detection, the two branches present different obfuscated versions of the
original command sequence. This can be seen as the composition of two or more distinct
obfuscations: the first oneOU that inserts the unknown opaque predicates and duplicates
the commands in such a way that the two branches present the same code sequence, and
subsequent ones that obfuscate the code in order to make the two branches look different.
LetOU : P → P be the program transformation that inserts unknown opaque predicates,
and letP , R, S andη be defined as in the code reordering case. In the considered pro-
gramming language an unknown opaque predicate is expressedasL : P ? → {LT , LF }.
Let us define the set of commands encoding an unknown opaque predicateP ? inserted by
the transformationOU :

UnOp(S) =

{
L : P ? → {LT , LF }

∣∣∣∣
∃C ∈ S :
lab JCK = L, lab Jη(C)K = LT

}

Rep(UnOp(S)) =

{
R1...Rk

∣∣∣∣
R1...Rk ∈ ℘(C)
lab JR1K = LF

}

whereR1...Rk present the same sequence of actions of the commands starting at la-
bel LT . Then,OU JP K = (P \ S) ∪ UnOp(S) ∪ η(S) ∪ Rep(UnOp(S)). Observ-

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

18 · Mila Dalla Preda et al.

P ON JP K

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X − 1 → LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X − 1 → LF+1

LF+1 : X := X × 2 −X
LF+2 : F := F ×X → L2

LT : ...

Fig. 6. SemanticNOP insertion at labelLF+1

P OI JP K

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X − 1 → LF+1

LF+1 : F := F ×X → L2

LT : ...

L1 : F := 1 → L2

L2 : (X = 1) → {LT , LF }
LF : X := X −X/X → LF+1

LF+1 : F := F ×X × 2 − F ×X → L2

LT : ...

Fig. 7. Substitution of equivalent commands at labelLF andLF+1

ing the effects on program semantics we have that, for every traceσ ∈ S JP K, where
σ = 〈C1, (ρ1,m1)〉 ... 〈Cn, (ρn,mn)〉, there existsδ ∈ S JOU JP KK such that:

δ = 〈U, (ρ1,m1)〉
∗ 〈C′

1, (ρ1,m1)〉 〈U, (ρ2,m2)〉
∗
... 〈U, (ρn,mn)〉

∗ 〈C′
n, (ρn,mn)〉

whereU ∈ UnOp(S) andact JCiK = act JC′
iK. Thusαe(σ) = αe(δ), andOU ∈ Oc.

SemanticNOP insertion. This transformation inserts commands that are irrelevant with
respect to program trace semantics (see Fig. 6 for an example). Let us consider commands
SN,C1, C2 ∈ ℘(C). We saySN is a semanticNOP with respect toC1 ∪ C2 if for every
σ ∈ S JC1 ∪ C2K, there existsδ ∈ S JC1 ∪ SN ∪ C2K such thatαe(σ) � αe(δ). Let
ON : P → P be the program transformation that inserts irrelevant instructions, therefore
ON JP K = P ∪ SN whereSN represents the set of irrelevant instructions inserted inP .
Following the definition of semanticNOP we have that for everyσ ∈ S JP K there exists
δ ∈ S JON JP KK such thatαe(σ) � αe(δ), thusON ∈ Oc.

Substitution of Equivalent Commands.This program transformation replaces a single
command with an equivalent one, with the goal of thwarting signature matching (see
Fig. 7 for an example). LetOI : P → P be the program transformation that sub-
stitutes commands with equivalent ones. Two commandsC andC′ are equivalent if
they always cause the same effects, namely if∀ξ ∈ X : C JCK ξ = C JC′K ξ. Thus,
OI JP K = P ′ where∀C′ ∈ P ′, ∃C ∈ P such thatC andC′ are equivalent. Ob-
serving the effects on program semantics we have that: for every σ ∈ S JP K such that
σ = 〈C1, (ρ1,m1)〉 ... 〈Cn, (ρn,mn)〉, there exists a traceδ ∈ S JOJ JP KK such that
δ = 〈C′

1, (ρ1,m1)〉 ... 〈C′
n, (ρn,mn)〉 whereC 〈Ci, (ρi,mi)〉 = C 〈C′

i, (ρi,mi)〉. Thus,
αe(σ) = αe(δ), andOI ∈ Oc.

Of course, malware writers usually combine different obfuscating transformations in
order to prevent detection. Thus, it is crucial to understand whether (and how) the ability of
a semantic malware detector to deal with single obfuscations can be “extended” in order to

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 19

handle also their composition. First of all we observe that the composition of conservative
obfuscations is a conservative obfuscation, namely that the property of being conservative
is preserved by composition.

This means that when more than one conservative obfuscations are applied, they can
be handled as a single conservative obfuscation, namely that abstractionαc is able to deal
with any composition of conservative obfuscations.

LEMMA 1. GivenO1,O2 ∈ Oc thenO1 ◦ O2 ∈ Oc.

PROOF. By definition of conservative transformations we have that:

∀σ ∈ S JP K , ∃δ ∈ S JO1 JP KK : αe(σ) � αe(δ)

∀δ ∈ S JO1 JP KK , ∃η ∈ S JO2 JO1 JP KKK : αe(δ) � αe(η)

Thus, for transitivity of�: ∀σ ∈ S JP K , ∃η ∈ S JO2 JO1 JP KKK such thatαe(σ) � αe(η),
which proves thatO2 ◦ O1 is a conservative transformation.

EXAMPLE 2. Let us consider a fragment of malwareM presenting the decryption loop
used by polymorphic viruses. Such a fragment writes, starting from memory locationB,
the decryption of memory locations starting at locationA and then executes the decrypted
instructions. Observe that given a variableX , the semantics ofπ2(X) is the label expressed
by π2(m(ρ(X))), in particularπ2(n) = ⊥, while π2(A,S) = S. Moreover, given a
variableX , letDec(X) denote the execution of a set of commands that decrypts the value
stored in the memory locationρ(X). Let O JMK be a conservative obfuscation ofM
obtained through code reordering, opaque predicate insertion and semantic nop insertion.

M Oc(M)

L1 : assign(LB, B)→ L2

L2 : assign(LA, A)→ Lc

Lc : cond(A)→ {LT , LF }
LT : B := Dec(A)→ LT1

LT1
: assign(π2(B), B)→ LT2

LT2
: assign(π2(A),A)→ LC

LF : skip→ LB

L1 : assign(LB , B)→ L2

L2 : skip→ L4

Lc : cond(A)→ {LO , LF }
L4 : assign(LA, A)→ L5

L5 : skip→ Lc

LO : P T → {LN , Lk}
LN : X := X − 3→ LN1

LN1
: X := X + 3→ LT

LT : B := Dec(A)→ LT1

LT1
: assign(π2(B), B)→ LT2

LT2
: assign(π2(A), A)→ Lc

Lk : . . .
LF : skip→ LB

It can be shown thatαc[αe(S JMK)](αe(S JOc JMKK)) = αcαe(S JMK),
i.e., our semantics-based approach is able to see through the obfuscations and identify
O JMK as matching the malwareM . In particular, let⊥ denote the undefined function.

αcαe(S JMK) = αe(S JMK)
= (⊥,⊥), ((B ; LB),⊥), ((B ; LB, A ; LA),⊥)2,

((B ; LB, A ; LA), (ρ(B)← Dec(A))),

((B ; π2(m(ρ(B)), A ; LA), (ρ(B)← Dec(A))),

((B ; π2(m(ρ(B)), A ; π2(m(ρ(A)))),

(ρ(B)← Dec(A)))...

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

20 · Mila Dalla Preda et al.

while

αe(S JOc JMKK) = (⊥,⊥), ((B ; LB),⊥)2, ((B ; LB, A ; LA),⊥)5,

((B ; LB, A ; LA), (ρ(X)← X − 3)),

((B ; LB, A ; LA), (ρ(X)← X + 3, ρ(X)← X − 3)),

((B ; LB, A ; LA), (ρ(B)← Dec(A))),

((B ; π2(m(ρ(B)), A ; LA), (ρ(B)← Dec(A))),

((B ; π2(m(ρ(B)), A ; π2(m(ρ(A)))), (ρ(B) ← Dec(A)))

...

Thus,αcαe(S JMK) ⊆ αc[αe(S JMK)](αe(S JOc JMKK)).

7. NON-CONSERVATIVE OBFUSCATIONS

A non-conservative transformation modifies the program semantics in such a way that the
original environment-memory traces are not present any more. This means that it is not
possible to recognize that a traceσ is an obfuscated version of a traceδ by verifying if
σ is a subsequence ofδ under abstractionαe, i.e.,αe(σ) � αe(δ). In order to tackle a
non-conservative transformationO we can design:

—a transformationT such that∀σ ∈ S JP K , ∃δ ∈ S JO JP KK: T (αe(σ)) = T (αe(δ)), or

—an abstractionα such that∀σ ∈ S JP K , ∃δ ∈ S JO JP KK: α(σ) � α(δ), with α 6⊑ αe

The idea of the first strategy mentioned above is to identify the set of all possible modi-
fications induced by a non-conservative obfuscation, and fix, when possible, acanonical
one. In this way transformationT would reduce the restricted program semantics and the
malware semantics to the canonical version before checkingfor infection (see Section 7.1
for a detailed example). This idea of program normalizationhas already been used to deal
with some obfuscations commonly used by metamorphic malware (e.g., [Christodorescu
et al. 2005; Lakhotia and Mohammed 2004; Walenstein et al. 2006]).

On the other hand, in Section 7.2 we show how it is possible to handle a class of non-
conservative obfuscations through a further abstraction of the malware semantics, namely
by designing abstractionα of the second strategy listed above. In this case the idea is
to weaken the notion of program infection in order to weaken the conservative condition.
In this way a wider class of obfuscating transformations canbe classified as conservative
and we prove that results analogous to Theorem 3 still hold for this relaxed definition of
infection and conservativeness.

Another possible approach comes from Theorem 1 that states that if α is preserved by
O then the semantic malware detector onα is complete with respect toO. Recall that,
given a program transformationO : P→ P, it is possible to systematically derive the most
concrete abstraction preserved byO [Dalla Preda and Giacobazzi 2005]. This systematic
methodology can be used in presence of non-conservative obfuscations in order to derive a
complete semantic malware detector when it is not easy to identify a canonical abstraction.

7.1 An Example: Canonical Variable Renaming

Let us consider a non-conservative transformation, known as variable renaming, and pro-
pose a canonical abstraction that leads to a sound and complete semantic malware de-
tector. Variable renaming is a simple obfuscating transformation, often used to prevent

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 21

signature matching, that replaces the names of variables with some different new names.
As most code of interest in malware detection is already compiled and does not contain
variable names, we cannot directly consider the effect of variable renaming has on com-
piled code. Instead, we assume that every environment function associates a variableVL
to a memory locationL. Let Ov : P × Π → P denote the obfuscating transformation
that, given a programP , renames its variables according to a mappingπ ∈ Π, where
π : var JP K → Names is a bijective function that relates the name of each program
variable to its new name.

Ov(P, π) =




C

∣∣∣∣∣∣

∃C′ ∈ P : lab JCK = lab JC′K
suc JCK = suc JC′K
act JCK = act JC′K [X/π(X)]






whereA[X/π(X)] represents actionA where each variable nameX is replaced byπ(X).
Recall that the matching relation between program traces considers the abstractionαe of
traces, thus it is interesting to observe that:

αe(S JOv(P, π)K) = αv[π](αe(S JP K))
whereαv : Π→ (X ∗ → X ∗) is defined as:

αv[π]((ρ1, m1) . . . (ρn, mn)) = (ρ1 ◦ π−1, m1) . . . (ρn ◦ π−1, mn).

In order to deal with variable renaming obfuscation we introduce the notion ofcanoni-
cal variable renaminĝπ. The idea of canonical mappings is that there exists a renaming
π : var JP K → var JQK that transforms programP into programQ, namely such that
Ov(P, π) = Q, iff αv[π̂](αe(S JQK)) = αv[π̂](αe(S JP K)). This means that a program
Q is a renamed version of programP iff Q andP are indistinguishable after canonical
renaming. In the following we define a possible canonical renaming for the variables of a
given a program.

Let {Vi}i∈N be a set of canonical variable names. The setL of memory locations is an
ordered set with ordering relation≤L. With a slight abuse of notation we denote with≤L
also the lexicographical order induced by≤L on sequences of memory locations. Let us
define the ordering≤Σ over tracesΣ∗ where, givenσ, δ ∈ Σ∗:

σ ≤Σ δ if

{
|σ| ≤ |δ| or

|σ| = |δ| andlab(σ1)lab(σ2)...lab(σn) ≤L lab(δ1)lab(δ2)...lab(δn)

wherelab(〈C, (ρ,m)〉) = lab JCK. It is clear that, given a program P, the ordering≤Σ on
its traces induces an order on the setZ = αe(S JP K) of its environment-memory traces,
i.e., givenσ, δ ∈ S JP K:

σ ≤Σ δ ⇒ αe(σ) ≤Z αe(δ)

By definition, the set of variables assigned inZ is exactlyvar JP K, therefore a canoni-
cal renaminĝπP : var JP K → {Vi}i∈N, is such thatαe(S JOv JP, π̂P KK) = αv[π̂P](Z).
Let Z̄ denote the list of environment-memory traces ofZ = αe(S JP K) ordered follow-
ing the order defined above. LetB be a list, thenhd(B) returns the first element of the
list, tl(B) returns listB without the first element,B : e (e : B) is the list resulting by
inserting elemente at the end (beginning) ofB, B[i] returns thei-th element of the list,
ande ∈ B means thate is an element ofB. Note that program execution starts from the

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

22 · Mila Dalla Preda et al.

Input: A list of context sequences̄Z, with Z ∈ αe(S JP K).
Output: A list Rename[Z] that associates canonical variableVi to the variable in the

list positioni.

Rename[Z] = List(hd(Z̄))
Z̄ = tl(Z̄)
while (Z̄ 6= ∅) do

trace = List(hd(Z̄))
while (trace 6= ∅) do

if (hd(trace) 6∈ Rename[Z]) then
Rename[Z] = Rename[Z] : hd(trace)

end
trace = tl(trace)

end
Z̄ = tl(Z̄)

end

Algorithm 1: Canonical renaming of variables.

uninitialized environmentρuninit = λX.⊥, and that each command assigns at most one
variable. Letdef (ρ) denote the set of variables that have defined (i.e., non-⊥) values in an
environmentρ. This means that considerings ∈ X ∗ we have thatdef (ρi−1) ⊆ def (ρi),
and if def (ρi−1) ⊂ def (ρi) thendef (ρi) = def (ρi−1) ∪ {X} whereX ∈ X is the
new variable assigned to memory locationρi(X). Givens ∈ X ∗, let us defineList(s)
as the list of variables ins ordered according to their assignment time. Formally, let
s = (ρ1,m1)(ρ2,m2)...(ρn,mn) = (ρ1,m1)s

′:

List(s) =






ǫ if s = ǫ
X : List(s′) if def (s2) r def (s1) = {X}
List(s′) if def (s2) r def (s1) = ∅

Algorithm 1, given a listZ̄ encoding the ordering≤Z on context traces inαe(S JP K), and
givenList(s) for everys ∈ αe(S JP K) encoding the assignment ordering of variables ins,
returns the listRename[Z] encoding the ordering of variables inαe(S JP K). GivenZ =
αe(S JP K) we rename its variables following the canonical renamingπ̂P : var JP K →
{Vi}i∈N that associates the new canonical nameVi to the variable ofP in thei-th position
in the listRename[Z]. Thus, the canonical renaminĝπP : var JP K→ {Vi}i∈N is defined
as follows:

π̂P (X) = Vi ⇔ Rename[Z][i] = X (2)

The following result is necessary to prove that the mappingπ̂P defined in Equation (2) is
a canonical renaming.

LEMMA 2. Given two programsP,Q ∈ P let Z = αe(S JP K) andY = αe(S JQK).
The following hold:

(1) αv[π̂P](Z) = αv[π̂Q](Y)⇒ ∃π : var JP K→ var JQK : αv[π](Z) = Y

(2) (∃π : var JP K → var JQK : αv[π](Z) = Y) and(αv[π](s) = t ⇒ (Z̄[i] = s and
Y[i] = t))⇒ αv[π̂P](Z) = αv[π̂Q](Y)

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 23

PROOF. (1) Assumeαv[π̂P](Z) = αv[π̂Q](Y), i.e., we have that{αv[π̂P](s) | s ∈
Z} = {αv[π̂Q](t) | t ∈ Y}. This means that|var JZK | = |var JYK | = k, and
that π̂P : var JZK → {V1...Vk} while π̂Q : var JYK → {V1...Vk}. Recall that
var JZK = var JP K andvar JYK = var JQK. Let us defineπ : var JP K → var JQK
asπ = π̂−1

Q ◦ π̂P . The mappingπ is bijective since it is obtained as composition
of bijective functions. Let us show thatπ satisfies the condition on the left, namely
that Y = αv[π](Z). To prove this we show that givens ∈ Z and t ∈ Y such
that αv[π̂P](s) = αv[π̂Q](t) thenαv[π](s) = t. Let αv[π̂P](s) = αv[π̂Q](t) =
(ρ̂1,m1)...(ρ̂n,mn), while s = (ρs1,m1)...(ρ

s
n,mn) and t = (ρt1,m1)...(ρ

t
n,mn).

Then:

αv[π](s) = (ρs1 ◦ π
−1,m1)...(ρ

s
n ◦ π

−1,mn)

= (ρs1 ◦ π̂
−1
P ◦ π̂Q,m1)...(ρ

s
n ◦ π̂

−1
P ◦ π̂Q,mn)

= (ρ̂1 ◦ π̂Q,m1)...(ρ̂n ◦ π̂Q,mn)

= (ρt1,m1)...(ρ
t
n,mn) = t

(2) Assume∃π : var JP K → var JQK such thatY = αv[π](Z). By definitionY =
{αv[π](s) | s ∈ Z}. Let us show thatαv[π̂P](Z) = αv[π̂Q]({αv[π](s) | s ∈ Z}).
We prove this by showing thatαv[π̂P](s) = αv[π̂Q](αv[π](s)). By definition we have
that |Y| = |Z| and|var JP K | = |var JQK | = k, moreover we haveπ : var JP K →
var JQK. Givens ∈ Z andt ∈ Y such thatt = αv[π](s) then|s| = |t| and|var JsK | =
|var JtK |, thusList(s)[i] = X and List(t)[i] = π(X), moreover, by hypothesis,
Z̄[i] = s andȲ [i] = t. This hold for every pair of traces obtained trough renaming.
Therefore, considering the canonical rename forY as given bŷπQ = π̂P ◦ π−1, we
have that∀s ∈ Z, t ∈ Y such thatαv[π](s) = t thenαv[π̂P](s) = αv[π̂Q](t). In fact:

αv[π̂Q](t) = αv[π̂Q](αv[π](s))

= αv[π̂Q]((ρs1 ◦ π
−1,m1)...(ρ

s
n ◦ π

−1,mn))

= (ρs1 ◦ π
−1 ◦ π̂−1

Q ,m1)...(ρ
s
n ◦ π

−1 ◦ π̂−1
Q ,mn)

= (ρs1 ◦ π
−1 ◦ π ◦ π̂−1

P ,m1)...(ρ
s
n ◦ π

−1 ◦ π ◦ π̂−1
P ,mn)

= (ρs1 ◦ π̂
−1
P ,m1)...(ρ

s
n ◦ π̂

−1
P ,mn)

= (ρ̂1,m1)...(ρ̂n,mn) = αv[π̂P](s).

which concludes the proof.

Let Π̂ denote a set of canonical variable renaming, the additive function αv : Π̂ →
(℘(X ∗)→ ℘(X ∗

c)), whereXc denotes execution contexts where environments are defined
on canonical variables, is an approximation that abstractsfrom the names of variables.
Thus, we have the following Galois connection:

〈℘(X ∗),⊆〉 −→←−
αv[bΠ]

γv[bΠ]
〈℘(X ∗

c),⊆〉

The following result, wherêπM andπ̂Pr
denote respectively the canonical rename of the

malware variables and of restricted program variables, shows that the semantic malware
detector onαv[Π̂] is complete and sound for variable renaming.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

24 · Mila Dalla Preda et al.

THEOREM 4. ∃π : Ov(M,π) →֒ P iff

∃labr JP K ∈ ℘(lab JP K) : αv[π̂M](αe(S JMK)) ⊆ αv[π̂Pr
](αe(αr(S JP K)))

PROOF. (⇒) Completeness: Assume thatOv JM,πK →֒ P , this means that∃labr JP K ∈
℘(lab JP K) such thatPr = Ov JM,πK. Thusαe(αr(S JP K)) = αe(S JOv JM,πKK).
In order to conclude the proof we have to prove the followingαv[π̂M](αe(S JMK)) ⊆
αv[π̂Pr

](αe(S JOv JM,πKK)). Recall thatαe(S JOv JM,πKK) = αv[π](αe(S JMK)).
Following Lemma 2 point 2 we have that:

αv[π̂M](αe(S JMK)) = αv[π̂Pr
](αv[π](αe(S JMK))) = αv[π̂Pr

](αe(S JOv JM,πKK))
which concludes the proof.
(⇐) Soundness: Assume that there existslabr JP K ∈ ℘(lab JP K) : αv[π̂M](αe(S JMK)) ⊆
αv[π̂Pr

](αe(αr(S JP K))). LetαR be the program restriction that satisfies the above equa-
tion with equality: αv[π̂M](αe(S JMK)) = αv[π̂Pr

](αe(αR(S JP K))). It is clear that
αR(S JP K) ⊆ αr(S JP K). From Lemma 2 point 1 we have that∃π : var JMK →
var JPRK such thatαe(αR(S JP K)) = αv[π](αe(S JMK)) = αe(S JOv JM,πKK), namely
αe(S JOv JM,πKK) = αe(αR(S JP K)) ⊆ αe(αr(S JP K)), meaning thatOv JM,πK →֒
P .

7.2 Further Malware Abstractions

Definition 4 characterizes the presence of malwareM in a programP as the existence
of a restrictionlabr JP K ∈ ℘(lab JP K) such thatαe(S JMK) ⊆ αe(αr(S JP K)). This
means that programP is infected by malwareM if for every malicious behavior there
exists a program behavior that matches it. In the following we show how this notion of
infection can be weakened in three different ways. First, wecan abstract the malware
traces eliminating the states that are not relevant to determine maliciousness, and then
check if programP matches this simplified behavior (i.e., bad states). Second, we can
require programP to match a proper subset of malicious behaviors (i.e., bad behaviors).
Furthermore these two notions of malware infection can be combined by requiring program
P to match some states on a subset of malicious behaviors. Finally, the infection condition
can be expressed in terms of a sequence of actions rather thana sequence of execution
contexts (i.e., bad actions). Once again, bad actions can becombined with either bad
states, or bad behaviors, or both. It is clear that a deeper understanding of the malware
behavior is necessary in order to specify each of the proposed simplifications. We will
discuss how it is possible to expand the set of conservative obfuscations by weakening the
notion of malware infection. The basic idea is that a furtherabstraction of the infection
condition implies a weaker notion of conservativeness.

Bad States

The maliciousness of a malware behavior may be expressed by the fact that some (mal-
ware) states are reached in a certain order during program execution. Observe that this
condition is clearly implied by, i.e., weaker than, the (standard) matching relation between
all malware traces and the restricted program traces.

Let thebad statesof a malware refer to those states that capture the maliciousbehavior.
Assume that we have an oracle that, given a malwareM , returns the set of its bad states
Bad(ΣM) ⊆ Σ JMK. These states could be selected based on a security policy. For
example, the states could represent the result of network operations. This means that in

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 25

order to verify if programP is infected by malwareM , we have to check whether the
malicious sequences of bad states are present inP . Let us define the trace transformation
αBad(ΣM) : X ∗ → X ∗ which considers only the bad contexts in a given traces = ξ1s

′:

αBad(ΣM)(s) =






ǫ if s = ǫ
ξ1αBad(ΣM)(s

′) if ξ1 ∈ αe(Bad(ΣM))
αBad(ΣM)(s

′) otherwise

The following definition characterizes the presence of malwareM in terms of its bad states,
i.e., through abstractionαBad(ΣM).

DEFINITION 7. A programP is infected by a vanilla malwareM with bad states
Bad(ΣM), i.e.,M →֒Bad(ΣM) P , if ∃labr JP K ∈ ℘(lab JP K) such that:

αBad(ΣM)(αe(S JMK)) ⊆ αBad(ΣM)(αe(αr(S JP K)))
This means that the standard notion of conservative transformations can be weakened ac-
cording to the following.

DEFINITION 8. An obfuscationO : P → P is conservative with respect toBad(ΣM)
if:

∀σ ∈ S JP K , ∃δ ∈ S JO JP KK : αBad(ΣM)(αe(σ)) � αBad(ΣM)(αe(δ))

When program infection is characterized by Definition 7, thesemantic malware detector
onαc[αBad(ΣM)(α(S JMK))]◦αBad(ΣM) is complete and sound for the obfuscating trans-
formations that are conservative with respect toBad(ΣM).

THEOREM 5. LetBad(ΣM) be the set of bad states of a vanilla malwareM . Then:
Completeness: For every obfuscationO which is conservative with respect toBad(ΣM),
if O JMK →֒Bad(ΣM) P there existslabr JP K ∈ ℘(lab JP K) such that:

αcαBad(ΣM)(αe(S JMK)) ⊆
αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(αr(S JP K))))

Soundness: If there existslabr JP K ∈ ℘(lab JP K) such that:

αcαBad(ΣM)(αe(S JMK)) ⊆
αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(αr(S JP K))))

then there exists an obfuscationO that is conservative with respect toBad(ΣM) such that
O JMK →֒ P .

PROOF. Completeness: LetO be a conservative obfuscation with respect toInt(M)
such thatO JMK →֒Bad(ΣM) P , then it means that∃labr JP K ∈ ℘(lab JP K) such thatPr =
O JMK, namelyαBad(ΣM)(αe(S JO JMKK)) = αBad(ΣM)(αe(αr(S JP K))). Therefore,
we have that:

αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(S JO JMKK))) =

αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(αr(S JP K))))
Thus, we have to show that:

αcαBad(ΣM)(αe(S JMK)) ⊆
αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(S JO JMKK)))

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

26 · Mila Dalla Preda et al.

By hypothesisO is conservative with respect toBad(ΣM), thus we have that for every
σ ∈ S JMK, there existsδ ∈ S JO JMKK : αBad(ΣM)(αe(σ)) � αBad(ΣM)(αe(δ)). More-
over, for everys ∈ αcαBad(ΣM)(αe(S JMK)) there existsσ ∈
S JMK : s = αBad(ΣM)(αe(σ)), therefore∀σ ∈ S JMK, there existsδ ∈ S JO JMKK
such thats = αBad(ΣM)(αe(σ)) � αBad(ΣM)(αe(δ)), andαBad(ΣM)(αe(δ)) = t ∈
αBad(ΣM)(αe(S JO JMKK)). This means that for everys ∈ αBad(ΣM)(αe(S JMK)),
there existst ∈ αBad(ΣM)(αe(S JO JMKK)) such thats ∈ SubSeq(t). Hence,∀s ∈
αBad(ΣM)(αe(S JMK)) we have that

s ∈ αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(S JO JMKK)))

which concludes the proof.
Soundness: Assume that∃labr JP K ∈ ℘(lab JP K) such that:

αcαBad(ΣM)(αe(S JMK)) ⊆
αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(αr(S JP K))))

This means that∀σ ∈ S JMK:

αBad(ΣM)(αe(σ)) ⊆ αc[αBad(ΣM)(αe(S JMK))](αBad(ΣM)(αe(αr(S JP K)))

and for everyσ ∈ S JMK there existsδ ∈ αr(S JP K) such thatαBad(ΣM)(αe(σ)) ∈
αBad(ΣM)(αe(S JMK))∩SubSeq(αBad(ΣM)(αe(δ))). This means that∀σ ∈ S JMK there
existsδ ∈ αr(S JP K) such thatαBad(ΣM)(αe(σ)) � αBad(ΣM)(αe(δ)), which means that
Pr is a conservative obfuscation ofM with respect toBad(ΣM).

It is clear that transformations that are non-conservativeaccording to Definition 6 may
be conservative with respect toBad(ΣM), meaning that knowing the set of bad states of
a malware allows us to handle also some non-conservative obfuscations. For example the
abstractionαBad(ΣM) may allow the semantic malware detector to deal with the reordering
of independent instructions, as the following example shows.

EXAMPLE 3. Let us consider the malwareM and its obfuscationO JMK obtained by
reordering independent instructions.

M O JMK
L1 : A1 → L2

L2 : A2 → L3

L3 : A3 → L4

L4 : A4 → L5

L5 : A5 → L6

L1 : A1 → L2

L2 : A3 → L3

L3 : A2 → L4

L4 : A4 → L5

L5 : A5 → L6

In this case actionsA2 andA3 are independent, meaning thatA JA2K (A JA3K (ρ,m)) =
A JA3K (A JA2K (ρ,m)) for every(ρ,m) ∈ E ×M. Considering malwareM , we have

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 27

the traceσ = σ1σ2σ3σ4σ5 where:

σ1 = 〈L1 : A1 → L2, (ρ,m)〉 = 〈L1 : A1 → L2, ξ
σ
1 〉

σ2 = 〈L2 : A2 → L3, (A JA1K (ρ,m))〉

σ3 = 〈L3 : A3 → L4, (A JA2K (A JA1K (ρ,m)))〉

σ4 = 〈L4 : A4 → L5, (A JA3K (A JA2K (A JA1K (ρ,m))))〉

σ5 = 〈L5 : A5 → L6, (A JA4K (A JA3K (A JA2K (A JA1K (ρ,m)))))〉

= 〈L5 : A5 → L6, ξ
σ
5 〉

while considering the obfuscated version, we have the traceδ = δ1δ2δ3δ4δ5, where:

δ1 = 〈L1 : A1 → L2, (ρ,m)〉 =
〈
L1 : A1 → L2, ξ

δ
1

〉

δ2 = 〈L2 : A3 → L3, (A JA1K (ρ,m))〉

δ3 = 〈L3 : A2 → L4, (A JA3K (A JA1K (ρ,m)))〉

δ4 = 〈L4 : A4 → L5, (A JA2K (A JA3K (A JA1K (ρ,m))))〉

δ5 = 〈L5 : A5 → L6, (A JA4K (A JA2K (A JA3K (A JA1K (ρ,m)))))〉

=
〈
L5 : A5 → L6, ξ

δ
5

〉

LetBad(ΣM) = {σ1, σ5}. ThenαBad(ΣM)(αe(σ)) = ξσ1 ξ
σ
5 as well asαBad(ΣM)(αe(δ)) =

ξδ1ξ
δ
5 , which concludes the example. It is obvious thatξσ1 = ξδ1 , moreoverξδ5 = ξσ5 follows

from the independence ofA2 andA3.

Bad Behaviors

Program trace semantics expresses malware behavior on every possible input. It is clear
that it may happen that only some of the inputs cause the malware to have a malicious
behavior (e.g., consider a virus that starts its payload only after a certain date). In this
case, maliciousness is properly expressed by a subset of malware traces that identify the so
calledbad behaviorsof the malware. Assume we have an oracle that given a malwareM
returns the setT ⊆ S JMK of its bad behaviors. Thus, in order to verify ifP is infected
by M , we check whether programP matches the malicious behaviorsT . The following
definition characterizes the presence of malwareM in terms of its bad behaviorsT .

DEFINITION 9. A programP is infected by a vanilla malwareM with bad behaviors
T ⊆ S JMK, i.e.,M →֒T P if:

∃labr JP K ∈ ℘(lab JP K) : αe(T) ⊆ αe(αr(S JP K)).
It is interesting to observe that, when program infection ischaracterized by Definition 9, all
the results obtained in Section 5 still hold if we replaceS JMK with T . In particular, we can
weaken the original notion of conservative transformationby saying that a transformation
is conservative with respect toT if every malware trace that belongs toT is a subsequence
of some obfuscated malware trace.

DEFINITION 10. An obfuscationO : P→ P is conservative with respect toT if:

∀σ ∈ αe(T), ∃δ ∈ S JO JMKK : αe(σ) � αe(δ)

Also in this case we have that obfuscations that are non-conservative may be conservative
with respect toT . Consider for example an obfuscating transformation that modifies in a

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

28 · Mila Dalla Preda et al.

different way the instructions belonging to the true and to the false path of each conditional
branch. In particular, assume that the false path is modifiedin a conservative way while
the true one in a non-conservative way. In this case the transformation is conservative with
respect to the traces obtained following the false path for every conditional branch. When
considering obfuscations that are conservative with respect to bad behaviors, we have that
Theorem 3 still holds simply by replacingS JMK with T .

Clearly the two abstractions can be composed. In this case a programP is infected by
a malwareM if there exists a program restriction that matches the set ofbad sequences of
states obtained abstracting the bad behaviors of the malware, i.e.,∃labr JP K ∈ ℘(lab JP K) :
αe(αBad(ΣM)(T)) ⊆ αe(αBad(ΣM)(αr(S JP K))).

Bad Actions

To conclude, we present a matching relation based onbad program actionsrather than
environment-memory evolutions. In fact, sometimes, a malicious behavior can be charac-
terized as the execution of a sequence of bad actions. In thiscase we consider the syntactic
information contained in program states. The main difference with purely syntactic ap-
proaches is the ability to observe actions in their execution order and not in the order in
which they appear in the code. Assume we have an oracle that given a malwareM returns
the setBad(M) ⊆ act JMK of actions capturing the essence of the malicious behavior.In
this case, in order to verify if programP is infected by malwareM , we check whether the
execution sequences of bad actions of the malware match the ones of the program.

DEFINITION 11. A programP is infected by a vanilla malwareM with bad actions
Bad(M), i.e.,M →֒Bad(M) P if:

∃labr JP K ∈ ℘(lab JP K) : αa(S JMK) ⊆ αa(αr(S JP K))

Where, given the setBad ⊆ act JMK of bad actions, the abstractionαa returns the se-
quence of malicious actions executed by each trace. Formally, given a traceσ = σ1σ

′:

αa(σ) =






ǫ if σ = ǫ
A1αa(σ

′) if A1 ∈ Bad(M)
αa(σ

′) otherwise

Even if this abstraction considers syntactic information (program actions), it is able to deal
with certain kinds of obfuscations. In fact, considering the sequence of malicious actions
in a trace, we observe actions in their execution order, and not in the order in which they
are written in the code. This means that, for example, we are able to ignore unconditional
jumps and therefore we can deal with code reordering. Once again, abstractionαa can be
combined with bad states and/or bad behaviors. For example,program infection can be
characterized as the sequences of bad actions present in thebad behaviors of malwareM ,
i.e.,∃labr JP K ∈ ℘(lab JP K) such thatαa(αe(T)) ⊆ αa(αe(αr(S JP K))).

It is clear that the notion of infection given in Definition 4 can be weakened in many
other ways, following the example given by the above simplifications. This possibility of
adjusting malware infection with respect to the knowledge of the malicious behavior we
are searching for proves the flexibility of the proposed semantic framework.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 29

8. COMPOSITION

In general a malware uses multiple obfuscating transformations concurrently to prevent
detection, therefore we have to consider the composition ofnon-conservative obfuscations
(Lemma 1 regards composition of conservative obfuscations). Investigating the relation
between abstractionsα1 andα2, on which the semantic malware detector is complete
(resp. sound) respectively for obfuscationsO1 andO2, and the abstraction that is complete
(resp. sound) for their compositions, i.e., for{O1 ◦ O2,O2 ◦ O1}, we have obtained the
following result.

THEOREM 6. Given two abstractionsα1 andα2 and two obfuscationsO1 andO2 then:

(1) if the semantic malware detector onα1 is complete forO1, the semantic malware
detector onα2 is complete forO2, andα1 ◦α2 = α2 ◦α1, then the semantic malware
detector onα1 ◦ α2 is complete for{O1 ◦ O2,O2 ◦ O1};

(2) if the semantic malware detector onα1 is sound forO1, the semantic malware detector
onα2 is sound forO2, andα1(X) ⊆ α1(Y) ⇒ X ⊆ Y , then the semantic malware
detector onα1 ◦ α2 is sound forO1 ◦ O2.

PROOF. (1) Recall that the semantic malware detector onαi is complete forOi if
Oi JMK →֒ P ⇒ ∃labr JP K ∈ ℘(lab JP K) : αi(αe(S JP K)) ⊆ αi(αe(αr(S JP K))).
Assume thatO1 JO2 JP KK →֒ P , this means that there existslabr JP K ∈ ℘(lab JP K) :
S JO1 JO2 JP KKK = αr(S JP K). Since the semantic malware detector onα1 is complete
for O1, we have that:α1(αe(S JO2 JMKK))) ⊆ α1(αe(αr(S JP K))). Abstractionα2 is
monotone and therefore:

α2(α1(αe(S JO2 JMKK)))) ⊆ α2(α1(αe(αr(S JP K))))
In general we have thatO2 JMK →֒ O2 JMK, and sinceα2 is complete we have that
α2(αe(S JMK)) ⊆ α2(αe(S JO2 JMKK)). Abstractionα1 is monotone and therefore
α1(α2(αe(S JMK))) ⊆ α1(α2(αe(S JO2 JMKK))). Sinceα1 andα2 commute we have:

α2(α1(αe(S JMK))) ⊆ α2(α1(αe(S JO2 JMKK)))
Thus,∃labr JP K ∈ ℘(lab JP K) : α1(α2(αe(S JMK))) ⊆ α2(α1(αe(αr(S JP K)))). The
proof thatO2 JO1 JMKK →֒ P implies that there existslabr JP K ∈ ℘(lab JP K) such that
α1(α2(αeS JMK)) ⊆ α1(α2(αe(αr(S JP K)))) is analogous.

(2) We have to prove that if∃labr JP K ∈ ℘(lab JP K) such thatα1(α2(αe(S JP K))) ⊆
α1(α2(αe(αr(S JP K)))) thenO1 JO2 JMKK →֒ P .
Assume∃labr JP K ∈ ℘(lab JP K) : α1(α2(αe(S JP K))) ⊆ α1(α2(αe(αr(S JP K)))),
sinceα1(X) ⊆ α1(Y) ⇒ X ⊆ Y we have that∃labr JP K ∈ ℘(lab JP K) such that
α2(αe(S JP K)) ⊆ α2(αe(αr(S JP K))). The semantic malware detector onα2 is sound by
hypothesis, thereforeO2 JMK →֒ P , namely there existslabr JP K ∈ ℘(lab JP K) such that
αe(S JO2 JMKK) ⊆ αe(αr(S JP K)). Abstractionα1 is monotone and therefore we have
thatα1(αe(S JO2 JMKK)) ⊆ α1(αe(αr(S JP K))). The semantic malware detector onα1

is sound by hypothesis and thereforeO1 JO2 JMKK →֒ P .

Thus, in order to propagate completeness through compositionO1 ◦ O2 andO2 ◦ O1 the
corresponding abstractions have to be independent, i.e., they have to commute. On the
other side, in order to propagate soundness through compositionO1 ◦ O2 the abstraction
α1, corresponding to the last applied obfuscation, has to be anorder-embedding, namely
α1 has to be both order-preserving and order-reflecting, i.e.,α1(X) ⊆ α1(Y)⇔ X ⊆ Y .

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

30 · Mila Dalla Preda et al.

Observe that, when composing a non-conservative obfuscationO, for which the seman-
tic malware detector onαO is complete, with a conservative obfuscationOc, the commu-
tation conditionαO ◦αc = αc ◦αO of point 1 of the above theorem is satisfied if and only
if (αe(σ) � αe(δ)) ⇔ αO(αe(σ)) � αO(αe(δ)). In fact, only in this caseαc andαO

commute, as shown by the following equations:

αO(αc[S](αe(σ))) = αO(S ∩ SubSeq(αe(σ)))

=
{
αO(αe(δ))

∣∣αe(δ) ∈ S ∩ SubSeq(αe(σ))
}

= αO(S) ∩
{
αO(αe(δ))

∣∣αe(δ � αe(σ))
}

αc[αO(S)](αO(αe(σ))) = αO(S) ∩ SubSeq(αO(αe(σ)))

= αO(S) ∩
{
αO(αe(δ))

∣∣αO(αe(δ)) � αO(αe(σ))
}

EXAMPLE 4. Let us considerOv JOc JMK , πK obtained by obfuscating the portion of
malwareM in Example 2 through variable renaming and some conservative obfuscations:

Ov JOc JMK , πK
L1 : assign(D, LB)→ L2

L2 : skip→ L4

Lc : cond(E)→ {LO , LF }
L4 : assign(E, LA)→ L5

L5 : skip→ Lc

LO : P T → {LT , Lk}
LT : D := Dec(E)→ LT1

LT1
: assign(π2(D), D)→ LT2

LT2
: assign(π2(E), E)→ Lc

Lk : . . .
LF : . . .

whereπ(B) = D,π(A) = E. It is possible to show that:

αc[αv[Π̂](αe(S JMK)](αv [Π̂](αe(S JMK))) ⊆
αc[αv[Π̂](αe(S JMK))](αv [Π̂](αe(αr(S JOv(Oc(M), π)K)))).

Namely, given the abstractionsαc andαv on which, by definition, the semantic malware
detector is complete respectively forOc andOv, the semantic malware detector onαc ◦αv
is complete for the compositionOv ◦ Oc.

9. CASE STUDIES

We illustrate the application of our semantics-based framework to some existing malware-
detection schemes. In each case, we follow the steps elucidated in Section 2, by first de-
scribing a semantic detector that, while operating on the program trace semantics, is equiv-
alent to the malware detector of interest (i.e., they classify programs in the same way). Sec-
ond we prove or disprove the soundness and completeness of the semantic detector against
various obfuscation classes. As case studies, we chose a generic scan-string (signature-
based) detector, the semantics-aware detector introducedin [Christodorescu et al. 2005],
and the model-checking detector introduced in [Kinder et al. 2005]. We are particularly
interested in a wide range of approaches to malware detection in order to underscore the
flexibility and expressiveness of our framework for reasoning about such detectors.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 31

9.1 Soundness and Completeness of a Signature-Based Detector

By investigating the effects that signature matching detection schemes have on program
trace semantics we are able to certify the degree of precision of these detection schemes.
We can express the signature of a malwareM as a proper subsetS ⊆M of “consecutive”
malicious commands, formallyS = C1, ..., Cn where∀i ∈ [1, n − 1] : suc JCiK =
lab JCi+1K. Given a malwareM , S ⊆M is anideal signatureif it unequivocally identifies
infection, meaning thatS ⊆ P ⇔ M →֒ P . Signature-based malware detectors, given
an ideal signatureS of a malwareM (provided for example by a perfect oracleORS) and
a possibly infected programP , syntactically verify infection according to the following
test:

Syntactic Test: S ⊆ P

Let us consider the semantic counterpart of the syntactic signature matching test. Given
a malwareM and its signatureS ⊆ M , let labs JMK = lab JSK denote the malware
restriction identifying the commands composing the signature. Observe that the semantics
of the malware restricted to its signature corresponds to the semantics of the signature, i.e.,
αs(S JMK) = S JSK. Thus, we can say that a programP is infected by a malwareM
if there exists a restriction of program trace semantics that matches the semantics of the
malware restricted to its signature:

Semantic Test: ∃labr JP K ∈ ℘(lab JP K) : αs(S JMK) = αr(S JP K)
which can be equivalently expressed as∃labr JP K ∈ ℘(lab JP K) : S JSK = αr(S JP K).
The following result shows that the syntactic and semantic tests are equivalent, meaning
that they detect the same set of infected programs.

PROPOSITION 1. Given a signatureS of a malwareM we have that:

S ⊆ P ⇔ ∃labr JP K ∈ ℘(lab JP K) : S JSK = αr(S JP K)
PROOF. (⇒) S ⊆ P means that∀C ∈ S ⇒ C ∈ P , namely that∃labr JP K ∈

℘(lab JP K) : Pr = S. Therefore,αr(S JP K) = S JPrK = S JSK. (⇐) If ∃labr JP K ∈
℘(lab JP K) : S JSK = αr(S JP K), it means that|S JSK | = |αr(S JP K)| and that∀σ ∈
S JSK, ∃δ ∈ αr(S JP K) such thatσ = δ = (C1, (ρ1,m1)), ..., (Ck, (ρk,mk)). This
means that for everyσ ∈ S JSK and δ ∈ αr(S JP K) such thatσ = δ, we have that
cmd JσK = ∪i∈[1,k]Ci = cmd JδK, and thereforeS = cmd(S JSK) = cmd(S JPrK) ⊆ P ,
namelyS ⊆ P .

Observe that by applying abstractionαe to the semantic test we have thatM →֒ P if:

∃labr JP K ∈ ℘(lab JP K) : αe(αs(S JSK)) = αe(αr(S JP K))
which corresponds to the standard infection condition specified by Definition 4 where the
semantics of malwareM has been restricted to its signatureS and the set-inclusion re-
lation has been replaced by equality. It is clear that, in this setting, by replacingS JMK
with S JSK we can obtain results analogous to the one proved following Definition 4 of
infection.

Proving Soundness and Completeness of a Signature-based Detector

First of all we need to define a trace-based malware detector that is equivalent to the
signature-based algorithm. Next, this semantic formalization is used to prove soundness
and completeness of the signature based approach.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

32 · Mila Dalla Preda et al.

Step 1: Designing an equivalent trace-based detector.This point is actually solved by
Proposition 1. In fact, letAS denote the malware detector based on the signature matching
algorithm. This syntactic algorithm is based on an oracleORS that, given a malware
M , returns its ideal signatureS such that:S ⊆ P ⇔ M →֒ P , or, equivalently,
∃labr JP K ∈ ℘(lab JP K) : S JSK = αr(S JP K) ⇔ M →֒ P . Let DS be the trace-
based detector that classifies a programP as infected by a malwareM with signatureS,
if ∃labr JP K ∈ ℘(lab JP K) : S JSK = αr(S JP K). From Proposition 1 it follows that
AS(M,P) = 1 if and only if ∃labr JP K ∈ ℘(lab JP K) : S JSK = αr(S JP K) if and only
if DS(M,P) = 1.

Step 2: Prove soundness and completeness ofDS. Let us identify the class of obfuscat-
ing transformations that the trace-based detectorDS is able to handle. The following result
shows thatDS is sound with respect to every obfuscation if the signature oracleORS is
perfect, namelyDS is oracle-sound with respect to every obfuscation. Observethat here
we are assuming that the identity function is an obfuscator.

PROPOSITION 2. DS is oracle-sound with respect to every obfuscation.

PROOF. Given a malwareM with signatureS we have that:∃labr JP K ∈ ℘(lab JP K) :
S JSK = αr(S JP K) ⇒ M →֒ P , follows from the hypothesis thatORS is a perfect
oracle that returns an ideal signature.

This confirms the general belief that signature matching algorithms have a low false posi-
tive rate. In fact, the presence of false positives is causedby the imperfection in the signa-
ture extraction process, meaning that in order to improve the signature matching algorithm
we have to concentrate in the design of efficient techniques for signature extraction.

Let us introduce the classOS of obfuscating transformations thatpreserve signatures.
We say thatO preserves signatures, i.e.,O ∈ OS, when for every malwareM with signa-
tureS the semantics of signatureS is present in the semantics of the obfuscated malware
O JMK, formally when:

S JSK = αs(S JMK) ⇒
{
∃labR JO JMKK ∈ ℘(lab JO JMKK) :

S JSK = αR(S JO JMKK) (‡)

The above condition can equivalently be expressed in syntactic terms as

S ⊆M ⇒ S ⊆ O JMK
The following result shows thatDS is oracle-complete forO if and only if O preserves
signatures.

PROPOSITION 3. DS is oracle-complete forO ⇔O ∈ OS.

PROOF. (⇐) Assume thatO ∈ OS , then we have to show that:O JMK →֒ P ⇒
∃labR JP K ∈ ℘(lab JP K) : S JSK = αR(S JP K). Observe thatO JMK →֒ P , means that
∃labr JP K ∈ ℘(lab JP K) : Pr = O JMK, namely∃labr JP K ∈ ℘(lab JP K) : αr(S JP K) =
S JO JMKK. From (‡), we have that∃labR JO JMKK ∈ ℘(lab JO JMKK) : S JSK =
αR(S JO JMKK), and thereforeS JSK = αR(αr(S JP K)) = αR(S JP K). (⇒) Assume
thatDS is complete forO, this means thatO JMK →֒ P ⇒ ∃labR JP K ∈ ℘(lab JP K) :
S JSK ⊆ αR(S JP K), meaning that there is a restriction of programP that matches sig-
natureS. Thus, programP can be restricted to a signature preserving transformationof
M .

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 33

This means that a signature based detection algorithmAS is oracle-complete with respect
to the class of obfuscations that preserve malware signatures, namely the ones belonging
to OS . Unfortunately, a lot of commonly used obfuscating transformations do not preserve
signatures, namely are not inOS. Consider for example the code reordering obfuscation
OJ . It is easy to show thatAS is not complete forOJ . In fact, given a malwareM with
signatureS ⊆ M , we have that, in general,S 6⊆ OJ JMK, since jump instructions are
inserted between the signature commands changing therefore the signature. In particu-
lar, consider signatureS ⊆ M such thatS = C1, ..., Cn we have thatS 6⊆ OJ JMK,
while S′ ⊆ OJ JMK, whereS′ = C′

1J
∗C′

2J
∗...J∗C′

n, whereJ denotes a command im-
plementing an unconditional jump, namely of the formL : skip → L′, andC′

i is given
by commandCi with labels updated according to jump insertion. This meansthat when
OJ JMK →֒ P then∀labR JO JMKK ∈ ℘(lab JO JMKK) : S JSK 6⊆ αR(S JO JMKK). Ob-
serve that incompleteness is caused by the fact thatDS , being equivalent toAS , is strongly
related to program syntax, and therefore the insertion of aninnocuous jump instruction is
able to confuse it.

Following the same strategy, it is possible to show thatAS is not complete for opaque
predicate insertion, semanticNOP insertion and substitution of equivalent commands. Thus,
in general, the class of conservative transformations doesnot preserve malware signatures,
i.e.,Oc 6⊆ OS , meaning that conservative obfuscations are able to foil signature matching
algorithms. Hence, it turns out thatAS is not complete, namely it is imprecise, for a wide
class of obfuscating transformations. This is one of the major drawbacks of signature-based
approaches. A common improvement ofAS consists in considering regular expressions
instead of signatures. Namely, given a signatureS = C1, ..., Cn, the detectorA+

S verifies
if C′

1C
∗C′

2C
∗...C∗C′

n ⊆ P , whereC stands for any command inC andC′
i is a command

with the same action asCi. It is clear that this allowsA+
S to deal with the class of ob-

fuscating transformations that are conservative with respect to signatures, as for example
code reorderingOJ . Let Ocs denote the class of obfuscations that are conservative with
respect to signatures, whereO ∈ Ocs if for every malwareM with signatureS there ex-
ists S′ ⊆ O JMK such thatS = C1C2...Cn andS′ = C′

1C
∗C′

2C
∗...C∗C′

n. However,
this improvement does not handle all conservative obfuscations inOc. For example, the
substitution of equivalent commandsOI belongs toOc but not toOcs.

9.2 Completeness of Semantics-Aware Malware Detector AMD

An algorithm calledsemantics-aware malware detectionwas proposed in [Christodorescu
et al. 2005]. This approach to malware detection uses instruction semantics to identify
malicious behavior in a program, even when obfuscated.

The obfuscations considered in [Christodorescu et al. 2005] are from the set of conser-
vative obfuscations, together with variable renaming. Thepaper proved the algorithm to
be oracle-sound, so we focus in this section on proving its oracle-completeness using our
abstraction-based framework. The list of obfuscations we consider (shown in Table I) is
based on the list described in the semantics-aware malware detection paper.

Description of the Algorithm.The semantics-aware malware detection algorithmAMD

matches a program against a template describing the malicious behavior. If a match is
successful, the program exhibits the malicious behavior ofthe template. Both the template
and the program are represented as control-flow graphs during the operation ofAMD .

The algorithmAMD attempts to find a subset of the programP that matches the com-

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

34 · Mila Dalla Preda et al.

Table I. List of obfuscations considered by the semantics-aware malware detection algorithm, and the results of
our completeness analysis.

Obfuscation Completeness ofAMD

Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

mands in the malwareM , possibly after renaming of variables and locations used inthe
subset ofP . Furthermore,AMD checks that any def-use relationship that holds in the mal-
ware also holds in the program, across program paths that connect consecutive commands
in the subset.

A control-flow graphG = (V,E) is a graph with the vertex setV representing program
commands, and edge setE representing control-flow transitions from one command to its
successor(s). For our language the control-flow graph (CFG)can be easily constructed as
follows:

—For each commandC ∈ C, create a CFG node annotated with that command,vlabJCK.
Correspondingly, we writeC JvK to denote the command at CFG nodev.

—For each commandC = L1 : A → S, whereS ∈ ℘(L), and for each labelL2 ∈ S,
create a CFG edge(vL1

, vL2
).

Consider a pathθ through the CFG from nodev1 to nodevk, θ = v1 → . . .→ vk. There
is a corresponding sequence of commands in the programP , writtenP |θ = {C1, . . . , Ck}.
Then we can express the set of states possible after executing the sequence of commands
P |θ asC

k JP |θK (C1, (ρ,m)), by extending the transition relationC to a set of states, such
thatC : ℘(Σ)→ ℘(Σ). Let us define the following basic functions:

mem J(C, (ρ,m))K = m

env J(C, (ρ,m))K = ρ

The algorithm takes as inputs the CFG for the template,GT = (V T , ET), and the binary
file for the program,File JP K. For each pathθ in GT , the algorithm proceeds in two steps:

(1) Identify a one-to-one map from template nodes in the pathθ to program nodes,µθ :
V T → V P .
A template nodenT can match a program nodenP if the top-level operators in their
actions are identical. This map induces a mapνθ : XT × V T → XP from variables
at a template node to variables at the corresponding programnode, such that when
renaming the variables in the template commandC

q
nT

y
according to the mapνθ, we

obtain the program commandC
q
nP

y
= C

q
nT

y
[X/νθ

(
X,nT

)
].

This step makes use of the CFG oracleORCFG that returns the control-flow graph of
a programP , givenP ’s binary-file representationFile JP K.

(2) Check whether the program preserves the def-use dependencies that are true on the
template pathθ.
For each pair of template nodesmT , nT on the pathθ, and for each template variable
xT defined inact

q
CTm

y
and used inact

q
CTn

y
, let λ be a program pathµ(vT1) →

. . . → µ(vTk), wheremT → vT1 → . . . → vTk → nT is part of the pathθ in the

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 35

Table II. Oracles used by the semantics-aware malware detection algorithmAMD . Notation: P ∈ P,X, Y ∈
var JP K , ψ ⊆ P .

Oracle Notation Description
CFG oracle ORCFG (File JP K) Returns the control-flow graph of the programP , given

its binary-file representationFile JP K.
Semantic-nop oracle ORSNop(ψ,X, Y) Determines whether the value of variableX before the

execution of code sequenceψ ⊆ P is equal to the value
of variableY after the execution ofψ.

template CFG.λ is therefore a program path connecting the program CFG node cor-
responding tomT with the program CFG node corresponding tonT . We denote by
T |θ =

{
C

q
mT

y
, CT1 , . . . , C

T
k , C

q
nT

y}
the sequence of commands corresponding

to the template pathθ.

The def-use preservation check can be expressed formally asfollows:

∀ρ ∈ E , ∀m ∈ M, ∀s ∈ C
k JP |λK

(
µθ

(
vCT

1

)
, (ρ,m)

)
:

A

r
νθ

(
xT , vCT

1

)z
(ρ,m) = A

q
νθ

(
xT , vCT

n

)y
(env JsK ,mem JsK) .

This check is implemented inAMD as a query to asemantic-nop oracleORSNop . The
semantic-nop oracle determines whether the value of a variableX before the execution
of a code sequenceψ ⊆ P is equal to the value of a variableY after the execution of
ψ.

The semantics-aware malware detectorAMD makes use of two oracles,ORCFG and
ORSNop , described in Table II. ThusAMD = DOR, for the set of oraclesOR =
{ORCFG ,ORSNop}. Our goal is then to verify whetherAMD is OR-complete with re-
spect to the obfuscations from Table I. Since three of those obfuscations (code reordering,
semantic-nop insertion, and substitution of equivalent commands) are conservative, we
only need to checkOR-completeness ofAMD for each individual obfuscation. We would
then know (from Lemma 1) ifAMD is alsoOR-complete with respect to any combination
of these obfuscations.

We follow the proof strategy proposed in Section 2. First, instep 1 below, we develop a
trace-based detectorDTr based on an abstractionα, and show thatDOR = AMD andDTr

are equivalent. This equivalence of detectors holds only ifthe oracles inOR are perfect.
Then, in step 2, we show thatDTr is complete w.r.t. the obfuscations of interest.

Step 1: Design an Equivalent Trace-Based Detector.We can model the algorithm for
semantics-aware malware detection using two abstractions, αSAMD andαAct . The ab-
stractionα that characterizes the trace-based detectorDTr is the composition of these two
abstractions,α = αAct ◦ αSAMD . We will show thatDTr is equivalentAMD = DOR,
when the oracles inOR are perfect.

When applyingαSAMD to a traceσ ∈ S JP K, σ = (C′
1, (ρ

′
1,m

′
1)) . . . (C

′
n, (ρ

′
n,m

′
n)),

to a set of variable maps{πi}, and a set of location maps{γi}, we obtain the following

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

36 · Mila Dalla Preda et al.

abstract trace:

αSAMD (σ, {πi}, {γi}) = (C1, (ρ1,m1)) . . . (Cn, (ρn,mn))
if ∀i, 1 ≤ i ≤ n : act JCiK = act JC′

iK [X/πi(X)]
∧ lab JCiK = γi(lab JC′

iK)
∧ suc JCiK = γi(suc JC′

iK)
∧ ρi = ρ′i ◦ π

−1
i

∧mi = m′
i ◦ γ

−1
i .

Otherwise, if the condition does not hold,αSAMD (σ, {πi}, {γi}) = ǫ. A map πi :
var JP K → X renames program variables such that they match malware variables, while
a mapγi : lab JP K → L reassigns program memory locations to match malware memory
locations.

Let us define abstractionαAct simply strips all labels from the commands in a trace
σ = (C1, (ρ1,m1))σ

′, as follows:

αAct(σ) =

{
ǫ if σ = ǫ
(act JC1K , (ρ1,m1))αAct (σ

′) otherwise

DEFINITION 12. An α-semantic malware detectoris a malware detector on the ab-
stractionα, i.e., it classifies the programP as infected by a malwareM ,M →֒ P , if

∃labr JP K ∈ ℘(lab JP K) : α(S JMK) ⊆ α(αr(S JP K)).
By this definition, a semantic malware detector (from Definition 4) is a special instance
of theα-semantic malware detector, forα = αe. Then letDTr be a(αAct ◦ αSAMD)-
semantic malware detector.

PROPOSITION 4. The semantics-aware malware detector algorithmAMD is equivalent
to the(αAct ◦ αSAMD)-semantic malware detectorDTr . In other words,∀P,M ∈ P, we
have thatAMD(P,M) = DTr (S JP K ,S JMK).

PROOF. To show thatAMD = DTr , we can equivalently show that for all programs
P,M ∈ P AMD(P,M) = 1 ⇐⇒ ∃labr JP K ∈ ℘(lab JP K), ∃{πi}i≥1, and∃{γi}i≥1

such thatαAct(αSAMD (S JMK , {πi}, {γi})) ⊆ αAct (αSAMD (αr(S JP K), {πi}, {γi})).
Sinceπi renames variables only fromP (i.e.,∀V ∈ V\var JP K, πi is the identity function,
namely∀X : πi(X) = X), and similarlyγi remaps locations only fromP , then we have
thatαSAMD (S JMK , {πi}, {γi}) = S JMK.
(⇒) Assume thatAMD(P,M) = 1. LetGM be theCFG of malwareM and letPath(GM)
denote the set of all paths onGM . We can construct the restrictionlabr JP K from the path-
sensitive mapµθ as follows:

labr JP K =
⋃

θ∈Paths(GM)

{
lab

q
C

q
µθ

(
vM

)yy ∣∣vM ∈ θ
}

Following the above constructionlabr JP K collects the labels of program commands whose
nodes corresponds to a template node throughµθ. The variable maps{πi} can be defined
based onνθ. For a pathθ = vM1 → . . . → vMk , πi(X) = νθ

(
X, vMi

)
. Similarly,

γi(L) = L′ if lab
q
C

q
vMi

yy
= L′ andlab

q
C

q
µθ

(
vMi

)yy
= L.

Let σ ∈ S JMK and denote byθ = vM1 → . . . → vMk theCFG path corresponding to
this trace. By algorithmAMD , there exists a pathχ in theCFG of P of the form:

. . .→ µθ
(
vM1

)
→ . . .→ µθ

(
vMk

)
→ . . .

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 37

Let δ ∈ αr(S JP K) be the trace corresponding to the pathχ in GP ,

δ = . . .
〈
C

q
µθ

(
vM1

)y
, (ρP1 ,m

P
1)

〉
. . .

〈
C

q
µθ

(
vMk

)y
, (ρPk ,m

P
k)

〉
. . .

For two statesi andj > i of the traceσ, denote the intermediate states in the traceδ by〈
C′P

1 , (ρ′P1 ,m′P
1)

〉
. . .

〈
C′P
l , (ρ′Pl ,m

′P
l)

〉
, i.e.,δ =

..
D

C
r
µθ

“

vM
i

”z
, (ρP

i , mP
i)

E D

C′P
1 , (ρ′P

1 , m′P
1)

E

. . .
D

C′P
l , (ρ′P

l , m′P
l)

E D

C
r
µθ

“

vM
j

”z
, (ρP

j , mP
j)

E

..

From step 1 of algorithmAMD , we have that the following holds:

act
q
C

q
µθ

(
vMi

)yy
[X/πi(X)] = act

q
C

q
vMi

yy

γi
(
lab

q
C

q
µθ

(
vMi

)yy)
= lab

q
C

q
vMi

yy

γi
(
suc

q
C

q
µθ

(
vMi

)yy)
= suc

q
C

q
vMi

yy

From step 2 of algorithmAMD , we know that for any template variableXM that is defined
in C

q
vMi

y
and used inC

q
vMj

y
(for 1 ≤ i < j ≤ k), we have that:

E
q
νθ(X

M , vMi)
y

(ρ,m) = E
q
νθ(X

M , vMj)
y

(env JsK ,mem JsK)

wheres ∈ C
l
(〈
µ

(
vMi

)〉
, (ρ,m)

)
. Since we have thatact

q
C

q
µθ

(
vMi

)yy
[X/πi(X)] =

act
q
C

q
vMi

yy
, it follows thatρPi (νθ(X

M , vMi)) = ρPj (νθ(X
M , vMj)). Moreover, since

ρMi (XM) = ρMj (XM), then we can writeρMi = ρPi ◦ πi. Similarly,mM
i = mP

i
◦ γi.

Then it follows that for everyσ ∈ S JMK, there existsδ ∈ αr(S JP K) such that:

αAct (αSAMD (σ, {πi}, {γi})) = αAct(σ)

= αAct(αSAMD (δ, {πi}, {γi}))

Thus,αAct(αSAMD (S JMK , {πi}, {γi})) ⊆ αAct(αSAMD (αr(S JP K), {πi}, {γi})).
(⇐) Assume thatlabr JP K, {πi}i≥1, and{γi}i≥1 exist such that:

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆ αAct(αSAMD (αr(S JP K), {πi}, {γi}))

We will show thatAMD returns1, that is, the two steps of the algorithm complete success-
fully.

Let σ ∈ αAct (αSAMD (S JMK , {πi}, {γi})), with

σ =
〈
A1, (ρ

M
1 ,m

M
1)

〉
. . .

〈
Ak, (ρ

M
k ,m

M
k)

〉
.

Then there existsσ′ ∈ S JMK

σ′ =
〈
CM1 , (ρM1 ,mM

1)
〉
. . .

〈
CMk , (ρMk ,m

M
k)

〉
,

such that∀i, act
q
CMi

y
[X/πi(X)] = Ai. Similarly, there existsδ ∈ αr(S JP K), with δ =〈

CP1 , (ρ
P
1 ,m

P
1)

〉
. . .

〈
CPk , (ρ

P
k ,m

P
k)

〉
, such that∀i, act

q
CPi

y
[X/πi(X)] = Ai, ρPi =

ρMi ◦ π−1
i , andmP

i = mM
i

◦ γ−1
i . In other words:σ = αAct(αSAMD (σ′, {πi}, {γi})) =

αAct(αSAMD (δ′, {πi}, {γi})), whereσ′ is a malware trace andδ′ is a trace of the re-
stricted programPr induced bylabr JP K. For each pair of traces(σ, δ) chosen as above,
we can define a mapµ from nodes in theCFG of M to nodes in theCFG of P by setting
µ(v

labJCM
i K) = v

labJCP
i K. Without loss of generality, we assume thatlab JMK∩ lab JP K =

∅. Thenµ is a one-to-one, onto map, and step 1 of algorithmAMD is complete.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

38 · Mila Dalla Preda et al.

Consider a variableXM ∈ var JMK that is defined by actionAi and later used by action
Aj in the traceσ′, for j > i, such thatρMi+1(X

M) = ρMj (XM). LetXP
i be the program

variable corresponding toXM at program commandCPi , andXP
j the program variable

corresponding toXM at program commandCPj :

xPi = ν(XM , v
labJCM

i K) xPj = ν(XM , v
labJCM

j K)

If δ ∈ αr(S JP K), then there exists aδ′ ∈ S JP K of the form:

δ′ = . . .
〈
CPi , (ρ

P
i ,m

P
i)

〉
. . .

〈
CPj , (ρ

P
j ,m

P
j)

〉
. . .

where1 ≤ i < j ≤ k. Let θ be a path in theCFG of P , θ = vP1 → . . . → vPk ,
such thatvP

labJCP
i K → vP1 → . . . → vPk → vP

labJCP
j K is also a path in theCFG of P .

SinceρMi+1(X
M) = ρMj (XM), thenρP

sucJCP
i K(X

P
i) = ρMi+1(πi(X

P
i)) = ρMi+1(X

M) =

ρMj (XM) = ρPj (πj(X
P
j)) = ρPj (XP

j). But suc
q
CPi

y
= lab

q
CP Jv1K

y
in the traceδ′.

As E
q
XP
i

y
(ρ,m) = ρ(xPi), it follows that

E

r
ν(XM , v

labJCM
i K)

z
(ρ,m) = E

r
ν(XM , v

labJCM
j K)

z
(env JsK ,mem JsK)

for anyρ ∈ E, anym ∈ M, and any states of P at the end of executing the pathθ, i.e.,

s ∈ C
k JP |θK (

〈
µ(vP

labJCP
i K), (ρ,m)

〉
). If the semantic-nop oracle queried byAMD is

complete, then the second step of the algorithm is successful. ThusAMD(P,M) = 1.

Now we can define the operation of the semantics-aware malware detector in terms of
its effect on the trace semantics of a programP .

DEFINITION 13. According to thesemantics-aware malware detectionalgorithm a
programP is infected by a vanilla malwareM , i.e.M →֒ P , if:

∃labr JP K ∈ ℘(lab JP K), {πi}i≥1, {γi}i≥1 :

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆ αAct(αSAMD (αr(S JP K), {πi}, {γi})).
Step 2: Prove Completeness of the Trace-Based Detector.We are interested in finding

out which classes of obfuscations are handled by a semantics-aware malware detector. We
check the validity of the completeness condition expressedin Definition 5. In other words,
if the program is infected with an obfuscated variant of the malware, then the semantics-
aware detector should return1.

PROPOSITION 5. A semantics-aware malware detector is complete onαSAMD w.r.t.
the code-reordering obfuscationOJ :

OJ (M) →֒ P ⇒






∃labr JP K ∈ ℘(lab JP K , {πi}i≥1, {γi}i≥1 :
αAct(αSAMD (S JMK , {πi}, {γi})) ⊆
αAct(αSAMD (αr(S JP K), {πi}, {γi}))

PROOF. If OJ JMK →֒ P , and given thatOJ inserts onlyskip commands into a
program, then∃labr JP K ∈ ℘(lab JP K) such thatPr = OJ JMK\Skip, whereSkip is a set
of skip commands inserted byOJ , as defined in Section 6. LetM ′ = OJ(M) \ Skip.
Thenαr(S JP K) = S JM ′K. Thus we have to prove that

αAct (αSAMD (S JMK , {πi}, {γi})) ⊆ αAct(αSAMD (S JM ′K , {πi}, {γi}))
ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 39

for some{πi} and{γi}. AsOJ JMK does not rename variables or change memory loca-
tions, we can setπi andγj , for all i andj, to be the respective identity maps,πi = IdvarJP K

andγj = Id labJP K. It follows thatαSAMD (S JM ′K , {IdvarJP K}, {Id labJP K}) = S JM ′K
andαSAMD (S JMK , {IdvarJP K}, {Id labJP K}) = S JMK. Thus, it remains to show that
αAct(S JMK) ⊆ αAct (S JM ′K). By the definition ofOJ , we have thatM ′ = OJ JMK \
Skip = (M \ S) ∪ η(S), for someS ⊂ M . But η(S) only updates the labels of the
commands inS, and thus we have:

αAct(S JM ′K) = αAct(S J(M \ S) ∪ η(S)K)
= αAct(S JMK).

It follows thatαAct(S JMK) ⊆ αAct (S JOJ JMK \ SkipK).
Similar proofs confirm thatDTr isOR-complete w.r.t. variable renaming and semantic-

nop insertion. Additionally,DTr is OR-complete onαSAMD w.r.t. a limited version of
substitution of equivalent commands, when the commands in the original malwareM are
not substituted with equivalent commands.

Unfortunately,DTr is notOR-complete w.r.t. all conservative obfuscations, as the fol-
lowing result illustrates.

PROPOSITION 6. A semantics-aware malware detector is not complete onαSAMD w.r.t.
all conservative obfuscationsOc ∈ Oc.

PROOF. To prove that semantics-aware malware detection is not complete onαSAMD

w.r.t. all conservative obfuscations, it is sufficient to find one conservative obfuscation such
that

αAct(αSAMD (S JMK , {πi}, {γi})) ⊆
αAct(αSAMD (αr(S JOc(M)K), {πi}, {γi})) (3)

cannot hold for any restrictionlabr JOc JMKK ∈ ℘(lab JOc JMKK) and any maps{πi}i≥1

and{γi}i≥1.
Consider an instance of the substitution of equivalent commands obfuscating transfor-

mationOI that substitutes the action of at least one command for each path through the
program (i.e.,S JP K ∩S JOI JP KK = ∅) – for example, the transformation could modify
the command at the start label of the program. Assume that∃{πi}i≥1 and∃{γi}i≥1 such
that Equation 3 holds, whereOc = OI . Then∃σ ∈ S JMK and∃δ ∈ S JOI JMKK
such thatαAct (σ) = αAct(αSAMD (αr(δ), {πi}, {γi})). As |σ| = |δ|, we have that
αr(δ) = δ. If σ = . . . 〈Ci, (ρi,mi)〉 . . . andδ = . . . 〈C′

i, (ρ
′
i,m

′
i)〉 . . . , then we have

that∀i, act JCiK = act JC′
iK [X/πi(X)]. But from the definition of the obfuscating trans-

formationOI above, we know that∀σ ∈ S JMK , ∀δ ∈ S JOI JMKK , ∃i ≥ 1 such that
Ci ∈ σ, C′

i ∈ δ, and∀π : X → X, act JCiK 6= act JC′
iK [X/π(X)]. Hence we have a

contradiction.

The cause for this incompleteness is the fact that the abstraction applied byDTr still pre-
serves some of the actions from the program. Consider an instance of the substitution of
equivalent commands obfuscating transformationOI that substitutes the action of at least
one command for each path through the malware (i.e.,S JMK ∩ S JOI(M)K = ∅). For
example, the transformation could modify the command atM ’s start label. Such an ob-
fuscation, because it affects at least one action ofM on every path through the program
P = OI(M), will defeat the detector.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

40 · Mila Dalla Preda et al.

9.3 Soundness and Completeness of a Model Checking-Based Detector

In this section we study the soundness and completeness of another malware-detection
algorithm, based on model checking against a specification language calledCTPL, intro-
duced by Kinder, Katzenbeisser, Schallhart, and Veith [2005] as an extension to Computa-
tion Tree Logic (CTL).

The model checking-based detection algorithm, which we denoteACTPL, is an exten-
sion of the classic model-checking algorithm [Clarke, Jr. et al. 2001]. The programP is
modeled as a Kripke structureKP which is then checked against a specification of mali-
cious behavior given as a CTPL formulaψ. The Kripke structureKP is derived from the
interprocedural control-flow graph of the disassembled binary, with one state per program
instruction.KP states are labeled with two atomic predicates, one for the corresponding
program instruction, writteninstr(p1, . . . , pn), and one for the corresponding program
location, written#loc(L). A programP is malicious ifKP , s0 |= ψ, wheres0 is an initial
state.KP , s0 |= ψ is also writtenKP |= ψ.

The semantics of a modelKP of a programP is derived from the semantics ofP . An
abstraction can represent the projection ofS JP K into S JKP K. LetαCmd be the abstrac-
tion that computes a command trace from a regular trace:σ = (C1, (ρ1,m1))σ

′:

αCmd(σ) =

{
ǫ if σ = ǫ
C1αCmd(σ′) otherwise.

By abuse of notation, we will extendαCmd to sets of traces and write, without introduc-
ing ambiguity,αCmd(A) =

⋃
σ∈A αCmd(σ). ThusS JKP K = αCmd(S JP K), by the

construction ofKP as given by Kinderet al. [2005].
Given a CTPL formulaψ, we would like to construct an abstractionαψ such thatKP |=

ψ ⇐⇒ αψ(S JKP K) 6= ∅. In other words, a model that satisfies a malicious CTPL
formula has a non-empty set of abstract traces, obtained through the abstraction constructed
from the malicious CTPL formula. In this context we assume that the CTPL formulaψ
was provided by an oracleORCTPL from some malwareM , i.e., if ψ = ORCTPL(M),
thenKP |= ψ ⇐⇒ M →֒ P .

We ease the task of designing the abstractionαψ by using the fact that the CTL operators
EX, EG, andEU, together with the logical operators¬ and∧, are sufficient to express
all CTL formulas [Clarke, Jr. et al. 2001]. Thus we do not needto consider all 13 CTL
and logical operators. CTPL adds to CTL free variables that appear as possible arguments
to the instruction predicates and to location predicates. The universe of values for the free
variables is finite. Thus each CTPL formula can be converted into a disjunction of CTL
formulas over constants by simply iterating over the universe of values. Ifψ is a CTPL
formula, thenKP |= ψ ⇐⇒ KP |=

∨
(v1,...,vk)∈Uk ψ[xi/vi], wherexi represent the

free variables in the CTPL formulaψ, U is the universe of values for a free variable, and
ψ[xi/vi] is a CTL formula obtained fromψ by instantiating the free variablexi with a
valuevi ∈ U . For our purposes, it is sufficient to focus on the three core CTL operators
and the two core logical operators.

The abstractionαψ can be defined recursively on the structure of the CTPL formula
ψ. Such a construction is well defined since CTPL formulas havefinite length. IfA is a
set of sequences,A = {〈x0, . . . , xi, . . . 〉}, we writeNextk+1(A) for the set of sequences
{y : 〈x0, . . . , xk〉y ∈ A}, for all k ≥ 0. The abstractionαψ operates on a set of traces,
e.g.,A = S JKP K, which are simply sequences of commands. If the setA is empty, then

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 41

the abstractionαψ returns the empty set,αψ(∅) = ∅ for any CTPL formulaψ. Otherwise,
the abstraction is defined with respect to the particular structure ofψ.

αEXψ(A) =
{
σ ∈ A : σ = sσ′ ∧ σ′ ∈ αψ

(
Next1(A)

)}

αEGψ(A) =
{
σ ∈ A : ∀k ≥ 0 . σ = s0 . . . skσ

′ ∧ σ′ ∈ αψ
(
Nextk+1(A)

)}

αE[ψUψ′](A) =




σ ∈ A : ∃k ≥ 0 .
∀0 ≤ j < k . αψ

(
Nextj(A)

)
6= ∅

∧
αψ′

(
Nextk(A)

)
6= ∅






α¬ψ(A) = A \ (αψ(A))

αψ∧ψ′(A) = αψ(A) ∩ αψ′(A)

αinstr(p1,...,pn)(A) = {σ ∈ A : σ = sσ′ ∧ act JsK = instr(p1, . . . , pn)}

α#loc(L)(A) = {σ ∈ A : σ = sσ′ ∧ lab Jcmd J{s}KK = L}

Let us writeS JP K (s) to mean the trace semantics ofP when the starting state iss.
In other words,S JP K (s) = {σ ∈ S JP K : σ = sσ′}. We note that we can express the
trace semantics ofP as the union of trace semantics starting in any start state,S JP K =⋃
s0∈Init S JP K (s0), whereInit is the set of initial states ofP . Furthermore, ifσ =

s0s1 . . . skσ
′, thenS JP K (sk) = Nextk(S JP K (s0)).

PROPOSITION 7. KP , s |= ψ ⇐⇒ αψ(S JKP K (s)) 6= ∅.

PROOF. (⇒) AssumeKP , s |= ψ. We perform the proof by induction on the structure
of ψ.

—KP , s |= EXψ
Then a traceσ ∈ S JKP K (s) exists that has at least two states,σ = sσ′ = ss′σ′′, such
thatKP , s

′ |= ψ. By inductive hypothesis,KP , s
′ |= ψ implies thatαψ(S JKP K (s′)) 6=

∅. Then there exists̄σ ∈ αψ(S JKP K (s′)). Note thats′S JKP K ⊆ Next1(S JKP K (s))
and we have that̄σ ∈ αψ(Next1(S JKP K (s))). As a result, because there exists
δ ∈ S JKP K (s) such thatδ = sσ̄, we have thatδ ∈ αEXψ(S JKP K (s)). Thus,
αEXψ(S JKP K (s)) 6= ∅.

—KP , s |= EGψ
Then a traceσ ∈ S JKP K (s) exists such thatσ = s0s1 . . . si . . . andKP , si |= ψ, for
all i ≥ 0. Note thats0 = s. We have that ifKP , si |= ψ, thenαψ(S JKP K (si)) 6= ∅ (by
the induction hypothesis). Then there existsσ̄ ∈ αψ(S JKP K (si)). As S JKP K (si) =
Next i(S JKP K (s0)), thenσ̄ ∈ αψ(Next i(S JKP K (s0))). Thus, we have that for all
i ≥ 0, there exists āσ such thatσ = s0 . . . siσ̄ andσ̄ ∈ αψ(Next i+1(S JKP K (s0))). It
follows thatσ ∈ αEGψ(S JKP K (s)) andαEGψ(S JKP K (s)) 6= ∅.

—KP , s |= E[ψUψ′]
Then, by the definition ofEU, there existsk ≥ 0 such that a traceσ = s0s1 . . . sk . . . ,
with s0 = s, satisfies the following properties:∀0 ≤ i < k . KP , si |= ψ andKP , sk |=
ψ′. By the induction hypothesis, it follows that∀0 ≤ i < k . αψ(S JKP K (si)) 6= ∅ and
αψ′(S JKP K (sk)) 6= ∅. Asαψ(S JKP K (si)) = αψ(Next i(S JKP K (s0))) ands = s0,
it then follows thatαE[ψUψ′](S JKP K (s)) 6= ∅.

—KP , s |= ¬ψ
ThenKP , s 6|= ψ, implying thatαψ(S JKP K (s)) = ∅. We haveα¬ψ(S JKP K (s)) =
A \ αψ(S JKP K (s)) = A, which is indeed non-empty.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

42 · Mila Dalla Preda et al.

—KP , s |= ψ ∧ ψ′

There existsσ = sσ′ such that bothψ andψ′ are satisfied. AsKP , s |= ψ andKP , s |=
ψ′, thenσ ∈ αψ(S JKP K (s)) andσ ∈ αψ′(S JKP K (s)). Thus,αψ∧ψ′(S JKP K (s)) =
αψ(S JKP K (s)) ∩ αψ′(S JKP K (s)) ⊇ {σ} 6= ∅.

—KP , s |= instr(p1, . . . , pn)
There existsσ = sσ′ such thatinstr(p1, . . . , pn) is satisfied bys. Then we have that
act JsK = instr(p1, . . . , pn), implying thatαinstr(p1,...,pn)(S JKP K (s)) 6= ∅.

—KP , s |= #loc(L)
There existsσ = sσ′ such that#loc(L) is satisfied bys. Then lab Jcmd J{s}KK =
#loc(L), implying thatα#loc(L)(S JKP K (s)) 6= ∅.

(⇐) Assumeαψ(S JKP K (s)) 6= ∅. We perform the proof by induction on the structure of
ψ.

—αEXψ(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such thatσ = sσ′ andσ′ ∈ αψ(Next1(S JKP K (s))). This
implies thatσ′ ∈ αψ(S JKP K (s1)). Then, by the induction hypothesis,KP , s1 |= Eψ.
Thus,KP , s |= EXψ.

—αEGψ(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such that for allk ≥ 0, we haveσ = s0 . . . skσ

′ and
σ′ ∈ αψ(Nextk+1(S JKP K)). Note thats0 = s and letσ′ = sk+1σ

′′. It follows that
σ′ ∈ αψ(S JKP K (sk+1)). Then, by the induction hypothesis,KP , sk+1 |= ψ. We now
have that∀k ≥ 0 . KP , sk+1 |= ψ. Thus,KP , s |= EGψ.

—αE[ψUψ′](S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such that for somek ≥ 0, we have the following properties
hold: αψ(Nextj(S JKP K)) 6= ∅, for 0 ≤ j < k, andαψ′(Nextk(S JKP K)) 6= ∅.
It follows thatαψ(S JKP K (sj)) 6= ∅, for 0 ≤ j < k. By the induction hypothesis,
KP , sj |= ψ for 0 ≤ j < k andKP , sk |= ψ′. Thus,KP , s |= E[ψUψ′].

—α¬ψ(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such thatσ 6∈ αψ(S JKP K (s)). ThenKP , s 6|= ψ, thus
KP , s |= ¬ψ.

—αψ∧ψ′(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such thatσ ∈ αψ(S JKP K (s)) andσ ∈ αψ′(S JKP K (s)).
By induction hypothesis, it follows thatKP , s |= ψ andKP , s |= ψ′. Thus,KP , s |=
ψ ∧ ψ′.

—αinstr(p1,...,pn)(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such thatσ = sσ′ andact JsK = instr(p1, . . . , pn).
Thens satisfiesinstr(p1, . . . , pn), thusKP , s |= instr(p1, . . . , pn).

—α#loc(L)(S JKP K (s)) 6= ∅
There existsσ in S JKP K (s) such thatσ = sσ′ and lab Jcmd J{s}KK = L. Thens
satisfies#loc(L), thusKP , s |= #loc(L).

which concludes the proof.

As a corrolary,KP |= ψ ⇐⇒ αψ(S JKP K) 6= ∅ follows from the fact thatS JP K =⋃
s0∈Init S JP K (s0). We note that Proposition 7 holds under the assumption that the ora-

clesORCTPL (which providesψ) andORCFG (which contructsKP) are perfect.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 43

Step 1: Design an Equivalent Trace-Based Detector.We can now define a trace-based
detectorDCTPL based on the abstractionsαψ andαCmd .

DEFINITION 14. A programP isψ-malicious ifαψ(αCmd(S JP K)) 6= ∅.
Based on this definition, we can show thatDCTPL andACTPL are equivalent. By Propo-
sition 7 and its corollary, we have thatKP |= ψ ⇐⇒ αψ(S JKP K) 6= ∅. But
S JKP K = αCmd(S JP K) by the construction ofKP from P . It follow immediately that
KP |= ψ ⇐⇒ αψ(S JKP K) 6= ∅ ⇐⇒ αψ(αCmd (S JP K)) 6= ∅.

Step 2: Check for Soundness and Completeness.Let OCTPL be the set of obfuscations
against whichDCTPL is complete. We identify several classes of obfuscations that are
members ofOCTPL and show thatOc 6⊆ OCTPL. As a first step, we prove thatDCTPL is
sound if the oracleORCTPL returns an ideal CTPL formula.

PROPOSITION 8. DCTPL is oracle-sound with respect to every obfuscation.

PROOF. Given a malwareM , the perfect oracleORCTPL returns a CTPL formulaψ
such thatKP |= ψ ⇒ M →֒ P . AsKP |= ψ ⇐⇒ αψ(αCmd (S JP K)), it follows that
DCTPL(P) = DCTPL(M) ⇒ M →֒ P and thusDCTPL is sound relative to the oracle
ORCTPL.

We are interested in the completeness ofDCTPL with respect to various obfuscations.
In other words, asDCTPL is complete with respect toOCTPL, we wish to discover the ob-
fuscation classes members ofOCTPL. Let us consider the set of conservative obfuscations
Oc.

The model checking-based malware detector is resilient to the code reordering obfusca-
tionOJ and the opaque predicate insertion obfuscationsOT andOU . The code reordering
obfuscationOJ relabels commands and inserts jump instructions. Becauseαψ by con-
struction does not take into account labels, only actions (i.e., instructions), and because the
inserted jump actions do not affect the operation ofDCTPL, it follows thatOJ ∈ OCTPL.
Through similar reasoning we can show thatOT ∈ OCTPL andOU ∈ OCTPL.

Unfortunately,DCTPL is not complete with respect to all conservative obfuscations.
From the conservative obfuscations we discussed in Section6, semantic nop insertionON
and substitution of equivalent commandsOI can produce obfuscated program variants that
evade detection byDCTPL. For example,OI will substitute commands in a program such
thatαCmd(σ) 6= αCmd(σ′), whereσ ∈ S JP K andσ′ ∈ S JOI(P ′)K. Thenαψ applied to
σ′ will fail to filter actions of interest. Let us definesyntactically conservative obfuscations
Oc! as the set of conservative obfuscations that preserve commands, i.e.,O : P → P
is a syntactically conservative obfuscation ifO is conservative and∀α ∈ S JP K , ∃δ ∈
S JO(P)K : αCmd(σ) � αCmd(δ).

PROPOSITION 9. Oc! ⊆ OCTPL.

PROOF. Consider a syntactically conservative obfuscationO ∈ Oc!. From the definition
of Oc!, we have thatαCmd(S JP K) � αCmd(S JO(P)K). Hence, it follows that:

αψ(αCmd(S JP K)) � αψ(αCmd(S JO(P)K)). (4)

If DCTPL(P) = 1, then thatαψ(αCmd(S JP K)) 6= ∅. Equation 4 implies:

αψ(αCmd (S JP K)) � αψ(αCmd(S JO(P)K)) 6= ∅,
and we haveDCTPL(O JP K) = 1. Thus,O ∈ Oc!.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

44 · Mila Dalla Preda et al.

Furthermore, the set of obfuscationsOCTPL is strictly larger thanOc! as it contains at
least one non-conservativeobfuscation, the variable-renamingobfuscationOv of Section 7.
Variable renaming works by changing variables consistently throughout the program, ac-
cording to a mapπ ∈ Π that relates names of variables between the original program and
the obfuscated program,π : var JP K → Names . In the CTPL notation,U is the finite
universe of variable names, and thus we havevar JP K ⊆ U andNames = U . Let φ be a
CTL formula (i.e., without free variables). We can show thatif a modelK satisfiesφ, then
a renamed modelK[x/v] (where the variablex was renamed tov) satisfiesφ[x/v] (where
are similar renaming fromxwasv applied). This observation follows directly from the fact
that satisfaction in CTPL reduces to syntactic equality between actions in traces (act JsK)
and CTPL formula predicates (instr(p1, . . . , pn)). Consider a programP such that
DCTPL(P) = 1 for some CTPL formulaψ. Letπ be a map of a renaming obfuscationOπv
applied toP . We wish to establish that the obfuscated malwareOπv JP K is indeed detected
byDCTPL as malicious. We know thatKP |= ψ, i.e.,KP |= (

∨
(v1,...,vk)∈Uk ψ[xi/vi]).

This is equivalent to
∨

(v1,...,vk)∈Uk KP |= ψ[xi/vi]. As a result, there exists a renam-

ing (v1, . . . , vk) ∈ Uk such thatKP |= ψ[xi/vi]. Note thatψ[xi/vi] is a CTL formula.
According to the observation above, renaming preserves thesatisfaction relation on CTL
formulas, and we haveKP |= ψ[xi/vi] ⇐⇒ KP [vi/π(vi)] |= (ψ[xi/vi])[vi/π(vi)]. As
a result,KP [vi/π(vi)] |= ψ[xi/π(vi)] (in CTL), which implies thatKP [vi/π(vi)] |= ψ (in
CTPL). ButKP [vi/π(vi)] is the model forOπv JP K, meaning thatDCTPL(Oπv JP K) = 1.
Thus,Ov ∈ OCTPL.

10. RELATED WORK

Code obfuscation has been extensively studied in the context of protecting the intellectual
property of programs. The goal of an obfuscation technique is to transform a program in
order to make it harder (ideally impossible) to reverse engineer while preserving its func-
tionality [Collberg et al. 1997; 1998; Chow et al. 2001; Linnand Debray 2003; Dalla Preda
and Giacobazzi 2005; Dalla Preda and Giacobazzi 2005]. Cryptographers are also pursu-
ing research on the question of possibility of obfuscation [Barak et al. 2001; Wee 2005;
Goldwasser and Kalai 2005].

An introduction to theoretical computer virology can be found in [Cohen 1985]. In par-
ticular, Cohen proposes a formal definition of computer virus based on Turing’s model of
computation, and proves that precise virus detection is undecidable [Cohen 1987], namely
that there is no algorithm that can reliably detect all viruses. Cohen shows also that the de-
tection of evolutionary variants of viruses is undecidable, namely that metamorphic mal-
ware detection is undecidable [Cohen 1989]. A related undecidability result is the one
presented in [Chess and White 2000], where the authors provethe existence of a virus
type that cannot be detected. Adleman applies formal computability theory to viruses and
viruses detection, showing that the problem is intractable[Adleman 1988].

Despite these results, proving that in general viruses detection is impossible, it is pos-
sible to develop ad-hoc detection schemes that work for specific viruses (malware). In
fact, there is a considerable body of literature on techniques for malware detection [Ször
2005]. These techniques base their detection on syntactic elements of the program. As
argued earlier, malware writers often resort to metamorphism in order to avoid such syn-
tactic detection. In particular, code obfuscation is successfully used by hackers to confuse
the misuse-detection schemes that are sensitive to slight modifications of program syntax.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 45

Some attempts to create obfuscation-resilient schemes foridentifying malware are not
practical as they suffer from high false positive rates. In particular,anomaly detection
algorithms are based on a notion of normal program behavior and classify as malicious
any behavior deviating from normality [McHugh 2001]. Anomaly detection does not need
any a priori knowledge of the malicious code and can therefore detect previously unseen
malware. Due to the difficulty of classifying what is normal,this technique usually pro-
duces many false alarms (systems often exhibit unseen or unusual behaviors that are not
malicious). For example anomaly detection using statistical methods suffers from such
limitations [Li et al. 2005; Kolter and Maloof 2004]. Other approaches can only provide a
post-infection forensic capability – as for example correlation of network events to detect
propagation after infection [Gupta and Sekar 2003].

With the advent of metamorphic malware, the malware detection community has begun
to face the above mentioned theoretical limits and to develop detection systems based on
formal methods of program analysis. We agree with Lakhotia and Singh, who state that
“formal methods for analyzing programs for compilers and verifiers when applied to anti-
virus technologies are likely to produce good results for the current generation of malicious
code” [Lakhotia and Singh 2000]. In the following we briefly present some of the existing
approaches to malware detector based on formal methods.

Program Semantics.Christodorescu and Jha observe that the main deficiency of misuse
detection is its purely syntactic nature, that ignores the meaning of instructions, namely
their semantics [Christodorescu et al. 2005]. Following this observation, they propose
an approach to malware detection that considers the malwaresemantics, namely the mal-
ware behavior, rather than its syntax. Malicious behavior is described through a template,
namely a generalization of the malicious code that expresses the malicious intent while
eliminating implementation details. The idea is that a template does not distinguish be-
tween irrelevant variants of the same malware obtained through obfuscation processes.
For example, a template uses symbolic variable/constants to handle variable and register
renaming, and it is related to the malware control flow graph in order to deal with code
reordering. Then, they propose an algorithm that verifies ifa program presents the tem-
plate behavior, using some unification process between program variables/constants and
malware symbolic variables/constants. This detection approach is able to handle a limited
set of obfuscations commonly used by malware writers.

Static Analysis.Bergeronet al. propose a malware-detection scheme based on the de-
tection of suspicious system call sequences [Bergeron et al. 2001]. In particular, they
consider a reduction (subgraph) of the program control flow graph, which contains only
the nodes representing certain system calls. Next they check if such subgraph presents
known malicious sequences of system calls.

Christodorescu and Jha describe a malware detection systembased on language contain-
ment and unification [Christodorescu and Jha 2003]. The malicious code and the possibly
infected program are modeled as automata using unresolved symbols and placeholders for
registers to deal with some types of obfuscations. In this setting, a program presents a
malicious behavior if the intersection between the language of the malware automaton and
the one of the program automaton is not empty.

Model Checking.Singh and Lakhotia specify malicious behaviors through a formula in
linear temporal logic (LTL), and then use the model checker SPIN to check if this property

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

46 · Mila Dalla Preda et al.

is satisfied by the control flow graph of a suspicious program [Singh and Lakhotia 2003].
Kinderet al. introduce a new temporal logic CTPL (Computation Tree Predicate Logic),

which is an extension of the branching time temporal logic CTL, that takes into account
register renaming, allowing a succinct and natural presentation of malicious code pat-
terns [Kinder et al. 2005]. They develop a model checking algorithm for CTPL that, check-
ing if a program satisfies a malware property expressed by a CTPL formula, verifies if the
program is infected by the considered malicious behavior.

Model checking techniques have recently been used also in worm quarantine applica-
tions [Briesemeister et al. 2005]. Worm quarantine techniques seek to dynamically isolate
the infected population from the population of uninfected systems, in order to fight mal-
ware infection.

Program Slicing.Lo et al. develop a programmable static analysis tool, called MCF
(Malicious Code Filter) [Lo et al. 1995], that uses program slicing and flow analysis to de-
tect malicious code. Their approach relies ontell-tale signs, namely on program properties
that characterize the maliciousness of a program. MCF slices the program with respect to
these tell-tale signs in order to get a smaller program segment that might perform mali-
cious actions. These segments are further analyzed in orderto determine the existence of
a malicious behavior.

Data Mining. Data mining techniques try to discover new knowledge in large data col-
lections. In particular, data mining identifies hidden patterns and trends that a human
would not be able to discover efficiently on large databases,employing, for example, ma-
chine learning and statistical analysis methods. Leeet al. study ways to apply data mining
techniques to intrusion detection [Lee et al. 2000; Lee and Stolfo 1998; Lee et al. 1999].
The basic idea is to use data mining techniques to identify patterns of relevant system
features, describing program and user behavior, in order torecognize both anomalies and
known malicious behaviors.

11. CONCLUSIONS AND FUTURE WORK

Malware detectors have traditionally relied upon syntactic approaches, typically based on
signature-matching. While such approaches are simple, they are easily defeated by obfus-
cations. To address this problem, this work presents a semantics-based framework within
which one can specify what it means for a malware detector to be sound and/or complete,
and reason about the completeness of malware detectors withrespect to various classes of
obfuscations. For example, in this framework, it is possible to show that the signature-
based malware detector is generally sound but not complete,as well as that the semantics-
aware malware detector proposed by Christodorescuet al. is complete with respect to some
commonly used malware obfuscations, and that the model checking-based malware detec-
tor of Kinderet al. is generally sound while it is complete only for certain obfuscations.
Our framework uses a trace semantics to characterize the behaviors of both the malware
and the program being analyzed. It shows how we can get aroundthe effects of obfusca-
tions by using abstract interpretation to “hide” irrelevant aspects of these behaviors. Thus,
given an obfuscating transformationO, the key point is to characterize the proper semantic
abstraction that recognizes infection even if the malware is obfuscated throughO.

So far, given an obfuscating transformationO, we assume that the proper abstraction
α, which discards the details changed by the obfuscation and preserves maliciousness, is

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 47

provided by the malware detector designer. We are currentlyinvestigating how to design
a systematic (ideally automatic) methodology for derivingan abstractionα that leads to
a sound and complete semantic malware detector. As a first step in this direction, we
observe that if abstractionα is preserved by the obfuscationO then the malware detection
is complete, i.e., no false negatives. However, preservation is not enough to eliminate false
positives. Hence, an interesting research task consists incharacterizing the set of semantic
abstractions that prevents false positives. This, characterization may help us in the design
of suitable abstractions that are able to deal with a given obfuscation.

Other approaches to the automatic design of abstractionα can rely onmonitoringmal-
ware execution in order to extract its malicious behaviors,i.e., the set of malicious (ab-
stract) traces that characterizes the malign intent. The idea is that every time that a malware
exhibits a malicious intent (for example every time it violates some security policies) the
behavior is added to the set of malicious ones. Another possibility we are interested in is
the use ofdata miningtechniques to extract maliciousness in malware behaviors.Prelim-
inary work in this area has shown that empirical data mining techniques can successfully
identify behavior that is unique to a malware [Christodorescu et al. 2007]. In this case,
given a sufficient wide class of malicious variants we can analyze their semantics and use
data mining to extract common features.

For future work in designing malware detectors, an area of great promise is that of de-
tectors that focus on interesting actions. Depending on theexecution environment, certain
states are reachable only through particular actions. For example, system calls are the only
way for a program to interact with OS-mediated resources such as files and network con-
nections. If the malware is characterized by actions that lead to program states in an unique,
unambiguous way, then all applicable obfuscation transformations are conservative. As we
showed, a semantic malware detector that is both sound and complete for a class of con-
servative obfuscations exists, if an appropriate abstraction can be designed. In practice,
such an abstraction cannot be precisely computed, due to undecidability of program trace
semantics – a future research task is to find suitable approximations that minimize false
positives while preserving completeness.

One further step would be to investigate whether and how model checking techniques
can be applied to detect malware. Some works along this line already exist [Kinder et al.
2005]. Observe that abstractionα actually defines a set of program traces that are equiv-
alent up toO. In model checking, sets of program traces are represented by formulas
of some linear/branching temporal logic. Hence, we aim at defining a temporal logic
whose formulas are able to express normal forms of obfuscations together with opera-
tors for composing them. This would allow us to use standard model checking algorithms
to detect malware in programs. This could be a possible direction to follow in order to
develop a practical tool for malware detection based on our semantic model. We expect
this semantics-based tool to be significantly more precise than existing virus scanners.

REFERENCES

ADLEMAN , L. M. 1988. An abstract theory of computer viruses. InProceedings of Advances in cryptology
(CRYPTO’88). LNCS, vol. 403. Springer, Berlin/Heidelberg.

BARAK , B., GOLDREICH, O., IMPAGLIAZZO , R., RUDICH, S., SAHAI , A., VADHAN , S.,AND YANG, K. 2001.
On the (im)possibility of obfuscating programs. InAdvances in Cryptology (CRYPTO’01). Lecture Notes in
Computer Science, vol. 2139. Springer, Santa Barbara, CA, USA, 1 – 18.

BERGERON, J., DEBBABI , M., DESHARNAIS, J., ERHIOUI, M. M., LAVOIE , Y., AND TAWBI , N. 2001. Static
detection of malicious code in executable programs. InSymposium on Requirements Engineering for Infor-

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

48 · Mila Dalla Preda et al.

mation Security. Published online,http://www.sreis.org/old/2001/index.html (last accessed
on May 31, 2007).

BRIESEMEISTER, L., PORRAS, P. A.,AND T IWARI , A. 2005. Model checking of worm quarantine and counter-
quarantine under a group defense. Tech. Rep. SRI-CSL-05-03, SRI International, Computer Science Labora-
tory.

CHESS, D. AND WHITE, S. 2000. An undetectable computer virus. InProceedings of the 2000 Virus Bulletin
Conference (VB2000). Virus Bulletin, Orlando, FL, USA.

CHOW, S., GU, Y., JOHNSON, H., AND ZAKHAROV, V. 2001. An approach to the obfuscation of control-flow
of sequential computer programs. InProceedings of the 4th International Information SecurityConference
(ISC’01), G. Davida and Y. Frankel, Eds. Lecture Notes in Computer Science, vol. 2200. Springer, Malaga,
Spain, 144–155.

CHRISTODORESCU, M. AND JHA , S. 2003. Static analysis of executables to detect malicious patterns. In
Proceedings of the 12th USENIX Security Symposium(Security ’03). USENIX Association, Berkeley, CA,
USA, 169–186.

CHRISTODORESCU, M., JHA , S.,AND KRUEGEL, C. 2007. Mining specifications of malicious behavior. In
Proceedings of the 6th Joint Meeting European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE’07). To appear, Dubrovnik,
Croatia, pages TBD.

CHRISTODORESCU, M., JHA , S., SESHIA, S. A., SONG, D., AND BRYANT, R. E. 2005. Semantics-aware
malware detection. InProceedings of the 2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE
Computer Society, Los Alamitos, CA, USA, 32–46.

CHRISTODORESCU, M., K INDER, J., JHA , S., KATZENBEISSER, S.,AND VEITH, H. 2005. Malware normal-
ization. Tech. Rep. 1539, University of Wisconsin, Madison, Wisconsin, USA. Nov.

CLARKE , JR., E. M., GRUMBERG, O.,AND PELED, D. A. 2001.Model Checking. The MIT Press, Cambridge,
MA, USA.

COHEN, F. 1985. Computer viruses. Ph.D. thesis, University of Southern California.
COHEN, F. 1989. Computational aspects of computer viruses.Computers and Security 8,4, 325.
COHEN, F. B. 1987. Computer viruses: Theory and experiments.Computers and Security 6, 22–35.
COLLBERG, C., THOMBORSON, C., AND LOW, D. 1997. A taxonomy of obfuscating transformations. Tech.

Rep. 148, Department of Computer Sciences, The University of Auckland. July.
COLLBERG, C., THOMBORSON, C., AND LOW, D. 1998. Manufacturing cheap, resilient, and stealthy opaque

constructs. InProceedings of the 25th ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL’98). ACM Press, San Diego, CA, USA, 184–196.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In Proceedings of the 4th ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL’77). ACM Press, Los Angeles, CA, USA, 238–
252.

COUSOT, P.AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In Proceedings of the
6th ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL’79). ACM Press,
San Antonio, TX, USA, 269–282.

COUSOT, P.AND COUSOT, R. 1992. Abstract interpretation frameworks.Journal of Logic and Computation 2,4
(Aug.), 511–547.

COUSOT, P. AND COUSOT, R. 2002. Systematic design of program transformation frameworks by abstract
interpretation. InProceedings of the 29th ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL’02). ACM Press, Portland, OR, USA, 178–190.

DALLA PREDA, M., CHRISTODORESCU, M., JHA , S.,AND DEBRAY, S. 2007. A semantics-based approach
to malware detection. InProceedings of the 32nd ACM Symp. on Principles of Programming Languages
(POPL ’07). ACM Press, Nice, France, 377–388.

DALLA PREDA, M. AND GIACOBAZZI , R. 2005. Control code obfuscation by abstract interpretation. In Pro-
ceedings of the 3rd IEEE International Conference on Software Engineering and Formal Methods (SEFM’05).
IEEE Computer Society, Los Alamitos, CA, USA, 301–310.

DALLA PREDA, M. AND GIACOBAZZI , R. 2005. Semantics-based code obfuscation by abstract interpretation.
In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP’05).
Lecture Notes in Computer Science, vol. 3580. Springer, Lisboa, Portugal, 1325–1336.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

A Semantics-Based Approach to Malware Detection · 49

DETRISTAN, T., ULENSPIEGEL, T., MALCOM , Y., AND VON UNDERDUK, M. S. 2003. Polymorphic shellcode
engine using spectrum analysis.Phrack 11,61 (Aug.), published online athttp://www.phrack.org (last
accessed on Jan. 16, 2004).

GOLDWASSER, S. AND KALAI , Y. T. 2005. On the impossibility of obfuscation with auxiliary input. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). IEEE
Computer Society, Washington, DC, USA, 553–562.

GUPTA, A. AND SEKAR, R. 2003. An approach for detecting self-propagating emailusing anomaly detection. In
Proceedings of the 6th International Symposium on Recent Advances in Intrusion Detection (RAID’03), G. Vi-
gna, E. Jonsson, and C. Kruegel, Eds. Lecture Notes in Computer Science, vol. 2820. Springer, Pittsburgh, PA,
USA, 55–72.

INTEL CORPORATION. 2001. IA-32 Intel Architecture Software Developer’s Manual. Intel Corporation.
JORDAN, M. 2002. Dealing with metamorphism.Virus Bulletin 2002,10 (Oct.), 4–6.
K INDER, J., KATZENBEISSER, S., SCHALLHART, C., AND VEITH, H. 2005. Detecting malicious code by

model checking. InProceedings of the 2nd International Conference on Intrusion and Malware Detection
and Vulnerability Assessment (DIMVA’05), K. Julisch and C. Krügel, Eds. Lecture Notes in Computer Science,
vol. 3548. Springer, Vienna, Austria, 174–187.

KOLTER, J. Z.AND MALOOF, M. A. 2004. Learning to detect malicious executables in thewild. In Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’04).
ACM Press, Seattle, WA, USA, 470–478.

LAKHOTIA , A. AND MOHAMMED , M. 2004. Imposing Order on Program Statements to Assist Anti-Virus Scan-
ners. InProceedings of the 11th Working Conference on Reverse Engineering (WCRE’04). IEEE Computer
Society, Washington, DC, USA, 161–170.

LAKHOTIA , A. AND SINGH, P. K. 2000. Challenges in getting “formal” with viruses. InVirus Bulletin. Virus
Bulletin Ltd., Abingdon, England.

LEE, W., NIMBALKAR , R. A., YEE, K. K., PATIL , S. B., DESAI, P. H., TRAN, T. T., AND STOLFO, S. J.
2000. A data mining and CIDF based approach for detecting novel and distributed intrusions. InProceedings
of the Third International Workshop on Recent Advances in Intrusion Detection (RAID 2000). LNCS, vol.
1907. Springer, Berlin/Heidelberg, 49–65.

LEE, W. AND STOLFO, S. 1998. Data mining approaches for intrusion detection. In Proceedings of the 7th
USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 79–93.

LEE, W., STOLFO, S., AND MOK, K. W. 1999. A data mining framework for building intrusion detection
models. InProceedings of the IEEE Symposium on Security and Privacy (S& P’99). IEEE Computer Society,
Los Alamitos, CA, USA, 120–132.

L I , W.-J., WANG, K., STOLFO, S. J.,AND HERZOG, B. 2005. Fileprints: Identifying file types by n-gram anal-
ysis. InProceedings of the 6th Annual IEEE Systems, Man, and Cybernetics (SMC) Workshop on Information
Assurance (IAW’05). United States Military Academy, IEEE Computer Society, West Point, NY, 64–71.

L INN , C. AND DEBRAY, S. 2003. Obfuscation of executable code to improve resistance to static disassembly. In
Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS’03). ACM Press,
Washington, DC, USA, 290–299.

LO, R. W., LEVITT, K. N., AND OLSSON, R. A. 1995. Mcf: A malicious code filter.Computers & Security 14,
541–566.

MCHUGH, J. 2001. Intrusion and intrusion detection.International Journal of Information Security 1,1, 14–35.
MORLEY, P. 2001. Processing virus collections. InProceedings of the 2001 Virus Bulletin Conference (VB2001).

Virus Bulletin, Prague, Czech Republic, 129–134.
NACHENBERG, C. 1997. Computer virus-antivirus coevolution.Communications of the ACM 40,1 (Jan.),

46–51.
RAJAAT. 1999. Polymorphism.29A Magazine 1,3, 1–2.
SINGH, P. AND LAKHOTIA , A. 2003. Static verification of worm and virus behaviour in binary executables

using model checking. InProceedings of the 4th IEEE Information Assurance Workshop. IEEE Computer
Society, Los Alamitos, CA, USA.

SYMANTEC CORPORATION. 2006. Symantec Internet Security Threat Report: Trends for January 06–June 06.
Vol. X. Symantec Corporation, Cupertino, CA, USA.

SZÖR, P. 2005.The Art of Computer Virus Research and Defense. Addison-Wesley Professional, Boston, MA,
USA.

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

50 · Mila Dalla Preda et al.

SZÖR, P.AND FERRIE, P. 2001. Hunting for metamorphic. InProceedings of the 2001 Virus Bulletin Conference
(VB2001). Virus Bulletin, Prague, Czech Republic, 123 – 144.

WALENSTEIN, A., MATHUR, R. CHOUCHANE, M. R., AND, LAKHOTIA , A 2006. Normalizing Metamorphic
Malware Using Term Rewriting. InProceedings of the 6th International Workshop on Source Code Analysis
and Manipulation (SCAM’06). 75–84, IEEE Computer Society Press.

WEE, H. 2005. On obfuscating point functions. InProceedings of the 37th Annual ACM Symposium on Theory
of Computing (STOC’05). ACM Press, Baltimore, MD, USA, 523–532.

Z0MBIE. 2001a. Automated reverse engineering: Mistfall engine. Published online athttp://www.
madchat.org//vxdevl/papers/vxers/Z0mbie/autorev.txt (last accessed on Sep. 29, 2006).

Z0MBIE. 2001b. Real Permutating[sic] Engine. Published online athttp://vx.netlux.org/vx.php?
id=er05 (last accessed on Sep. 29, 2006).

Received July 2007; accepted October 2007

ACM Transactions on Computational Logic, Vol. V, No. N, July2008.

