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Malware detection is a crucial aspect of software security. Current malware detectors work by
checking for signatures which attempt to capture the syntactic characteristics of the machine-level
byte sequence of the malware. This reliance on a syntactic approach makes current detectors
vulnerable to code obfuscations, increasingly used by malware writers, that alter the syntactic
properties of the malware byte sequence without significantly affecting their execution behavior.

This paper takes the position that the key to malware identification lies in their semantics.
It proposes a semantics-based framework for reasoning about malware detectors and proving
properties such as soundness and completeness of these detectors. Our approach uses a trace
semantics to characterize the behavior of malware as well as that of the program being checked
for infection, and uses abstract interpretation to “hide” irrelevant aspects of these behaviors. As
a concrete application of our approach, we show that (1) standard signature matching detection
schemes are generally sound but not complete, (2) the semantics-aware malware detector proposed
by Christodorescu et al. is complete with respect to a number of common obfuscations used by
malware writers and (3) the malware detection scheme proposed by Kinder et al. and based
on standard model-checking techniques is sound in general and complete on some, but not all,
obfuscations handled by the semantics-aware malware detector.
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1. INTRODUCTION

The termmalware(malicious softvare) refers to a program with malicious intent designed
to damage the machine on which it executes or the networkwlrith it communicates.
The growth in the complexity of modern computing systems esakdifficult, if not im-
possible, to avoid bugs. This increases the possibility afware attacks that usually
exploit such vulnerabilities in order to damage the syst&umthermore, as the size and
complexity of a system grows, it becomes more difficult tolgreait and prove that it is
not infected. Thus, the threat of malware attacks is an udatae problem in computer
security, and therefori is crucial to detect the presence of malicious code inveai
systems

A considerable body of literature on malware detection néples exists — Szor pro-
vides an excellent summary [Szor 200%]lisuse detectionalso calledsignature-based
detection represents one of the most popular approaches to malwteetida. This de-
tection scheme is based on the assumption that malware aesbegbed through patterns
(also called signatures). In fact, a misuse detection sehedassifies a progratf as in-
fected by a malware when the malware signature — namely tngesee of instructions
characterizing a malware — occursih[Morley 2001; Szor 2005]. In general, signature-
based algorithms detect known malware, but are ineffectganst unknown malicious
programs, since no signature is available for them. To &tk limitation, anti-virus
companies strive to update the signature lists as oftenssitpe. Thanks to their low false
positive rate and ease of use, misuse detectors are widadly us

Malware writers resort to sophisticated hiding techniqoéen based on code obfusca-
tion, in order to avoid misuse detection [Nachenberg 19Bvjarticular, recent develop-
ments in malware technology have led to the so-catedamorphic malwareThe basic
idea of metamorphism is that each successive generatiomalvaare changes the syntax
while leaving the semantics almost unchanged in order tarisuse detection systems.
Thus, itis not surprising that hackers often use code obfimtin order to automatically
generate metamorphic malware. In fact, it is possible tigezbfuscations that transform
a malicious program, either manually or automatically,iseirting new code or modifying
existing code in order to make detection harder while pkésgrthe malicious behavior.
If a signature describes a certain sequence of instruciiéris 2005], then those instruc-
tions can be reordered or replaced with equivalent instmst[zOmbie 2001b; 2001a].
Such obfuscations are especially applicable on CISC aatoites, such as the Intel I1A-
32 [Intel Corporation 2001], where the instruction set éhrand many instructions have
overlapping semantics. If a signature describes a ceriatritdition of instructions in
the program, insertion of junk code [Szor and Ferrie 200i¢ldn 2002; zOmbie 2001b]
that acts as a nop so as not to modify the program behavior e@atdfrequency-based
signatures. If a signature identifies some of the read-oatg df a program, packing or
encryption with varying keys [Rajaat 1999; Detristan e8I03] can effectively hide the
relevant data. Of course, attackers have the choice oficgea¢w malware from scratch,
but that does not appear to be a favored tactic [SymantecCatipn 2006].Therefore, an
important requirement of a robust malware detection tegheiis to handle obfuscating
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transformations.

The reason why obfuscation can easily foil signature matghes in the syntactic nature
of this approach that ignores program functionality. Irtfaode obfuscation changes the
malware syntax but not its intended behavior, which has tprbserved. Formal methods
for program analysis, such as semantics-based staticsialyd model checking, could
be useful in designing more sophisticated malware deteetigorithms that are able to
deal with obfuscated versions of the same malware. For ebeaimgChristodorescu et al.
2005] the authors put forward a semantics-aware malwaeztigtthat is able to handle
some of the obfuscations commonly used by hackers, whil&imder et al. 2005] the
authors introduce an extension of the CTL temporal logidctviis able to express some
malicious properties that can be used to detect malwaredirstandard model checking
algorithms. These preliminary works confirm the potentehéfits of a formal approach
to malware detection.

We believe that addressing the malware-detection probtem fa semantic point of
view could lead to a more robust detection system. In fafferdint obfuscated versions of
the same malware have to share (at least) the malicioug,imamely the maliciousness
of their semantics, even if they might express it througfed#nt syntactic forms. The
goal of this work is to provide a formal semantics-based &awrk that can be used by
security researchers to reason about and evaluate thiemesilof malware detectors to
various kinds of obfuscation transformations. In particuthis work makes the following
contributions:

—A formal definition of what it means for a malware detectob®sound and complete
with respect to a class of obfuscations.

—A framework for proving that a detector is complete andfursd with-respect-to a class
of obfuscations.

—A trace semantics to characterize the program and malwetteviors, using abstract
interpretation to “hide” irrelevant aspects of these bétrav

—A series of case studies to evaluate the power of our fonraaléwork by proving sound-
ness and completeness of some well known detection schemes.
—Signature-based detection is proven to be generally sbutidot complete.
—Semantics-aware malware detection proposed in [Chasesttu et al. 2005] is proven
to be complete with respect to some common obfuscationslsethlware writers
(soundness is proved in [Christodorescu et al. 2005]).

—The model checking-based detection scheme proposed mdgKiet al. 2005] is
proved to be sound in general and complete on some, but nob#liscations handled
by the semantics-aware malware detector.

The results presented in this work are an extended and rediearsion of [Dalla Preda
et al. 2007].

2. OVERVIEW

The precision of a malware detector is usually expresseering of soundness and com-
pleteness properties. In the following we formally defineatvih means for a malware
detector to be sound and complete with respect to a classfo$acdtions. Moreover, we
provide an informal description of a proof strategy that barused to certify soundness
and completeness of existing detection schemes.
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Following a standard definition, asbfuscating transformatio® : P — P is a potent
program transformer that preserves the functionality ofgpams [Collberg et al. 1998],
where potent means that the transformed program is moreleam., more difficult to
understand, than the original one. I@denote the set of all obfuscating transformations.
A malware detectocan be seen as a functidn: P x P — {0, 1} that, given a program
P and a malwaré\/, decides if progran® is infected with malwarel/. For example,
D(P,M) = 1 means thaP is infected withM or with an obfuscated variant aff. Our
treatment of malware detectors focuses on detecting Mararexisting malware. When
a programP is infected with a malwaré/, we write M — P. Intuitively, a malware
detector issoundif it never erroneously claims that a program is infectesl, there are no
false positives, and it isompletéf it always detects programs that are infected, i.e., there
are no false negatives.

DEFINITION 1. A malware detectob is completefor an obfuscatior® € O if VM €
P, O(M) — P = D(P,M) = 1. A malware detectoD is soundfor an obfuscation
0O ecOifVvM eP,D(P,M)=1= O(M) — P.

Note that this definition of soundness and completeness eapplied to a deobfuscator
as well. In other words, our definitions are not tied to thecamt of malware detection.

Many malware detectors are built on top of other staticysistechniques for problems
that are hard or undecidable. For example, malware detethat are based on static
analysis [Kinder et al. 2005; Christodorescu et al. 2008]ia that the control-flow graph
for an executable can be extracted. As shown by researdhiers 4nd Debray 2003],
simply disassembling an executable can be quite tricky.réfbes, we want to introduce
the notion ofrelative soundness and completensih respect to algorithms that a detector
uses. In other words, we want to prove that a malware detecsmund or complete with
respect to a class of obfuscations if the static-analygisrahms that the detector uses are
perfect.

DEFINITION 2. Anoracleis an algorithm over programs. For example&;BG oracle
is an algorithm that takes a program as an input and prodtscesritrol-flow graph.

DO denotes a detector that uses a set of ora®®s! For example, leORcr¢ be a
static-analysis oracle that given an executable provigesfect control-flow graph for it.
A detector that uses the oraclR ¢ ¢ is denoted a® ©fiere | In the definitions and proofs
in the rest of the paper we assume that oracles that a det=sasrare perfect. Soundness
(resp. completeness) with respect to perfect oraclesadscalbedoracle-soundnesgesp.
oracle-completenegs

DEFINITION 3. A malware detectoP©* is oracle-completavith respect to an obfus-
cation©, if DR is complete for that obfuscatiafl when all oracles in the s€dR are
perfect.Oracle-soundnessf a detectoD®* can be defined in a similar manner.

A Framework for Proving Soundness and Completeness of Malware Detectors

When a new malware detection algorithm is proposed, oneeottiteria of evaluation is
its resilience to obfuscations, both current and future. @ware writer who has access

Iwe assume that detect@ can query an oracle from the s&tR, and the query is answered perfectly and in
O(1) time. These types of relative completeness and soundresésrare common in cryptography.
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to the detection algorithm and to its inner workings can usghknowledge in order to
design ad-hoc obfuscation tools to bypass detection. Asnthievare detection problem
is in general undecidable, for any given malware detectir aways possible to design
an obfuscation transformation that defeats that detedtimfortunately, identifying the
classes of obfuscations for which a detector is resilientima complex and error-prone
task. A large number of obfuscation schemes exist, both fteenmalware world and
from the intellectual-property protection industry. Figtmore, obfuscations and detectors
are defined using different languages (e.g., program toamsition vs program analysis),
complicating the task of comparing one against the other.

We present a formal framework for proving soundness and teteness of malware
detectors in the presence of obfuscations. The basic ideadisscribe programs through
their execution traces—thus, program trace semantic®ibuiiding block of our frame-
work. In Section 4 and Section 5 we describe how both obfimtatand detectors can
be elegantly expressed as operations on traces. In thisgsitis interesting to consider
soundness and completeness of malware detectors withctdspdasses of transforma-
tions that share similar effects on program trace semanfios this reason we introduce
a classification of obfuscation techniques based on thetsftkese transformations have
on program trace semantics and we investigate soundnessoarleteness of malware
detectors with respect to these families of obfuscatioss &ection 6 and Section 7).

In this framework, we propose the following two stemof strategyfor showing that a
detector is sound or complete with respect to an obfuscatiarclass of obfuscations.

(1) [Step 1] Relating the two worlds.
Consider a malware detect@?®* that uses a set of oracl€3R. Let & [P] and
S [M] denote the trace semantics of progr&hand malwarel respectively. De-
scribe a detectob 1. that works in the semantic world of traces and classifies a pro
gram P as infected by a malwarg/{ if & [P] matches certain properties & [M].
Prove that if the oracles i@R are perfect, then the two detectors are equivalent, i.e.,
forall P andM in P, DOR(P, M) = 1iff Dy.(S[P],&[M]) = 1. In other
words, this step shows the equivalence of the two worldsctimerete world of pro-
grams and the semantic world of traces.

(2) [Step 2] Proving soundness and completeness in the semantic world.
We are now ready to prove the desired property (e.g., coempst) about the trace-
based detectab 1. with respect to the chosen class of obfuscations. In this she
detector’s effects on trace semantics are compared to feetebf obfuscation on
trace semantics. This also allows us to evaluate the detegtonst whole classes of
obfuscations, as long as the obfuscations have similactsfts the trace semantics.

The requirement for equivalence in step 1 above might bettoag if only one of com-
pleteness or soundness is desired. For example, if thegmgbrove only completeness of
a malware detectab®%, then it is sufficient to find a trace-based detector thatsifias
only malware and malware variants in the same way&€*. Then, if the trace-based
detector is complete, so 8.

Observe that the proof strategy presented above works uhdexssumption that the
set of oracle)R used by the detectdd®” are perfect. In fact, the equivalence of the
semantic malware detectdry,. to the detection algorithf©™ is stated and proved under
the hypothesis of perfect oracles. This means that wherréiodas inOR are perfect then:
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—DO9R is sound w.r.t. obfuscatio® < D, is sound w.r.t. obfuscatiof?
—DOR is complete w.r.t. obfuscatio® < D, is complete w.r.t. obfuscatio®

Consequently, the proof of soundness/completenesspiwith respect to a given obfus-
cation© implies soundness/completenesgt™ with respect to obfuscatio® and vice
versa. However, even when the oracles used by the deteciiem®D* are not per-
fect it is possible to deduce some propertie®St® by analyzing its semantic counterpart
D .. Let D . denote the semantic malware detection algorithm whichusvatgnt to the
detection schem®©”® working on perfect oracles. In general, by relaxing the higpsis
of perfect oracles, we have that the malware detebXdF is less precise than its (ideal)
semantic counterpaf? ;.. This means that:

—DOR is sound w.r.t. obfuscatio® = D, is sound w.r.t. obfuscatiof
—DO® is complete w.r.t. obfuscatio® = Dy, is complete w.r.t. obfuscatio®

In this case, by proving thd? 1. is not sound/complete with respect to a given obfuscation
O we prove as well thab®* is not sound/complete with respect@ On the other hand,
even if we are able to prove thaty, is sound/complete with respect to an obfuscatibn
we cannot say anything about the soundness/completen&$d’dfvith respect ta?.

3. PRELIMINARIES
3.1 Abstract Interpretation

The basic idea of abstract interpretation is that progranaier at different levels of ab-
straction is an approximation of its formal semantics [Qxitend Cousot 1979; 1977].
The (concrete) semantics of a program is computed on theeta) domainC, <.),
i.e., a complete lattice modeling the values computed bgnams. The partial ordering
<¢ models relative precision; <¢ ¢o means that; is more precise (concrete) than
Approximation is encoded by an abstract doman<,), i.e., a complete lattice, that rep-
resents some approximation properties on concrete objlsis in the abstract domain the
ordering relatior< 4 denotes relative precision. As usual, abstract domaingpeefied by
Galois connections [Cousot and Cousot 1979; 1977]. Two temfattices” and A form

a Galois connectiofC, «, v, A), also denoted” # A, when the functions. : C' — A
andy : A — C form an adjunction, namelya € A,Ve € C: a(c) <sa < ¢ <¢ 7v(a)
wherea () is the left (right) adjoint ofy (). « and-y are called, respectively, abstraction
and concretization maps. Given a Galois connection, theadi®n map can be uniquely
determined using the concretization map and vice versag@and Cousot 1992]. In fact
Ve € C we can define the functiom(c) = A{a € Alc <¢ v(a)}, whileVa € A we can
define the functiory(a) = \/{c € C|a(c) <4 a}. This means that maps each element
¢ € C in the smallest element iA whose image byy is greater thar as regards¢.
On the other sidey maps each elemente A in the greatest element il whose image
by « is lower thana as regards< 4. A tuple (C,a,, A) is a Galois connection iffy is
additive iff v is co-additive. This means that whenever we have an additadditive)
function f between two domains we can always build a Galois connectiaobsidering
the right (left) adjoint map induced hf. Given two Galois connection®, a1, v1, A1)
and(Ay, as, 2, Az), their compositio(C, oz o a1, v1 o 72, A2) is a Galois connection.
(C,a,~, A) specifies a Galois insertion, denoté’d# A, if each element ofd is an
abstraction of a concrete elementdh namely(C, a, vy, A) is a Galois insertion iffx is
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Syntactic Categories:

n €N (integers)

XeX (variable names)

Lel (labels)

EcE (integer expressions)

BeB (Boolean expressions)

AeA (actions)

D eEU(A X p(L)) (assignmentr-values)

cecC (commands)

PeP (programs)

Syntax:

E:=n| X | E10pE> (op € {+,—,%,/,...})

B = true | false | F1 < E»
| -B1 | B1&& B>

A:u=X:=D | skip | assign(L, X)

Cu=L:A— 1L (unconditional actions)
| L:B—{Lr,Lr} (conditional jumps)

P = p(C)

Fig. 1. A simple programming language.

surjective iffy is injective. Abstract domains can be related to each otlithr nespect to
their relative degree of precision. In particular, we sagt #n abstraction; : C — A; is

more concrete than, : C — A, i.e., A5 is more abstract thad, denotedy; C a» or

A1 C Ay, if Ve e C:yi(a1(e) <c¢ v2(az(c)).

3.2 Programming Language

The language we consider is a simple extension of the onediated in [Cousot and
Cousot 2002], the main difference being the ability of peogs to generate code dynami-
cally (this facility is added to accommodate certain kinfisnalware obfuscations where
the payload is unpacked and decrypted at runtime). The syma semantics of our lan-
guage are given in Fig. 1 and Fig. 2 (Fig. 3 provides some ianyifunctions used in the
definitions of the semantics). Given a sgtwe useS to denote the sef U { L}, where

1 represents an undefined vaki€ommands can be either conditional or unconditional.
A conditional command at a labdl has the formL : B — {Ly,Lr}, whereB is

a Boolean expression ardr (respectively,Lr) is the label of the command to execute
when B evaluates tdrue (respectivelyfalse); an unconditional command at a lablels

of the form 'L : A — L, where A is an action and.; the label of the command to
be executed next. A variable can be undefingy ©r it can store either an integer or a
(appropriately encoded) pdif, S) € A x p(L). Let&™(C,€) = € (€™ *(C,€)) denote
the fact that the semantic functiéfi has been applied times starting from statéC' £),
where functior” is extended to sets of statés(S) = |J,.s ¢ (c). Let €™ denote the
closure of¢’. A program consists of an initial set of commands togethéh afl the com-
mands that are reachable through execution from the i@l In other words, i,

2We abuse notation and useto denote undefined values of different types, since the afjp@ undefined value
is usually clear from the context.
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Value Domains:
B = {true, false} (truth values)
nez (integers)
pe E= X—L, (environments)
meM=L—-ZU(AXp(L)) (memory)
e X=ExM (execution contexts)
Y= CxX (program states)
Semantics:

ARITHMETIC EXPRESSIONS

E:AXX —-Z, U(AXxpL))

En]E =n

& [X]€ = m(p(X))  where = (p,m)

éa[[E1 op E2ﬂ§ = if (éa [[El]]f € Zand& [[Ez}]f S Z)
then& [E1] € op & [E2] &; elseL

BOOLEAN EXPRESSIONS

B:BxX—-B,

B trug) ¢ = true

A falsg ¢ = false

B IIEl < Ezﬂf = if (5 IIEﬂ]f € Zand& IIEQ]]& € Z) then& [[Elﬂf <
& [E:] &; elseL

AB[-B]§ = if (B[B]€ € B)then-Z[B]¢; elsel

BB && Bo]¢ = if (B[Bi]€ € BandZ[Bs]¢ € B)thenZ[Bi]¢ A
B[ B:] &; elseL

ACTIONS

g AXX = X

o [skip]§ = &

A [X :=D]¢ = (p,m) where¢ = (p,m),m’ = m[p(X) « §], and § =

D if DeAxp(L)

{ E1D] (p,m) if D€ E

o [assign(L, X)]§ = (p',m)  where¢ = (p,m)andp’ = p[X ~ L’]
COMMANDS
The semantic functiofs” : ¥ — p(X) effectively specifies the transition relation betweenestat
Here,lab [C] denotes the label for the commaati.e.,lab[L: A — L'] = Land
lab[L:B — {Lr,Lr}] = L.

CIL:A—LN¢ = {(C,¢) | & =[A]&lab][C] =L, {act[C] :
suc [C]) = m/(L')} where¢’ = (p’,m’)
Ly if #[B] ¢ = true

¢[L:B—{Lr,Lr}]¢ = {(C,¢) | zab[[C]]:{LF it #[B] ¢ — false

Fig. 2. Semantics for our simple programming language of Eig
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LABELS VARIABLES

lab[L: A— L] = L var [L1: A — L2] = war [4]

lab[L:B —{Lr,Lr}] = L var [P] = Ugep var [C]

lab[P] = {lab[C]|C € P} var [A] = {variables occurring it}
SUCCESSORS OF A COMMAND MEMORY LOCATIONS USED BY A PROGRAM
suc[L:A— L] =L Luse[L: A — L'] = Luse[A]

suc[L: B — {Lr,Lr}] = {Lr,Lr} Luse[P] = Ugcp Luse[C]

ACTION OF A COMMAND Luse [A] = {locations occurring i} U p(var [A])
act[L: A— L] = A COMMANDS IN SEQUENCES OF PROGRAM STATES

cmd H{(017£1)7 ey (Ckyfk)}]] = {C1, .. ,Ck}

Fig. 3. Auxiliary functions for the language of Fig. 1.

denotes the initial set of commands, ther= cmd [[UCGPM (Ugex ¢ (C, 5))]]. Since
each command explicitly mentions its successors, a progi@s not need to maintain
an explicit sequence of commands. This definition allowsousepresent programs that
generate code dynamically.

An environmenp € £ maps variables idom(p) C X to memory locationg | . Given
a programP we denote with€(P) its environments, i.e., ip € £(P) thendom(p) =
var [P]. Let p[X ~ L] denote environment where labelL is assigned to variabl& .
The memoryis represented as a functiom : L — Z, U (A x p(L)). Letm[L «— D]
denote memoryn where elemenb is stored at locatior.. When considering a program
P, we denote with\M(P) the set of program memories, namelynif € M (P) then
dom(m) = Luse[P]. This means that: € M(P) is defined on the set of memory
locations that are affected by the execution of progfafexcluding the memory locations
storing the initial commands a?).

The behavior of a command when it is executed depends @axétsution contexi.e.,
the environment and memory in which it is executed. The sexe€ution contexts is given
by X = £ x M. A program statés a pair(C, ¢) whereC is the next command that has to
be executed in the execution contéxt: = C x X denotes the set of all possible states.
Given a states € X, the semantic functio’(s) gives the set of possible successor states
of s; in other words@ : ¥ — (X) defines the transition relation between states. Let
Y(P) = P x X(P) be the set of states of a progrdmthen we can specify the transition
relation® [P] : ¥(P) — p(X(P)) on programP as:

¢ [P](C,&) = {(C",&)|(C,¢) e €(C,¢),C" € P, and¢, &' € X(P) }.

Let A* denote the Kleene closure of a séti.e., the set of finite sequences ovéer A
tracec € ¥* is a sequence of states...s,, of length|o| > 0 such that for alk € [1,n):
s; € €(s;—1). Thefinite partial traces semantioS [P] C X* of programP is the least
fix point of the functionF":

F[P|(T) = S(P)U{ss'a|ls' € €[P](s), s'c €T}

whereT is a set of traces, name§ [P] = IfpS F [P]. The set of all partial trace seman-
tics, ordered by set inclusion, forms a complete lattice.

Finally, we use the following notation. Given a functifn A — B and a sefS C A,
we usef| s to denote the restriction of functighto elements irtN A, andf \. S to denote
the restriction of functiorf to elements not iy, namely toA . S.
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4. SEMANTICS-BASED MALWARE DETECTION

Intuitively, a programP is infected by a malwar@/ if (part of) P's execution behavior

is similar to that ofA/. Therefore, in order to detect the presence of a malicioha\aer
from a malware\/ in a programP, we need to check whether there is a part (a restriction)
of & [P] that “matches” (in a sense that will be made precidd)M/]. In the follow-

ing we show howprogram restrictionas well assemantic matchingan be expressed as
appropriate abstractions of program semantics, in theadishterpretation sense.

Program restriction.Given a progranP, the process of considering only a portion of
program semantics can be clearly seen as an abstracti®if Bf. In particular, a subset
of a programP’s labels (i.e., commands$b,. [P] C lab[P] characterizes gestriction
of programP. In this setting, lewar,. [P] and Luse,. [ P] denote, respectively, the set of
variables occurring and the set of memory locations useldamestriction:

var, [P] = U{var [C] | lab [C] € lab, [P]}
Luse, [P] = U{Luse [C] | lab [C] € lab, [P]}.

This means that the sétb,. [ P] of labels induces a restriction on environment and mem-
ory maps. In particular, givep € £(P) andm € M(P), letp” = pjyar,1p) and

m” = m|Lus,[p] denote the restricted set of environments and memorie<éttby
the subsetab,. [P] of labels, and let, = {(C, (p",m"))|lab [C] € lab, [P] } be the
set of restricted program states. Given a trace G [P], let us define the abstraction
a, : ¥* — ¥* that propagates the program restriction specifiedaby [ P] on the trace
o= (Cy,(p1,m1))o’":

€ ifo=c¢
ar(o) = < (Ch, (pf,m]))ar (o) if lab [C1] € lab, [P]
ay (o) otherwise

In fact, from the above definitiony,.(0) corresponds exactly to the subsequence of
given by the states ilt,.. In the following, given a functiorf : A — B we denote, by a
slight abuse of notation, its pointwise extension on poeteasf : p(A) — p(B), where
f(X) = {f(x)lx € X}. Note that the pointwise extension is additive. Therefthe,
functiona, : p(X*) — p(X*) defines an abstraction of sets of traces (i.e., program se-
mantics) that discards information outside restricti@h. [ P]. Moreover,. is surjective

and defines a Galois insertion:

(p(Z"), S) == (p(=}),S)

Given a programP and a restrictiorlab, [P] € p(lab[P]), let a,.(&[P]) be there-
stricted semanticef programP and letP, = {C € P | lab[C] € lab, [P]} be the
program obtained by considering only the commandB wfith labels inlab,. [P]. If P, is
aprogram, namely if itis possible to compute its semantien& [P, ] (I) = «. (& [P]),
where! is the set of possible program states tRatan assume when it executes the first
command ofP,.

Semantic matchingLet us observe that the effects of program execution on teewex
tion context, i.e., on environments and memories, expreggam behavior more than the
particular sequence of commands that cause such effectactidifferent sequences of
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A Semantics-Based Approach to Malware Detection : 11

commands may produce the same sequence of modificationsimarenents and memo-
ries). Thus, the ideais to define a (semantic) matchingoeldetween traces based on ex-
ecution contexts rather than commands. Let us considerahsformationy, : ¥* — X*
that, given a trace, discards frona all information about the commands that are executed,
retaining only information about the execution context:

e if o =¢€
ae(U) - 51046(0/) if o = (01751)0/

Two tracesr andé are considered to be “similar” if they are indistinguisreaith respect
to a, namely if they have the same sequence of effects on enventnand memories,
i.e., if a.(0) = a.(d). This semantic matchingelation between program traces is the
basis of our approach to malware detection, since it allosvowabstract from program
syntax and concentrate on program behaviors. The addithvaibna, : p(X*) — p(X*)
defines the following Galois insertion:

* . e *
<@(E )7 g> Te»- <p(X )7 g>
It follows that abstractiom,, models program restriction, while abstraction models
the semantic matching relation between program tracekidrcontest, a malware is called
avanilla malwareif no obfuscating transformations have been applied totie fbllowing
definition provides a semantic characterization of theqares of a vanilla malwaré/ in

a programP in terms of abstractions, anda.
DEFINITION 4. A programP is infectedby a vanilla malwaré\/, i.e., M — P, if:
lab,. [P] € p(lab[P]) : ae(S [M]) C ae(a (6 [P]))

Following this definition we have that a prograbhis infected by malwaré//, when it
exhibits behaviors that, under abstractiensand ., match all of the behaviors of the
vanilla malwareM. It is clear that this is a strong requirement and that théonoof
program infection can be weakened in many ways (see SecRdioi7some examples).

In general, we say thatssemantic malware detect@ra system that verifies the presence
of a malware in a program by checking the truth of the inclasilation of Definition 4.

5. OBFUSCATED MALWARE

Since malware writers usually obfuscate malicious coderdteoto prevent detection, a
robust malware detector needs to handle possibly obfu$gatsions of a malware. While
obfuscation may modify the original code, the obfuscatedkduas to be equivalent (up to
some notion of equivalence) to the original one. Given amstHting transformatio® :

P — P on programs and a suitable abstract dom&jiour idea is to define an abstraction
a: p(X*) — Athat discards the details changed by the obfuscation whilgegpving the
maliciousness of the program. Thus, the trace semanticéfefaht obfuscated versions
of a program are equivalent up too «.. Hence, in order to verify program infection,
we check whether there exists a semantic program restrithiat matches the malware
semantics up te o o, formally M — P if:

3 lab, [P] € p(iab [P]) : alae (& [M])) € alae (a0 (& [P]))): (1)

Herea,.(& [P]) is the restricted semantics for progrdina. denotes the abstraction that
retains only the environment-memory traces; and the abstraction that further discards
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12 . Mila Dalla Preda et al.

any effects due to obfuscatidh Then, the above condition checks whether the abstraction
of the restricted program semantics matches the abstrdatamasemantics, with obfus-
cation effects abstracted away via

In this setting, abstraction allows us to ignore obfuscation and focus only on the mali-
cious intent. A semantic malware detectornefers to a semantic detection scheme that
verifies infection according to equation (1).

ExAMPLE 1. Let us consider the fragment of prograhthat computes the factorial of
variableX and its obfuscatio® [ P] obtained inserting commands that do not affect the
execution context (at labels, and L r 1 in the example).

P o[P]

L1 Fi=1— Lo L1 Fi=1— Lo

L2 :(XII)H{LT,LF} L2 IFIZFXQ—FHLS

LF :X::X—1—>LF+1 L3 I(le)ﬁ{LT,LF}

Lrpi1:F:=FxX — Lo Lr X =X-1—Lps1

Lt LF+12X::X><1—>LF+2
LF+22F2:F><X—>L3
Lt ...

ltisclearthalA [F:=F x2 - F]¢é=¢andA[X := X x 1] £ = forall§ € X. Thus,
an abstractiom able to deal with the insertion of such semantic nop commasitise one
that observes modifications in the execution context, fdlyntet &; = (p;, m;):

€ if 617525"'5577. =€
O‘(&la&?a 7571) = 05(527 afn) if 61 = 62

&a(bs, ..., &) otherwise
In fact it is possible to show that(a. (& [P])) = a(ae(ar [O[P]]))-

5.1 Soundness vs Completeness

According to the notion of infection of equation (1) we hahattthe extent to which a
semantic malware detector enis able to discriminate between infected and uninfected
code, and therefore the balance between any false positideany false negatives it may
incur, depends on the abstraction functtanOn the one hand, by augmenting the degree
of abstraction of we increase the ability of the detector to deal with obfuscabut,

at the same time, we increase the false positives rate, gaimelnumber of programs
erroneously classified as infected. On the other hand, a comieretex makes the detector
more sensitive to obfuscation, while decreasing the prEsehprograms miss-classified
as infected. In the following we provide a semantic charézaéon of the notions of
soundness and completeness with respect to@ seD of obfuscating transformations.

DEFINITION 5. A semantic malware detector aris complete forQ if YO € O:
O(M) — P = Flab, [P] € p(lab [P]) : a(ae(S [M])) C aae(a- (S [P])))
A semantic malware detector anis sound forQ if:

Alab, [P] € p(lab[P]) :

a(ae (& [M])) € ace(ar (S [P]))) } =30€0:0[M] < P
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In particular, completeness for a cla3of obfuscating transformations means that, for
every obfuscatio® € O, when progranP is infected by a varian® [M] of a malware,
then the semantic malware detector is able to detect it (ieefalse negatives). On the
other side, soundness with respect to the cldssf obfuscating transformations means
that when the semantic malware detector classifies a programinfected by a malware
M, then there exists an obfuscatiéhe O, such that progran® is infected by the variant
O [M] of the malware (i.e., no false positives). In the followimdgien considering a class
O of obfuscating transformations, we will also assume thatidkentity function belongs
to O, in this way we include in the set of variants identified @ythe malware itself. It
is interesting to observe that, considering an obfuscatamgsformatior©, completeness
is guaranteed when abstractiaris preserved by obfuscati@d, namely whervP € P :
o0 (S [P])) = a0 (& [O(P)])).

THEOREM 1. If abstraction : p(X*) — A is preserved by the transformatidh
namely if VP € P : a(a.(6[P])) = al(ae(6[O(P)])), then the semantic malware
detector onv is complete forO.

PROOF In order to show that the semantic malware detectot. 6s complete forO,
we have to show that i© [M] — P then there existsab, [P] € (lab[P]) such
that a(a. (6 [M])) C alac(ar(SP]))). If O[M] — P, it means that there exists
lab, [P] € p(lab[P]) such thatP, = O [M]. By definitionO [M] is a program, thus
S[O[M]] = 6[P-] = a(&[P]). Moreover, we have that(a. (o (& [P]))) =
a(ae(G[P])) = afae(G[O[M]])) = a(a.(S [M])), where the last equality follows
from the hypothesis thai is preserved by. Thus,a(a.(6 [M])) = a(a.(a (& [P])))
which concludes the proof.0

However, the preservation condition of Theorem 1 is too vieakply soundness of the
semantic malware detector. As an example let us considabiteactiony = A X.T that
loses all information. It is clear thatr is preserved by every obfuscating transformation,
and the semantic malware detector @n classifies every program as infected by every
malware. Unfortunately we do not have a result analogoushofiem 1 that provides
a property ofo that characterizes soundness of the semantic malwaretaetelowever,
given an abstraction, we can characterize the set of transformations for whithsound.

THEOREM 2. Given an abstractiom, consider the se® C O such thatvP, T € P:
(a(ae(&[T])) € a(ae(& [P]))) = (30 € 0: (G [O[T]]) € (& [P])).
Then, a semantic malware detectoreis sound forO.

PROOF Suppose that these existd,. [P] € p(lab [P]) such thatx(a. (& [M])) C
alae(a. (6 [P]))), sinceM, P, P. € P and«,. (6 [P]) = &[P.], then by definition
of setO® we have that:30 € O : a.(6[O[M]]) € ac(ar(6&[P])), and therefore
O[M]—P. O

5.2 A semantic classification of obfuscations

Let us introduce a classification of obfuscations based ereffects that these transfor-
mations have on program trace semantics. In particular,igtenguish between transfor-
mations that add new instructions while maintaining thecttrre of the original program
traces (calledonservativg and transformations that insert new instructions causiajor
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changes to the original semantic structure (catled-conservative Given two sequences
s,t € A* forsome set4, lets < t denote that is asubsequenaaf ¢, i.e., ifs = s152... s,
thent is of the form...s;...s2...s,.... The idea is that an obfuscating transformation
is aconservativeobfuscation if every trace of the semantics of the original program is a
subsequence of some tratef the semantics of the obfuscated program.

DEFINITION 6. An obfuscating transformatiafl : P — P is conservativef:
Vo € §[P],36 € S[O(P)] : ae(o) = c(0)
An obfuscation that does not satisfy the conservativenegsepty defined above is said to
benon-conservative
6. CONSERVATIVE OBFUSCATIONS

Let O, denote the set of conservative obfuscating transformatiothen dealing with
conservative obfuscations we have that a tracg a programP presents a malicious
behavior)M, if there is a malware trace € & [M] whose environment-memory evolution
is “contained” in the environment-memory evolutiondamely ifa. (o) < «a.(d). Let
us define the abstraction. : p(X*) — (X* — p(X*)) that, given an environment-
memory sequence € X* and a setS € p(X*), returns the elements € S that are
sub-traces of:

a:[S)(s) = SN SubSeq(s)

whereSubSeq(s) = {t|t < s} denotes the set of all subsequences.ofor anysS ¢
p(X™), the additive functiomx.[S] defines a Galois connection:

VC[S]

(6(X"), €) = (p(x"), <)

The abstractiony. defined above turns out to be a suitable approximation whalinde
with conservative obfuscations. In fact the semantic medvaetector orn. [a. (S [M])]
is complete and sound for the class of conservative obfiostsD...

THEOREM 3. Considering a vanilla malware we have that a semantic malware de-
tector ona.[a. (& [M])] is complete and sound fdb., namely:
Completeness:

VO, € 0. : O.[M] — P = Flab, [P] € p(lab[P]) :
aclae (S [M])](ae(S [M])) C aclae(S [M])](ae(ar (& [P])))

Soundness:

Alab, [P] € p(lab[P]) :
aclae(& [M])](ac(& [M])) € aclae(S [M]))(ac(ar (G [P]))) =
30. €0, : O, [M] — P

ProOF Completeness: LaD. € O, if O.[M] — P it means tha8 lab, [P] €
p(lab [P]) such thatP. = O, [M]. Such restriction is the one that satisfies the condition
on the right. In factP, = O.[M] means that..(& [P]) = & [O.[M]]. We have to
show: a[ae (& [M])](ae (S [M])) C ac[ae(S [M])](ae(S [Oc [M]])). By definition
of conservative obfuscation for each tracee S [M] there existd € & [O, [M]] such
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P 0, [P]

L1 :F:=1— Lo L1 cF:=1— Lo

Ly :(X=1)—{Lr,Lr} Lo, :skip— L3

LF ZXZZX—1—>LF+1 LF ZXZ:X—1—>LF+1

LF+1 F:=FxX — Ly LF+1 : Skip — Ly

LT e L3 : (X = 1) — {LT,LF}
Lr ..

Fig. 4. Code reordering

that: a.(0) = a.(0). Considering suck anddé we show thatx.[a. (& [M])](a. (o)) C
aclae (6 [M])](ae(6)), in fact by definition ofo. we have thatv.[a. (S [M])](ae(d)) =
e (6 [M])NSubSeq(ce(6)) andac[ae (S [M])](ce(0)) = ae(S [M])NSubSeq(ae(o)).
Sincea.(o) = a.(9), it follows that SubSeq(a.(c)) C SubSeq(a.(d)). Therefore,
aelae (6 [M]))(ae(o)) C aclae (S [M])](ce(d)), which concludes the proof.
Soundness: By hypothesis there exigts,. [P] € @(lab[P]) for which it holds that
el (6 [MD](ae (S [M])) C aclae(S [M]))(ae(ar (& [P]))). This means thatla_ €
& [M] we have thato[ae (G [M])](ce(0)) C acfae(S [M])] (e (e (S [P]))), which
means that. (o) € {ac[a(6 [M])](cae(d)) | § € ar(&[P])}. Thus,Vo € & [M],
there exist® € «,.(& [P]) such thatw. (o) < a.(d) and this means tha, is a conserva-
tive obfuscation of malwar@/, namely3O, € O. such thaO. [M] — P. O

Thus, in order to deal with conservative obfuscations of dwaa M, the semantic
malware detector has to computgla. (& [M])](ae (- (S [P]))), namely the intersec-
tion a. (S [M]) N {SubSeq(d) | 6 € ac(a.(&[P]))}. We expect the number of sub-
sequences of the traces in (o, (& [P])) to be quite large. Hence, a practical way
for computinga [ (& [M])](ae (- (& [P]))) is to check for eaclr € a.(& [M]) if
there exists & € a.(a(&[P])) such thate < 4. This can be done without gen-
erating the se{SubSeq(d) | 0 € a.(a-(&[P]))}, by incrementally searching i for
successive environment-memory elementsyof For example, let us consider a mali-
cious behaviouwr = oy...0, € a.(6[M]), and let us denote a trade = Jy...0p,
whosej-th element isé; asd = nd;p wheren = dg...0j—1 andy = §41...6,m. Let
Xo = {6 | 36 = néjp € ac(ar(6[P])) : §; = oo}, and let us defineX; =
{0’0...Ui_16j,u, | 300...01'_1776]‘/14 € X;-1 : 6j = O'i}. It is clear that ifX; #* (¢ for all

i € [0,n] then there exist§ € a.(a. (6 [P])) such thatr < ¢, otherwise the malicious
behaviouw is not present inv. (o,- (& [P])) and the program is not classified as infected.

It turns out that many obfuscating transformations commaskd by malware writers
are conservative; a partial list of such conservative adatisns is given below, together
with a proof sketch of their conservativeness. It followattfiheorem 3 is applicable to a
significant class of malware-obfuscation transformations

Code reordering.This transformation, commonly used to avoid signature hiatcde-
tection, changes the order in which commands are writteitewfaintaining the execution
order through the insertion of unconditional jumps (see Eifpr an example). Observe
that, in the programming language introduced in Section &2unconditional jump is
expressed as a comma#d: skip — L’ that directs the flow of control of the program
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to a command labeled b¥'. Let P be a programP = {C; : 1 < i < N}. The code
reordering obfuscating transformatidd; : P — P insertsL : skip — L’ commands
after selected commands from the progrBmlLet R C P be a set ofn < N commands
selected by the obfuscating transformat®©m, i.e.,|R| = m. Theskip commands are
then inserted after each one of theselected commands iR. Let us define the subsst

of commands of” that contains the successors of the commands in

S = {C'eP|3C€R : lab[C'] € suc[C] }

Effectively, the code reordering obfuscating transfoioreadds akip command between
a command” € R and its successa@’ € S. Definen : C — C, a command-relabeling
function, as follows:

n(Ly: A— Ly) = NewLabel(L\ {L1}): A— Lo

where NewLabel(H) returns a label from the séf C L. We extend; to a set of com-
mandsl’ ={...,L;: A— L;,... }:

n(T) = { ..., NewLabel(L') : A — L, ... }

wherell’ =L\ {..., L,,...}. We can define the set ekip commands inserted by this
obfuscating transformation:

Skip(S) = {L:skip— L'|3C € S: L=1ab[C],L" =lab[n(C)]}

Then, O, [P] = (P \ S) Un(S) U Skip(S). Considering the effects that code reordering
has on program trace semantics, we have that for each trdle original prograns =
(Cy, (p1,m1)) ... (Cn, (pn, mp)) € & [P], there exists a trace in the obfuscated program
§ € &[0, [P]] of the form

0 = (SK, (pr,m1))" (C1, (p1,m1)) ... (SK, (pn,mn))" (Cyy. (P 110m))

where the original commandadt [C;] = act [C!]) are interleaved with any number of
skip commandsS K € Skip(S). Thus,a.(o) < a.(d) andO; € Q..

Opagque predicate insertionThis program transformation confuses the original control
flow of the program by inserting opaque predicates, i.e.edipate whose value is known
a priori to a program transformation but is difficult to detéme by examining the trans-
formed program [Collberg et al. 1998]. In the following, weean idea of why opaque
predicate insertion is a conservative transformation hyswering the three major types
of opaque predicates: true, false and unknown (see Fig. &f@xample of true opaque
predicate insertion). In the considered programming lagguatrue opaque predicatis
expressed by a commard: PT — {Lr, Lr}. SinceP? always evaluates torue the
next command label is always;. When a true opaque predicate is inserted after com-
mandC the sequence of commands starting at ldhels the sequence startingatc [C]
in the original program, while some buggy code is insertedtisig form labelLr. Let
Or : P — P be the obfuscating transformation that inserts true oppoegicates, and let
P, R, S andn be defined as in the code reordering case. In fact, transfanm@; inserts
opaque predicates between a commarnid R and its successdl’ in S. Let us define the
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P Or [P]
L1 :F:=1— Lo L1 cF:=1— Lo
Lo (X =1)—-{Lr,Lr} Lo (X =1)—{Lr,Lo}
Ly :X:=X-1—Lpy, Lo :PT —{Lp,Lp}
LF+1 F:=FxX — Ly LF ZXZIX—1—>LF+1
LT LF+1ZFZ=F><X—>L2
L :buggy code
LT :

Fig. 5. True opaque predicate insertion at labgl

set of commands encoding opaque predid¢dtanserted byO as:

o . T HC S S :
TrueOp(S) = {L'P = Led 161, L = 1ab [n(CO)]
B1..By € p((C)
Bug(TrueOp(S)) = { By..By|3L: PT — {Ly,Lr} € TrueOp(9) :
lab [[Bl]] = LF

whereB; ... By, is a sequence of commands expressing some buggy code. Then:
Or [P] = (P\S)Un(S)U TrueOp(S) U Bug(TrueOp(S))

Observing the effects on program semantics we have thagftr #acer € & [P], such
thato = (Cy, (p1,m1)) ... (Cn, (pn, my)) there existd € S [Or [P]] such that:

0= <OP1 (p17m1)>* <C{7 (p17m1)> <OP’ (p27m2)>* <OP1 (pna mn)>* <C’:7,7 (pna mn)>

whereOP € TrueOp(S), act [C;] = act [C{]. Thusae(o) < a.(d) andOr € Q.. The
same holds for the insertion &dlse opaque predicates

An unknown opaque predicafe’ sometimes evaluates toue and sometimes evaluates
to false, thus thetrue and false branches have to exhibit equivalent behaviors. Usually,
in order to avoid detection, the two branches present @iffeobfuscated versions of the
original command sequence. This can be seen as the coropasitiwvo or more distinct
obfuscations: the first on@y; that inserts the unknown opaque predicates and duplicates
the commands in such a way that the two branches presentrtteegade sequence, and
subsequent ones that obfuscate the code in order to mak&dheanches look different.
Let Oy : P — P be the program transformation that inserts unknown opacgdigates,
and letP, R, S andn be defined as in the code reordering case. In the consideoed pr
gramming language an unknown opaque predicate is exprassed P’ — {Lr, Lr}.
Let us define the set of commands encoding an unknown opagqdiateP’ inserted by
the transformatioi®y, :

UnOp(S) = {L : P? e {LT,LF}

IC e S: }
lab [C] = L, lab [n(C)] = Lt

Rep(UnOp(9)) = {Rl...Rk

Ry1..Rj € @(C)
lab [[Rl]] = LF }

where R;...R;, present the same sequence of actions of the commands gtattia-
bel Ly. Then, Oy [P] = (P \ S) U UnOp(S) U n(S) U Rep(UnOp(S)). Observ-
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P On [P]

L1 :F:=1— Lo L1 cF:=1— Lo

Ly :(X=1)—{Lr,Lr} Ly :(X=1)—{Lr, Lr}

LF ZXZZX—1—>LF+1 LF ZXZ:X—1—>LF+1

LF+1 F:=FxX — Ly LF+1ZXZ=XX2—X

LT LF+22FZ=F><X—>L2
Lt

Fig. 6. Semantioiorinsertion at label g 1

P Or[P]

L1 :F:=1— Lo L1 F:=1— Lo

Ly :(X=1)—{Lr,Lr} Ly :(X=1)—{Lr,Lr}

LF ZXZZX—1—>LF+1 LF XZ:X—X/X—>LF+1
L1 F:=FxX — Lo L1 : F:'=FXxXXx2-FxX—= Lo
LT : LT

Fig. 7. Substitution of equivalent commands at labgel and L g4 1

ing the effects on program semantics we have that, for evaget € & [P], where
o= {Cy,(p1,m1)) ... (Cn, (pn, mn)), there exist$ € & [Oy [P]] such that:

6= <Ua (p17m1)>* <O{v (p17m1)> <Uv (p27m2)>* <Uv (pnvmn)>* <Or/z’ (pnvmn)>
whereU € UnOp(S) andact [C;] = act [C]]. Thusa. (o) = a.(d), andOy € O.

SemantiaNoP insertion. This transformation inserts commands that are irrelevét w
respect to program trace semantics (see Fig. 6 for an exarhpkus consider commands
SN,Cq,Cs € p(C). We saySN is a semanti?vor with respect taC; U Cs if for every
o € G[C1 UCy], there exist®) € & [C7 USN U C,] such thatae (o) < a.(d). Let
Op : P — P be the program transformation that inserts irrelevantucsions, therefore
On [P] = P U SN whereSN represents the set of irrelevant instructions insertef.in
Following the definition of semantieopr we have that for every € G [P] there exists
§ € G[On [P]] such thatr.(0) = a.(d), thusOx € O,.

Substitution of Equivalent CommandEBhis program transformation replaces a single
command with an equivalent one, with the goal of thwartingnature matching (see
Fig. 7 for an example). Le©®; : P — P be the program transformation that sub-
stitutes commands with equivalent ones. Two commaridsnd C’ are equivalent if
they always cause the same effects, namelgife X : € [C]¢ = € [C']£. Thus,
Or[P] = P’ whereVC’ € P’,3C € P such thatC and C’ are equivalent. Ob-
serving the effects on program semantics we have that: fenyev € & [P] such that
o = (C1,(p1,m1)) ... (Cpn, (pn,my)), there exists a tracé € & [O; [P]] such that
§ = {(C1, (p1,m1)) ... (CL, (pn, my)) Wwheres (C;, (pi,m;)) = € (CI, (p;;m;)). Thus,
ae(0) = a.(0), andOy € O,.

Of course, malware writers usually combine different ob&isg transformations in
order to prevent detection. Thus, it is crucial to undemtahether (and how) the ability of
a semantic malware detector to deal with single obfuscatian be “extended” in order to
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handle also their composition. First of all we observe thatdomposition of conservative
obfuscations is a conservative obfuscation, namely theapthperty of being conservative
is preserved by composition.

This means that when more than one conservative obfuseati@applied, they can
be handled as a single conservative obfuscation, namelaliséractiony. is able to deal
with any composition of conservative obfuscations.

LEMMA 1. GivenO, 05 € O, thenO; o Oy € Q..
PROOF By definition of conservative transformations we have:that
Vo € G[P],36 € G[O1[P]]: «e(o) = @e(d)
Vo € SO [P]],3n € SO [OL[P]I] : e(d) = ae(n)

Thus, for transitivity of<: Vo € G [P],3n € & [O2 [O1 [P]]] such thaty. (o) =< ae(n),
which proves tha®; o O, is a conservative transformationd

EXAMPLE 2. Letus consider a fragment of malwavepresenting the decryption loop
used by polymorphic viruses. Such a fragment writes, siaftiom memory locatior,
the decryption of memory locations starting at locatiband then executes the decrypted
instructions. Observe that given a varialllethe semantics afy(X) is the label expressed
by ma(m(p(X))), in particularma(n) = L, while m3(A,S) = S. Moreover, given a
variableX, let Dec(X) denote the execution of a set of commands that decrypts the va
stored in the memory locatiop(X). Let O [M] be a conservative obfuscation &f
obtained through code reordering, opaque predicate iogexhd semantic nop insertion.

M O.(M)

L, :assign(Lp,B) — L2 L, :assign(Lp,B) — L2
Ly :assign(La,A) — Lc Lo :skip — L4

L. :cond(A) — {Lr,Lr} L. :cond(A) — {Lo,Lr}
Lt : B:= Dec(A) — Lp, Ly :assign(La,A) — Ls
Ly, : assign(m2(B),B) — L, Ls :skip — L.

L, : assign(ma(A),A) — L¢ Lo :PT —{Ln,Ly}

Lr :skip — Lp Ly : X =X-3—Ln,

Ly, : X =X+4+3— Ly
Lr : B:= Dec(A) — Lr,
Ly, :assign(m(B),B) — Lp,
Lr, :assign(m2(A), A) — L.
L ...
Lr :skip — Lp
It can be shown that.[a. (S [M])](ae (S [O: [M]])) = aclae(S [M])](ae(S [M])),
i.e., our semantics-based approach is able to see throegbbtluscations and identify
O [M] as matching the malwar® . In particular, letL denote the undefined function.
aclae (6 [M])](ae(& [M])) = ac(& [M])

= (L, 1), (B~ LB)? J—)v (B~ Lp, A~ LA)? J—)za
(B~ Lp, A~ La), (p(B) — Dec(4))),
(B~ m2(m(p(B)), A~ La), (p(B) — Dec(A))),
(B~ ma(m(p(B)), A~ ma(m(p(A)))),
p(B) «— Dec(A)))...
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while

(& [0 [MI]) = (L, 1), (B~ Lg), L), (B~ Ly, A~ La), L)’,
(B~ L, A~> La), (p(X) — X —3),
(B~ L, A~ La), (p(X) — X +3,p(X) — X - 3)),
(B~> L, A~ Ly), (p(B) — Dec(A))),

(B~ ma(m(p(B)), A~ La), (p(B) — Dec(A))),

(

B~ ma(m(p(B)), A~ m2(m(p(A)))), (p(B) — Dec(A)))

A~ Y~~~

Thus.acc[are (& [M])] (e (& [M])) € avefere (& [M])] (e (& [0 [M]])).

7. NON-CONSERVATIVE OBFUSCATIONS

A non-conservative transformation modifies the programasios in such a way that the
original environment-memory traces are not present anyemdhis means that it is not
possible to recognize that a traeds an obfuscated version of a tragdy verifying if

o is a subsequence éfunder abstraction,, i.e., a.(c) =< a.(4). In order to tackle a

non-conservative transformatidhwe can design:

—a transformatiofT” such that/o € G [P],36 € G [O[P]]: T(ae(o)) = T(ae(0)), Or
—an abstractio such that/o € G [P],3§ € S [O [P]]: a(o) < «(d), with o IZ c

The idea of the first strategy mentioned above is to identié/get of all possible modi-
fications induced by a non-conservative obfuscation, anduiten possible, aanonical
one. In this way transformatiofl would reduce the restricted program semantics and the
malware semantics to the canonical version before chedkirigfection (see Section 7.1
for a detailed example). This idea of program normalizakias already been used to deal
with some obfuscations commonly used by metamorphic mahieug., [Christodorescu
et al. 2005; Lakhotia and Mohammed 2004; Walenstein et &i6P0

On the other hand, in Section 7.2 we show how it is possibleatalle a class of non-
conservative obfuscations through a further abstractidheomalware semantics, namely
by designing abstraction of the second strategy listed above. In this case the idea is
to weaken the notion of program infection in order to weakkendonservative condition.
In this way a wider class of obfuscating transformations lvarmlassified as conservative
and we prove that results analogous to Theorem 3 still haidhis relaxed definition of
infection and conservativeness.

Another possible approach comes from Theorem 1 that stadedf tv is preserved by
O then the semantic malware detector@ris complete with respect t6®. Recall that,
given a program transformatid@h : P — P, it is possible to systematically derive the most
concrete abstraction preserved@yDalla Preda and Giacobazzi 2005]. This systematic
methodology can be used in presence of non-conservativsacditions in order to derive a
complete semantic malware detector when it is not easy tuifgi@ canonical abstraction.

7.1 An Example: Canonical Variable Renaming

Let us consider a non-conservative transformation, knaswadable renamingand pro-
pose a canonical abstraction that leads to a sound and cengamantic malware de-
tector. Variable renaming is a simple obfuscating tramsfdion, often used to prevent
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signature matching, that replaces the names of variabkissseime different new names.
As most code of interest in malware detection is already dleti@nd does not contain
variable names, we cannot directly consider the effect aalabe renaming has on com-
piled code. Instead, we assume that every environmentitumassociates a variablé,
to a memory locatior.. Let O, : P x II — P denote the obfuscating transformation
that, given a progran®, renames its variables according to a mapping II, where
7 : var [P] — Names is a bijective function that relates the name of each program
variable to its new name.

AC" € P: lab [C] = lab [C']

Oy(P,m) = < C|suc[C] = suc[C']
act [C] = act [C'] [X/7(X)]

whereA[X /7 (X)] represents actioA where each variable nanf€ is replaced byr(X).
Recall that the matching relation between program tracasiders the abstractiaf. of
traces, thus it is interesting to observe that:

e (& [On (P, m)]) = a[m](ce (& [P]))
whereq,, : II — (X* — X*) is defined as:
a[m]((p1,m1) ... (pnymn)) = (prom ' mi)... (pnom ', my).

In order to deal with variable renaming obfuscation we idtrge the notion o€anoni-
cal variable renamingr. The idea of canonical mappings is that there exists a ramami
7w ¢ var [P] — war [Q] that transforms progran? into program@, namely such that
Oy (P,m) = Q, iff ay[T](ae(6[Q])) = aw[T](ae(S[P])). This means that a program
Q is a renamed version of programiff Q and P are indistinguishable after canonical
renaming. In the following we define a possible canonicahneimg for the variables of a
given a program.

Let {V;}ien be a set of canonical variable names. ThelLset memory locations is an
ordered set with ordering relation, . With a slight abuse of notation we denote with
also the lexicographical order induced By, on sequences of memory locations. Let us
define the ordering s, over trace&* where, giverv, § € X*:

, lo| < |d]or
o <s o if
|o| = |0] andiab(o1)lab(o2)...lab(oy) <p lab(d1)lab(d2)...lab(dy,)

wherelab((C, (p,m))) = lab [C]. Itis clear that, given a program P, the orderiag on
its traces induces an order on the Set= a. (& [P]) of its environment-memory traces,
i.e., giveno,d € & [P]:

0 <5 0= a.(o) <z a.(d)

By definition, the set of variables assignedznis exactly var [P], therefore a canoni-
cal renamingtp : var [P] — {V;}ien, is such thatw. (S [O, [P, 7p]]) = au[7p](Z).
Let Z denote the list of environment-memory traces?f= . (& [P]) ordered follow-
ing the order defined above. L& be a list, themd(B) returns the first element of the
list, t/(B) returns listB without the first elementB : e (e : B) is the list resulting by
inserting element at the end (beginning) aB, B[:] returns thei-th element of the list,
ande € B means that is an element oB. Note that program execution starts from the
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Input: A list of context sequences, with Z € a.(& [P]).
Output: A list Rename[Z] that associates canonical variableto the variable in the

list positions.
Rename([Z] = List(hd(Z))
Z=1tl(Z2)

while (Z # () do

trace = List(hd(Z2))

while (trace # () do
if (hd(trace) & Rename|Z]) then

Rename[Z] = Rename[Z] : hd(trace)

end
trace = tl(trace)

end

Z=1tl(Z2)

end

Algorithm 1: Canonical renaming of variables.

uninitialized environmenp,...;: = AX.L, and that each command assigns at most one
variable. Letdef (p) denote the set of variables that have defined (i.e.,_.hpwalues in an
environmenp. This means that consideringe X* we have thatlef (p;—1) C def (p:),

and if def (p;—1) C def(p;) thendef(p;) = def(pi—1) U {X} whereX € X is the
new variable assigned to memory locationiX). Givens € X*, let us definelList(s)

as the list of variables is ordered according to their assignment time. Formally, let

§= (plaml)(anmQ)“'(pnvmn) = (plvml)sl:

€ if s=¢
List(s) = { X : List(s) if def(s2)~\ def(s1) ={X}
List(s') if def (s2) \ def(s1) =0

Algorithm 1, given a listZ encoding the ordering = on context traces in..(& [P]), and
givenList(s) for everys € a. (& [P]) encoding the assignment ordering of variables, in
returns the listRename[Z] encoding the ordering of variablesdn (S [P]). GivenZ =
a.(6 [P]) we rename its variables following the canonical renantipg: var [P] —
{V; }ien that associates the new canonical ndm the variable of? in thei-th position
in the list Rename[Z]. Thus, the canonical renamiftg : var [P] — {V;}.cn is defined
as follows:

7p(X) =V, & Rename[Z]i] = X 2

The following result is necessary to prove that the mapgipglefined in Equation (2) is
a canonical renaming.

LEMMA 2. Given two program®, @ € P let Z = a. (& [P]) andY = (6 [Q]).
The following hold:
(1) a[7p](Z) = au[m@l(Y) = I : var [P] — var [Q] : au[7](Z2) =Y
(2) 3 : var[P] — var[Q] : a[7](2) = Y) and(a,[r](s) =t
Yli] =1)) = au[7p](2) = au[Ta] (V)
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PROOF. (1) Assumew,[7p](Z) = ay[mg](Y), i.e., we have thafo, [7p(s) | s €
Z} = {ay[mo](t) | t € Y}. This means thatvar [Z]| = |var [V]| = k, and
that7p : var [Z] — {V1...Vi} while 7g : var[V] — {Vi..Vi}. Recall that
var [Z] = var [P] andvar [V] = var [Q]. Let us definer : var [P] — var [Q]
ast = %él o wp. The mappingr is bijective since it is obtained as composition
of bijective functions. Let us show that satisfies the condition on the left, namely
thaty = «,[7](Z). To prove this we show that given € Z andt € Y such
that o, [Tp](s) = au[TQ](t) thenay[r](s) = t. Let a,[7p](s) = au[Tol(t) =
(p1,m1) (P, ), While s = (p§,m1)...(p5,my) andt = (pt,mq)...(pk, my).
Then:

prom ™ my).n(ph 0 7L my)
pi oRp" om,mn (5, o 7p!
P1oTQ,m1)...(Pn © TQ, My
1M (P, mn) =t

(2) Assumedr : wvar[P] — war[Q] such thaty = «,[x](Z). By definiton) =
{aw[7](s) | s € Z}. Letus show thaty,[7p|(Z2) = au[To]({aw(n](s) | s € Z}).
We prove this by showing that,[7p](s) = o, [Tg](a,[7](s)). By definition we have
that|Y| = |Z| and|var [P] | = |var [Q] | = k, moreover we have : var [P] —
var [Q]. Givens € Z andt € Y such that = «,[7](s) then|s| = |t| and|var [s] | =
|var [t] |, thus List(s)[i] = X and List(t)[{] = =(X), moreover, by hypothesis,
Z[i] = s and)[i] = t. This hold for every pair of traces obtained trough renaming
Therefore, considering the canonical rename)fas given byig = 7po7m !, we
have that's € Z,t € Y such thaty,[7](s) = t thena, [Tp](s) = a[Tg](t). In fact:

ay[m](s) =

°0TQ, M)

(
= (
= (
= (

a[TQl(t) = au[mol(aw[m](s))

= aufFQl((p} o7t ). (pf o

]
on? O?T\C_QI,TI”Ll)...(pfI on~t O/ﬂ:c_glamn)

71,mn))

( S

1

= (piom tomorpt,mi)..(plor tomoTpt,my)
(P7

= (p1;m1)..(Pn,mn) = au[Tp](s).
which concludes the proof.(]

Let TI denote a set of canonical variable renaming, the additivetfon «,, : o —
(p(X*) — p(XrF)), whereX, denotes execution contexts where environments are defined
on canonical variables, is an approximation that abstrfrota the names of variables.
Thus, we have the following Galois connection:

* ’yv[ﬁ] *
1)

The following result, wheré ), and7p, denote respectively the canonical rename of the
malware variables and of restricted program variablesysttbat the semantic malware
detector ony, [H] is complete and sound for variable renaming.
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THEOREM 4. 37 : O, (M, 7) — P iff
Jlab, [P] € p(lab [P]) : aw[Far](0e (6 [M])) € aw[Fip, (e (0 (& [P])))

PROOF (=-) Completeness: Assume tt@j [M, n] — P, this means thatlab, [P] €
p(lab [P]) such thatP, = O, [M,r]. Thusa.(a.(&[P])) = ae(S[O,[M,]]).
In order to conclude the proof we have to prove the followindm](a. (& [M])) C
a,[Tp, (e (G [O, [M,x]])). Recall thata (S [O, [M,]]) = au7](ae(S [M])).
Following Lemma 2 point 2 we have that:

a[Tar)(ae(6 [M])) = ay[mp, (o [7](ae (& [M]))) = aw[Tr, |(ae (S [Oy [M, x]]))

which concludes the proof.

(«) Soundness: Assume that there exists [P] € p(lab [P]) : aw[Tar](ae(S [M])) C
ay[Tp.|(ae(ar (S [P]))). Letar be the program restriction that satisfies the above equa-
tion with equality: o, [Tar](ce (6 [M])) = aw[7p.](ce(ar(&[P]))). Itis clear that
ar(6[P]) € «(6[P]). From Lemma 2 point 1 we have thatr : var [M] —

var [Pr] suchthatv. (ar (& [P])) = av[m](ae (S [M])) = ae(& [O, [M, 7]]), namely
ae(G [0, [M,7]]) = ac(ar(S[P])) C ac(a,(&[P])), meaning tha®, [M, 7] —

pP. O

7.2 Further Malware Abstractions

Definition 4 characterizes the presence of malwiafén a programpP as the existence
of a restrictionlab, [P] € @(lab[P]) such thata (& [M]) C a.(a,(&[P])). This
means that prograr® is infected by malware\/ if for every malicious behavior there
exists a program behavior that matches it. In the followiregshow how this notion of
infection can be weakened in three different ways. First,cae abstract the malware
traces eliminating the states that are not relevant to uhéer maliciousness, and then
check if programP matches this simplified behavior (i.e., bad states). Secaedcan
require progran to match a proper subset of malicious behaviors (i.e., baders).
Furthermore these two notions of malware infection can betdoned by requiring program
P to match some states on a subset of malicious behaviordlyi-tha infection condition
can be expressed in terms of a sequence of actions ratheathaguence of execution
contexts (i.e., bad actions). Once again, bad actions catoimbdined with either bad
states, or bad behaviors, or both. It is clear that a deepgratanding of the malware
behavior is necessary in order to specify each of the prapsieplifications. We will
discuss how it is possible to expand the set of conservalifiesoations by weakening the
notion of malware infection. The basic idea is that a furthlestraction of the infection
condition implies a weaker notion of conservativeness.

Bad States

The maliciousness of a malware behavior may be expresseebiatt that some (mal-

ware) states are reached in a certain order during progracuggn. Observe that this
condition is clearly implied by, i.e., weaker than, the fistard) matching relation between
all malware traces and the restricted program traces.

Let thebad state®f a malware refer to those states that capture the malitiehavior.
Assume that we have an oracle that, given a malwidraeturns the set of its bad states
Bad(Xp) € X [M]. These states could be selected based on a security polay. F
example, the states could represent the result of netwaogkatipns. This means that in
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order to verify if programpP is infected by malwarél/, we have to check whether the
malicious sequences of bad states are presefit inet us define the trace transformation
QBad(s,) - X* — X* which considers only the bad contexts in a given traeeé,; s”:

€ if s=¢

ABad(z2)(8) = §10Bad(zy)(8") if &1 € ae(Bad(Xar))
QBad(sy)(8')  otherwise

The following definition characterizes the presence of madd/ in terms of its bad states,
i.e., through abstractiofzoq(s,,)-

DEFINITION 7. A programP is infected by a vanilla malward/ with bad states
Bad(Xar), 1.6, M — paq(s,,) P, if 3lab, [P] € p(lab [P]) such that:
aBad(EM)(a6(6 [[M]D) c aBad(EA/I)(ae(ar(G [[Pﬂ)))

This means that the standard notion of conservative tramsfiitons can be weakened ac-
cording to the following.

DEFINITION 8. An obfuscatiorO : P — P is conservative with respect Bad (X /)
if:
Yoe S [[P]] ,35 €6 [[O [[P]]]] : OéBad(gM)(Oée(O')) = aBad(gM)(ae(é))
When program infection is characterized by Definition 7, $eenantic malware detector

onaclapad(s,) (S [M]))] o apaacs,,) is complete and sound for the obfuscating trans-
formations that are conservative with respecBtal (X /).

THEOREM 5. LetBad (X)) be the set of bad states of a vanilla malwafe Then:
Completenesd-or every obfuscatio® which is conservative with respect ud (X ),
if O [M] — pada(s,,) P there existdab,. [P] € p(lab [P]) such that:

Oéc[OéBad(ZM)(ae(G [[M]]))](O‘Bad(EM)(O‘e(G [M]))) <
aclapad(sa) (e (6 [M])](apad(s ) (e (ar (S [P]))))
Soundnesdf there existdab, [P] € p(lab[P]) such that:

aclaBad(s ) (@e(S [M])](aBad(s ) (e (& [M]))) €
aclapad(sy) (e (& [M])(@Bad(sa) (@e(ar (& [P]))))
then there exists an obfuscatiénthat is conservative with respect Bud (X ,,) such that
O[M] < P.

PrRoOOF Completeness: LaD be a conservative obfuscation with respectito(M)
such tha) [M] — paq(s,,) P, thenitmeans thatlab, [P] € p(lab [P]) such thatP, =
O [M], namelyagaics,,) (e (S [O[M]])) = apaacsay)(ae(ar(&[P]))). Therefore,
we have that:

el pad(sy) (e (& [M]))](apad(s ) (e (& [O [M]]))) =
aclapada(s ) (e (S [M])(aBad(s ) (ae(ar (& [P]))))
Thus, we have to show that:
aclaBad(s ) (@e(S [M])](aBad(s ) (e (& [M]))) €
ac[aBad(EM)(ae(G [[M]]))](aBad(EM)(ae(S [[O [[M]]ﬂ)))
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By hypothesisO is conservative with respect tBad (X)), thus we have that for every
o € &[M],thereexists € & [O [M]] : apai(sa)(e(0)) =X apad(say)(e(d)). More-
over, for everys € ac[apaqs,,) (e (& [M]))](apadas,y) (ae (& [M]))) there exister <

S [M] : s = apaa(sy)(ae(0)), thereforevo € & [M], there exists) € & [O [M]]
such thats = apua(s,,)(@e(0)) 2 @paay)(@e(d)), andapuais,,)(@e(d)) =t €
O Bad(s) (e (G [O[M]])). This means that for every € apqqs,,)(ae(S [M])),
there exists € apai(s,,) (@ (& [O[M]])) such thats € SubSeq(t). Hence,Vs €
O Bad(s) (e (& [M])) we have that

5 € aclaBad(za) (e (6 [M])/(@Baa(sy) (@ (6 [O [M]])))

which concludes the proof.
Soundness: Assume thélub,. [ P] € p(lab [P]) such that:

aclaBad(s ) (@e(S [M])(apad(s ) (e (& [M]))) €
aclapad(sa) (e (S [M])(@Bad(sa) (e (ar (& [P]))))

This means thato € & [M]:

aBad(EM)(ae(U)) - ac[aBad(zM)(ae(G [[M]]))](aBad(zM)(ae(ar(G IP1)))

and for everyo € & [M] there exists) € o,(& [P]) such thatapg,qs,,)(ee(0)) €
O Bad(s) (e (6 [M]))NSubSeq(a paq(s,,) (e (d))). Thismeansthato € & [M] there
existsd € o, (& [P]) such thatvg,q(s,,) (e (o)) = apad(s,,)(ae(d)), which means that
P, is a conservative obfuscation &f with respect taBad (X,s). O

It is clear that transformations that are non-conservaerding to Definition 6 may
be conservative with respect f8ud (X)), meaning that knowing the set of bad states of
a malware allows us to handle also some non-conservativesoations. For example the
abstractiony g,q(x,,) may allow the semantic malware detector to deal with thedexing

of independent instructions, as the following example show

ExAMPLE 3. Let us consider the malwafd and its obfuscatiod [A/] obtained by
reordering independent instructions.

M oO[M]
L1:A1—>L2 L12A1—>L2
L2:A2—>L3 L22A3—>L3
L33A3—>L4 L32A2—>L4
L42A4—>L5 L42A4—>L5
L52A5—>L6 L52A5—>L6

In this case actiond, and A3 are independent, meaning that[As] (< [As] (p,m)) =
o [As] (o [A2] (p,m)) for every(p,m) € £ x M. Considering malwaréd/, we have
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the traces = 0109030405 where:

o1 = (L1: A1 — Lo, (p,m)) = (L1 : Ay — L, &)

(
oy = (L2 : As — L, (& [A1] (p,m)))
o3 = (L3 : Az — Lu, (& [A2] (o [A1] (p, m))))
oy = (La: Aq — Ly, (o [A3] (o [A2] (o [Ad] (p,m)))))
o5 = (L5 : As — Le, (o [Ad] (o [As] (o [A2] (o [A1] (p,m))))))

= (Ls: A5 — Lg¢,&5)
while considering the obfuscated version, we have the faee; 0930495, where:
81 = (L1: A1 — Ly, (p,m)) = (L1 : Ay — L2, &)

62 = (L2 : A3 — Ls, (& [A1] (p,m)))

65 = (L3t A2 — La, (& [A3] (& [A1] (p, m))))

0s = (La: Ay — Ls, (o [A2] (o [A3] (o [Ad] (p,m)))))

05 = (L5 : As — Le, (o [Ad] (& [A2] (o [A3] (& [Ad] (p,m))))))

= (Ls: As — L, &)

Let Bad(Xar) = {01,05}. Thenapgaqs,,)(ae(0)) = (765 aswellasy (s, (e (9)) =
€2¢2, which concludes the example. It is obvious that= £, moreover? = £ follows
from the independence of, and As.

Bad Behaviors

Program trace semantics expresses malware behavior onmesible input. It is clear
that it may happen that only some of the inputs cause the malteahave a malicious
behavior (e.g., consider a virus that starts its payloag after a certain date). In this
case, maliciousness is properly expressed by a subset whneraces that identify the so
calledbad behavior®f the malware. Assume we have an oracle that given a malivare
returns the seT’ C & [M] of its bad behaviors. Thus, in order to verifyAfis infected
by M, we check whether program matches the malicious behavidfs The following
definition characterizes the presence of malwdrén terms of its bad behaviofs.

DEFINITION 9. A programP is infected by a vanilla malwar&/ with bad behaviors
TC6[M],ie,M —r Pif:
Jlab, [P] € p(lab[P]) : ae(T) C ae(ar (G [P])).

Itis interesting to observe that, when program infectiorhiaracterized by Definition 9, all
the results obtained in Section 5 still hold if we repl& @M/ ] with T'. In particular, we can
weaken the original notion of conservative transformakigrsaying that a transformation
is conservative with respect 0if every malware trace that belongsfas a subsequence
of some obfuscated malware trace.

DEFINITION 10. An obfuscatior® : P — P is conservative with respect B if:
Vo € a.(T),36 € GO [M]] : aelo) = ac(d)

Also in this case we have that obfuscations that are noneteatve may be conservative
with respect tdl". Consider for example an obfuscating transformation thadifres in a
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different way the instructions belonging to the true andfalse path of each conditional
branch. In particular, assume that the false path is modifiedconservative way while
the true one in a non-conservative way. In this case theftvamation is conservative with
respect to the traces obtained following the false pathweryeconditional branch. When
considering obfuscations that are conservative with r@spebad behaviors, we have that
Theorem 3 still holds simply by replacire@ [M] with T'.

Clearly the two abstractions can be composed. In this casegagmP is infected by
a malwareM if there exists a program restriction that matches the sbadfsequences of
states obtained abstracting the bad behaviors of the malwewr,3lab,. [P] € p(lab [P]) :

ae(aBad(ZM)(T)) - ae(aBad(Ehl)(aT(G [[Pﬂ)))

Bad Actions

To conclude, we present a matching relation basedah program actionsather than
environment-memory evolutions. In fact, sometimes, aci@lis behavior can be charac-
terized as the execution of a sequence of bad actions. Inakéswe consider the syntactic
information contained in program states. The main diffeeewith purely syntactic ap-
proaches is the ability to observe actions in their exeoubi@er and not in the order in
which they appear in the code. Assume we have an oracle theat gimalware\/ returns
the setBad (M) C act [M] of actions capturing the essence of the malicious behawior.
this case, in order to verify if prograf is infected by malward/, we check whether the
execution sequences of bad actions of the malware match#seas the program.

DEFINITION 11. A programP is infected by a vanilla malwar&/ with bad actions
Bad(]V[), i.e, M “— Bad(M) Pif:

Jlab, [P] € p(iab [P]) : aa(S [M]) € calan (& [P]))

Where, given the seBad C act [M] of bad actions, the abstractien, returns the se-
guence of malicious actions executed by each trace. Forgalen a tracer = 010”:

€ if c =€
ag(0) =< Ajag(o’)  if Ay € Bad(M)
aq (o) otherwise

Even if this abstraction considers syntactic informatimm@ram actions), it is able to deal
with certain kinds of obfuscations. In fact, considering equence of malicious actions
in a trace, we observe actions in their execution order, adhrthe order in which they
are written in the code. This means that, for example, welaleeta ignore unconditional
jumps and therefore we can deal with code reordering. Onaim agbstractiomy, can be
combined with bad states and/or bad behaviors. For exampplgram infection can be
characterized as the sequences of bad actions presentiadheehaviors of malwark/,
i.e.,3lab, [P] € p(lab [P]) such thaty,(ce(T)) C aq(ae(a- (6 [P]))).

It is clear that the notion of infection given in Definition &rt be weakened in many
other ways, following the example given by the above singaifons. This possibility of
adjusting malware infection with respect to the knowledfthe malicious behavior we
are searching for proves the flexibility of the proposed sgindramework.
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8. COMPOSITION

In general a malware uses multiple obfuscating transfaomatconcurrently to prevent
detection, therefore we have to consider the compositiomoofconservative obfuscations
(Lemma 1 regards composition of conservative obfuscatiolmvestigating the relation
between abstractions; and as, on which the semantic malware detector is complete
(resp. sound) respectively for obfuscati@dsand®,, and the abstraction that is complete
(resp. sound) for their compositions, i.e., faP; o Oz, 02 o 01}, we have obtained the
following result.

THEOREM 6. Given two abstractions; andas and two obfuscation®; and®, then:

(1) if the semantic malware detector en is complete forO,, the semantic malware
detector onv, is complete fol0,, anda; o as = as o a1, then the semantic malware
detector oru; o ap is complete fo{ Oy 0 Oz, O3 0 O1 };

(2) if the semantic malware detector anis sound for®,, the semantic malware detector
on as is sound forO,, anda; (X) C an(Y) = X C Y, then the semantic malware
detector ony; o as is sound for®@; o Os.

PrROOF (1) Recall that the semantic malware detectoragnis complete forQ; if
O; [M] — P = 3lab, [P] € p(lab [P]) : ai(ae(S[P])) C ai(ae(ar(S[P]))).
Assume that0, [O; [P]] — P, this means that there exisish, [P] € p(lab [P]) :
S [01[02 [P]]] = ar(&[P]). Since the semantic malware detectoraanis complete
for 01, we have thatay (a. (6 [O2 [M]]))) C a1(ae(a-(&[P]))). Abstractionas is
monotone and therefore:

ag(a1(ae(6 [0z [M]])))) € az(ar(ae(ar (& [P]))))

In general we have thab, [M] — O [M], and sincens is complete we have that
az(ae (6 [M])) C as(a.(S [0 [M]])). Abstractiona; is monotone and therefore
ag(az(ae (6 [M]))) C ar(az(ae(6 [O2 [M]]))). Sincea; andas commute we have:

az(a1(ae(6 [M]))) C az(ai(ac(& [0z [M]])))

Thus,3lab, [P] € p(lab [P]) : a1(az2(a. (S [M]))) C az(ai(ac(ar(S[P])))). The
proof thatO, [0y [M]] — P implies that there existab, [P] € p(lab [P]) such that
ag(az2(a.S [M])) C ai(az(ae(ar(6[P])))) is analogous.

(2) We have to prove that Blab, [P] € p(lab[P]) such thaty (az(a.(S [P]))) C
al(ag(ae(ar(G [[P]])))) then(’)1 [[02 [[M]]H — P.
Assume3ladb, [P] € p(lab[P]) : ai(az(ae(S[P]))) C ai(az(ae(ar(S[P])))),
sincea;(X) C au(Y) = X C Y we have thaBlab, [P] € p(lab[P]) such that
az(ae (6 [P])) C az(ac(ar (& [P]))). The semantic malware detector@sis sound by
hypothesis, therefor®, [M] — P, namely there existab, [P] € o(lab [P]) such that
e (G [0z [M]]) € ae(ar(&[P])). Abstractiona; is monotone and therefore we have
thatoy (ae (6 [O2 [M]])) C a1(ae(a-(6[P]))). The semantic malware detector @n
is sound by hypothesis and therefd?e [O [M]] — P. O

Thus, in order to propagate completeness through compoghi o O, andO, o O, the
corresponding abstractions have to be independent, h&y,Have to commute. On the
other side, in order to propagate soundness through cotigpoél; o O, the abstraction
a1, corresponding to the last applied obfuscation, has to berder-embedding, namely
aq has to be both order-preserving and order-reflectinga€X) C a1 (V) © X C Y.
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Observe that, when composing a non-conservative obfasa&tifor which the seman-
tic malware detector ong is complete, with a conservative obfuscati®p, the commu-
tation conditiomp o o, = a. 0 ap 0f point 1 of the above theorem is satisfied if and only
if (ae(0) = @e(d)) & ao(ac(o)) <X ap(ae(d)). Infact, only in this case.. andae
commute, as shown by the following equations:

ao(ac[S)(ae(0))) = ao(S N SubSeq(ae(0)))
{ao(ae(8)) |oe(8) € SN SubSeq(ae(o)) }
ap(S)N {a@(ae(é)) ‘ae(5 =< ae(a))}

aclao(9)](ao(ae(0))) = ao(S) N SubSeq(ao(ac(o)))
= ao(9) N {ao(ae(d)) |ao(@(8)) = aolac(0)) }

EXAMPLE 4. Letus conside®, [O.[M],«] obtained by obfuscating the portion of
malwareM in Example 2 through variable renaming and some conseevabfuscations:

0, [0 [M], 7]

L, :assign(D,Lp)— L2
Ly :skip — Ly

L. :cond(E) — {Lo,Lr}
Ly :assign(F,La) — Ls
Ls :skip — L.

Lo : PT — {Lr, Ly}

Ly : D := Dec(E) — L,
Ly, : assign(m2(D), D) — L,
Ly, : assign(me(E), E) — L.
Ly ...

Ly ...

wherer(B) = D, n(A) = E. Itis possible to show that:
avefavy [T (e (& [M])] (v [T (e (& [M]))) €
avela [T (0e (& [M]))] (v [T (e (0 (& [Ou (O(M), T)])))).

Namely, given the abstractionms. and«, on which, by definition, the semantic malware
detector is complete respectively i0¢ andO,, the semantic malware detector@po o,
is complete for the compositiaf, o O..

9. CASE STUDIES

We illustrate the application of our semantics-based fraomk to some existing malware-
detection schemes. In each case, we follow the steps etadidtaSection 2, by first de-
scribing a semantic detector that, while operating on tbgam trace semantics, is equiv-
alent to the malware detector of interest (i.e., they claggbgrams in the same way). Sec-
ond we prove or disprove the soundness and completenesssditiantic detector against
various obfuscation classes. As case studies, we choseesigepan-string (signature-
based) detector, the semantics-aware detector intrododéthristodorescu et al. 2005],
and the model-checking detector introduced in [Kinder eR&D5]. We are particularly
interested in a wide range of approaches to malware deteictiorder to underscore the
flexibility and expressiveness of our framework for reaagrabout such detectors.
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9.1 Soundness and Completeness of a Signature-Based Detector

By investigating the effects that signature matching daiacschemes have on program
trace semantics we are able to certify the degree of precidithese detection schemes.
We can express the signature of a malwsfes a proper subsétC M of “consecutive”
malicious commands, formall§ = Ci,...,C,, whereVi € [1,n — 1] : suc[C;] =

lab [C;+1]. Given amalwaré/, S C M is anideal signaturef it unequivocally identifies
infection, meaning tha$ C P < M — P. Signature-based malware detectors, given
an ideal signaturé of a malwareM (provided for example by a perfect orackRs) and

a possibly infected prograrR, syntactically verify infection according to the follovgn
test:

Syntactic Test S C P

Let us consider the semantic counterpart of the syntaditasiire matching test. Given
a malwareM and its signatures C M, let labs [M] = lab [S] denote the malware
restriction identifying the commands composing the sigreatObserve that the semantics
of the malware restricted to its signature correspondsdeéimantics of the signature, i.e.,
as(6 [M]) = &[S]. Thus, we can say that a progratis infected by a malward/

if there exists a restriction of program trace semantics rttches the semantics of the
malware restricted to its signature:

Semantic Test Jlab, [P] € p(lab[P]) : as(6 [M]) = (& [P])
which can be equivalently expressedHeb, [P] € p(lab[P]) : 6 [S] = (& [P]).
The following result shows that the syntactic and semaeststare equivalent, meaning
that they detect the same set of infected programs.

PrROPOSITION 1. Given a signatur8§ of a malwareM we have that:
SCP < 3lab,.[P] € p(lab[P]) : S[S] = (S [P])

PROOF (=) S C P means thav¥C € S = C < P, namely that3lab, [P] €
p(lab[P]) : P, = S. Thereforeq, (& [P]) = 6[P;] = 6[S]. (<) If Jiab, [P] €
p(lab [P]) : 6[5] = ar(&[P]), it means that& [S] | = |- (& [P])| and thatvo €
S[S], 36 € a,(&[P]) such thate = § = (Cy,(p1,m1)), ..., (Ck, (pr, mi)). This
means that for every € &[S] andd € «,(&[P]) such thate = 4, we have that
cmd [o] = Uiepn k) Ci = cmd [0], and therefore = cmd(& [S]) = emd(S [P,]) C P,
namelyS C P. O

Observe that by applying abstractiop to the semantic test we have thdt — P if:
Jlab, [P] € p(lab [P]) : ae(as(S[S])) = ac(ar (& [P]))

which corresponds to the standard infection condition i§igeldoy Definition 4 where the
semantics of malwar@/ has been restricted to its signatufeand the set-inclusion re-
lation has been replaced by equality. It is clear that, is etting, by replacing [M]
with & [S] we can obtain results analogous to the one proved followiafjnRion 4 of
infection.

Proving Soundness and Completeness of a Signature-based Detector

First of all we need to define a trace-based malware detelstdris equivalent to the
signature-based algorithm. Next, this semantic formtbnas used to prove soundness
and completeness of the signature based approach.
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Step 1: Designing an equivalent trace-based detecitnis point is actually solved by
Proposition 1. In fact, lels denote the malware detector based on the signature matching
algorithm. This syntactic algorithm is based on an oragles that, given a malware
M, returns its ideal signatur€ such that:S € P < M < P, or, equivalently,
lab, [P] € p(lab[P]) : 6[S] = a(6[P]) & M — P. Let Dg be the trace-
based detector that classifies a progrras infected by a malwark/ with signaturesS,
if Jlab, [P] € p(lab[P]) : &S] = a-(&[P]). From Proposition 1 it follows that
Ag(M, P) = 1ifand only if 3lab, [P] € p(lab [P]) : 6 [S] = «..(& [P]) if and only
if Dg(M,P) =1.

Step 2: Prove soundness and completenegiofLet us identify the class of obfuscat-
ing transformations that the trace-based detebtois able to handle. The following result
shows thatDg is sound with respect to every obfuscation if the signatueele ORs is
perfect, namely\Dy is oracle-sound with respect to every obfuscation. Obst@raehere
we are assuming that the identity function is an obfuscator.

PROPOSITION 2. Dg is oracle-sound with respect to every obfuscation.

PROOF Given a malwarél/ with signatureS we have that3lab, [P] € p(lab [P]) :
S[S] = e (6[P]) = M — P, follows from the hypothesis th@@Rs is a perfect
oracle that returns an ideal signaturél

This confirms the general belief that signature matchingréttyms have a low false posi-
tive rate. In fact, the presence of false positives is cabgetie imperfection in the signa-
ture extraction process, meaning that in order to improgesthnature matching algorithm
we have to concentrate in the design of efficient techniqoiesifinature extraction.

Let us introduce the clag8s of obfuscating transformations thpteserve signatures
We say thatD preserves signatures, i.€,€ Og, when for every malwar@/ with signa-
ture S the semantics of signatufeis present in the semantics of the obfuscated malware
O [M], formally when:

Alabr [O [M]] € p(lab [O [M]]) : 1)

S [S] = ar(S [0 [M]])

The above condition can equivalently be expressed in sijatacms as
SCM = SCO[M]

The following result shows thabs is oracle-complete fo© if and only if O preserves
signatures.

S[S] = ax(S [M]) = {

PROPOSITION 3. Dg is oracle-complete fo® < O € Og.

PROOE (<) Assume thatD € Og, then we have to show thatd [M] — P =
Jlabr [P] € p(lab[P]) : 6[S] = ar(6& [P]). Observe thaO [M] — P, means that
Jlab, [P] € p(lab[P]) : B = O [M], namely3lab, [P] € p(lab [P]) : ar (&S [P]) =
S [O[M]]. From (1), we have thaBlabg [O [M]] € p(lab[O[M]]) : &S] =
ar(6[O[M]]), and therefores [S] = ar(a-(6[P])) = ar(S[P]). (=) Assume
that Ds is complete forO, this means tha® [M] — P = Jlabr [P] € p(lab [P]) :

S [S] € ar (6 [P]), meaning that there is a restriction of progratithat matches sig-
natureS. Thus, progranP can be restricted to a signature preserving transformation
M. O
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This means that a signature based detection algotidlnis oracle-complete with respect
to the class of obfuscations that preserve malware sigestaamely the ones belonging
to Og. Unfortunately, a lot of commonly used obfuscating transfations do not preserve
signatures, namely are not@s. Consider for example the code reordering obfuscation
Q. Itis easy to show thatls is not complete fo©;. In fact, given a malwar@{ with
signatureS C M, we have that, in generall ¢ O, [M], since jump instructions are
inserted between the signature commands changing theréfersignature. In particu-
lar, consider signatur® C M such thatS = C4,...,C,, we have thatS ¢ O, [M],
while S” C O; [M], whereS’ = C{J*CyJ*...J*C],, whereJ denotes a command im-
plementing an unconditional jump, namely of the fofm skip — L/, andC/ is given
by command”; with labels updated according to jump insertion. This mahaswhen
O;[M] — P thenViabg [O[M]] € p(lab[O[M]]) : S[S] € ar(6& [O[M]]). Ob-
serve that incompleteness is caused by the factithabeing equivalent tolg, is strongly
related to program syntax, and therefore the insertion afiaacuous jump instruction is
able to confuse it.

Following the same strategy, it is possible to show thgtis not complete for opaque
predicate insertion, semantiorPinsertion and substitution of equivalent commands. Thus,
in general, the class of conservative transformations doegreserve malware signatures,
i.,e.,0. € Og, meaning that conservative obfuscations are able to fpileguire matching
algorithms. Hence, it turns out thalls is not complete, namely it is imprecise, for a wide
class of obfuscating transformations. This is one of theondtjawbacks of signature-based
approaches. A common improvement4f consists in considering regular expressions
instead of signatures. Namely, given a signatire C1, ..., C,,, the detectord!; verifies
if C{C*CyC*...C*C), C P, whereC stands for any command i andC/ is a command
with the same action a8;. It is clear that this a||0WS4JSr to deal with the class of ob-
fuscating transformations that are conservative witheesto signatures, as for example
code reordering ;. Let Q. denote the class of obfuscations that are conservative with
respect to signatures, whetee Q. if for every malwareM with signatureS there ex-
ists S” C O[M] such thatS = C1Cs...C,, and S’ = C{C*C,C*...C*C),. However,
this improvement does not handle all conservative obfimtain Q.. For example, the
substitution of equivalent comman@s belongs td0. but not toQ..;.

9.2 Completeness of Semantics-Aware Malware Detector A y/p

An algorithm calledsemantics-aware malware detectiwas proposed in [Christodorescu
et al. 2005]. This approach to malware detection uses ictstru semantics to identify
malicious behavior in a program, even when obfuscated.

The obfuscations considered in [Christodorescu et al. p@@sfrom the set of conser-
vative obfuscations, together with variable renaming. paper proved the algorithm to
be oracle-sound, so we focus in this section on proving @slercompleteness using our
abstraction-based framework. The list of obfuscations amesitler (shown in Table 1) is
based on the list described in the semantics-aware malveseettbn paper.

Description of the AlgorithmThe semantics-aware malware detection algorithy,
matches a program against a template describing the madidiehavior. If a match is
successful, the program exhibits the malicious behavith@femplate. Both the template
and the program are represented as control-flow graphsgiinénoperation ofd ,p.

The algorithmA,,p attempts to find a subset of the progr@hthat matches the com-
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Table . List of obfuscations considered by the semantieara malware detection algorithm, and the results of
our completeness analysis.

Obfuscation Completeness of/p
Code reordering Yes
Semantic-nop insertion Yes
Substitution of equivalent commands No
Variable renaming Yes

mands in the malwaré/, possibly after renaming of variables and locations usetién
subset ofP. FurthermoreA,,;p checks that any def-use relationship that holds in the mal-
ware also holds in the program, across program paths thaecbnonsecutive commands
in the subset.

A control-flow graphGG = (V, E) is a graph with the vertex s&t representing program
commands, and edge sBtrepresenting control-flow transitions from one commanddo i
successor(s). For our language the control-flow graph (@a8 e easily constructed as
follows:

—~For each command' € C, create a CFG node annotated with that commang;c -
Correspondingly, we writ€’ [v] to denote the command at CFG nade

—For each command = L; : A — S, whereS € p(L), and for each label, € S,
create a CFG edge;,, , vr,)-

Consider a path through the CFG from nodg to nodevy, § = v; — ... — vi. There
is a corresponding sequence of commands in the programitten P|y = {C1, ..., Ck}.
Then we can express the set of states possible after exgthérsequence of commands
Plg as€™ [Pls] (C1, (p,m)), by extending the transition relati¢fito a set of states, such
that? : p(X) — p(X). Let us define the following basic functions:

mem [(C, (p,m))] =m
env [(C; (p,m))] = p

The algorithm takes as inputs the CFG for the template= (V7 ET), and the binary
file for the programFile [ P]. For each path in G, the algorithm proceeds in two steps:

(1) ldentify a one-to-one map from template nodes in the gathprogram nodesgyy :
VT - VP,
A template nodex” can match a program nod¢€’ if the top-level operators in their
actions are identical. This map induces a nigp X* x V7 — XF from variables
at a template node to variables at the corresponding progaaa, such that when
renaming the variables in the template commélh[{th]} according to the mapy, we
obtain the program commar@@ [n”] = C [n”] [X/ve (X, n"T)].
This step makes use of the CFG orall& -r¢ that returns the control-flow graph of
a programP, given P’s binary-file representatioRile [ P].

(2) Check whether the program preserves the def-use depeirddhat are true on the
template patld.
For each pair of template nodes’, n” on the patt9, and for each template variable
2T defined inact [CL] and used imct [CT], let A be a program patp(v) —

. — p(l), wherem” — ol — ... — vl — nT is part of the pati¥ in the
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Table Il. Oracles used by the semantics-aware malwaretietedgorithm.A,,p. Notation: P € P, X, Y €

var [P],¢ C P.
Oracle Notation Description
CFG oracle ORcre (File [P])  Returns the control-flow graph of the prograf given

its binary-file representatiof'ile [ P].

Semantic-nop oracle ORgnop (¥, X,Y) Determines whether the value of variabie before the
execution of code sequengeC P is equal to the value
of variableY after the execution aof.

template CFGA is therefore a program path connecting the program CFG noade ¢
responding tan”" with the program CFG node corresponding:tb. We denote by
T|p = {C[m"],Cf,...,CI,C [n"]} the sequence of commands corresponding
to the template patb.

The def-use preservation check can be expressed formdtyiass:

Vp € £,¥Ym € M,Vs € €" [P|,] (,ug (UCIT) , (p, m)) :

o [[1/9 (.%'T,UclT)]] (p,m) = o vy (27, ver)] (env [s], mem [[s]) .

This check is implemented id ,;p as a query to aemantic-nop oracl®R sy,,. The
semantic-nop oracle determines whether the value of ablatkabefore the execution
of a code sequenag C P is equal to the value of a variablé after the execution of

1.

The semantics-aware malware detectrp makes use of two oracle$)R -rc and
ORsnop, described in Table Il. Thuslyp = DOR, for the set of oracle®R =
{ORcra, ORgsnop}. Our goal is then to verify whethefyp is OR-complete with re-
spect to the obfuscations from Table I. Since three of thb$eszations (code reordering,
semantic-nop insertion, and substitution of equivalemhitrands) are conservative, we
only need to checlO'R-completeness ofl;,p for each individual obfuscation. We would
then know (from Lemma 1) ifd5,p is alsoOR-complete with respect to any combination
of these obfuscations.

We follow the proof strategy proposed in Section 2. Firsgtep 1 below, we develop a
trace-based detectdr, based on an abstractionand show thaD®® = A,;p andD p,
are equivalent. This equivalence of detectors holds orlydforacles ifOR are perfect.
Then, in step 2, we show thalp,. is complete w.r.t. the obfuscations of interest.

Step 1: Design an Equivalent Trace-Based Detecige can model the algorithm for
semantics-aware malware detection using two abstractiefs,,p anda ;. The ab-
stractiona that characterizes the trace-based detebtgris the composition of these two
abstractionsgy = a ¢ © agayp. We will show thatD 7. is equivalentd,;p = DO,
when the oracles i@R are perfect.

When applyingysayp to atraces € S [P], o = (C1, (p},m})) ... (CL, (pl,,m’)),
to a set of variable mapir; }, and a set of location magdsy; }, we obtain the following
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abstract trace:

aSAMD(Ga {ﬂ-i}v {’Yl}) = (Olv (plvml)) e (Cnv (pn, mn))
if Vi, 1 <i<n :act[Ci] = act [C]] [X/m:i(X)]
A lab [Ci] = v (lab [CL])
A suc [Ci] = vi(suc[CI])
Api=piom !
Am; =m}on L.

Otherwise, if the condition does not holdgsanp (o, {m},{vi}) = ¢ A mapm; :
var [P] — X renames program variables such that they match malwargbVesi while
a mapy; : lab [P] — L reassigns program memory locations to match malware memory
locations.

Let us define abstraction 4., simply strips all labels from the commands in a trace
o= (C,(p1,m1))o’, as follows:

apc(0) = {
DEFINITION 12. An a-semantic malware detectds a malware detector on the ab-
stractionq, i.e., it classifies the prograi as infected by a malwarkf, M — P, if
Jlab, [P] € p(lab [P]) : o(& [M]) € ol (S [P])).

By this definition, a semantic malware detector (from Defimit4) is a special instance
of the a-semantic malware detector, for= a.. Then letD g be a(aact © asamp)-
semantic malware detector.

€ ifo=c¢
(act [C1], (p1,m1))aact(c’) otherwise

PROPOSITION 4. The semantics-aware malware detector algorithy is equivalent
to the(aaqt © asamp)-semantic malware detectdrr,.. In other wordsyP, M € P, we
have thatd,;p (P, M) = D-(6 [P], & [M]).

PrROOF To show thatd,,;p = Dr., we can equivalently show that for all programs
PM e€ P Ayp(P,M) =1 < 3lab, [P] € p(lab[P]), H{m:i}i>1, andI{v;}i>1
such thatvace(asamp (& [M], {mi}, {7i})) € anci(asamp(ar (S [P]), {mi}, {vi})).
Sincer; renames variables only frof (i.e.,VV € V\ var [ P], m; is the identity function,
namelyvX : m;(X) = X), and similarly; remaps locations only fror®?, then we have
thatasanp (& [M], {m:},{v}) = & [M].

(=) Assume thatd ;p (P, M) = 1. LetGM be theCFG of malwareM and letPath(GM)

denote the set of all paths ¢i"/. We can construct the restrictidab,. [ P] from the path-
sensitive mapuy as follows:

lab [Pl= |  {lab[C [po (™)]] o™ €0}

9ePathg GM)

Following the above constructidab,. [ P] collects the labels of program commands whose
nodes corresponds to a template node thrqughThe variable map$r;} can be defined
based onvy. For a pathd = v} — ... — oM, 7(X) = v (X,0M). Similarly,
vi(L) = L' if lab [C [vM]] = L' andlab [C [pe (vM)]] = L.

Letos € & [M] and denote by = v — ... — vM the CFG path corresponding to
this trace. By algorithrod y/p, there exists a path in the CFG of P of the form:

..—>/L9(’U{M)—>...—>/L9(’U]]€w)—>...
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Letd € . (& [P]) be the trace corresponding to the pgtim G*,

For two stateg and;j > i of the tracer, denote the intermediate states in the tradsy
(CF (7, mi)) . CTP, (o) i) ) ie, 6 =

{0 o (2] o mI) (i )} (CE (ol i) ) (€ [ (03)] 0 ) ) -
From step 1 of algorithm!,p, we have that the following holds:

act [C [pe (vZM)]]]] [(X/m:(X)] = act [C [[le]H]
v (lab [C o (vi")]]) = tab [C [v"]]
7 (sue [C [no (vi)]]) = suc [C [v]]

From step 2 of algorithmd 5, we know that for any template variable™ that is defined
in C [vM] and used irC [v}] (for 1 <i < j < k), we have that:

& [[Vg(XM,viM)]] (p,m)=¢& [[Vg(XM, vJM)]] (env [s], mem [s])

wheres € €' ({u (vM)), (p,m)). Since we have thatct [C [ue (vM)]] [X/m:(X)] =

act [C [oM]]. it follows thatp)” (v (XM, vM)) = pF(vg(X™M,v}")). Moreover, since

P (XM) = p}(XM), then we can write}! = p[” o m;. Similarly, m} = m[" o ;.

Then it follows that for every € & [M]), there exist9 € «..(& [P]) such that:
aact(asamp (o, {mi}, {7i})) = aace(o)

= aact(asamp (0, {mi}, {vi}))

Thus,aact(asamp (6 [M], {7}, {7i})) € aact(samp (o (6 [P]), {mi}, {7i}))-
(<) Assume thatab,. [P], {m;}i>1, and{~; }i>1 exist such that:

asct(asamp (6 [M], {mi}, {7i})) € cact(asamp(ar (& [P]), {mi}, {7i}))

We will show thatA,p returnsl, that is, the two steps of the algorithm complete success-
fully.
Leto € apget (OCSAMD(G [[M]] s {Fi}, {’71})), with

o= (Ar, (01", mi") .. (k. (o mi")) -
Then there exists’ € & [M]
o' = (O, (pt",mi")) (G (o i)

suchthat/i, act [CM] [X/m;(X)] = A;. Similarly, there exist§ € a, (& [P]), with§ =
(CF (oY, mD))...(CF, (o, mf)), such thatvi, act [CF] [X/m:(X)] = A;, pf =
pM ot andm! = mM oyt In other wordso = aac(asamp (o, {7}, {vi})) =
apct(asamp (0, {m:},{v})), whereo' is a malware trace andl is a trace of the re-
stricted progranP. induced bylab, [P]. For each pair of trace(, §) chosen as above,
we can define a map from nodes in theCFG of M to nodes in thelF'G of P by setting
N(Uzab[[cy]]) = Vigp[or]- Without loss of generality, we assume that [M] N lab [P] =
(). Theny is a one-to-one, onto map, and step 1 of algorithmap is complete.
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Consider a variabl& ™ € var [M] thatis defined by actiod, and later used by action
Aj in the traces’, for j > i, such thap{, (X*) = pM (XM). Let X be the program
variable corresponding t& ™ at program command?’, ande the program variable
corresponding to&{ ™ at program command”:
af = (XM, vlab[[CiM]]) xf =p(x ™", Ulab[[C]M]])

If § € (& [P]), then there exists & € & [P] of the form:

5/:...<Cip,(pf,mf)>...<C’f,(pf,mp)>...

j
wherel < i < j < k. Letd be a path in theCFG of P, 0 = vf — ... — v},
such that? is also a path in th&®FG of P.

lab[CF] l};b[[Cfﬂ
Sincep 4, (X™) = pHCXM), thene?, 1 (XF) = piy(r(XF) = ol (X71) =
pé”(XM) = pf(ﬂ'j(XJP)) = pf(XJP). BUE suc [CF] = lab [C* [v1]] in the traces’.
As & [X]] (p,m) = p(xl), it follows that

& HV(XM’”zab[[cy]})]] (p,m)=8& [[V(XMvvlab[[cjf.Vfﬂ )]] (env [s] , mem [s])

foranyp € €, anym € 9, and any state of P at the end of executing the pathi.e.,

-l = . = vl =

s € €"[P|g] (<”(vib[[cP]])’ (p,m)>). If the semantic-nop oracle queried Byp is
complete, then the second step of the algorithm is sucde3$fus Ay p (P, M) =1. O

Now we can define the operation of the semantics-aware malgetector in terms of
its effect on the trace semantics of a progrBm

DEFINITION 13. According to thesemantics-aware malware detectiafgorithm a
programpP is infected by a vanilla malwar&/, i.e. M — P, if:

Jlab, [P] € p(lab[P]), {mi}iz1, {7vi}i>1 :
aact(asamp (6 [M], {mi}, {7i})) € aact(asamp (e (& [P]), {mi}, {vi}))-

Step 2: Prove Completeness of the Trace-Based Dete¥lerare interested in finding
out which classes of obfuscations are handled by a semavtiaee malware detector. We
check the validity of the completeness condition express&efinition 5. In other words,
if the program is infected with an obfuscated variant of thedware, then the semantics-
aware detector should retutn

PROPOSITION 5. A semantics-aware malware detector is completex@yp W.r.t.
the code-reordering obfuscati@hy:

dlab, [[Pﬂ € p(lab [[Pﬂ, {ﬂ-i}izla {’71*}1'21 :
O0j(M) — P = aact(asamp (6 [M], {m:}, {7i})) €
act(asamp(ar (S [P]), {mi}, {7i}))

ProOE If O;[M] — P, and given thatD; inserts onlyski p commands into a
program, thelab, [P] € p(lab[P]) such thatP. = O, [M]\ Skip, whereSkip is a set
of ski p commands inserted b ;, as defined in Section 6. Létl’ = O;(M) \ Skip.
Thena, (6 [P]) = & [M']. Thus we have to prove that

aact(asamp (S [M], {mi}, {7i})) C aact(asamp (S [M'], {m}, {vi}))
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for some{r;} and{v;}. As O; [M] does not rename variables or change memory loca-
tions, we can set; andy;, for all i andy, to be the respective identity maps,= Id,q,[p]
and~; = ]dlab[[P]]- It follows thatasanp (S [M], {]duar[[P]]}a {]dlab[P]]}) =6 [M']
andasayp (6 [M], {Idyaripy }s {1diaspy}) = & [M]. Thus, it remains to show that
aact(6 [M]) C aact(&[M']). By the definition ofO 7, we have thal’ = O [M] \

Skip = (M \ S) Un(S), for someS C M. Butn(S) only updates the labels of the
commands irf5, and thus we have:

@act(S [M']) = aact (S [(M\ S) Un(S)])
= aa.(6 [M]).

It follows thata 4 (6 [M]) C aaet (S [O [M]\ Skip]). O

Similar proofs confirm thab 1, is OR-complete w.r.t. variable renaming and semantic-
nop insertion. AdditionallyD 1. is OR-complete omgap W.r.t. a limited version of
substitution of equivalent commands, when the commandsitiginal malware\l are
not substituted with equivalent commands.

Unfortunately,D 1. is not OR-complete w.r.t. all conservative obfuscations, as the fol
lowing result illustrates.

PROPOSITION 6. A semantics-aware malware detector is not completeson,p w.r.t.
all conservative obfuscatiorf®. € O..

PROOF To prove that semantics-aware malware detection is noptEimonagsa yp
w.r.t. all conservative obfuscations, it is sufficient talftne conservative obfuscation such
that

aact(asamp (6 [M], {m}, {vi})) C
aact(@samp (o (& [Oc(M)]), {mi}, {7i})  (3)

cannot hold for any restrictiotub, [O. [M]] € p(lab[O. [M]]) and any map$m; }i>1
and{i}i>1-

Consider an instance of the substitution of equivalent camfs obfuscating transfor-
mationO; that substitutes the action of at least one command for eatthtprough the
program (i.e.S [P] N & [O; [P]] = 0) — for example, the transformation could modify
the command at the start label of the program. Assumeitfat};~; and3{v;}:;>1 such
that Equation 3 holds, wher®@. = O;. Thendo € S [M] and3§ € S[O; [M]]
such thatoac: (o) = aact(asamp(ar(6),{m}, {v})). As|o| = |§|, we have that
ar(0) =6. Ifo = ...(Ci,(pi;,my))... andd = ... (CL, (p},m})) ..., then we have
thatVi, act [C;] = act [C!] [X/7:(X)]. But from the definition of the obfuscating trans-
formationO; above, we know thatoc € & [M], V6 € & [O;[M]], I > 1 such that
C; € 0,Cl € 9, andV¥r : X — X, act[C;] # act [C]][X/7(X)]. Hence we have a
contradiction. [J

The cause for this incompleteness is the fact that the aistineapplied byD 1, still pre-
serves some of the actions from the program. Consider aaniostof the substitution of
equivalent commands obfuscating transformatihrthat substitutes the action of at least
one command for each path through the malware 4] N & [O;(M)] = 0). For
example, the transformation could modify the command/éad start label. Such an ob-
fuscation, because it affects at least one actionfodbn every path through the program
P = O (M), will defeat the detector.
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9.3 Soundness and Completeness of a Model Checking-Based Detector

In this section we study the soundness and completenessotdfearmalware-detection
algorithm, based on model checking against a specificaiioguage calle€TPL, intro-
duced by Kinder, Katzenbeisser, Schallhart, and Veith $2@8 an extension to Computa-
tion Tree Logic (CTL).

The model checking-based detection algorithm, which weotked orpy, is an exten-
sion of the classic model-checking algorithm [Clarke, drale2001]. The progran® is
modeled as a Kripke structuf€» which is then checked against a specification of mali-
cious behavior given as a CTPL formula The Kripke structurdsp is derived from the
interprocedural control-flow graph of the disassemble@tyinwith one state per program
instruction. K p states are labeled with two atomic predicates, one for theesponding
program instruction, writteinstr(ps,...,pn), and one for the corresponding program
location, written#tloc(L). A programP is malicious ifKp, sg = 1, wheresg is an initial
state.K p, so = 1 is also writtenKp = .

The semantics of a modé&l p of a programP is derived from the semantics &f. An
abstraction can represent the projectio&dfP] into S [Kp]. Letacma be the abstrac-
tion that computes a command trace from a regular trace:(C1, (p1, m1))o’:

(o) = € ifoc=c¢
@Cmd\7) =\ Cracmalo’) otherwise.

By abuse of notation, we will extend.,,,4 to sets of traces and write, without introduc-
ing ambiguity,acma(A) = U,ca @oma(o). ThusG [Kp] = acma(S [P]), by the
construction ofK p as given by Kindeet al.[2005].

Given a CTPL formulap, we would like to construct an abstractiop such that'p |=
¢ <= ay(6[Kp]) # 0. In other words, a model that satisfies a malicious CTPL
formula has a non-empty set of abstract traces, obtainedghrthe abstraction constructed
from the malicious CTPL formula. In this context we assunet the CTPL formulay
was provided by an oracl®R crpr, from some malwaré/, i.e., if v = ORcrpr(M),
thenKp =9 < M — P.

We ease the task of designing the abstractipiby using the fact that the CTL operators
EX, EG, andEU, together with the logical operatorsand A, are sufficient to express
all CTL formulas [Clarke, Jr. et al. 2001]. Thus we do not némdonsider all 13 CTL
and logical operators. CTPL adds to CTL free variables thpear as possible arguments
to the instruction predicates and to location predicatée Universe of values for the free
variables is finite. Thus each CTPL formula can be converitzla disjunction of CTL
formulas over constants by simply iterating over the urseesf values. Ify is a CTPL
formula, thenKp = ¢ <= Kp =V, o) Uk Y[z /v;], wherez; represent the
free variables in the CTPL formulg, U is the universe of values for a free variable, and
Y[x;/v;] is a CTL formula obtained fromp by instantiating the free variable; with a
valuew; € U. For our purposes, it is sufficient to focus on the three core @perators
and the two core logical operators.

The abstractiony,, can be defined recursively on the structure of the CTPL foamul
1. Such a construction is well defined since CTPL formulas Hiite length. If A is a
set of sequences| = {(zo,...,z;,...)}, we writeNext+1(A) for the set of sequences
{y : (zo,...,zx)y € A}, forall k > 0. The abstractiony,, operates on a set of traces,
e.g.,A = 6 [Kp], which are simply sequences of commands. If thedsist empty, then
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the abstractiom,, returns the empty set,;, (#) = 0 for any CTPL formula). Otherwise,
the abstraction is defined with respect to the particulaicstre ofy.

apxy(A) ={oc € A0 =30 Ao’ € ay (Next(A))}
apGy(A) ={0€A:VEk>0.0=s...58,0" Ao’ € ay (NextT(4))}

V0 < j < k. ay (Next(A)) #0
OzE[wa/](A) =o€ A:F>0. A
ayr (Next(A)) £ 0

~p(A) = A\ (o (A))
ayny (A) = ap(A) N oy (A)
Qinstr(pr ..., pn)(A) ={oc€ A:0=s0"Nact[s] = instr(p1,...,pn)}
proc(r)(A) = {0 € A: 0 =50’ ANlab[emd [{s}]] = L}

Let us write& [P] (s) to mean the trace semantics Bfwhen the starting state is
In other wordsS [P] (s) = {c € 6[P] : o = so’}. We note that we can express the
trace semantics aP as the union of trace semantics starting in any start séafd?] =
Usoemic © [P] (s0), where Init is the set of initial states of. Furthermore, ifc =

5051 ... 5x0", then& [P] (sx) = Next® (S [P] (s0)).
PROPOSITION 7. Kp,s v <= ayu(S [Kp](s)) # 0.

PROOF (=) AssumeKp, s |= 1. We perform the proof by induction on the structure
of 1.

—Kp, s £ EXy
Then atracer € & [Kp] (s) exists that has at least two states= so’ = ss’¢”, such
thatK p, s’ |= 9. By inductive hypothesidsp, s’ = ¢ implies thatw, (& [Kp] (s')) #
(. Then there exists € o, (S [Kp] (s')). Note thats’S [Kp] C Neat' (& [Kp] (s))
and we have that < aw(Nextl(G [Kp] (s))). As a result, because there exists
0 € G6[Kp](s) such thatd = sz, we have that € agxy (S [Kp](s)). Thus,
arxy (6 [Kp] (s)) # 0.

—Kp,s =EGy
Then atracer € G [Kp] (s) exists such that = sgs1...s;... andKp,s; = 9, for
alli > 0. Note thats) = s. We have that ifXp, s; |= 1), thena,, (& [Kp] (s;)) # 0 (by
the induction hypothesis). Then there exists ., (S [Kp] (s;)). AsG [Kp] (si) =
Next' (S [Kp] (s0)), theng € oy (Next' (& [Kp] (s0))). Thus, we have that for all
i > 0, there exists & such thatr = s . .. s;6 anda € ay(Next™ (S [Kp] (s0))). It
follows thato € aggy (6 [Kp] (s)) andagcy (6 [Kp] (s)) # 0.

—Kp, s = E[pU]
Then, by the definition oEU, there existg > 0 such that a trace = sgs; ... sk - .
with s = s, satisfies the following properties0 < i < k. Kp,s; E ¢ ande, Sk |:
Y’. By the induction hypothesis, it follows the0 < i < k. oy, (& [Kp] (s;)) # 0 and
ay (S [Kp] (sk)) # 0. Asay (S [Kp] (si)) = ay(Next' (S [Kp] (so))) ands = so,
it then follows thaiogyuy (S [Kp] (s)) # 0.

—KP, S ': —|1/)
ThenKp, s [~ ¢, implying thata,, (6 [Kp] (s)) = 0. We havea- (S [Kp] (s)) =
A\ ay (6 [Kp] (s)) = A, which is indeed non-empty.
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—Kp,s =AY
There existg = so’ such that both) andy)’ are satisfied. A&(p, s = ¢ andKp, s E
1/)/, theno € Oéd,(G [[Kpﬂ (S)) ando € Oéd,/(G [[Kpﬂ (S)) ThUS,Oéd,/\w/(G [[Kp]] (S)) =
ay(S[Kp] (s)) Ny (& [Kp] (s)) 2 {o} # 0.

—Kp,s E instr(p1,...,0n)
There existyr = so’ such thatinstr(ps,...,p,) is satisfied bys. Then we have that
act [s] = instr(py,...,pn), implying thatosweer(p, . p.) (S [KP] (s)) # 0.

—Kbp, s E #loc(L)
There existsr = so’ such that#loc(L) is satisfied bys. Thenlab [emd [{s}]] =
#loc(L), implying thataoc(z) (S [KP] (5)) # 0.

(<) Assumen, (6 [Kp] (s)) # 0. We perform the proof by induction on the structure of
.

—apxy (6 [Kp] (s)) # 0
There existg in & [Kp] (s) suchthat = so’ ando’ € oy (Next' (S [Kp] (s))). This
implies thato’ € a, (& [Kp] (s1)). Then, by the induction hypothesiEp, s1 = E.
Thus,Kp, s = EX1.

—arcy(S[Kp] (s) # 0
There existsr in & [Kp] (s) such that for allk > 0, we haves = s¢...s,0’" and
o' € ay(Next"™ (& [Kp])). Note thatsy = s and leto” = s34 10". It follows that
o' € ay(6 [Kp] (sk+1)). Then, by the induction hypothes&p, si1+1 = ¥. We now
have thatvk > 0. Kp, sp+1 = 9. Thus,Kp, s E EGy.

—agyuy) (6 [Kp](s)) # 0
There exists in & [Kp] (s) such that for somé > 0, we have the following properties
hold: ., (Next! (& [Kp])) # 0, for 0 < j < k, andayy (Next™(& [Kp])) # 0.
It follows that .y, (& [Kp] (s;)) # 0, for 0 < j < k. By the induction hypothesis,
Kp,sj =y for0<j<kandKp,s; =1 Thus,Kp,s = E[pUy].

—a (S [Kp] (5)) #0
There existsr in & [Kp] (s) such thatr ¢ a (S [Kp] (s)). ThenKp,s ¥~ 9, thus
KP7 § ': _'1/)'

—ayny (S [Kp[(s)) # 0
There exists in & [Kp] (s) suchthat € ay, (S [Kp] (s)) ando € ay (6 [Kp] (s)).
By induction hypothesis, it follows that'p, s = ¢ andKp, s | ¢'. Thus,Kp,s =
YA

—Qnstr(py,....pn) (S [KP] (5)) # 0
There existsr in & [Kp] (s) such thato = so’ andact [s] = instr(pi,...,pn).
Thens satisfiesinstr(p1, ..., pn), thusKp, s = instr(p1,...,pn).

—100(2) (6 [KP] (5)) # 0
There existsr in & [Kp] (s) such thats = so’ andlab [emd [{s}]] = L. Thens
satisfies#loc(L), thusKp, s = #loc(L).

which concludes the proof.[]

As acorrolaryKp = v <= (6 [Kp]) # 0 follows from the fact thats [P] =
Uso e mic © [P] (s0). We note that Proposition 7 holds under the assumption tieadrta-
clesOR ¢rpr, (Which provides)) and OR ¢r¢ (Which contructsk p) are perfect.
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Step 1: Design an Equivalent Trace-Based DetectWe can now define a trace-based
detectorD ¢orpr, based on the abstractions ando cy,q-

DEFINITION 14. A programp is ¢)-malicious if ay, (v cma (S [P])) # 0.

Based on this definition, we can show thiagrpr, and.Aorpr, are equivalent. By Propo-
sition 7 and its corollary, we have th#fp = ¢ <= oy (S[Kp]) # 0. But
S [Kp] = acma(6 [P]) by the construction ofp from P. It follow immediately that
KpEd & ay(S[Kp]) #0 < ay(acma(® [P]) # 0.

Step 2: Check for Soundness and CompletenessO ¢ rpr, be the set of obfuscations
against whichD c7py, is complete. We identify several classes of obfuscatioas dhe
members ofD orpy, and show thal. € O ¢rpy. As a first step, we prove th& orpy, IS
sound if the oracl®R rpy, returns an ideal CTPL formula.

PROPOSITION 8. D¢rpy, is oracle-sound with respect to every obfuscation.

PROOF Given a malwarel/, the perfect oracl€®R crpy, returns a CTPL formula
suchthatkp = ¢ = M — P. AsKp E ¢ < ay(acmd(S [P])), it follows that
Derpr(P) = Dorpr(M) = M — P and thusD¢rpy, is sound relative to the oracle
ORcrpr. O

We are interested in the completenesdxfrpy, with respect to various obfuscations.
In other words, a®) o7py, is complete with respect t0 rpr, we wish to discover the ob-
fuscation classes members@frpr,. Let us consider the set of conservative obfuscations
O..

The model checking-based malware detector is resiliefte@odde reordering obfusca-
tion O and the opaque predicate insertion obfuscat@psandOy . The code reordering
obfuscationO; relabels commands and inserts jump instructions. Becaysky con-
struction does not take into account labels, only actiaes, {nstructions), and because the
inserted jump actions do not affect the operatioefrpy, it follows thatO; € O¢rpr.
Through similar reasoning we can show tiiat € O¢rpr, andOy € QOorpr.

Unfortunately,D ¢7py, is not complete with respect to all conservative obfuscatio
From the conservative obfuscations we discussed in Segfisemantic nop insertiaf v
and substitution of equivalent commar@s can produce obfuscated program variants that
evade detection b orp;. For example(; will substitute commands in a program such
thatacmd (o) # acma(o’), wheres € & [P] ando’ € & [O;(P’)]. Thena,, applied to
o' will fail to filter actions of interest. Let us defirmyntactically conservative obfuscations
Q. as the set of conservative obfuscations that preserve cadsnae.,O : P — P
is a syntactically conservative obfuscatiorifis conservative andda € G[P],30 €
G} [[O(P)ﬂ : aCmd(U) j acmd(5).

ProPOSITION 9. O, C O¢rpr.

PrROOF Consider a syntactically conservative obfuscafiva Q.. From the definition
of Q.1, we have thaty ¢4 (& [P]) < acmda (S [O(P)]). Hence, it follows that:

ay(aoma(S [P])) = ay(aoma(& [O(P)]))- (4)
If Dorpr(P) = 1, then thatvy, (aoma (S [P])) # 0. Equation 4 implies:
ay(@omd (S [P])) = ay(acma(S [O(P)])) # 0,
and we haveD crp, (O [P]) = 1. Thus,O € Q.. O
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Furthermore, the set of obfuscatiois:rpy, is strictly larger tharQ,., as it contains at
least one non-conservative obfuscation, the variablamémg obfuscatio®,, of Section 7.
Variable renaming works by changing variables consisgehtioughout the program, ac-
cording to a mapr € II that relates names of variables between the original pnogirad
the obfuscated program, : var [P] — Names. In the CTPL notationi/ is the finite
universe of variable names, and thus we hawve[P] C U/ and Names = U. Let¢ be a
CTL formula (i.e., without free variables). We can show tifatmodel K satisfiesp, then
arenamed moddX [z /v] (where the variable was renamed to) satisfiesp[x/v] (where
are similar renaming from waswv applied). This observation follows directly from the fact
that satisfaction in CTPL reduces to syntactic equalitydeen actions in traces{t [s])
and CTPL formula predicatesifstr(pi,...,p,)). Consider a progranP such that
Derpr(P) = 1forsome CTPL formula). Letw be a map of a renaming obfuscatiof
applied toP. We wish to establish that the obfuscated malw@fe] P] is indeed detected
by Dcrpr, as malicious. We know thadt'p = 9, i.e., Kp = (v(vl,...,vk)euk Yzi/vi]).
This is equivalent td/,, . ey Kp = ¥[zi/vi]. As a result, there exists a renam-
ing (vi,...,vr) € U* such thatKp = v[z;/v;]. Note thaty[z;/v;] is a CTL formula.
According to the observation above, renaming preservesdtigfaction relation on CTL
formulas, and we havE p |= ¢[z;/v;] < Kpvi/m(v;)] E (Yl /vi])[vi/7(v;)]. As
aresultK plv; /7 (v;)] E ¥[x; /7 (v;)] (in CTL), which implies that{ p[v; /7 (v;)] = ¢ (in
CTPL). ButKp[v;/m(v;)] is the model forOT [P], meaning thaD crp. (O [P]) = 1.
ThUS,@U € Oc¢rpr.

10. RELATED WORK

Code obfuscation has been extensively studied in the coot@xotecting the intellectual

property of programs. The goal of an obfuscation technigue transform a program in

order to make it harder (ideally impossible) to reverse eagi while preserving its func-

tionality [Collberg et al. 1997; 1998; Chow et al. 2001; Liaimd Debray 2003; Dalla Preda
and Giacobazzi 2005; Dalla Preda and Giacobazzi 2005]. tGgygphers are also pursu-
ing research on the question of possibility of obfuscatidarpk et al. 2001; Wee 2005;
Goldwasser and Kalai 2005].

An introduction to theoretical computer virology can beridun [Cohen 1985]. In par-
ticular, Cohen proposes a formal definition of computerwvipased on Turing’s model of
computation, and proves that precise virus detection igciddble [Cohen 1987], namely
that there is no algorithm that can reliably detect all vdsisCohen shows also that the de-
tection of evolutionary variants of viruses is undecidabimely that metamorphic mal-
ware detection is undecidable [Cohen 1989]. A related uddédity result is the one
presented in [Chess and White 2000], where the authors ghevexistence of a virus
type that cannot be detected. Adleman applies formal coahity theory to viruses and
viruses detection, showing that the problem is intractphdbeman 1988].

Despite these results, proving that in general virusesctleteis impossible, it is pos-
sible to develop ad-hoc detection schemes that work forifsipetruses (malware). In
fact, there is a considerable body of literature on techesgor malware detection [Szor
2005]. These techniques base their detection on syntdeticeaits of the program. As
argued earlier, malware writers often resort to metamarphn order to avoid such syn-
tactic detection. In particular, code obfuscation is sasfidly used by hackers to confuse
the misuse-detection schemes that are sensitive to sligtiifications of program syntax.
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Some attempts to create obfuscation-resilient schemeaddatifying malware are not
practical as they suffer from high false positive rates. #&mtipular,anomaly detection
algorithms are based on a notion of normal program behavidrctassify as malicious
any behavior deviating from normality [McHugh 2001]. Andgndetection does not need
any a priori knowledge of the malicious code and can theeefl@tect previously unseen
malware. Due to the difficulty of classifying what is normtllis technique usually pro-
duces many false alarms (systems often exhibit unseen @uahbehaviors that are not
malicious). For example anomaly detection using stasibticethods suffers from such
limitations [Li et al. 2005; Kolter and Maloof 2004]. Otheparoaches can only provide a
post-infection forensic capability — as for example catiein of network events to detect
propagation after infection [Gupta and Sekar 2003].

With the advent of metamorphic malware, the malware detectommunity has begun
to face the above mentioned theoretical limits and to dgvdkiection systems based on
formal methods of program analysis. We agree with Lakhatih &ingh, who state that
“formal methods for analyzing programs for compilers andifiers when applied to anti-
virus technologies are likely to produce good results ferchrrent generation of malicious
code” [Lakhotia and Singh 2000]. In the following we briefly preseame of the existing
approaches to malware detector based on formal methods.

Program SemanticsChristodorescu and Jha observe that the main deficiencysofsmi
detection is its purely syntactic nature, that ignores tleaming of instructions, namely
their semantics [Christodorescu et al. 2005]. Followinig thbservation, they propose
an approach to malware detection that considers the mabeanantics, namely the mal-
ware behavior, rather than its syntax. Malicious behawatdscribed through a template,
namely a generalization of the malicious code that expsetfge malicious intent while
eliminating implementation details. The idea is that a tetgpdoes not distinguish be-
tween irrelevant variants of the same malware obtainedutitrambfuscation processes.
For example, a template uses symbolic variable/constarttaridle variable and register
renaming, and it is related to the malware control flow grapbrider to deal with code
reordering. Then, they propose an algorithm that verifiespfogram presents the tem-
plate behavior, using some unification process betweernragmogariables/constants and
malware symbolic variables/constants. This detectiomagh is able to handle a limited
set of obfuscations commonly used by malware writers.

Static Analysis.Bergeronet al. propose a malware-detection scheme based on the de-
tection of suspicious system call sequences [Bergeron. &08i1]. In particular, they
consider a reduction (subgraph) of the program control floaply, which contains only
the nodes representing certain system calls. Next theykdfetich subgraph presents
known malicious sequences of system calls.

Christodorescu and Jha describe a malware detection spsteed on language contain-
ment and unification [Christodorescu and Jha 2003]. Thecmak code and the possibly
infected program are modeled as automata using unresofwaolds and placeholders for
registers to deal with some types of obfuscations. In thingg a program presents a
malicious behavior if the intersection between the languzEfghe malware automaton and
the one of the program automaton is not empty.

Model Checking.Singh and Lakhotia specify malicious behaviors throughrenfda in
linear temporal logic (LTL), and then use the model checlk&Ngo check if this property
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is satisfied by the control flow graph of a suspicious programgh and Lakhotia 2003].

Kinderet al. introduce a new temporal logic CTPL (Computation Tree RwaggilLogic),
which is an extension of the branching time temporal logid Cfhat takes into account
register renaming, allowing a succinct and natural prediemt of malicious code pat-
terns [Kinder et al. 2005]. They develop a model checkingwtlym for CTPL that, check-
ing if a program satisfies a malware property expressed byRLGdrmula, verifies if the
program is infected by the considered malicious behavior.

Model checking techniques have recently been used also imwaoarantine applica-
tions [Briesemeister et al. 2005]. Worm quarantine techesseek to dynamically isolate
the infected population from the population of uninfectgdtems, in order to fight mal-
ware infection.

Program Slicing.Lo et al. develop a programmable static analysis tool, called MCF
(Malicious Code Filter) [Lo et al. 1995], that uses progrdicirsg and flow analysis to de-
tect malicious code. Their approach reliegelfitale signs namely on program properties
that characterize the maliciousness of a program. MCFssthoe program with respect to
these tell-tale signs in order to get a smaller program sagthat might perform mali-
cious actions. These segments are further analyzed in trdietermine the existence of
a malicious behavior.

Data Mining. Data mining techniques try to discover new knowledge indatgta col-
lections. In particular, data mining identifies hidden gais and trends that a human
would not be able to discover efficiently on large databasemloying, for example, ma-
chine learning and statistical analysis methods. étesd. study ways to apply data mining
techniques to intrusion detection [Lee et al. 2000; Lee antf51998; Lee et al. 1999].
The basic idea is to use data mining techniques to identifiepes of relevant system
features, describing program and user behavior, in ordexdognize both anomalies and
known malicious behaviors.

11. CONCLUSIONS AND FUTURE WORK

Malware detectors have traditionally relied upon syntaapproaches, typically based on
signature-matching. While such approaches are simplg ateeeasily defeated by obfus-
cations. To address this problem, this work presents a sgadased framework within
which one can specify what it means for a malware detectoe tsdnind and/or complete,
and reason about the completeness of malware detectorsasjibct to various classes of
obfuscations. For example, in this framework, it is pogsiiol show that the signature-
based malware detector is generally sound but not complgigell as that the semantics-
aware malware detector proposed by Christodoresal is complete with respectto some
commonly used malware obfuscations, and that the modeketgebased malware detec-
tor of Kinderet al. is generally sound while it is complete only for certain cdfations.
Our framework uses a trace semantics to characterize thevioed of both the malware
and the program being analyzed. It shows how we can get artheneffects of obfusca-
tions by using abstract interpretation to “hide” irreleaspects of these behaviors. Thus,
given an obfuscating transformatiGh the key point is to characterize the proper semantic
abstraction that recognizes infection even if the malwsauabifuscated througf.

So far, given an obfuscating transformation we assume that the proper abstraction
«, which discards the details changed by the obfuscation eegkpres maliciousness, is
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provided by the malware detector designer. We are currémtistigating how to design
a systematic (ideally automatic) methodology for derivargabstraction that leads to
a sound and complete semantic malware detector. As a firstirstéhis direction, we
observe that if abstractianis preserved by the obfuscatidhthen the malware detection
is complete, i.e., no false negatives. However, presemadinot enough to eliminate false
positives. Hence, an interesting research task consistsairacterizing the set of semantic
abstractions that prevents false positives. This, charaetion may help us in the design
of suitable abstractions that are able to deal with a givénsaation.

Other approaches to the automatic design of abstraaticen rely onmonitoringmal-
ware execution in order to extract its malicious behavioes, the set of malicious (ab-
stract) traces that characterizes the malign intent. Téeiglthat every time that a malware
exhibits a malicious intent (for example every time it viela some security policies) the
behavior is added to the set of malicious ones. Another pitisgiwe are interested in is
the use oflata miningtechniques to extract maliciousness in malware behavikrnedim-
inary work in this area has shown that empirical data mineéahhiques can successfully
identify behavior that is unique to a malware [Christodotest al. 2007]. In this case,
given a sufficient wide class of malicious variants we caryaeetheir semantics and use
data mining to extract common features.

For future work in designing malware detectors, an area @ftgporomise is that of de-
tectors that focus on interesting actions. Depending orexieeution environment, certain
states are reachable only through particular actions. ample, system calls are the only
way for a program to interact with OS-mediated resourceh asdiles and network con-
nections. If the malware is characterized by actions ttat te program states in an unique,
unambiguous way, then all applicable obfuscation trams&tions are conservative. As we
showed, a semantic malware detector that is both sound anplete for a class of con-
servative obfuscations exists, if an appropriate abstractan be designed. In practice,
such an abstraction cannot be precisely computed, due tcidability of program trace
semantics — a future research task is to find suitable appaiidns that minimize false
positives while preserving completeness.

One further step would be to investigate whether and how inguerking techniques
can be applied to detect malware. Some works along this lieady exist [Kinder et al.
2005]. Observe that abstractionactually defines a set of program traces that are equiv-
alent up toO. In model checking, sets of program traces are represemtddrimulas
of some linear/branching temporal logic. Hence, we aim dinagy a temporal logic
whose formulas are able to express normal forms of obfustatiogether with opera-
tors for composing them. This would allow us to use standasdehchecking algorithms
to detect malware in programs. This could be a possible titireto follow in order to
develop a practical tool for malware detection based on emrasitic model. We expect
this semantics-based tool to be significantly more prebiae &xisting virus scanners.
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