
Modelling Metamorphism by Abstract Interpretation

Mila Dalla Preda1, Roberto Giacobazzi1, Saumya Debray2, Kevin Coogan2, and
Gregg Townsend2

1 Dipartimento di Informatica, Università di Verona
{mila.dallapreda,roberto.giacobazzi}@univr.it

2 Department of Computer Science, University of Arizona
{debray,kpcoogan,gmt}@cs.arizona.edu

Abstract. Metamorphic malware apply semantics-preserving transformations to
their own code in order to foil detection systems based on signature matching.
In this paper we consider the problem of automatically extract metamorphic sig-
natures from these malware. We introduce a semantics for self-modifying code,
later called phase semantics, and prove its correctness by showing that it is an
abstract interpretation of the standard trace semantics. Phase semantics precisely
models the metamorphic code behavior by providing a set of traces of programs
which correspond to the possible evolutions of the metamorphic code during ex-
ecution. We show that metamorphic signatures can be automatically extracted by
abstract interpretation of the phase semantics, and that regular metamorphism can
be modelled as finite state automata abstraction of the phase semantics.
Keywords: Abstract interpretation, malware detection, metamorphic code, pro-
gram transformation, static analysis, security, semantics.

1 Introduction

Challenges and insights. Detecting and neutralizing computer malware, such as worms,
viruses, trojans, and spyware is a major challenge in modern computer security, involv-
ing both sophisticated intrusion detection strategies and advanced code manipulation
tools and methods. Traditional misuse malware detectors (also known as signature-
based detectors) are typically syntactic in nature: they use pattern matching to compare
the byte sequence comprising the body of the malware against a signature database [22].
Malware writers have responded by using a variety of techniques in order to avoid de-
tection: Encryption, oligomorphism with mutational decryptor patterns, and polymor-
phism with different encryption methods for generating an endless sequence of decryp-
tion patterns are typical strategies for achieving malware diversification. Metamorphism
emerged in the last decade as an effective alternative strategy to foil detectors. Meta-
morphic malware apply semantics-preserving transformations to modify its own code
so that one instance of the malware bears very little resemblance to another instance,
in a kind of body-polymorphism [23], even though semantically, their functionality is
the same. Thus, a metamorphic malware is a malware equipped with a metamorphic
engine that takes the malware, or parts of it, as input and morphs it to a syntactically
different but semantically equivalent variant in order to avoid detection. The quantity
of metamorphic variants possible for a particular piece of malware makes it impractical

to maintain a signature set that is large enough to cover most or all of these variants,
making standard signature-based detection ineffective [6]. Existing malware detectors
therefore fall back on a variety of heuristic techniques, but these may be prone to false
positives (where innocuous files are mistakenly identified as malware) or false neg-
atives (where malware escape detection) at worst. The reason for this vulnerability
to metamorphism lies upon the purely syntactic nature of most exiting and commer-
cial detectors. The key for identifying metamorphic malware lies, instead, in a deeper
understanding of their semantics. Still a major drawback of existing semantics-based
methods (e.g., see [13,19]) relies upon the a priori knowledge of the obfuscations used
to implement the metamorphic engine. Because of this, it is always possible for any
expert malware writer to develop alternative metamorphic strategies, even by simple
modification of existing ones, able to foil any given detection scheme.

Contributions. We proposes a different approach to metamorphic malware detection
based on the idea that extracting metamorphic signatures is approximating malware se-
mantics. A metamorphic signature is therefore any (possibly decidable) approximation
of the properties of code evolution. The semantics concerns here the way code changes,
i.e., the effect of instructions that modify other instructions. We face the problem of
determining how code mutates, yet catching properties of this mutation, without any a
priori knowledge about the implementation of the metamorphic transformations. Tradi-
tional static analysis techniques are not adequate for this purpose, as they typically as-
sume that programs do not change during execution. We therefore define a more general
semantics-based behavioral model, called phase semantics, that can cope with changes
to the program code at run time. The idea is to partition each possible execution trace
of a metamorphic program into phases, each collecting the computations performed by
a particular code variant. The sequence of phases (once disassembled) represents the
sequence of possible code mutations, while the sequence of states within a given phase
represents the behavior of a particular code variant. Abstract interpretation is then used
to extract the invariant properties of phases, which are properties of the generated pro-
gram variants. Abstract domains represent here properties of the code shape in phases.
We use the domain of finite state automata (FSA) for approximating phases and provide
a static semantics of traces of FSA as a computable abstraction of the phase semantics.
We introduce the notion of regular metamorphism as a further approximation obtained
by abstracting sequences of FSA into a single FSA. This abstraction provides an up-
per regular language-based approximation of any metamorphic behavior of a program.
This is particularly suitable to extract metamorphic signatures for engines implemented
themselves as FSA of basic code transformations, which correspond to the way most
classical metamorphic generators are implemented [16,20,25]. Our approach is general
and language independent, providing a systematic method for extracting approximate
metamorphic signatures from any metamorphic malware P , in such a way that checking
whether a given binary matches the metamorphic signature of P is decidable.

2 Background

Mathematical notation. Given two sets S and T , we denote with ℘(S) the powerset of
S, with S � T the set-difference between S and T , with S ⊂ T strict inclusion and

2

with S ⊆ T inclusion. Let S⊥ be set S augmented with the undefined value ⊥, i.e.,
S⊥ = S ∪ {⊥}. 〈P,≤〉 denotes a poset P with ordering relation ≤, while a complete
lattice P , with ordering ≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧,
greatest element (top)
, and least element (bottom)⊥ is denoted by 〈P,≤,∨,∧,
,⊥〉.
� denotes pointwise ordering between functions. If f : S → T and g : T → Q
then g ◦ f : S → Q denotes the composition of f and g, i.e., g ◦ f = λx.g(f(x)).
f : P → Q on posets is (Scott)-continuous when f preserves lub of countable chains
in P . f : C → D on complete lattices is additive (co-additive) when for any Y ⊆
C, f(∨CY) = ∨Df(Y) (f(∧CY) = ∧Df(Y)). Let A∗ be the set of finite sequences,
also called strings, of elements of A with ε the empty string, and with |ω| the length
of string ω ∈ A∗. We denote the concatenation of ω, ν ∈ A∗ as ω :: ν. We say that a
string s0 . . . sh is a subsequence of a string t0 . . . tn, denoted s0 . . . sh � t0t1 . . . tn, if
∃l ∈ [1, n] : ∀i ∈ [0, h] : si = tl+i.

Finite State Automata (FSA). An FSA M is a tuple (Q, δ, S, F, A), where Q is the set
of states, δ : Q×A→ ℘(Q) is the transition relation, S ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states and A is the finite alphabet of symbols. Let ω ∈ A∗,
function δ∗ : Q × A∗ → ℘(Q) denotes the extension of δ to strings: δ∗(q, ε) = {q}
and δ∗(q, ωs) =

⋃
q′∈δ∗(q,ω) δ(q′, s). A string ω ∈ A∗ is accepted by M if there exists

q0 ∈ S : δ∗(q0, ω)∩ F �= ∅. The language L (M) accepted by an FSA M is the set of
all strings accepted by M . Given an FSA M and a partition π over its states, the quotient
automaton M/π = (Q′, δ′, S′, F ′, A) is defined as follows: Q′ = {[q]π | q ∈ Q},
δ′ : Q′ × A → ℘(Q′) is the function δ′([q]π, s) =

⋃
p∈[q]π

{[q′]π | q′ ∈ δ(p, s)},
S′ = {[q]π | q ∈ S}, and F ′ = {[q]π | q ∈ F}. An FSA M = (Q, δ, S, F, A) can
be equivalently specified as a graph M = (Q, E, S, F) with a node q ∈ Q for each
automata state and a labeled edge (q, s, q ′) ∈ E if and only if q ′ ∈ δ(q, s).

Abstract Interpretation. Abstract interpretation is based on the idea that the behaviour
of a program at different levels of abstraction is an approximation of its (concrete) se-
mantics [8, 9]. The concrete program semantics is computed on the concrete domain
〈C,≤C〉, while approximation is encoded by an abstract domain 〈A,≤A〉. In abstract
interpretation abstraction is specified as a Galois connection (GC) (C, α, γ, A) , i.e.,
an adjunction [8, 9], namely as an abstraction map α : C → A and a concretization
map γ : A → C such that: ∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). Let A1

and A2 be abstract domains of the concrete domain C: A1 is more precise than A2

when γ2(A2) ⊆ γ1(A1). Given a GC (C, α, γ, A) and a concrete predicate transformer
(semantics) F : C → C, we say that F � : A→ A is a sound approximation of F in
A if ∀c ∈ C, α(F (c)) ≤A F �(α(c)). When α ◦ F = F � ◦ α, the abstract function F �

is a complete abstraction of F in A. While any abstract domain induces the canonical
best correct approximation α ◦ F ◦ γ of F : C → C in A, not all abstract domains
induce a complete abstraction [17]. The least fixpoint (lfp) of an operator F on a poset
〈P,≤〉, when it exists, is denoted by lfp≤F , or by lfpF when ≤ is clear. Any con-
tinuous operator F : C → C on a complete lattice C = 〈C,≤C ,∨C ,∧C ,
C ,⊥C〉
admits a lfp: lfp≤C F =

∨
n∈N

F i(⊥C), where for any i ∈ N and x ∈ C: F 0(x) = x;
F i+1(x) = F (F i(x)). If F � : A→ A is a correct approximation of F : C → C on

3

Syntactic categories:
n, a ∈ N (naturals)
e ∈ E (expressions)
I ∈ I (instructions)
m ∈ M : N → N⊥ (memory map)
P ∈ M× N = P (programs)

Expressions:
e::= n | MEM[e] | MEM[e1] op MEM[e2] |

MEM[e1] op n
Instructions:
I ::= call e | ret | pop e | push e | nop |

MEM[e1] := e2 | input ⇒ MEM[e] |
if e1 goto e2 | goto e | halt

Fig. 1. Syntax of an abstract assembly language

〈A,≤A〉, then α(lfp≤C F) ≤A lfp≤AF �. Convergence can be ensured through widen-
ing iterations along increasing chains [8]. A widening operator � : P × P → P ap-
proximates the lub, i.e., ∀X, Y ∈ P : X ≤P (X�Y) and Y ≤P (X�Y), and it is
such that the increasing chain W i, where W 0 = ⊥ and W i+1 = W i�F (W i) is not
strictly increasing for ≤P . The limit of the sequence W i provides an upper fixpoint
approximation of F on P , i.e., lfp≤P F ≤P limi→∞W i.

3 Modelling metamorphism

Abstract assembly language. Executable programs make no fundamental distinction
between code and data. This makes it possible to modify a program by operating on a
memory location as though it contains data, e.g., by adding or subtracting some value
from it, and then interpreting the result as code and executing it. To model this aspect,
we define a program to be a pair P = (m, a), where m specifies the contents of a
memory (both code and data) and a denotes the entry point of P , namely the address of
the first instruction of P . Since a memory location contains a natural number that can
be interpreted either as data or as instruction3 we use an injective function encode :
I → N that, given an instruction I ∈ I, returns its binary encode(I) ∈ N, and a
function decode : N→ I⊥ that given a natural number n returns I if encode(I) = n
otherwise⊥. Fig. 1 shows the syntax of our abstract assembly language, whose structure
is inspired from real assembly languages. A program state is a tuple 〈a, m, θ, I〉where m
is the memory map, a is the address of the next instruction to be executed, θ ∈ N

∗ is the
stack and I ∈ N

∗ is the input string. Let Σ = N⊥×M×N
∗×N

∗ be the set of program
states. The semantics of expressions is specified by a function E : E×M→ N:
E [[n]]m = n
E [[MEM[e]]]m = m(E [[e]]m)
E [[MEM[e1] op MEM[e2]]]m = E [[MEM[e1]]]m op E [[MEM[e2]]]m
E [[MEM[e1] op n]]m = E [[MEM[e1]]]m op n

and the semantics of instructions by a function I : I×Σ → Σ:

3 For simplicity, we assume that each instruction occupies a single location in memory, because
the issues raised by variable-length instructions are orthogonal to the topic of this paper, and
do not affect any of our results.

4

I[[call e]]〈a, m, θ, I〉 = 〈E [[e]]m, m, (a + 1) :: θ, I〉
I[[ret]]〈a, m, n :: θ, I〉 = 〈n, m, θ, I〉
I[[MEM[e1] := e2]]〈a, m, θ, I〉 = 〈a + 1, m[E [[e1]]m← E [[e2]]m], θ, I〉
I[[input⇒ MEM[e]]]〈a, m, θ, n :: I〉 = 〈a + 1, m[E [[e]]m← n], θ, I〉

I[[if e1 goto e2]]〈a, m, θ, I〉 =
{
〈E [[e2]]m, m, θ, I〉 if E [[e1]]m �= 0
〈a + 1, m, θ, I〉 otherwise

I[[pop e]]〈a, m, n :: θ, I〉 = 〈a + 1, m[E [[e]]m← n], θ, I〉
I[[goto e]]〈a, m, θ, I〉 = 〈E [[e]]m, m, θ, I〉
I[[push e]]〈a, m, θ, I〉 = 〈a + 1, m, E [[e]]m :: θ, I〉
I[[halt]]〈a, m, θ, I〉 = 〈⊥, m, θ, I〉
I[[nop]]〈a, m, θ, I〉 = 〈a + 1, m, θ, I〉

Let T : ℘(Σ)→ ℘(Σ) be the transition relation between states, which is given by the
point-wise extension of T (〈a, m, θ, I〉) = I[[decode(m(a))]]〈a, m, θ, I〉. As usual [11],
the maximal finite trace semantics S[[P]] ∈ ℘(Σ∗) of P = (m, a) is given by the lfp of
FT [[P]] : ℘(Σ∗) → ℘(Σ∗) where Init [[P]] = {〈a, m, ε, I〉 | I is an input stream} and
FT [[P]](X) = Init [[P]] ∪ {σσiσj | σj ∈ T (σi), σσi ∈ X}.

Phase Semantics. Intuitively, a phase is a maximal sequence of states in an execution
trace that does not overwrite any memory location storing an instruction that is going
to be executed later in the same trace. Given an execution trace σ = σ 0 . . . σn, we
can identify phase boundaries by considering the sets of memory locations modified
by each state σi = 〈ai, mi, θi, Ii〉 with i ∈ [0, n]: every time that a location aj , with
i < j ≤ n, of a future instruction is modified by the execution of state σ i, then the
successive state σi+1 is a phase boundary, since it stores a modified version of the
code. We consider the set mod(σi) ⊆ N of memory locations that are modified by the
instruction executed in state σi:

mod(σi) =
{
{E [[e]]m} if decode(mi(ai)) ∈ {MEM[e] = e′, input⇒ MEM[e], pop e}
∅ otherwise

This allows us to formally define the phase boundaries and the phases of a trace.

Definition 1 The set of phase boundaries of σ = σ0 . . . σn ∈ Σ∗, where ∀i ∈ [0, n] :
σi = 〈ai, mi, θi, Ii〉, is: bound(σ) = {σ0}∪{σi |mod(σi−1)∩{aj | i ≤ j ≤ n} �= ∅}.
The set of phases of a trace σ ∈ Σ∗ is:

phases(σ) =
{

σi . . . σj

∣∣∣∣σ = σ0 . . . σi . . . σjσj+1 . . . σn,
σi, σj+1 ∈ bound(σ), ∀l ∈ [i + 1, j] : σl �∈ bound(σ)

}

Observe that, by definition, the memory map of the first state of a phase always spec-
ifies the code snapshot that is executed in the same phase. Hence, the sequence of the
initial states of the phases of a trace highlights the different code snapshots encountered
during code execution. In general, different executions of a program give rise to dif-
ferent sequences of code snapshots. A complete characterization of all code snapshots
of a self-modifying program can be obtained by organizing phases in a program evo-
lution graph. Here, each vertex is a code snapshot P i corresponding to a phase, and an
edge Pi → Pj indicates that in some execution trace of the program, a phase with code
snapshot Pi can be followed by a phase with code snapshot Pj .

5

Definition 2 The program evolution graph of a program P0 is G[[P0]] = (V, E):

V = {Pi = (mi, ai) | σ = σ0..σi..σn ∈ S[[P0]] : σi = 〈ai, mi, θi, Ii〉 ∈ bound(σ)}

E =
{

(Pi, Pj)
∣∣∣∣Pi = (mi, ai), Pj = (mj , aj), σ = σ0..σi..σj−1σj ..σn ∈ S[[P0]] :
σi = 〈ai, mi, θi, Ii〉, σj = 〈aj , mj , θj , Ij〉, σi . . . σj−1 ∈ phases(σ)

}

A path in G[[P0]] is therefore a sequence of programs P0 . . . Pn such that for every i ∈
[0, n[we have that (Pi, Pi+1) ∈ E. Given a program P0 the set of all possible (finite)
paths of the program evolution graph G[[P0]] is the phase semantics of P0, denoted
SPh [[P0]]: SPh [[P0]] = {P0 . . . Pn | P0 . . . Pn is a path in G[[P0]]}.

P0 1: MEM[f] := 100 8: MEM[MEM[f]] := MEM[4]
2: input ⇒ MEM[a] 9: MEM[MEM[f] + 1] := MEM[5]
3: if (MEM[a] mod 2) goto 7 10: MEM[MEM[f] + 2] := encode(goto 6)
4: MEM[b] := MEM[a] 11: MEM[4] := encode(nop)
5: MEM[a] := MEM[a]/2 12: MEM[5] := encode(goto MEM[f])
6: goto 8 13: MEM[f] := MEM[f] + 3
7: MEM[a] := (MEM[a] + 1)/2 14: goto 2

σ17σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ13 σ14 σ15

P0 = (a0,m0)

σ16

P5 = (a5,m5) P6 = (a6,m6) P7 = (a7,m7) P8 = (a8,m8) P9 = (a9,m9)

Fig. 2. A metamorphic program P0 and the phases of one of its traces.

Consider for instance the metamorphic program P0 of Fig. 2. The metamorphic engine
of P0, which is stored at memory locations from 8 to 13, writes a nop at memory lo-
cation 4 and copies the original content of this location to the free location identified
by MEM[f]; then it adds some goto instructions to preserve the original semantics. We
consider the execution trace σ = σ0σ1 . . . σ17 of program P0 corresponding to the input
sequence I = 7 :: 6, in particular σ = 〈1, m0, ε, 7 :: 6〉〈2, m1 = m0[f ← 100], ε, 7 ::
6〉〈3, m2 = m1[a ← 7], ε, 6〉〈7, m3 = m2, ε, 6〉〈8, m4 = m3[a ← 4], ε, 6〉〈9, m5 =
m4[100 ← encode(MEM[b] := MEM[a])], ε, 6〉 . . . 〈17, m17 = m16[a ← 3], ε, ε〉. Fig. 2
shows the considered execution trace σ where: the bold arrows denote the modifi-
cations of instructions that will be later executed, for example the bold arrow from
σ4 = 〈a4, m4, θ4, I4〉 to σ15 = 〈a15, m15, θ15, I15〉 means that location a15 is overwrit-
ten by the execution of instruction decode(m4(a4)) at state σ4, i.e., a15 ∈ mod(σ4);
and the black dots identify the states that are phase boundaries.

Fixpoint phase semantics. We introduce the notion of mutating transition, i.e., a tran-
sition between two states that leads to a state which is a phase boundary. We say that a
pair of states (σi, σj) is a mutating transition of P0, denoted (σi, σj) ∈ MT(P0), if there
exists a trace σ = σ0 . . . σiσj . . . σn ∈ S[[P0]] such that σj ∈ bound(σ). This allows

6

us to define the code transformer T Ph : ℘(P) → ℘(P) that associates with each set
of programs the set of their possible metamorphic variants: P j ∈ T Ph (Pi) means that
during execution program Pi can be transformed into program Pj .

Definition 3 T Ph : ℘(P)→ ℘(P) is given by the point-wise extension of:

T Ph(P0) =
{

Pl

∣∣∣∣Pl = (ml, al), σ = σ0 . . . σl−1σl ∈ S[[P0]], σl = 〈al, ml, θl, Il〉,
(σl−1, σl) ∈ MT(P0), ∀i ∈ [0, l − 1[: (σi, σi+1) �∈ MT(P0)

}

T Ph can be extended to traces FT Ph [[P0]] : ℘(P∗) → ℘(P∗) as: FT Ph [[P0]](Z) = P0 ∪
{zPiPj | Pj ∈ T Ph(Pi), zPi ∈ Z}.

Theorem 1 lfp⊆FT Ph [[P0]] = SPh [[P0]].

A program Q is a metamorphic variant of a program P 0, denoted P0 �Ph Q, if Q is an
element of at least one sequence in SPh [[P0]].

Correctness and completeness of phase semantics. We prove the correctness of phase
semantics by showing that it is a sound approximation of trace semantics, namely by
providing a pair of adjoint maps αPh : ℘(Σ∗) → ℘(P∗) and γPh : ℘(P∗) → ℘(Σ∗),
for which the fixpoint computation ofFT Ph [[P0]] approximates the fixpoint computation
of FT [[P0]]. Given σ = 〈a0, m0, θ0, I0〉 . . . σi−1σi . . . σn we define αPh as:

αPh (σ) = (m0, a0)αPh(σi . . . σn) s.t. σi ∈ bound(σ), ∀l ∈ [0, i− 1] : σl �∈ bound(σ)

Abstraction αPh observes only the states of a trace that are phase boundaries and it
can be lifted point-wise to ℘(Σ∗) giving rise to the GC (℘(Σ∗), αPh , γPh , ℘(P∗)). The
following result shows the correctness of the phase semantics.

Theorem 2 ∀X ∈ ℘(Σ∗) : αPh (X∪FT [[P0]](X)) ⊆ αPh (X)∪FT Ph [[P0]](αPh (X)).

The converse may not hold: αPh(X ∪FT [[P0]](X)) ⊂ αPh(X)∪FT Ph [[P0]](αPh (X)).
In fact, given X ∈ ℘(Σ∗), the concrete function FT [[P0]] makes only one transition
in T and this may not be a mutating transition, while the abstract function F T Ph [[P0]]
jumps directly to the next mutating transition. Even if the fixpoint of F T Ph [[P0]] is not
step-wise complete, it is complete at the fixpoint, as shown by the following theorem.

Theorem 3 αPh (lfp⊆FT [[P0]]) = lfp⊆FT Ph [[P0]].

4 Abstracting metamorphism

Our model of metamorphic code behaviour is based on a very low-level representa-
tion of programs as memory maps that simply give the contents of memory locations
together with the address of the instruction to be executed next. While such a represen-
tation is necessary to precisely capture the effects of code self-modification, it is not a
convenient representation if we want to statically analyze the different code snapshots
encountered during a program’s execution. Our idea is to design an abstract interpre-
tation of phase semantics, namely to approximate the computation of phase semantics

7

on an abstract domain that captures properties of the evolution of the code, rather than
of the evolution of program states, as usual in abstract interpretation. We have to: (1)
Define an abstract domain 〈A,�A〉 of code properties such that (℘(P∗), αA, γA, A);
(2) Define the abstract transition T A : ℘(A) → ℘(A) and FT A [[P0]] : A → A
such that lfp
AFT A [[P0]] = SA[[P0]]; (3) Prove that SA[[P0]] is a correct approxima-
tion of phase semantics SPh [[P0]], i.e., αA(lfp⊆FT Ph [[P0]]) �A SA[[P0]]. This proves
that SA[[P0]] is such that a program Q is a metamorphic variant of program P0 with
respect to A, denoted P0 �A Q, if SA[[P0]] approximates Q in the abstract domain A:
P0 �A Q ⇔ αA(Q) �A SA[[P0]]. In this sense, SA[[P0]] is an abstract metamor-
phic signature for P0. Abstract domains for code properties need to approximate prop-
erties of sequences of instructions. This can be achieved naturally by grammar-based,
constraint-based and finite state automata abstractions. In the following we propose to
abstract programs by a FSA describing the sequence of (possibly abstract) instructions
that may be disassembled from the given memory.

Phases as FSA. The most commonly used program representation is the control flow
graph. In this representation, the vertices contain the instructions to be executed, and
the edges represent possible control flow. For our purposes, it is convenient to consider
a dual representation where vertices correspond to program locations and abstract in-
structions label edges. Let MP denote the FSA-representation of a given program P
and let L (MP) be the language it recognizes. The idea is that for each sequence in
L (MP) the order of the instructions in the sequence corresponds to the execution or-
der of the corresponding concrete instructions in at least one run of the control flow
graph of P . Instructions are abstracted in order to provide a simplified alphabet. In
the rest of the paper, for the sake of simplicity, we consider function ι : I → I̊ de-
fined in Fig. 3. Let ρ : I × N → ℘(N) denote any sound control flow analysis that

1 3

4

7

2 9

10111213

MEM[f]:=
100

input =>
MEM[a] MEM[a] mod 2

5 6

8

MEM[b]:=
MEM[a]

MEM[a]:=
MEM[a]/2

goto
MEM[MEM[f]]:=
 MEM[4]

MEM[MEM[f]+1]:=
 MEM[5]MEM[MEM[f]+2]:=

 encode(goto 6)
MEM[4]:=
encode(nop)

MEM[5]:=
encode(goto MEM[f])

MEM[f]:=
MEM[f] + 3

14

goto

α̊(P0)

ι(I) = I̊ =

8>><
>>:

call if I = call e
e1 if I = if e1 goto e2

goto if I = goto e
I otherwise

Edges(P = (m, a),QP , ρ)
EP = ∅
while QP �= ∅

select b ∈ QP and QP = QP � {b}
I = decode(m(b))
for each c ∈ ρ(I, b) ∩ QP

EP = EP ∪ {(b, ι(I), c)}
return EP

Fig. 3. FSA α̊(P0) corresponding to program P0 of Fig. 2, instruction abstraction ι : I → I̊ and
the algorithm that computes EP

8

determines the possible successors of a given instruction at a given location, namely
ρ(I, b) associates with instruction I stored at memory location b the set of locations of
its possible successors. Let F be the set of FSA over the alphabet I̊ of abstract instruc-
tions where every state is considered to be final. Each FSA in F is specified as a graph
M = (Q, E, S). We define function α̊ : P → F that associates with each program
P = (m, a) its corresponding FSA-representation as follows: α̊(P) = (QP , EP , {a})
where QP = {b | decode(m(b)) ∈ I} is the set of locations that store an instruction
of P , and the set of edges EP ⊆ QP × I̊×QP is computed by the algorithm Edges in
Fig. 3. This algorithm, given P = (m, a), starts by initializing EP to the empty set and
then for every memory location b that stores an instruction I it adds an edge labeled with
ι(I), whose source is the location b and whose destinations are the locations in ρ(I, b).
As an example, at the top of Fig. 3 we show the automaton α̊(P0) corresponding to pro-
gram P0 of Fig. 2. We say that π = a0[I̊0] . . . [I̊n−1]an[I̊n]an+1 is a path of automaton
M = (Q, E, S), denoted π ∈ Π(M), if a0 ∈ S and ∀i ∈ [0, n[: (ai, I̊i, ai+1) ∈ E.
Observe that even if the alphabet I̊ is unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every program uses only a finite subset of
alphabet I̊. By point-wise extension of function α̊ we obtain the GC (℘(P), α̊, γ̊, ℘(F)).
Note that abstraction ι defined above makes the FSA-representation of programs inde-
pendent (up to renaming) from program position.

Theorem 4 If P1 and P2 differ only in their memory position then α̊(P1) and α̊(P2)
are equivalent up to address renaming.

Abstract phase semantics as traces of FSA. Let αF : P
∗ → F∗ be the extension of

α̊ : P → F to sequences: αF(ε) = ε and αF(P0P1 . . . Pn) = α̊(P0)αF(P1 . . . Pn). αF

can be lifted point-wise to ℘(P∗) and it gives rise to the GC (℘(P∗), αF, γF, ℘(F∗)).
In order to compute a correct approximation of the phase semantics on 〈℘(F ∗),⊆〉,
we need to define an abstract transition relation T F : ℘(F) → ℘(F) on FSA that
correctly approximates T Ph : ℘(P) → ℘(P). One possibility is to define T F as the
best correct approximation of T Ph on ℘(F), namely T F = α̊ ◦ T Ph ◦ γ̊, and function
FT F [[P0]] : ℘(F∗) → ℘(F∗) as follows: FT F [[P0]](K) = α̊(P0) ∪ {kMiMj | kMi ∈
K, Mj ∈ T F(Mi)}. From T F correctness we have SF[[P0]] = lfpFT F [[P0]] correctness.

Theorem 5 αF(lfpFT Ph [[P0]]) ⊆ lfpFT F [[P0]] = SF[[P0]].

SF[[P0]] approximates phase semantics by abstracting programs with FSA, while the
transitions, i.e., the effect of the metamorphic engine, follow directly from T Ph and are
not approximated. For this reason SF[[P0]] is not computable in general. In the follow-
ing we introduce a static computable approximation of the transition relation on FSA
that allows us to obtain a static approximation S�[[P0]] of the phase semantics of P0 on
〈℘(F∗),⊆〉. S�[[P0]] may play the role of abstract metamorphic signature of P 0. To this
end, we introduce the notion of limits of a path that approximates the notion of bounds
of a trace, and the notion of transition edge that approximates the notion of mutating
transition. Moreover, we assume to have access to the following sound program analy-
ses for P0:
– a stack analysis StackVal : N → ℘(N) that approximates the set of possible values
on the top of the stack when control reaches a given location (e.g. [1, 2]);

9

– a memory analysis LocVal : N × N → ℘(N) that approximates the set of possible
values that can be stored in a memory location when the control reaches a given loca-
tion (e.g. [1, 2]).
These analyses allow us to define EVal : N× E→ ℘(N), that approximates the evalu-
ation of an expression in a given point:
EVal(b, n) = {n}
EVal(b, MEM[e]) = {LocVal(b, l) | l ∈ EVal(b, e)}
EVal(b, MEM[e1] op MEM[e2]) = {n1 op n2 | i ∈ {1, 2} : ni ∈ EVal(b, MEM[ei])}
EVal(MEM[e] op n) = {n1 op n | n1 ∈ EVal(b, MEM[e])}
and a sound control flow analysis ρ : I× N→ ℘(N):
ρ(call e, b) = ρ(goto e) = EVal(b, e)
ρ(ret, b) = StackVal(b)
ρ(if e1 goto e2, b) = {b + 1} ∪ EVal(b, e2)
ρ(halt, b) = ∅
ρ(I, b) = {b + 1} in all other cases

Moreover, we define write : I̊×N→ ℘(N) approximating the set of locations that may
be modified by the execution of an abstract instruction memorized at a given location:

write(I̊ , b) =

EVal(b, e1) if I̊ = MEM[e1] := e2

EVal(b, e) if I̊ ∈ {input⇒ MEM[e], pop e}
∅ otherwise

We define the limits of a path π as the nodes that are reached by an edge labeled by an
abstract instruction that may modify the label of a future edge in π, namely an abstract
instruction that occurs later in the same path. Given a path π = a0[I̊0] . . . [I̊n−1]an we
have: limit(π) = {a0} ∪ {ai | write(I̊i−1, ai−1) ∩ {aj | i ≤ j ≤ n} �= ∅}.

Definition 4 A pair of program locations (b, c) is a transition edge of M = (Q, E, S),
denoted (b, c) ∈ TE(M), if there exists a ∈ S: π = a[I̊a] . . . [I̊b−1]b[I̊b]c ∈ Π(M) and
c ∈ limit(π).

In the FSA of Fig. 3 the transition edges are the dashed ones since the instructions
labeling these edges overwrite a location that is reachable in the future. Observe that
also the instructions labeling the edges from 8 to 9, from 9 to 10, and from 10 to 11 write
instructions in memory, but the locations that store these instructions are not reachable
when considering the control flow of P0.

In order to statically compute the set of possible FSA evolution of a given automaton
M = (Q, E, S) we need to statically execute the abstract instructions that may modify
an FSA. Algorithm EXE(M, I̊, b) in Fig. 4 returns the set Exe of all possible FSA that
can be obtained by executing instruction I̊ stored at location b of automaton M . The
algorithm starts by initializing Exe to the FSA M ′ that has the same states and edges
of M and whose possible initial states S ′ are the nodes reachable through instruction I̊
stored at b in M . This ensures correctness when the execution of instruction I̊ does not
correspond to a real code mutation. Then if I̊ writes in memory we consider the set X
of locations that it can modify and the set Y of possible instructions that it can write,
and we add to Exe the set of all possible automata that can be obtained by writing an
instruction of Y in a memory location in X , i.e., NEXT(X, Y, M, b).

10

EXE(M, I̊, b) // M = (Q,E, S) is a FSA
Exe = {M ′ = (Q, E, S′) | S′ = {d | (b, I̊, d) ∈ E}}
if I̊ = MEM[e1] := e2

then X = write(I̊, b)
Y = {n | n ∈ EVal(b, e2), decode(n) ∈ I}
Exe = Exe ∪ NEXT(X, Y, M, b)

if I̊ = input ⇒ MEM[e]

then X = write(I̊, b)
Y = {n | n is an input , decode(n) ∈ I}
Exe = Exe ∪ NEXT(X, Y, M, b)

if I̊ = pop e

then X = write(I̊, b)
Y = {n | n ∈ StackVal (b), decode(n) ∈ I}
Exe = Exe ∪ NEXT(X, Y, M, b)

return Exe

NEXT(X, Y, M, b)
Next = ∅
while X �= ∅

select aj from X and X = X � {aj}
Ê = E � {(aj , I̊j , c) | (aj , I̊j , c) ∈ E}
Next = Next ∪ S

n∈Y { M̂ = (Q̂, Ê, Ŝ) |
Q̂ = Q ∪ {aj} ∪ ρ(decode(n), aj)

Ê = Ê ∪ {(aj , ι(decode(n)), d) |
d ∈ ρ(decode(n), aj)}

Ŝ = {d | (b, I̊, d) ∈ E} }
return Next

Fig. 4. Algorithm for statically executing instruction I̊

Let Succ(M) denote the possible evolutions of automaton M , namely the automata
that can be obtained by the execution of the abstract instruction labeling the first transi-
tion edge of a path of M :

Succ(M) =
{

M ′
∣∣∣∣a0[I̊0] . . . [I̊l−1]al[I̊l]al+1 ∈ Π(M), (al, al+1) ∈ TE(M),
∀i ∈ [0, l[: (ai, ai+1) �∈ TE(M), M ′ ∈ EXE(M, I̊l, al)

}

We can now define the static transition T � : ℘(F)→ ℘(F). The idea is that the possible
static successors of an automaton M are all the automata in Succ(M) together with all
the automata M ′ that are different from M and that can be reached from M through
a sequence of successive automata that differ from M only in the entry point. This
ensures the correctness of T �, i.e., Ml ∈ T F(M0) ⇒ Ml ∈ T �(M0), even if between
M0 and Ml there are transition edges that do not correspond to any mutating transition.

Definition 5 Let M = (Q, E, S). T � : ℘(F)→ ℘(F) is given by the point-wise exten-
sion of:

T �(M) = Succ(M)∪

 M ′

∣∣∣∣∣∣
MM1 . . .MkM ′ : M1 ∈ Succ(M), ∀i ∈ [1, k[:
Mi+1 ∈ Succ(Mi), M ′ = (Q′, E′, S′) ∈ Succ(Mk),
(E �= E′ ∨Q �= Q′), ∀j ∈ [1, k] : Mj = (Q, E, Sj)

This allows us to define function FT � [[P0]] : ℘(F∗) → ℘(F∗) that statically approxi-
mates the iterative computation of phase semantics on the abstract domain 〈℘(F ∗),⊆〉
as follows: FT � [[P0]](K) = α̊(P0) ∪ {kMiMj | (Mi, Mj) ∈ T �, kMi ∈ K}. The
following result shows the correctness of S�[[P0]] = lfpFT � [[P0]].

Theorem 6 αF(lfpFT Ph [[P0]]) ⊆ lfpFT � [[P0]].

In Fig. 5 we report a possible sequence of FSA that can be generated during the execu-
tion of program P0 of Fig. 2. In this case, thanks to the simplicity of the example, it is
possible to use the transition relation over FSA defined by T F.

11

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M0

2

3

4

5

6

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

MEM[a] := MEM[a]/2

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M1

2

3

4

5

102

7

 MEM[a] mod 2

T F

 input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M2

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

M3

100

101

MEM[b] := MEM[a]

MEM[a] := MEM[a]/2

goto

6

M4

M0

entry-point=1
TE: (11,12)

M1

entry-point=12
TE: (12,13)

M2

entry-point=13
TE: (11,12)

M3

entry-point=12
TE: (12,13)

M4

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

1

MEM[f] := 100

2

3

4

5

102

7

 MEM[a] mod 2

T F

input => MEM[a]

nop

goto

goto

 MEM[a] :=(MEM[a]+1)/2

goto

ME

103

101

nop

MEM[a] := MEM[a]/2

goto

6

1

MEM[f] := 100

104

goto

100

MEM[b] : = MEM[a]

Fig. 5. Some metamorphic variants of program P0 of Fig. 2, where the metamorphic engine,
namely the instructions stored at locations from 8 to 14, is briefly represented by the box marked
ME. In the graphic representation of automata we omit to show the nodes that are not reachable.

5 Widening phases for regular metamorphism

Regular metamorphism models the metamorphic behaviour as a regular language of
abstract instructions. This can be achieved by approximating sequences of FSA into a
single FSA, denoted W[[P0]]. W[[P0]] represents all possible (regular) program evolu-
tions of P0, i.e., it recognizes all the sequences of instructions that correspond to a run
of at least one metamorphic variant of P0. This abstraction is able to precisely model
metamorphic engines implemented as FSA of basic code replacement as well as it may
provide a regular language-based approximation for any metamorphic engine, by ex-
tracting the regular invariant of their behaviour.

It is known that FSA can be ordered according to the language they recognize:
M1 �F M2 if L (M1) ⊆ L (M2). Observe that �F is reflexive and transitive but not
antisymmetric and it is therefore a pre-order. Moreover, according to this ordering, an
unique least upper bound of two automata M1 and M2 does not always exist, since
there is an infinite number of automata that recognize the language L (M 1) ∪L (M2).
Given two automata M1 = (Q1, δ1, S1, F1, A1) and M2 = (Q2, δ2, S2, F2, A2), we
approximate their least upper bound as follows:

M1 � M2 = (Q1 ∪Q2, δ̂, S1 ∪ S2, F1 ∪ F2, A1 ∪A2)

12

where δ̂ : (Q1 ∪ Q2) × (A1 ∪ A2) → ℘(Q1 ∪ Q2) is defined as δ̂(q, s) = δ1(q, s) ∪
δ2(q, s). FSA are �-closed for finite sets, and the following result shows that � approx-
imates any upper bound with respect to the ordering�F.

Lemma 1 Given two FSA M1 and M2 we have: L (M1) ∪L (M2) ⊆ L (M1 � M2).

We can now define F�
T � [[P0]] : F → F as follows: F�

T � [[P0]](M) = α̊(P0) � M �
(�{M ′ | M ′ ∈ T �(M)}). Observe that the set of possible successors of a given au-
tomaton M , i.e., T �(M), is finite since we have a (finite family of) successor for every
transition edge of M and M has a finite set of edges. Since FSA are �-closed for fi-
nite sets, then F�

T � [[P0]] is well defined. Let ℘F (F∗) denote the domain of finite sets
of strings of FSA and let us define function αS : ℘F (F∗) → F as αS(M0 . . . Mk) =
�{Mi | 0 ≤ i ≤ k} and αS(K) = �{αS(M0 . . .Mk) | M0 . . .Mk ∈ K}, with K ∈
℘F (F∗). Function αS is additive and it defines a GC (℘F (F∗), αS , γS , F). The fol-
lowing result shows that, when considering finite sets of sequences of FSA, F �

T � [[P0]]
correctly approximatesFT � [[P0]] on F.

Theorem 7 For any K ∈ ℘F (F∗) we have αS(FT � [[P0]](K)) �F F�
T � [[P0]](αS(K)).

The domain 〈F,�F〉 has infinite ascending chains, which means that, in general, the
fixpoint computation of F �

T � [[P0]] on F may not converge. A typical solution for this
situation is the use of a widening operator which forces convergence towards an upper
approximation of all intermediate computations along the fixpoint iteration, i.e., an ele-
ment in F which upper approximates the iterates ofF �

T � [[P0]] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widening operator between two
FSA M1 = (Q1, E1, S1) and M2 = (Q2, E2, S2) over a finite alphabet A is formalized
in terms of an equivalence relation R ⊆ Q1×Q2 between states. R, also called widen-
ing seed, is used to define another equivalence relation≡R⊆ Q2×Q2 over the states of
M2, such that ≡R= R ◦R−1. The widening between M1 and M2 is then given by the
quotient of M2 with respect to the partition induced by ≡R: M1�M2 = M2/≡R . By
changing the widening seed we obtain different widening operators. It has been proved
that convergence is guaranteed when the widening seed is the relation R n ⊆ Q1 ×Q2

such that (q1, q2) ∈ Rn if q1 and q2 recognize the same language of strings of length
at most n [14]. When considering the widening seed Rn we have that two states q and
q′ of M2 are ≡Rn -equivalent if they recognize the same language of length at most n
that is recognized by a state r of M1, i.e., if ∃r ∈ Q1 : (r, q) ∈ Rn and (r, q′) ∈ Rn.
�n denotes the widening operator that uses Rn as widening seed. �n is well defined if
I̊ is finite. This can be achieved by considering expressions as terms and by applying
some of the standard methods for approximating them. The most straightforward one is
the depth-k string abstraction [24], while more refined expression abstractions can be
designed by considering graph-based or grammar-based term abstractions [3, 15]. For
simplicity we consider here the depth-k term abstraction where expressions are repre-
sented as trees with leafs that are natural numbers denoting either a memory location
or a constant, and internal nodes are the operators constructing expressions, namely the
unary operator MEM or the binary operators op. We annotate each node with its depth,
namely with the length of the path from the root to the node. The depth-k abstraction,
given a tree representation of an expression, considers only the nodes with depth less or

13

equal to k and “cuts” the remaining nodes by approximating them with
. For example,
the depth-3 abstraction of expression MEM[(MEM[a] op MEM[b op MEM[c]]) op d]
is MEM[(MEM[
] op MEM[
]) op d]. Given k ∈ N, let ιk : I̊ → I̊k be the instruc-
tion abstraction that applies the depth-k abstraction to the expressions occurring in an
abstract instruction, and let αk : F → Fk be the function that abstracts the edge la-
bels of a FSA in F according to ιk . It is possible to show that (F, αk, γk, Fk) is a GC,
where γk(Mk) = �{M ′ | αk(M ′) �F Mk}. This allows us to approximate the least
fixpoint of F�

T � [[P0]] on 〈Fk,�F〉 with the limit W[[P0]] of the following widening se-
quence: W0 = αk(α̊(P0)) and Wi+1 = Wi �n αk(F�

T � [[P0]](γk(Wi))). Let us refer
to W[[P0]] as the widened fixpoint of F�

T � [[P0]] and to W0W1, . . . as the widening se-
quence of F�

T � [[P0]]. From the correctness of �n and by Theorem 7, it follows that the
widening sequence W0W1 . . . converges to an upper-approximation of the least fixpoint
of FT � [[P0]], namely any automata modelling a possible static variant of P 0 is approx-
imated by W[[P0]] i.e., . . . Mi . . . ∈ lfp⊆FT � [[P0]] ⇒ Mi �F W[[P0]]. Therefore
L (W[[P0]]) contains all the possible sequences of abstract instructions that can be exe-
cuted by a metamorphic variant of P0. As a consequence, a program Q is a regular (ab-
stract) metamorphic variant of P0 if W[[P0]] recognizes all the sequences of abstract in-
structions that correspond to the runs of Q up to address renaming: P 0 �Fk

Q iff there
exists an address renaming ϑ such that ϑ(L (αk(α̊(Q)))) ⊆ L (W[[P0]]). The language
L (W[[P0]]) represents the regular metamorphic signature of P0 and the automaton
W[[P0]] represents the mechanism of generation of the metamorphic variants and there-
fore it provides a model of the metamorphic engine of P 0. Fig. 6 (a) shows the widened
fixpoint W[[P0]] of program P0 in Fig. 2, where the widening seed is R2 and k ≥ 3, This
automaton recognizes any possible program that can be obtained during the execution of
P0. Note that, we may have false positives, as for example the sequences of instructions
along the bold path MEM[f] := 100; input⇒ MEM[a]; MEM[a] mod 2 = 0; MEM[b] :=
MEM[a]; goto; MEM[b] := MEM[a]; goto; . . . which is not a run of any of the variants
of P0. Regular metamorphism can easily cope with metamorphic transformations com-
monly used by malware (e.g., Win95/Regswap, Win32/Ghost, Win95/Zperm,
Win95/Zmorph, Win32/Evol) such as: register swap that changes the registers
used by the program; code permutation that changes the order in which instructions
appear in memory while preserving their execution order through the insertion of direct
jumps; junk/nop insertion that inserts junk instructions and semantic-nops, namely in-
structions that are not executed or that do not alter program functionality. Observe that
all these transformations can be seen as special cases of code substitution. Let P0 be
a metamorphic malware: whenever a sequence s1 of instructions is substituted with an
equivalent one s2, we have that during the widened fixpoint computation a new path
containing sequence s2 is added to the widened fixpoint W[[P0]]. Therefore, by correct-
ness, W[[P0]] recognizes all the possible metamorphic variants of P0 obtained through
code substitution. Of course it is possible to further abstract W[[P0]] in order to address
semantic-nop/junk insertion, permutation and register swap in a more efficient way,
namely in such a way that the resulting widened fixpoint is an automaton of a reduced
size. In semantic-nop insertion, the more precise is the static analysis used for identi-
fying (sequences of) instructions that are equivalent to nop, the smaller is the widened
fixpoint W[[P0]] that we obtain. In code permutation, a smaller FSA can be obtained by

14

performing goto-reduction, i.e., by folding nodes reachable by goto-instructions. In
register swapping it is sufficient to replace registers names (i.e., memory locations) with
uninterpreted symbols and then use unification to bind these uninterpreted symbols to
the actual register names (i.e., memory locations) as done in [5]. Let us consider pro-
gram P +

0 obtained by enriching the metamorphic engine of program P 0 of Fig. 2 with
a code permutation and a transformation that substitutes instruction MEM[e 1] := e2

with the equivalent sequence push e1, pop e2. A possible evolution is shown below,
where ME denotes the metamorphic engine.

P
+
0 :
1 : goto 8
2 : if (MEM[a] mod 2) goto 11
3 : nop
4 : goto 100
5 : push MEM[a]/2
6 : pop a
7 : goto 12
8 : MEM[f] := 100
9 : input ⇒ MEM[a]

10 : goto 2
11 : MEM[a] := (MEM[a] + 1)/2
12 : ME
13 : goto 9

100 : push MEM[a]
101 : pop b
102 : goto 5

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of program P +

0 when k ≥ 3. This
FSA is obtained through widening with widening seed R2

and by applying the goto-reduction to handle permutation.
We can observe that every time that in the automaton in Fig. 6
(b) we have an edge labeled with MEM[e1] := e2 between
two states q and p, then we also have a path labeled with
push e2, pop e1 that connects q and p, and this precisely
captures the fact that the metamorphic engine implements
this substitution. The goto-reduction allows here to have a
reduced FSA, and the self-loop labeled with nop makes clear
that the metamorphism could insert an unbounded number of
nop instructions.

MEM[a] mod 2

T F

 MEM[f] := 100

goto

 MEM[a] :=(MEM[a]+1)/2

goto

 input => MEM[a]

ME

goto

nop

MEM[b]:= MEM[a] goto

MEM[a]:=MEM[b]

nop

MEM[b] : = MEM[a]

MEM[a] : = MEM[a]/2

goto

MEM[a]:= MEM[a]/2

MEM[a]:= MEM[a]/2

 MEM[a] mod 2

F

 input => MEM[a]

MEM[b]: MEM[a]

MEM[a]:=MEM[a]/2

T

MEM[f]:=MEM[f]+3

 MEM[f]:= 100
push 100

pop f

nop

nop

MEM[b]:=MEM[a]

push MEM[a]
pop b

push MEM[a]

pop b

push MEM[a]/2

pop a

MEM[b]:=MEM[a]

push MEM[a]

pop b

MEM[a]:=(MEM[a]+1)/2

push (MEM[a]+1)/2

pop a

(a)

goto

(b)

ME

Fig 6. Widened phase semantics

6 Related Works and Discussion

In [13] the authors use trace semantics to characterize the behaviours of both the mal-
ware and the potentially infected program, and use abstract interpretation to “hide” their
irrelevant behaviours. A program is infected by a malware if their behaviours are indis-
tinguishable up to a certain abstraction, which corresponds to some obfuscations. A
significant limitation of this work is that the knowledge of the obfuscation is essential
in order to derive abstractions. In [19] the authors model the malware M as a formula
in the new logic CTPL, which is an extension of CTL able to handle register renaming.
A program P is infected by M , if P satisfies the CTPL formula that models M . By

15

knowing the obfuscations used by malware M it is possible to design CTPL specifica-
tions that recognise several metamorphic variants of M . In [7] the idea is to model the
malware as a template that expresses the malicious intent. Also in this case the defini-
tion of the template is driven by the knowledge of the obfuscations commonly used by
malware. Some researchers have tried to detect metamorphic malware by modelling the
metamorphic engine as formal grammars and automata [16, 20, 25]. These works are
promising, but the design of the grammar and automata is based on the knowledge of
the metamorphic transformations used, and none of them provides a methodology for
extracting a grammar or an automata from a given metamorphic malware. To the best
of our knowledge, we are not aware of any work modelling metamorphism without any
a priori knowledge of the transformations used by the metamorphic engine. The only
other work we are aware of that formally addresses the analysis of self-modifying code
is the one of Cai et al. [4]. However, their goals and results are very different from ours:
Cai et al. propose a general framework based on Hoare logic to verify self-modifying
code, while we use program semantics and abstract interpretation to extract metamor-
phic signature from malicious self-modifying code. In this sense, our key contribution
relies upon the idea that abstract interpretation of phase semantics may provide useful
information about the way code changes, i.e., about the metamorphic engine itself. In-
terestingly, the language recognized by W[[P]] provides an upper-approximation of the
possible metamorphic variants of the original malware, while the automaton itself mod-
els the mechanism of generation of such variants, i.e., the metamorphic engine. With
our approach it is therefore possible to extract properties of the implementation of the
metamorphic engine by abstract interpretation of the phase semantics. It is clear that the
depth-k abstraction considered here for approximating the language of instructions to-
wards a finite alphabet for widening traces of FSA is for sake of simplicity. In general,
widening phases for taming the sequence of modified programs (FSA) generated by
metamorphism into a single FSA modeling regular metamorphism may require a notion
of higher-order widening on FSA, acting both at the level of the graph-structure of the
FSA, for approximating the language of instructions, and at the level of the instruction
set, for approximating the way a single instruction may be composed. The abstraction
of code layout may induce the abstraction of instructions, which itself can be solved by
means of FSA. This opens an interesting new field that may represent a future challenge
for abstract interpretation: the abstraction of code layout, where the code is the object of
abstraction and the way it is generated is the object of abstract interpretation. Of course
FSA provide just regular language-based abstractions of the metamorphic engine. More
sophisticated approximations, using for instance a la Cousot’s context free grammars
and set-constraint-based abstractions of sequences of binary instructions [10], may pro-
vide alternative and effective solutions for non-regular metamorphism.

References

1. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum. Codesurfer/x86-a platform for
analyzing x86 executables. In Proc. Internat. Conf. on Compiler Construction (CC’05), pp.
250–254, 2005.

2. G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executables. In Proc.
Internat. Conf. on Compiler Construction (CC’04), pp. 5–23, 2004.

16

3. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract Interpretation: Towards
the Global Optimization of Prolog Programs. In Proc. Symposium on Logic Programming, pp.
192–204, 1987.

4. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In Proc. ACM conf. on
Programming Language Design and Implementation (PLDI’07), pp. 66–77, 2007.

5. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns. In
Proc. USENIX Security Symp., pp. 169–186, 2003.

6. M. Christodorescu and S. Jha. Testing malware detectors. In Proc. ACM SIGSOFT Internat.
Symp. on Software Testing and Analysis (ISSTA ’04), pp. 34–44, 2004.

7. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware malware
detection. In Proc. IEEE Security and Privacy, pp. 32–46, 2005.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. ACM Symp. on Principles of
Programming Languages (POPL ’77), pp. 238–252, 1977.

9. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. ACM
Symp. on Principles of Programming Languages (POPL ’79), pp. 269–282, 1979.

10. P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based program anal-
ysis by abstract interpretation. In Proc. ACM Conf. on Functional Programming Languages
and Computer Architecture, pp. 170–181, 1995.

11. P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2): 47-103, 2002.

12. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. ACM Symp. on Principles of Programming Languages (POPL ’78), 1978.

13. M. Dalla Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based approach to
malware detection. ACM Trans. Program. Lang. Syst., 30(5):1–54, 2008.

14. V. D’Silva. Widening for automata. Diploma Thesis, Institut Fur Informatick, Universitat
Zurich, 2006.

15. M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interprocedural points-to analysis
in the presence of function pointers. In Proc. ACM Conf. Programming language design and
implementation, pp. 242–256, 1994.

16. E. Filiol. Metamorphism, formal grammars and undecidable code mutation. In Proc. World
Academy of Science, Engineering and Technology (PWASET), vol. 20, 2007.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete. J. of
the ACM., 47(2):361–416, 2000.

18. A. Holzer, J. Kinder, and H. Veith. Using verification technology to specify and detect
malware. In Proc. Internat. Conf. on Computer Aided System Theory, vol. 4739 of LNCS, pp.
497–504, 2007.

19. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith. Detecting malicious code by model
checking. In Proc. Internat. Conf. on Intrusion and Malware Detection and Vulnerability As-
sessment (DIMVA’05), vol. 3548 of LNCS, pp. 174–187, 2005.

20. Qozah. Polymorphism and grammars. 29A E-zine, 2009.
21. P. Singh and A. Lakhotia. Static verification of worm and virus behaviour in binary executa-

bles using model checking. In Proc. IEEE Information Assurance Workshop, 2003.
22. P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley Professional,

2005.
23. P. Ször and P. Ferrie. Hunting for metamorphic. In Proc. Virus Bulleting Conference, pp.

123–144. Virus Bulletin Ltd, 2001.
24. H.Tamaki and T. Sato. Program Transformation Through Meta-shifting. New Generation

Computing, 1(1):93–98, 1983.
25. P. Zbitskiy. Code mutation techniques by means of formal grammars and automatons. Jour-

nal in Computer Virology, 2009.

17

