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Abstract. In this paper we extend the existing literature on xVA along three directions. First, we

enhance current BSDE-based xVA frameworks to include initial margin in presence of defaults. Next,

we solve the consistency problem that arises when the front-office desk of the bank uses trade-specific

discount curves (CSA discounting) which differ from the discount rate adopted by the xVA desk.

Finally, we clarify the impact of aggregation of several sub-portfolios of trades on the xVA-valuation

of the resulting global portfolio and study related non-linearity effects.

1. Introduction

As a consequence of the 2007-2009 financial crisis, academics and practitioners are revisiting the

valuation of financial products in several aspects. In particular, the value of a product should account

for the possibility of default of any agent involved in the transaction. Financial regulations, such as

Basel III/IV and Emir, are also driving the methodological development.

All these issues are represented at the level of valuation equations by introducing value adjustments

(xVA), which are further terms to be added or subtracted to an idealized reference price, computed

in the absence of the aforementioned frictions, in order to obtain the final value of the transaction.

In this paper we aim to provide a unified and comprehensive framework for pricing counterparty risk

with xVA and assessing funding costs by using BSDEs techniques in a market described by diffusions.

We then consider the consistency problem between xVA pricing equations and the CSA discounting

rules, which originates from the quoting mechanism of market standard instruments, and solve it by

relying on an invariance property of linear BSDEs. Furthermore, we extend our approach to include

pricing of a global portfolio possibly stratified in an aggregation of several subsets of claims, and study

non-linearity effects due to incremental xVA charges.

In order to better specify our contribution, we first shortly recall the literature on xVA. Since the

research on xVA is very wide, our overview is far from being exhaustive. The first contribution on

the subject is Duffie and Huang (1996). Before the 2007–2009 financial crisis, the works of Brigo and

Masetti (2005) and Cherubini (2005) analyze the concept of credit valuation adjustment (CVA) for the

first time. The possibility of default of both counterparties involved in the transaction, represented

by the introduction of the debt valuation adjustment (DVA), is investigated, among others, in Brigo

et al. (2011) and Brigo et al. (2014).

Apart from the issue of default risk, another important source of concern for practitioners and aca-

demics is represented by funding costs.

A parallel stream of literature emerged during and after the financial crisis, to generalize valuation

equations to account for features such as the presence of collateralization agreements. In a Black-

Scholes economy, Piterbarg (2010) provides valuation formulas in presence or absence of collateral
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agreements. Piterbarg (2012) generalizes the issue in a multi-currency economy, see also Fujii et al.

(2010), Fujii et al. (2011), and Gnoatto and Seiffert (2021). The funding valuation adjustment (FVA)

under several alternative assumptions on the so called Credit Support Annex (CSA) is derived in

Pallavicini et al. (2011), while Brigo and Pallavicini (2014) also discusses the role of central coun-

terparties in the context of funding costs. A general approach to funding issues in a semimartingale

setting is provided by Bielecki and Rutkowski (2015).

Both funding and default risk need to be unified in a unique pricing framework. Contributions in

this sense can be found in Brigo et al. (2018) by means of the so-called discounting approach. In

a series of papers, Burgard and Kjaer generalize the classical Black-Scholes replication approach to

include many effects, see Burgard and Kjaer (2011b) and Burgard and Kjaer (2013). A more general

BSDE approach is provided by Crépey (2015a), Crépey (2015b), Bichuch et al. (2018) and Bichuch

et al. (2020). The equivalence between the discounting and the BSDE-based replication approaches is

demonstrated in Brigo et al. (2018).

The importance of xVA is reflected by the increasing number of monographs on the subject, see

e.g. Brigo et al. (2013). An advanced BSDE-based treatment is provided by Crépey et al. (2014).

A detailed analysis of how to construct large hybrid models for counterparty risk simulations are

provided in Green (2015), Lichters et al. (2015) and Sokol (2014), while Gregory (2015) provides an

accessible introduction to most aspects of the topic.

The present paper contributes to the literature on xVA along the following directions: on the the-

oretical side, we provide a unifying treatment of different aspects of xVA that have been separately

treated by different authors in a comprehensive approach; on the other hand, we provide a rigorous

mathematical treatment of practical issues arising in the context of xVA calculation and management

in current market practice.

More precisely, we propose an xVA framework using BSDEs techniques in a market described by

diffusions. Our BSDEs, introduced under a progressively enlarged filtration G, are specified up to a

random time horizon, given by the minimum between the default time of the counterparty, the default

time of the bank, and the maturity of the contract. For the sake of simplicity, we first discuss the

well posedness of the BSDE for a portfolio including a contingent claim. Our approach unifies several

contributions from the existing literature. First, we include initial margins in the BSDE driver as

in Agarwal et al. (2019), but we extend their setting by including defaults. Moreover, we consider

different discounting rules without resorting to measure changes as in Bichuch et al. (2018). Finally,

we provide a price decomposition in terms of a clean value and an adjustment process, by considering

the associated pre-default BSDE with respect to the reference filtration F along the lines of Crépey

(2015a), Crépey (2015b) and Bielecki and Rutkowski (2015).

Concerning discounting rules, it is nowadays accepted that the trading activity is funded by resorting

on different sources of liquidity. More precisely, the existence of different funding curves leads to the

consistency problem between xVA pricing equations and the so-called CSA discounting rules. The

latter originates from the quoting mechanism of market standard instruments. Such instruments are

quoted under the assumption that they are perfectly collateralized. Since a perfectly collateralized

transaction is funded by the collateral provider, the discounting rate applied to evaluate market

instruments is given by a collateral rate, which typically corresponds to an overnight interest rate.

The presence of multiple assumptions on the collateral rate implies the co-existence of quotes with

different discounting rates, which are in general at odds with the discounting rate dictated by the

xVA pricing BSDE. A further contribution of our work consists in a solution to the consistency issue

by relying on an invariance property of linear BSDEs. This is realized by introducing a further
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value adjustment term, called Discounting Value Adjustment (DiscVA), representing the clean price

adjustment compared to the one officially accepted by the front-office desk.

Moreover, the counterparty could be economically related to other entities, a typical example being

given by a parent-subsidiary relation or in general by the existence of dedicated sub-portfolios. Such

a scenario results in a multi-layer hierarchical structure in the resulting global portfolio, which also

takes into account the potentially different funding policies implemented by each of the aforemen-

tioned financial entities. We study the impact of such a stratified structure on the formulation of

pricing equations. In realistic situations, the global portfolio of positions between the bank and the

counterparty is in general an aggregation of several subsets of claims, whose structure is dictated by

legal agreements in force between the two agents. We allow for the presence of multiple agreements

for the exchange of margins (margin sets) and multiple netting sets. We adapt our xVA framework to

arbitrary configurations of aggregation levels, while preserving the well posedness of the underlying

BSDE.

Finally, we present incremental xVA charges for new potential trades under the proposed xVA frame-

work: given the presence of portfolio effects in the computation of value adjustments, and given an

existing portfolio of K trades, the xVA charge for a new potential (K+1)-th trade is computed as the

difference of the xVAs of two portfolios. More precisely, this corresponds to the difference between the

xVA of the extended portfolio, consisting of (K + 1) trades, and the xVA charge of the base portfolio

of K trades. In this way we are able to describe non-linearity of portfolio-wide valuation. Existing

discussions concerning the impact of the incremental cash flow of a trade on the balance sheet of the

dealer can be found in Burgard and Kjaer (2013), Castagna (2013), Castagna (2014).

Given our focus on discounting and aggregation levels, in this paper we do not discuss capital valuation

adjustment (KVA). The issue is treated in recent papers such as Albanese and Crépey (2017), Albanese

et al. (2016) and Albanese et al. (2017), see also the ongoing discussion in Andersen et al. (2019).

This is beyond the scope of the present paper and leave it for future research.

The paper is organized as follows. In Section 2 we formalize in mathematical terms the main financial

concepts related to the xVA framework. Section 3 first describes the results related to the xVA eval-

uation when only one transaction is taken into account, extending the analysis to CSA discounting.

Furthermore, we study the xVA framework when the portfolio includes several contracts and inves-

tigate the role played by non-linearity. Section 4 provides an example and some numerical results

illustrating the results of Section 3. In Appendix A we gather some results from the literature used

to derive the main results.

2. The financial setting

We fix a time horizon T <∞ for the trading activity. We consider two agents named the bank (B) and

the counterparty (C). Unless otherwise stated, throughout the paper we assume the bank’s perspective

and refer to the bank as the hedger. All processes are modeled over a probability space (Ω,G,P). Let

W P =
(
W P
t

)
t∈ [0,T ] be a d-dimensional Brownian motion on (Ω,G,P) with associated natural filtration

F.
We denote by τB, resp. by τC , the time of default of the bank, resp. of the counterparty and by

Hj
t := 1{τ j≤t}, j ∈ {B,C}, the associated jump process.

Default times τB and τC are assumed to be exponentially distributed random variables with time-

dependent intensity

Γjt =

∫ t

0
λj,Ps ds, j ∈ {B,C}, t ∈ [0, T ],
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where λj are non-negative bounded F-adapted processes. Let Hj = (Hjt )t∈ [0,T ], j ∈ {B,C}, be the

natural filtration of HB, HC , respectively. On (Ω,G,P) we consider the filtration G = F ∨ H. All

filtrations are required to satisfy the usual hypotheses of completeness and right-continuity.

In the present paper we will extensively make use of the so called Immersion Hypothesis.

Hypothesis 2.1. Any local (F,P)-martingale is a local (G,P)-martingale.

Note that, by Hypothesis 2.1, W P is also a G-Brownian motion. By Bielecki and Rutkowski (2004,

Corollary 5.2.4) we obtain that the predictable representation property holds in G with respect to

W, MB, MC , where

M j
t := Hj

t −
∫ t∧τ j

0
λjudu, t ∈ [0.T ],

for j ∈ {B,C}.
From now on, we set

(2.1) τ := τB ∧ τC ∧ T.

2.1. Basic traded assets. We now introduce the market model. For d ≥ 1, we denote by Si,

i = 1, . . . , d the ex-dividend price (i.e. the price) of risky assets with associated cumulative dividend

processes Di. All Si are assumed to be càdlàg F-semimartingales, while the cumulative dividend

streams Di are F-adapted processes of finite variation with Di
0 = 0.

We consider the following coefficient functions:

µ :
(
R+ × Rd,B

(
R+ × Rd

))
7→
(
Rd,B

(
Rd
))

,

σ :
(
R+ × Rd,B

(
R+ × Rd

))
7→
(
Rd×d,B

(
Rd×d

))
,

κ :
(
R+ × Rd,B

(
R+ × Rd

))
7→
(
Rd+,B

(
Rd+

))
,

(2.2)

which are assumed to satisfy standard conditions ensuring existence and uniqueness of strong solutions

of SDEs driven by the Brownian motion W P. The matrix process σ is invertible at every point in

time. We assume that dSt = µ(t, St)dt+ σ(t, St)dW
P
t

S0 = s0 ∈ Rd
(2.3)

on [0, T ]. Note that we are not postulating that the processes Si are positive. The dividend processes

Di are specified via

(2.4) (D1
t , . . . , D

d
t )
> =

∫ t

0
κ(u, Su)du, t ∈ [0, T ],

for κ given in (2.2) such that
∫ T
0 |κ(u, Su)|du <∞ P-a.s.

The cumulative dividend price associated to the i-th asset is given by

(2.5) Si,cldt := Sit +Bi
t

∫
(0,t]

dDi
u

Bi
u

, i = 1, . . . d , t ∈ [0, T ].

We assume the existence of an indexed family of cash accounts (Bx)x∈I , where the stochastic process

rx := (rxt )t≥0 is bounded and F-adapted for all x ∈ I. The set of indices I embodies the type of

agreement the counterparties establish in order to mitigate the counterparty credit risk. We will

specify the characteristics of the aforementioned indices later on.
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All cash accounts, with unitary value at time 0, are assumed to be strictly positive continuous processes

of finite variation of the form

Bx
t := exp

{∫ t

0
rxsds

}
, t ∈ [0, T ].(2.6)

We introduce two risky bonds with maturity T ? ≤ T and rate of return r̄j + λj , j ∈ {B,C}, issued

by the bank and the counterparty, respectively, with dynamics

dP jt =
(
r̄jt + λjt

)
P jt dt− P

j
t−dH

j
t , j ∈ {B,C}.(2.7)

The payment stream of a financial contract is represented by an F-adapted càdlàg process of finite

variation A = (At)t∈ [0,T ], as in Crépey (2015b). We use the notation ∆At := At −At− for the jumps

of A. To include the presence of default events, we define the process Ā =
(
Āt
)
t∈ [0,T ] by setting

(2.8) Āt := 1{t<τ}At + 1{t≥τ}Aτ− .

Note that Aτ− represents the last payment before default, see also Brigo and Morini (2010).

2.2. Repo-trading and collateralization. In line with the existing literature, we assume that the

trading activity on the risky assets is collateralized. This means that borrowing and lending activities

related to risky securities are financed via security lending or repo market, see Bichuch et al. (2018)

Since transactions on the repo market are collateralized by the risky assets, repo rates are lower

than unsecured funding rates. As argued in Crépey (2015a), assuming that all assets are traded via

repo markets is not restrictive. In case the transactions are fully collateralized, this translates in the

following equality

ξitS
i
t + ψitB

i
t = 0, i = 1 . . . , d, t ∈ [0, T ],(2.9)

where B1, . . . , Bd are the cash accounts associated to the risky assets S1, . . . , Sd.

It is worth noting that ξit, i = 1, . . . , d, may be either positive or negative. Here ξit > 0 means that we

are in a long position, which has to be financed by collateralization. On the other hand, ξit < 0 implies

that the i-th asset is shorted, so that the whole amount of collateral is deposited in the riskless asset.

Condition (2.9) plays an important role in precluding trivial arbitrage opportunities among different

cash accounts.

Within the bank, the trading desk borrows and lends money from/to the treasury desk. Borrowing

and lending rates are allowed to differ, hence we denote by rf,b, rf,l the rate at which the trading

desk borrows from and lends to the treasury desk, respectively. In the same notation as in (2.6), we

introduce the associated cash accounts Bf,b, Bf,l. This means that if the position of the trading desk

is negative, i.e. ψf = ψf,b < 0, the trading desk borrows from the treasury desk at the rate rf,b.

Conversely, if the position of the trading desk is positive, i.e. ψf = ψf,l > 0, the trading desk lends

money to the treasury desk with remuneration rf,l. Since simultaneously borrowing and lending from

the treasury desk is precluded, we set

(2.10) ψf,lt ψf,bt = 0, for all t ∈ [0, T ].

For what concerns financial contracts, collateralization is a method to minimize losses due to default

of the counterparty by using margins. In the financial jargon, a margin represents an economic value,
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either in the form of cash or risky securities, exchanged between the counterparties of a financial trans-

action, in order to reduce their risk exposures. In line with the current market practice, we distinguish

between initial margin and collateral (or variation margin), that we present in the following.

2.2.1. Variation margin. A collateral is posted between the bank and the counterparty to mitigate

counterparty risk. The collateral process C = (Ct)t∈ [0,T ] is assumed to be G-adapted. We follow the

convention of Bichuch et al. (2018) and Crépey (2015a):

• If Ct > 0, we say that the bank is the collateral provider. It means that the counterparty

measures a positive exposure towards the bank, so it is a potential lender to the bank, hence

the bank provides/lends collateral to reduce its exposure.

• If Ct < 0, we say that the bank is the collateral taker. It means that the bank measures a

positive exposure towards the counterparty, so it is a potential lender to the counterparty,

hence the counterparty provides/lends collateral to reduce its exposure.

Let V = (Vt)t∈ [0,T ] be a generic G-adapted process, representing either the value of the trade including

counterparty risk and funding adjustments or the clean value process, as it will be clarified later on.

We assume that Ct := f(Vt), t ∈ [0, T ], where f : R → R is a Lipschitz function. This assumption

allows to cover realistic collateral specifications, see e.g. Lichters et al. (2015) and Ballotta et al.

(2019).

If there is a collateral agreement (or a multitude of agreements) between the bank and the counterparty,

in evaluating portfolio dynamics we need to make a distinction between the value of the portfolio and

the wealth of the bank, the two concepts being distinguished since the bank is not the legal owner of

the collateral (prior to default).

In this paper collateral is always posted in the form of cash, in line with standard current market

practice. Moreover, we assume rehypothecation, meaning that the holder of collateral can use the cash

to finance her trading activity. This is the opposite of segregation, where the received cash collateral

must be kept in a separate account and can not be used to finance the purchase of assets.

We associate the following interest rates to the collateral account:

• rc,l with account Bc,l, representing the rate on the collateral amount received by the bank

who posted collateral to the counterparty.

• rc,b with account Bc,b, representing the rate on the collateral amount paid by the bank who

received collateral from the counterparty.

We simply set rc = rc,l = rc,b in case there is no bid-offer spread in the collateral rate. Possible

choices for the collateral rate are e.g. EONIA for EUR trades, Fed Fund for USD and SONIA for

GBP trades. Such rates are overnight rates with a negligible embedded risk component. The choice

of such approximately risk-free rates as collateral rates is motivated by market consensus. However,

two counterparties might enter a collateral agreement that involves a remuneration of collateral at

any other risky rate of their choice. Here we do not assume any requirements on collateral rates.

This allows us to cover the quite common situation where the collateral rate agreed between the two

counterparties in the CSA is defined by including a real valued spread over some market publicly

observed rate, e.g. EONIA −50 bps, where bps stands for basis points.

For the collateral account we have the following equations:

(i) if Ct > 0, then the bank has lent ψct = ψc,lt < 0 units of the collateral account to the

counterparty, i.e.,

(2.11) ψc,lt B
c,l
t = −C+

t , t ∈ [0, T ];
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(ii) if Ct < 0, then the bank has borrowed ψct = ψc,bt > 0 units of the collateral account from the

counterparty, i.e.,

(2.12) ψc,bt Bc,b
t = C−t , t ∈ [0, T ].

It is worth noting that we use the following conventions: x+ := max{x, 0}, x− := max{−x, 0} so that

x = x+−x−. Note that this is in contrast to the convention adopted e.g. in Burgard and Kjaer (2011a,

2013).

2.2.2. Initial margin. The collateralization represented by the variation margin is imperfect, due to

the margin period of risk phenomenon: a defaulted counterparty stops posting collateral. However,

bankruptcy procedure requires a certain time interval (typically 10 or 20 days) before the close-out

payments are performed. This results in a period of time where the value of the transaction oscillates

in the absence of an adjustment of the collateral account, hence producing an exposure. This is one

of the reasons for the introduction of initial margins, which constitutes a further form of collateral.

According to the EMIR regulation, starting from 2020, most agents participating in an OTC trans-

action will be forced to post initial margin, which constitutes an additional form of collateral. Initial

margin, according to Garcia Trillos et al. (2016) is a misnomer, as an initial margin is not only initial,

but it is periodically updated during the lifetime of the trade. It is initial in the sense that it is meant

to provide a coverage from the initial point in time, where there is a default of the counterparty in a

collateralized transaction.

It is important to stress that, differently from variation margin, an initial margin can not be rehy-

pothecated, but it is instead segregated. From the point of view of the wealth dynamics, this means

that initial margin received from the counterparty can not be used by the trading desk as a compo-

nent of the value of the portfolio. However, the received initial margin represents a loan from the

counterparty that must be remunerated, hence funding costs related to initial margin will appear in

the self-financing condition, see (2.18) and (3.6) for further details.

Remark 2.2. Initial margins are usually quantified by using suitable risk measures, such as value

at risk or expected shortfall, as we will specify in (3.24). Expected shortfall is a popular choice to

compute the initial margin for credit derivatives, since it is a coherent risk measure. Recently, the

International Swaps and Derivatives Association (ISDA) has proposed a novel methodology, the so

called Standard Initial Margin Model (SIMM), see ISDA (2018). SIMM provides some standardized

formulae to evaluate initial margin on non-cleared derivatives, based on using portfolio sensitivities

instead of historical simulations.

We model initial margins with G-adapted processes ITC = (ITCt )t∈ [0,T ], I
FC = (IFCt )t∈ [0,T ], and we

denote by BI,x, x ∈ {l, b}, the cash accounts associated to ITC , IFC , respectively.

In case the bank is the initial margin provider, the bank posts ITC to the counterparty (TC), i.e.

(2.13) ψI,lt B
I,l
t = −ITCt , t ∈ [0, T ],

or equivalently

(2.14) − ψI,lt dB
I,l
t = rI,lt I

TC
t dt .

In case the bank is the initial margin taker, the bank receives IFC from the counterparty (FC), i.e.

(2.15) ψI,bt BI,b
t = IFCt , t ∈ [0, T ],
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or equivalently

(2.16) ψI,bt dBI,b
t = rI,bt IFCt dt .

We highlight that, contrary to the case of variation margin and in line with current market practice,

ITC and IFC are simultaneously active and do not net each other. In the sequel we use I = (It)t∈ [0,T ]
as shorthand for both presented or received initial margins.

We now introduce the definition of self-financing strategy in our market model. We recall that we

assume the point of view of the bank (i.e. the hedger).

Definition 2.3. A dynamic portfolio, denoted by ϕ, is given by

ϕ =
(
ξ1, . . . , ξd, ξB, ξC , ψ1, . . . , ψd, ψB, ψC , ψf,b, ψf,l, ψc,b, ψc,l, ψI,b, ψI,l

)
,

where

(i) ξ1, . . . , ξd are G-predictable processes, denoting the number of shares of the risky primary

assets S1, . . . , Sd.

(ii) ξB, ξC are G-predictable processes, denoting the number of shares of the risky bonds PB and

PC .

(iii) ψ1, . . . , ψd, ψB, ψC are G-adapted processes, denoting the number of shares of the repo accounts

B1, . . . Bd, BB, BC .

(iv) ψf,b is a G-adapted process, denoting the number of shares of the unsecured funding borrowing

cash account Bf,b.

(v) ψf,l is a G-adapted process, denoting the number of shares of the unsecured funding lending

cash account Bf,l.

(vi) ψc,b is a G-adapted process, denoting the number of shares of the collateral borrowing cash

account Bc,b for the received cash collateral.

(vii) ψc,l is a G-adapted process, denoting the number of shares of the collateral lending cash account

Bc,l for the posted cash collateral.

(viii) ψI,b is a G-adapted process, denoting the number of shares of the initial margin borrowing

cash account BI,b for the initial margin received from the counterparty.

(ix) ψI,l is a G-adapted process, denoting the number of shares of the initial margin lending cash

account BI,l for the initial margin posted to the counterparty.

All processes introduced above are such that the stochastic integrals in the sequel are well defined.

Given a dynamic portfolio, we associate it to a financial contract, known in the literature as Credit

Support Annex (CSA), see e.g. BCBS (2014).

Definition 2.4. A CSA between the bank and the counterparty is represented by the pair (C, I), where

C is the variation margin and I is the initial margin.

Definition 2.5. A collateralized hedger’s trading strategy associated to the collateralized contract

Ā and the CSA (C, I) is a quintuplet
(
x, ϕ, Ā, C, I

)
, where x ∈ R is the initial endowment, ϕ is a

dynamic portfolio as in Definition 2.3 and I is the initial margin.

Definition 2.6. Given the initial endowment x, a collateralized hedger’s trading strategy
(
x, ϕ, Ā, C, I

)
associated to the collateralized contract Ā and the CSA (C, I) is said to be self-financing if, for any

t ∈ [0, T ], the wealth process Vt(ϕ) given by

Vt(ϕ) := ψf,bt Bf,b
t + ψf,lt Bf,l

t −
(
ψc,bt Bc,b

t + ψc,lt B
c,l
t + ψI,lt B

I,l
t

)
,(2.17)
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satisfies

Vt(ϕ) = x+

d∑
i=1

∫
(0,t]

ξiu

(
µi(u, Su)du+

d∑
k=1

σi,k(u, Su)dW k,P
u + κi(u, Su)du

)

+
d∑
i=1

∫ t

0
ψiudB

i
u +

∑
j∈{B,C}

∫ t

0

(
ξjudP

j
u + ψjudB

j
u

)
− Āt

+

∫ t

0
ψf,bu dBf,b

u +

∫ t

0
ψf,lu dBf,l

u −
∫ t

0
ψc,bu dBc,b

u −
∫ t

0
ψc,lu dB

c,l
u −

∫ t

0
ψI,bu dBI,b

u −
∫ t

0
ψI,lu dB

I,l
u .

(2.18)

The last two terms in (2.18) represent the cash for the received initial margin. In general, we assume

zero initial endowment, x = 0, i.e., Vt(ϕ) = Vt
(
0, ϕ, Ā, C, I

)
for the sake of simplicity. Note that the

sign minus in front of the last term in (2.17) depends on our convention on the collateral. Moreover,

we are not including the cash account for the received initial margin. This is due to the fact that the

received initial margin is posted in a segregated account and, hence, is not available as a funding asset

to the trading desk.

Definition 2.7. A collateralized hedger’s trading strategy is admissible if it is self-financing and the

associated value process V (ϕ) is bounded from below.

We provide the following definition of arbitrage-free strategy.

Definition 2.8. The market model is arbitrage-free if for any admissible hedger’s trading strategy of

the form (0, ϕ, 0, 0, 0) we have either

P [Vτ (0, ϕ, 0, 0, 0) = 0] = 1 or P [Vτ (0, ϕ, 0, 0, 0) < 0] > 0.

Remark 2.9. In Bielecki and Rutkowski (2015, Definition 3.3) the authors introduce the concept of a

market which is said to be arbitrage-free for the hedger with respect to a class of contingent claims.

Their definition is formulated in terms of a netted wealth process, which corresponds to a long-short

strategy involving the claim Ā, where the first position is hedged and the second is unhedged. On

the other hand, in Bichuch et al. (2018) the question concerning absence of arbitrage is first answered

in a setting where only the basic traded assets are considered. This is also referred to as absence of

arbitrage with respect to the null contract in Bielecki et al. (2018). In our setting, the two approaches

coincide.

Assumption 2.10. We assume rf,lt ≤ r
f,b
t , dP⊗ dt-a.s.

We now prove absence of arbitrage for the market model in our setting.

Proposition 2.11. Let Assumption 2.10 hold. Moreover, assume there exists a probability measure

Q ∼ P such that the discounted asset price processes

S̃i,cldt :=
Si,cldt

Bi
t

, i = 1, . . . d, P̃ jt :=
P jt

Bj
t

, j ∈ {B,C},(2.19)

are local martingales. Then, the market model is free of arbitrage opportunities.

Proof. See Section A.1 in Appendix A. �

From now on, we assume the following.
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Assumption 2.12. There exists an equivalent martingale probability measure Q ∼ P under which the

processes S̃i,cldt , P̃ jt in (2.19) are local martingales with dynamics

dS̃i,cldt =
1

Bi
t

(
dSit − ritSitdt+ dDi

t

)
=

d∑
k=1

σi,k(t, St)

Bi
t

dW k,Q
t , i = 1, . . . , d,

dP̃ jt =
1

Bj
t

(
dP jt − r

j
tP

j
t−dt

)
= −P̃ jt−dM

j,Q
t , j ∈ {B,C},

where

M j,Q
t := Hj,Q

t −
∫ t∧τ j

0
λj,Qs ds,

with

λj,Qt := rft − λ
j,P
t − r

j
t , t ∈ [0, T ], j ∈ {B,C}.

By Aksamit and Fontana (2019) we obtain that the predictable representation property in G still

holds after the change of measure to Q with respect to WQ, M j,Q, j ∈ {B,C}.

Definition 2.13. Let β ≥ 0. The subspace of all Rd-valued, F-adapted processes X such that

EQ
[∫ T

0
eβt |Xt|2 dt

]
<∞(2.20)

is denoted by H2,d
β,T (Q). We set H2,d(Q) := H2,,d

0,T (Q) and

(2.21) ‖X‖H2,d
β,T

: =

√
EQ
[∫ T

0
eβt |Xt|2 dt

]
.

The subspace of all Rd-valued, F-adapted processes X such that

EQ

[
sup

t∈ [0,T ]
eβt |Xt|2

]
<∞(2.22)

is denoted by S2,dβ,T (Q). We set S2(Q) := S2,10,T (Q) and

(2.23) ‖X‖S2,dβ,T : =

√√√√EQ

[
sup

t∈ [0,T ]
eβt |Xt|2

]
.

We denote by H2,2
λ (Q) the space of F-adapted processes X with values in R2 such that

EQ
[∫ T

0

∣∣X1
t

∣∣2 λB,Qt +
∣∣X2

t

∣∣2 λC,Qt dt

]
<∞(2.24)

with

(2.25) ‖X‖H2,2
λ

=

√
EQ
[∫ T

0

∣∣X1
t

∣∣2 λB,Qt +
∣∣X2

t

∣∣2 λC,Qt dt

]
.

Assumption 2.14. Assume that the payment stream A ∈ S2(Q).

3. xVA framework

The main contribution of this Section is manifold. On the one hand, in an arbitrage-free framework we

determine the unique solution to the G-BSDE for the valuation of the hedger portfolio (x, ϕ, Ā, C, I),
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consisting of risk-less and risky assets, defaultable bonds and contingent claims. On the other hand,

we provide an arbitrage-free framework for clean values and the market practice of using contingent

claim specific discounting regimes (CSA discounting) by the introduction of a new value adjustment.

Finally, we investigate the shape of the G-BSDE in the realistic situation where the portfolio has a

hierarchical structure of sub-portfolios, and consider non-linear effects in portfolio’s valuation.

Under Assumption 2.12 the dynamics of a self-financing collateralized trading strategy
(
x, ϕ, Ā, C, I

)
is

dVt(ϕ) =

d∑
i=1

ξitB
i
tdS̃

i,cld
t +

∑
j∈{B,C}

ξjtB
j
t dP̃

j
t − dĀt

+ ψf,lt dBf,l
t + ψf,bt dBf,b

t − ψ
c,l
t dB

c,l
t − ψ

c,b
t dBc,b

t − ψ
I,l
t dB

I,l
t − ψ

I,b
t dBI,b

t .(3.1)

By using the repo constraints (2.9), (2.11), (2.12) and (2.14), the portfolio value satisfies

Vt(ϕ) = ψf,lt Bf,l
t + ψf,bt Bf,b

t + Ct + ITCt , t ∈ [0, T ],

since IFC is segregated.

Thanks to (2.10) we obtain the identities

ψf,lt =
(
Vt(ϕ)− Ct − ITCt

)+ (
Bf,l
t

)−1
,(3.2)

ψf,bt = −
(
Vt(ϕ)− Ct − ITCt

)− (
Bf,b
t

)−1
(3.3)

for t ∈ [0, T ]. Observe that by (2.11) and (2.12)

−ψc,lt dB
c,l
t = −ψc,lt r

c,l
t B

c,l
t dt = +rc,lt C

+
t dt,(3.4)

−ψc,bt dBc,b
t = −ψc,bt rc,bt Bc,b

t dt = −rc,bt C−t dt,(3.5)

respectively. By (3.2), (3.3), (3.4), (3.5), (2.14) and (2.16), we can rewrite the wealth dynamics as

follows

dVt(ϕ) =
d∑
i=1

ξitB
i
tdS̃

i,cld
t +

∑
j∈{B,C}

ξjtB
j
t dP̃

j
t − dĀt

+
[
rf,lt
(
Vt(ϕ)− Ct − ITCt

)+ − rf,bt (
Vt(ϕ)− Ct − ITCt

)−
+rc,lt C

+
t − r

c,b
t C−t + rI,lt I

TC
t − rI,bt IFCt

]
dt.

(3.6)

We now introduce for convenience an auxiliary artificial interest rate process r = (rt)t∈ [0,T ], assumed

to be right-continuous, bounded and F-adapted. This rate is not necessarily linked to a traded asset,

but it can be interpreted as an interest rate level, used to express all other rates as spreads over this

artificial rate. When needed, we will explicitly state when the rate r becomes a market rate. Using

the artificial rate r, we can conveniently rewrite the portfolio dynamics as follows

dVt(ϕ) =
d∑
i=1

ξitB
i
tdS̃

i,cld
t +

∑
j∈{B,C}

ξjtB
j
t dP̃

j
t − dĀt

+
[
(rf,lt − rt)

(
Vt(ϕ)− Ct − ITCt

)+ − (rf,bt − rt)
(
Vt(ϕ)− Ct − ITCt

)−
+(rc,lt − rt)C

+
t − (rc,bt − rt)C

−
t + (rI,lt − rt)ITCt − rI,bt IFCt + rtVt(ϕ)

]
dt
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=
d∑

i,k=1

ξitσ
i,k(t, St)dW

k,Q
t −

∑
j∈{B,C}

ξjtB
j
t P̃

j
t−dM

j,Q
t − dĀt(3.7)

+
[
(rf,lt − rt)

(
Vt(ϕ)− Ct − ITCt

)+ − (rf,bt − rt)
(
Vt(ϕ)− Ct − ITCt

)−
+(rc,lt − rt)C

+
t − (rc,bt − rt)C

−
t + (rI,lt − rt)ITCt − rI,bt IFCt + rtVt(ϕ)

]
dt ,

where we added and subtracted the term rtVt(ϕ)dt and used Assumption 2.12.

Remark 3.1. The term (rI,lt − rt)ITCt measures a funding benefit from the posted initial margin over

the reference rate level r. We would like to stress that, in general, spreads over r can be negative,

representing that we may have funding costs, even when the bank is collateral provider. Such a

situation is faced by banks, which clear swaps with the London Clearing House (LCH). If r is chosen

to represent the EONIA overnight rate, then the rate applied by LCH is rI,l = r − 58bps, where bps

stands for basis points1. On top of such a negative benefit, the bank needs to take into account the

cost of raising the amount ITC , hence initial margin can generate funding costs in both directions,

from the point of view of fund-raising and from the point of view of collateral remuneration, hence

representing a significant source of costs for the bank.

In case of default, cashflows are exchanged between the surviving agent and the liquidators of the

defaulted agent. Here we use the term agent as a placeholder for the bank or for the counterparty.

Due to the exchange of cashflows at default time, agents need to perform a valuation of the position

at a random time represented by the close-out condition, see Bichuch et al. (2018) Section 3.4. The

object of the analysis can be the value in the absence of counterparty risk (referred to in the literature

as risk-free close-out) or the value of the trade including the price adjustments due to counterparty

risk and funding (risky close-out), see e.g. Brigo and Morini (2010). A risky close-out condition

guarantees that the surviving counterparty can ideally fully substitute the transaction with a new

trade entered with another counterparty with the same credit quality. This comes at the price of a

significant increase of the complexity of the valuation equations. Current market practice and the

existing literature mainly focus on the case of risk-free close-out value.

Definition 3.2. Let 0 < Rj < 1, j ∈ {B,C}, be the recovery rates of the bank and the counter-

party, respectively. The close-out condition θτ (V, C, ITC , IFC), expressed from the bank’s perspective,

is defined by

(3.8)
θτ (V, C, ITC , IFC) := Vτ + 1{τC<τB}(1−RC)

(
Vτ − Cτ− + IFCτ−

)−
− 1{τB<τC}(1−RB)

(
Vτ − Cτ− − ITCτ−

)+
.

We restate the portfolio dynamics under Q in the form of a BSDE. We set

Zkt :=

∑d
i=1 ξ

i
tσ
i,k(t, St)

Bi
t

,(3.9a)

U jt := −ξjt P̃
j
t−,(3.9b)

f(t, V, C, ITC , IFC) := −
[
(rf,lt − rt)

(
Vt(ϕ)− Ct − ITCt

)+ − (rf,bt − rt)
(
Vt(ϕ)− Ct − ITCt

)−
(3.9c)

+(rc,lt − rt)C
+
t − (rc,bt − rt)C

−
t + (rI,lt − rt)ITCt − rI,bt IFCt

]
.

1see https://www.lch.com/risk-collateral-management/ltd-collateral-management/ltd-fees-collateral
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Under the close-out condition (3.8), the G-BSDE for the portfolio’s dynamics in (3.7) under Q has

then the form

−dVt(ϕ) = dĀt +
(
f(t, V, C, ITC , IFC)− rtVt(ϕ)

)
dt−

∑d
k=1 Z

k
t dW

k,Q
t −

∑
j∈{B,C} U

j
t dM

j,Q
t

Vτ (ϕ) = θτ (V, C, ITC , IFC),

(3.10)

for t ≤ τ. We prove in Theorem 3.16 that there exists a unique solution (V,Z, U) for the G-BSDE

(3.10), and the process V assumes the following form on {τ > t}

Vt(ϕ) = Br
tEQ

[∫
(t,τ∧T ]

dĀu
Br
u

+

∫ τ∧T

t

f(u, V, C, ITC , IFC)

Br
u

du+ 1{τ≤T}
θτ (V, C, ITC , IFC)

Br
τ

∣∣∣∣∣Gt
]
,

(3.11)

where Br
t := exp

(∫ t
0 rudu

)
, t ∈ [0, T ].

Remark 3.3. The G-BSDE (3.10) is in line with the current market practice on xVA. Regulatory

changes in the bankruptcy procedures can be encoded via changes in the terminal condition (i.e. the

close-out condition) whereas new funding policies can be captured by suitable adjustments of the

driver.

In order to solve (3.10) we first have to specify our choice for V in the close-out condition (3.8). To

this purpose, we need the results of the following Section.

3.1. Clean Value under F. A financial product can be traded between any two counterparties.

Since every agent has a different credit quality and different funding costs, this means in general that

a single product (e.g. a 10 year EUR swap) has as many potential values as the number of possible

combinations of agents in the market. It would be highly impractical for a broker to publish all

possible market quotes for all possible counterparties. Publicly observable market quotes provided by

data providers do not take into account xVA frictions and are typically given by a single value (more

precisely a bid and offer price) called clean price. We now provide an arbitrage-free valuation for clean

prices consistent with the current market practice for market quotes2.

A clean price is an ideal value process that would be acceptable between two agents entering a perfectly

collateralized transaction. Perfect collateralization however is not enough to produce a clean price:

we also need to explicitly assume that the two agents entering the transaction are default-free. This

is necessary because, even in the presence of a perfect ideal collateral agreement, counterparty risk is

not perfectly annihilated: when a counterparty defaults, she stops posting collateral.

However, default is not automatically legally recognized: typically, bankruptcy procedures require

some days (e.g. 10 or 20 days) before the close-out payments are exchanged. This creates a period of

time where the counterparty is not officially defaulted but without any collateral adjustment. Such

period of time is known as margin period of risk. During such interval of time the value of the claim

deviates from the value of the collateral account thus creating a credit exposure.

Hence, to preclude margin period of risk and obtain the ideal clean price process, we consider a parallel

market model with perfect collateralization but no default risk.

2Some authors criticize the idea of a price decomposition in terms of clean value and an adjustment process, see e.g.
Bielecki et al. (2018). A situation where the decomposition is not justified is given e.g. by a contingent claim whose
dividend process depends in a non-linear way on the strategy of the hedger in a fully non-linear market, where we have
bid offer spread in all rates, including the repo rates of the assets (which are zero in our case). However, payoffs traded
on the market do not usually feature such non-linear effects. Furthermore, publicly available market quotes are not
influenced by counterparty credit risk.
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Assumption 3.4 (Clean market). A clean market under F without bid-offer spreads is defined by

(i) no bid-offer spread in the funding accounts, i.e., rf,lt = rf,bt = rf ;

(ii) no bid-offer spread in the collateral accounts, i.e., rc,lt = rc,bt = rc;

(iii) the collateral rate is equal to the fictious rate, i.e., rc = r;

(iv) there is no default, i.e. τB = τC =∞ and risky bonds are excluded from the market;

(v) there is no exchange of initial margin;

(vi) perfect collateralization, i.e., V̂t ≡ Ct, for all t ∈ [0, T ], where we use V̂ to denote the value

process of a collateralized hedging strategy in the fictious market without default-risk.

Note that (vi) in Assumption 3.4 implies that the portfolio weights in the cash accounts are of the

form

ψct = − V̂t
Bc
t

, ψft ≡ 0, for all t ∈ [0, T ],

meaning that the position is totally funded by the collateralization scheme, and V̂ = (V̂t)[0,T ] is an

F-adapted process.

The dynamics of the clean portfolio value V̂ resulting from (3.7) and Assumption 3.4 are given by

dV̂t(ϕ) =

d∑
k=1

Ẑkt dW
k,Q
t − dAt + rtV̂t(ϕ)dt, where Ẑkt :=

d∑
i=1

ξ̂itσ
i,k(t, St).(3.12)

Inserting the terminal condition V̂T = 0, we can rewrite the F-dynamics (3.12) for V̂ under Q in the

classical F-BSDE form

−dV̂t(ϕ) = dAt − rtV̂t(ϕ)dt−
∑d

k=1 Ẑ
k
t dW

k,Q
t

V̂T (ϕ) = 0.
(3.13)

We now prove existence and uniqueness for the solution of (3.13).

Theorem 3.5. Under Assumption 2.14 on A, there exists a unique solution
(
V̂ , Ẑ

)
∈ S2(Q) ×

H2,d(Q) to the clean F-BSDE (3.13).

Proof. We note that the clean BSDE (3.13) is similar to the linear BSDE studied e.g. in El Karoui

et al. (1997), where the driver is the multidimensional Brownian motion
(
W 1,Q, . . . ,W d,Q)>.

We can apply Nie and Rutkowski (2016, Theorem 4.1) by observing that M = WQ, Qt = t, U = A,

V̂ = Y and h(t, Yt, Zt) = −rtV̂t, which clearly fulfills the uniform Lipschitz condition. Also the

condition h(·, 0, 0) ∈ S2(Q) is trivially satisfied. We also observe that X = S = diag(S1, . . . , Sd),

hence we have mt = σ(t, St), so that γt = S−11 σ(t, St), for γ satisfying the ellipticity condition (A.2).

According to Theorem A.7 we have V̂ ∈ H2(Q) and V̂ − A ∈ S2(Q). Now, Assumption 2.14 allows

us to conclude that also V̂ ∈ S2(Q). �

Next we show that the process V̂ in Theorem 3.5 provides the arbitrage-free price for the contract

with cashflow stream A.
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Theorem 3.6. Let Q ∼ P be an equivalent probability measure such that all processes S̃i,cld, i =

1, . . . , d, are local Q-martingales. Let
(
V̂ , Ẑ

)
be the unique solution of (3.13). Then, under Assump-

tion 2.14 on A, we have

V̂t(ϕ) := EQ

[
Br
t

∫
(t,T ]

dAu
Br
u

∣∣∣∣∣Ft
]
, for all t ∈ [0, T ] .(3.14)

Proof. The proof follows because Ẑ ∈ H2,d(Q) by Theorem 3.5, B is bounded and thanks to Assump-

tion 2.14. �

From now on, we assume to work with the càdlàg version of V̂ .

Remark 3.7. Here we introduce the concept of clean value by means of a replicating strategy in a

fictious idealized market. Our constructive approach is in line with the current market standard and

the concept of third-party valuation of Bichuch et al. (2018). Formula (3.14) encodes the idea of CSA

discounting. Since the rate r is the remuneration of collateral in a stylized perfect collateral agreement,

we do not need to postulate the existence of a risk-free rate. Bichuch et al. (2018) define the clean value

by introducing an additional valuation measure different from Q. Working with the pricing measure

Q also avoids the issue of estimating parameters under different measures.

So far, our discussion of the clean market focused on a dividend process specified under the reference

filtration F. As stressed e.g. in Crépey (2015b), this assumption is too restrictive to e.g. cover

credit derivatives or wrong-way risk. Though, our objective is to focus on multiple aggregation levels

and different discounting regimes, hence we choose to avoid the technicalities that are involved in

generalizations of the immersion hypothesis.

3.2. Portfolio valuation via G-BSDE. We now discuss existence and uniqueness of the solution for

the G-BSDE (3.10) by following the approach of Crépey (2015b). To this purpose we use the results

on the clean value of Section 3.1 and the following Assumption.

Assumption 3.8. We assume a risk-free close-out valuation under F, namely we set Vt = V̂t(ϕ) in

the close-out condition (3.8).

Definition 3.9. We define the following valuation adjustments:

CV At := Br
tEQ

[
1{τC<τB}(1−RC)

1

Br
τ

(
V̂τ (ϕ)− Cτ− + IFCτ−

)−∣∣∣∣Gt] ,
DV At := Br

tEQ
[

1{τB<τC}(1−RB)
1

Br
τ

(
V̂τ (ϕ)− Cτ− − ITCτ−

)+∣∣∣∣Gt] ,
FV At := Br

tEQ

[∫ τ

t

(rf,lu − ru)
(
Vu(ϕ)− Cu − ITCu

)+ − (rf,bu − ru)
(
Vu(ϕ)− Cu − ITCu

)−
Br
u

du

∣∣∣∣∣Gt
]
,

ColV At := Br
tEQ

[∫ τ

t

(rc,lu − ru)C+
u − (rc,bu − ru)C−u
Br
u

du

∣∣∣∣∣Gt
]
,

MV At := Br
tEQ

[∫ τ

t

(rI,lu − ru)ITCu − rI,bu IFCu
Br
u

du

∣∣∣∣∣Gt
]
.

On {τ > t} , we define

XV At := −CV At +DV At + FV At + ColV At +MVAt,(3.15)
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and set

(3.16) XV Aτ = −θτ + V̂τ on {τ ≤ t} ,

where θτ is defined in (3.8).

Note that the FVA term in Definition 3.9 has a recursive nature, see also Piterbarg (2010). The

exposure is proportional to the full value of the transaction V and not only to the clean value

V̂ . This implies a high complexity of the numerical scheme. Some practitioner’s papers, such as

Burgard and Kjaer (2013), avoid the recursivity issue by means of ad-hoc choices of the funding strate-

gies, such as the funding strategy called semi-replication with no shortfall on default. However, the

bank usually needs to fund the clean value and the value adjustments. Hence, this feature cannot be

ignored in a comprehensive mathematical model.

Example 3.10. Set ITCt = IFCt = 0, rf,b = rf,l = rf , rc,b = rc,l = rc and τC = τB = ∞. Then the

driver of the full BSDE is given by

(3.17) f(t, V, C, 0) := −
(

(rft − rt) (Vt(ϕ)− Ct) + (rct − rt)Ct
)
, t ∈ [0, T ].

In this case, the integral representation (3.11) of V is of the form

Vt(ϕ) = Br
tEQ

[∫
(t,T ]

dAu
Br
u

+

∫ T

t

f(u, V, C, 0)

Br
u

du

∣∣∣∣∣Ft
]
, t ∈ [0, T ].(3.18)

If we set rt = rft dP⊗ dt-a.s. then we obtain by (3.17) that

Vt(ϕ) = Brf

t EQ

[∫
(t,T ]

dAu

Brf
u

+

∫ T

t
(rfu − rcu)

Cu

Brf
u

du

∣∣∣∣∣Ft
]
, t ∈ [0, T ].(3.19)

This corresponds to equation (3) in Piterbarg (2010). If we set rt = rct dP⊗dt-a.s. in (3.17), we obtain

Vt(ϕ) = Brc

t EQ

[∫
(t,T ]

dAu
Brc
u

−
∫ T

t
(rfu − rcu)

(Vt(ϕ)− Cu)

Brc
u

du

∣∣∣∣∣Ft
]
, t ∈ [0, T ],(3.20)

which corresponds to equation (5) in Piterbarg (2010).

From Assumption 3.8 we have V = V̂ . Since V̂ is an F-adapted càdlàg process, we know from

Crépey (2015b, Lemma 2.1) that ∆V̂τ = 0 under the Hypothesis 2.1 between F and G. The same

argument holds true for the collateral process C, which we assumed to be a Lipschitz function of the

clean value, and for the initial margin I, be it posted or received. From now on we identify the clean

value V̂ , the collateral process C and the initial margin I with their left limits. We set

θCt := (1−RC)
(
V̂t − Ct + IFCt

)−
,

θBt := (1−RB)
(
V̂t − Ct − ITCt

)+
,

(3.21)

Definition 3.11. We call pre-default xVA-BSDE the following F-BSDE on [0, T ] with null terminal

condition in T : −dXV At = f̄(V̂t −XV At)dt−
∑d

k=1 Z̄
k
t dW

k,Q
t

XV AT = 0,
(3.22)

where

f̄(V̂t −XV At) := −f(t, V̂ −XV A,C, ITC , IFC)− (rt + λC,Qt + λB,Qt )XV At − λC,Qt θCt + λB,Qt θBt ,

(3.23)
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for θB, θC defined as in (3.21) and λj,Qt = rft − λ
j,P
u − rjt , t ∈ [0, T ], j ∈ {B,C}.

We now discuss existence and uniqueness for the solution to (3.22). In the following, we use subscripts

of the form t:T to indicate the dependence on the path of a process from t up to T . First, we observe

that the driver (3.23) also depends on the initial margins. We set

(3.24) Iis := ρs(V̂s:T −XV As:T )s∈ [t,T ], i ∈ {TC, FC},

where XV At:T := (XV As)s∈ [t,T ] is the process defining the pre-default value adjustment and V̂t:T :=

(V̂s)s∈ [t,T ] is the clean value assumed to be a given exogenous process in S2(Q), both evaluated up

to the contract’s maturity, since they are used to measure the potential future exposure. For each

t ∈ [0.T ], ρt = ρ(ω, t;x), is a risk measure. For the sake of simplicity, we assume the same ρ for both

i ∈ {TC, FC}. This hypothesis can be easily generalized.

We also assume the following

Assumption 3.12. (i) For any X, Y ∈ S2(Q), the process (ρt(Xt:T−Yt:T ))t∈ [0,T ] is in H2,1(Q).

There exists a constant Cρ > 0 and a family of measures (νs)s∈ [0,T ] on R such that νt([t;T ]) =

1, for every t ∈ [0, T ], and, for any x, y1, y2 ∈ S2(Q), we have

(3.25)
∣∣ρt(xt:T − y1t:T )− ρt(xt:Y − y2t:T )

∣∣ ≤ CρE [∫ T

t
|y1s − y2s |νt(ds)

∣∣Ft] , dt⊗ dP a.e.

(ii) we assume that f satisfies Assumption A.8 with y = V̂ − XV A
i
, z = C and λ = ρi, for

i = 1, 2.

Lemma 3.13. Let (XV A
i
, Z

i
) ∈ S2(Q)×H2,d(Q), i = 1, 2, be solutions to the F-BSDE (3.22), with

f i(t, V̂ −XV Ai, C, ρi) satisfying Assumption 3.12, for i = 1, 2.

Moreover, define

δXV A := XV A
1 −XV A2

,

δZ := Z
1 − Z2

,

δf := f1(V̂ −XV A2
)− f2(V̂ −XV A2

),

δρ := ρ1s(V̂s:T −XV A
2
s:T )− ρ2s(V̂s:T −XV A

2
s:T ),

for any s ∈ [t, T ]. Then, there exists a constant c > 0 such that for µ > 0, we have for β large enough

‖δXV A‖2S2β,T ≤ c
[
eβTE

[
|δξ|2

]
+

1

µ2

(
‖δ2f‖2H2,d

β,T

+ Cf1 ‖δ2ρ‖2H2,d
β,T

)]
,(3.26)

‖δZ‖2H2,d
β,T

≤ c
[
eβTE

[
|δξ|2

]
+

1

µ2

(
‖δ2f‖2H2,d

β,T

+ Cf1 ||δρ‖2H2,d
β,T

)]
,(3.27)

where ‖δXV A‖S2β,T and ‖δZ‖H2,d
β,T

are defined in (2.23) and (2.21), respectively.

Proof. First, we observe that f i(V̂ −XV Ai), i = 1, 2, given in (3.23), consists of three terms. The first

one is the full G-BSDE driver f, given in (3.9c) and expressed in terms of the collateral C, which is a

Lipschitz function of the clean value by definition, and the (posted/received) initial margin I, which is

Lipschitz by (3.24) and (3.25). The second term depends on the short rate r and the jump intensities

λB,Q, λC,Q, which are bounded by definition. The last term relies upon the close-out conditions θB, θC

given in (3.21), which are Lipschitz functions, by following the same arguments as before. Therefore,

the driver satisfies Assumption A.8. Moreover, we observe that, for any (XV A
1
, Z

1
), (XV A

1
, Z

1
) ∈
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S2(Q)×H2,d(Q), we have

|f1(V̂ −XV A1
)− f2(V̂ −XV A2

)|

≤ |f1(V̂ −XV A1
)− f1(V̂ −XV A2

)|+ |f1(V̂ −XV A2
)− f2(V̂ −XV A2

)|

≤ |f1(s, V̂ −XV A1
, C, ρ1(V̂s:T −XV A

1
s:T ))− f1(s, V̂ −XV A2

, C, ρ1(V̂s:T −XV A
2
s:T ))|

+ |(rs + λC,Qs + λB,Qs )(XV A
1 −XV A2

)|+ |δf |

≤ (C̄f1 + C̄s)
(
|δXV A|

)
+ C̄f1

(
|ρ1(V̂s:T −XV A

1
s:T )− ρ1(V̂s:T −XV A

2
s:T )|+ |δρ|

)
+ |δf |

where the last inequality holds true thanks to Assumption A.8, adding and subtracting ρ1(V̂s:T −
XV A

2
s:T ) and choosing a suitable constant C̄s ≥ rs + λC,Qs + λB,Qs .

The result follows by applying the argument provided in the proof of Crépey et al. (2020, Lemma 3.1)

with terminal condition ξ = 0. �

Proposition 3.14. Under Assumptions 2.14, A.8 and 3.12, the F-BSDE (3.22) is well posed and has

a unique solution (XV A,Z) ∈ S2(Q)×H2,d(Q).

Proof. The proof is analogous to the one in Crépey et al. (2020, Theorem 3.1) by using the estimates

(3.26) and (3.27). �

Now, given the uniqueness of the solution to (3.22) we have the following result.

Proposition 3.15. Let
(
XV A, Z̄

)
be the unique solution of the pre-default XVA-BSDE (3.22). Define

Xt := XV AtJt + 1{τ≤t}ϑτ , t ∈ [0, τ ∧ T ],(3.28)

where Jt := 1{t<τ} = 1−Ht and ϑt := −θt + V̂t, t ∈ [0, T ]. Then, under Under Assumptions 2.14 and

3.12, the process
(
X, Z̄, Ũ

)
solves the G-BSDE on {τ > t}

−dXt = −
[
f(t, V̂ −XV A,C, ITC , IFC) + rtXV At

]
dt−

∑d
k=1 Z̃

k
t dW

k,Q
t −

∑
j∈{B,C} Ũ

j
t dM

j,Q
t

Xτ =
(
V̂τ (ϕ)− θτ (V̂ , C, ITC , IFC)

)
,

(3.29)

where Ũ j , j ∈ {B,C}, are G-adapted processes in H2,2
λ (Q) such that∑

j∈{B,C}

Ũ jt dM
j,Q
t = −

(
(ϑt −XV At)dJt + λC,Qt (−θCt −XV At)dt+ λB,Qt (θBt −XV At)dt

)
.(3.30)

In particular, Xt = XV At, t ∈ [0, T ], where XV A is introduced in Definition 3.9.

Proof. We start from (3.28) and apply the product rule, hence

dXt = d
(
XV AtJt

)
+ d

(
1{τ<T}ϑτ

)
= dXV At∧τ +XV AtdJt − ϑtdJt.

By (3.22) we obtain

dXt =
[
f(t, V̂ −XV A,C, ITC , IFC) + (rt + λC,Qt + λB,Qt )XV At + λC,Qt θCt − λ

B,Q
t θBt

]
dt

+

d∑
i=1

Z̄kt 1{t<τ}dW
k,Q
t −

(
ϑt −XV At

)
dJt.
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We note that the process
∑d

i=1

∫ ·
0 Z̄

k
u1{u<τ}dW

k,Q
u is a (G,Q)-martingale, since Z̄ is in H2,d(Q) due

to the immersion hypothesis. From Lemma 5.2.9 in Crépey et al. (2014) we deduce that the process,

expressed in differential form

−
(

(ϑt −XV At)dJt + λC,Qt (−θCt −XV At)dt+ λB,Qt (θBt −XV At)dt
)

(3.31)

is also a (G,Q)-local martingale. Moreover, we observe that, since V̂ ∈ S2(Q), also C ∈ S2(Q),

C being a Lipschitz function of V̂ . Additionally, the initial margin, be it posted or received, lies in

H2(Q) by assumption. Summing up, both θB and θC , and hence ϑ belong to the space H2(Q). On

the other hand, XV A ∈ S2(Q). Recalling that both λC,Q and λB,Q are bounded, it follows that the

compensated jump term (3.31) is a square integrable martingale. Since the predictable representation

property holds in G with respect to W j,Q, M j,Q, j ∈ {B,C}, under the measure Q, we obtain that

there exists ŨB, ŨC ∈ H2,2
λ (Q) satisfying (3.30). We conclude that the process XV A solves the

xVA-BSDE (3.29) under the filtration G. �

We can finally combine the solution of the BSDE (3.22) for the clean value with the result of Proposition

3.15 to solve the G-BSDE (3.10).

Theorem 3.16. Let Vt := V̂t − XV At, t ∈ [0, T ], on {τ > t}, where V̂ and XV A are defined

in (3.14) and (3.15), respectively. Then, under Assumptions 2.14 and 3.12, the triplet (V,Z, U) ∈
S2(Q)×H2,d(Q)×H2,2

λ (Q) solves the G-BSDE (3.10) with V = V̂ , where Z and U are given by

Zkt = Ẑkt − Z̃kt , k = 1, . . . , d,(3.32)

U jt = −Ũ jt , j ∈ {B,C}.(3.33)

Moreover, the process V satisfies (3.11).

Proof. By Hypothesis 2.1, on {t < τ} we have

V̂t(ϕ) = Br
tEQ

[∫
(t,T ]

dAu
Br
u

∣∣∣∣∣Ft
]

= Br
tEQ

[∫
(t,T ]

dAu
Br
u

∣∣∣∣∣Gt
]
.

So we consider V̂ under G. We also observe that, on {t < τ}, we have Āt = At. Using (3.13) and

(3.29), we write the dynamics of V on {t < τ}

−dVt = dĀt +
[
f(t, V̂ −XV A,C, ITC , IFC)dt− rt

(
V̂t −XV At

)]
dt

−
d∑

k=1

(
Ẑkt − Z̃kt

)
dW k,Q

t −
∑

j∈{B,C}

(
−Ũ jt

)
dM j,Q

t

with terminal condition at τ

Vτ = V̂τ −XV Aτ = V̂τ −
(
θτ − V̂τ

)
= θτ .

Since Z = Ẑ − Z̃ ∈ H2,d(Q) and U = −Ũ ∈ H2,2
λ (Q), by Theorem 3.5 and Proposition 3.15, we

obtain that (V,Z, U) solves the G-BSDE (3.10) and satisfies the required integrability conditions.

Finally, we are now able to prove that (3.11) is equivalent to (3.10).

Here we assume to work only on {τ > t}. Since Vt = V̂ −XV At and thanks to Definition 3.9 we have

Vt(ϕ) = V̂t(ϕ) +Br
tEQ

1{τC<τB}

(1−RC)
(
V̂τ (ϕ)− Cτ− + IFCτ−

)−
Br
τ
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−1{τB<τC}

(1−RB)
(
V̂τ (ϕ)− Cτ− − ITCτ−

)+
Br
τ

−
∫ τ

t

(rf,lu − ru)
(
Vu(ϕ)− Cu − ITCu

)+ − (rf,bu − ru)
(
Vu(ϕ)− Cu − ITCu

)−
Br
u

du

−
∫ τ

t

(rc,lu − ru)C+
u − (rc,bu − ru)C−u
Br
u

du−
∫ τ

t

(rI,lu − ru)ITCu − rI,bu IFCu
Br
u

du
∣∣∣Gt] .

By (3.9c) we obtain

Vt(ϕ) = V̂t(ϕ) +Br
tEQ

1{τC<τB}

(1−RC)
(
V̂τ (ϕ)− Cτ− + IFCτ−

)−
Br
τ

−1{τB<τC}

(1−RB)
(
V̂τ (ϕ)− Cτ− − ITCτ−

)+
Br
τ

+

∫ τ

t

f(u, V, C, ITC , IFC)

Br
u

du
∣∣∣Gt] .

Assumption 3.8 and (2.8) ensure that

Vt(ϕ) = V̂t(ϕ) +Br
tEQ

[∫ τ

t

f(u, V, C, ITC , IFC)

Br
u

du+
θτ (V̂ (ϕ), C, ITC , IFC)− V̂τ (ϕ)

Br
τ

∣∣∣Gt] .
Now, we apply (3.14), the tower property and Hypothesis 2.1, so that

Vt(ϕ) = Br
tEQ

[∫ τ

t

f(u, V, C, ITC , IFC)

Br
u

du+ 1{τ≤T}
θτ (V̂ (ϕ), C, ITC , IFC)

Br
τ

∣∣∣Gt]

+Br
tEQ

[∫
(t,T ]

dAu
Br
u

−
∫
(t,T ]

dAu
Br
τ

∣∣∣Gt] .
Finally, again by (2.8), we have

Vt(ϕ) = Br
tEQ

[∫
(t,T ]

dĀu
Br
u

+

∫ τ

t

f(u, V, C, ITC , IFC)

Br
u

du+
θτ (V̂ (ϕ), C, ITC , IFC)

Br
τ

∣∣∣Gt] .
�

We now provide an explicit formula for the value adjustments under the filtration F. This represen-

tation is particularly useful from a computational point of view: risk factors can be simulated under

the smaller filtration F and the computation of value adjustments does not require the simulation of

default times. It is an immediate consequence of Proposition 3.14.

Corollary 3.17. Let
(
XV A, Z̄

)
be the unique solution to the pre-default xVA-BSDE under F (3.22).

Define the process r̃ = (r̃t)t∈[0,T ] by setting r̃ := r + λC,Q + λB,Q. Under Assumptions 2.14 and 3.12

the stochastic process XV A admits the following representation.

XV At = −CV At +DV At + FV At + ColV At +MVAt,(3.34)

where

CV At := Br̃
tEQ

[
(1−RC)

∫ T

t

1

Br̃
u

(
V̂u(ϕ)− Cu + IFCu

)−
λC,Qu du

∣∣∣∣Ft] ,
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DV At := Br̃
tEQ

[
(1−RB)

∫ T

t

1

Br̃
u

(
V̂u(ϕ)− Cu − ITCu

)+
λB,Qu du

∣∣∣∣Ft] ,
FV At := Br̃

tEQ

[∫ T

t

(rf,lu − ru)
(
Vu(ϕ)− Cu − ITCu

)+ − (rf,bu − ru)
(
Vu(ϕ)− Cu − ITCu

)−
Br̃
u

du

∣∣∣∣∣Ft
]
,

ColV At := Br̃
tEQ

[∫ T

t

(rc,lu − ru)C+
u − (rc,bu − ru)C−u
Br̃
u

du

∣∣∣∣∣Ft
]
,

MV At := Br̃
tEQ

[∫ T

t

(rI,lu − ru)ITCu − rI,bu IFCu
Br̃
u

du

∣∣∣∣∣Ft
]
.

In the literature there has been an intense debate regarding the problem given by the possible overlap

between FVA and DVA, see e.g. Hull and White (2012), Andersen et al. (2019), Brigo et al. (2019)

and references therein. This problem, however, is due to accounting inconsistencies that do not affect

our pricing equations. We limit ourselves to mention that a sound treatment of the issue is provided

by Brigo et al. (2019) and that their solution can be embedded in our framework at the cost of further

notations.

3.3. The xVA-CSA consistency problem. We here provide an arbitrage-free framework for the

CSA discounting practice, i.e. the practice of using contingent claim specific discounting regimes.

In Section 3.1 we assumed that the clean value refers to an idealized fully collateralized transaction

where the collateral rate is simply r. The situation in practice is more complicated. The market

practice adopted for the computation of clean prices involves a multitude of discount curves. Possible

examples from the current market practice are

• The (clean) value of a perfectly uncollateralized derivative might be discounted by a bank by

means of a bank-specific funding curve with associated short rate rf (this could correspond

to the Libor rate for a bank belonging to the Libor panel), see e.g. Piterbarg (2010).

• The (clean) value of a derivative collateralized in a foreign currency is discounted on the

market at a rate depending on cross currency bases, see the formulas and derivations in

Gnoatto and Seiffert (2021).

It is quite natural to ask why banks employ many discount regimes for clean values and, on top of that,

xVA corrections. The main reason is purely pragmatic and non-mathematical: from the perspective

of a trading desk it is convenient to treat CSAs by means of different discount regimes, because this

allows to deal with portfolio market risk via traditional trading-desk techniques, such as curve trades

(i.e. e.g. buying/selling interest rate swaps on different buckets/maturities along the curve). Hedging

the expectation of an integral such as the FVA term in practice is much more complicated. A possible

approximate treatment involves discretizing the time integral and treating the resulting Riemann sum

over time as a portfolio of claims. In view of the aforementioned difficulty, market operators prefer

to obtain an additive price representation, where discount curves are used to reduce the magnitude of

the (funding related) xVA terms, which are more difficult to hedge.

From now on, we shall assume that the bank has two internal desks, dubbed the front-office desk

and the xVA desk, respectively. The front-office desk is responsible for the calculation of clean values

and for the trading activity required to hedge market risk of the clean values. The xVA desk instead

computes and hedges all the value adjustments and is forced, according to internal rules of the bank,

to adopt for each transaction the clean value dictated by the front-office desk. The fact that the xVA

desk is a clean-value-taker implies that care is needed when computing xVAs, in order to avoid double

counting effects.
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The xVA desk has to deal with two different clean values for the same transaction. On the one side, it

performs an arbitrage-free pricing by computing the clean value by means of the F-BSDE (3.13). On

the other side, it has to use the clean value prescribed by the front office function, which constitutes

the official clean value accepted within the bank. The xVA desk is then faced with the following

challenge:

Problem 3.18 (xVA-CSA consistency problem). Produce a price decomposition of V in terms of

clean value and xVA such that

(i) the representation of V is coherent with the G-BSDE (3.10), and

(ii) the clean price corresponds to the one prescribed by the front-office function.

We now provide a solution for Problem 3.18 by using the results of Section 3.

Remark 3.19. To provide a concrete example, consider the situation where the trading desk of the

bank enters into two perfectly collateralized transactions with two different counterparties, the first

one being e.g. a clearing house such as LCH, the other one being another clearing house such as

Eurex. Although the dividend process of the claim is the same for both transactions, the collateral

remuneration provided by the trade with Eurex and the trade with LCH is different. The spread in the

collateral remuneration between EUREX and LCH is called Eurex-LCH basis, see e.g. Mackenzie Smith

(2017) for a more detailed discussion. This will result in the two clean values being computed by means

of different discounting rates.

In summary, the market practice of discounting cashflows according to trade-specific collateral rates

implies that, within the bank, a single transaction will be discounted at least according to two different

regimes. Initially, the front-office determines the clean value by discounting cash flows through an ideal

market collateral rate r̂. Hence the front-office clean value P̂ = (P̂t)t∈ [0,T ] is obtained from the F-BSDE−dP̂t = −
∑d

k=1 Ẑ
∗,k
t dW k,Q

t + dAt − r̂P̂tdt,

P̂T = 0.
(3.35)

On the other side, the xVA desk first computes the clean value V̂ = (V̂t)t∈ [0,T ] as the solution to the

F-BSDE (3.13), i.e. by solving

(3.36)

−dV̂t = −
∑d

k=1 Ẑ
k
t dW

k,Q
t + dAt − rtV̂tdt,

V̂T = 0.

From a valuation perspective, if clean values represented the prices of real transactions, the presence

of different discounting rules would immediately imply the presence of trivial arbitrage opportunities

in the market. Only the endogenous price V̂ in (3.36) is compatible with the arbitrage-free setting of

Section 3. On the other hand, the xVA desk is forced to provide results in terms of the discounting

regimes imposed by the front-office. The two approaches can be combined in an arbitrage-free setting

by means of the following invariance property of linear BSDEs.

Lemma 3.20. Let (V̂ , Ẑ1, . . . , Ẑd) be the unique solution of the F-BSDE (3.36). Under Assumption

3.4 for A, the value process V̂ admits the two equivalent representations

i) xVA-discounting representation

V̂t = Br
tEQ

[∫
(t,T ]

dAt
Br
u

∣∣∣Ft] ,(3.37)
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ii) CSA-discounting representation

(3.38) V̂t = P̂t −DiscV At,

where DiscV At represents the discounting valuation adjustment, defined as

(3.39) DiscV At := Br̂
tEQ

[∫ T

t
(ru − r̂)

V̂u
Br̂
u

du
∣∣∣Ft] ,

and P̂ is the value process in the solution (P̂, Ẑ∗,1, . . . , Ẑ∗,d) of the F-BSDE (3.35)

(3.40) P̂t = Br̂
tEQ

[∫
(t,T ]

dAt
Br̂
u

∣∣∣Ft] .
Proof. The integral representation (3.37) is immediate. To obtain (3.38) we rewrite the F-BSDE (3.36)

adding and subtracting the term r̂V̂t, i.e.,−dV̂t = −
∑d

k=1 Ẑ
k
t dW

k,Q
t + dAt − (rt − r̂t)V̂tdt− r̂tV̂tdt

V̂T = 0.

The value process of the solution is given by

V̂t = Br̂
tEQ

[∫
(t,T ]

dAt
Br̂
u

∣∣∣Ft]−Br̂
tEQ

[∫ T

t
(ru − r̂u)

V̂u
Br̂
u

du
∣∣∣Ft] ,

where we recognize the first expectation as P̂ , whereas the second one provides DiscV A. �

The G-BSDE for the dynamics of V under Q can be written as
−dVt(ϕ) = dĀt +

(
f(t, V, C, ITC , IFC)− rtVt(ϕ)

)
dt

−
∑d

k=1 Z
k
t dW

k,Q
t −

∑
j ∈{B,C} U

j
t dM

j,Q
t ,

Vτ (ϕ) = θτ

(
V̂ , C, I

)
,

(3.41)

for t ≤ τ, where Āt is defined in (2.8), Zt =
(
Z1
t , . . . , Z

d
t

)
, and Ut =

(
UBt , U

C
t

)
, represent the control

processes given by G-predictable processes, and f(t, V, C, ITC , IFC) is the G-BSDE driver given by

(3.9c). The close-out condition is

Vτ (ϕ) = P̂τ + 1{τC<τB}(1−RC)
(
P̂τ − Cτ− + IFCτ− −DiscV Aτ

)−
− 1{τB<τC}(1−RB)

(
P̂τ − Cτ− − ITCτ− −DiscV Aτ

)+
.

(3.42)

By using the same arguments given for Theorem 3.16 and taking into account Definition 3.9, we obtain

the following result, with the help of Lemma 3.20.

Proposition 3.21. Under Assumption 3.4 and 3.12, the G-BSDE (3.41) admits a unique solution

(V,Z, U) ∈ S2(Q)×H2,d(Q)×H2,2
λ (Q) with

Vt(ϕ) = Br̂
tEQ

[∫
(t,T ]

dAu
Br̂
u

∣∣∣Ft]−XV At = P̂t − X̂V At,(3.43)

for t < τ, where

X̂V A := XV A+DiscV A,(3.44)
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with

XV At := FV At + ColV At +MVAt − CV At +DV At

= FV At + ColV At +MVAt

−Br
tEQ

[
1{τ<T}1{τC<τB}(1−RC)

1

Br
τ

(
P̂τ − Cτ− + IFCτ− −DiscV Aτ

)−∣∣∣∣Gt]
+Br

tEQ
[

1{τ<T}1{τB<τC}(1−RB)
1

Br
τ

(
P̂τ − Cτ− + ITCτ− −DiscV Aτ

)+∣∣∣∣Gt]
(3.45)

and

DiscV At := Br̂
tEQ

[∫ T

t
(ru − r̂u)

V̂u
Br̂
u

du
∣∣∣Ft] ,

where FVA, ColVA, MVA are defined in line with Definition 3.9.

Proof. Existence and uniqueness for the solution of (3.41) follow along the lines of Section 3. �

The impact of CSA discounting on derivative exposures is represented by the presence of P̂ in the

CVA and DVA terms in (3.45). Furthermore, decomposition (3.45) shows the exposure profile in the

portfolio under r or r̂, respectively.

3.4. xVA multiple aggregation level. In this section we provide a G-BSDE for the global portfolio

of the bank given by the aggregation of several sub-portfolios of trades. Current market practice shows

that the set of trades between the bank and the counterparty can be typically split into several subsets

reflecting multiple aggregation levels. One can distinguish between funding/margin sets and netting

sets. A margin (or funding) set M is a set of claims whose aggregated clean values (exposures) are

fully or partially covered by a CSA (collateral agreement). We denote by NM the number of margin

sets in a portfolio A. A netting set N is a set of margin sets whose post-margin exposures can be

aggregated. We denote by NN the number of netting sets in a portfolio A.

Counterparty

Netting
Set 1

e.g. a first
subsidiary

Netting
Set 2

e.g. a second
subsidiary

Margin
Set 2

USD collater-
alized Trades

Margin
Set 1

Unsecured
Trades

Margin
Set 3

EUR collater-
alized Trades

Legacy EUR
Margin Set

Monthly
margin calls.

New EUR
Margin Set

Daily mar-
gin calls.

Figure 1. A possible hierarchical structure of aggregation levels.
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Example 3.22. Funding/margin sets are traded between the bank and the counterparty that share

the same funding policy. This corresponds to different CSAs: for example, one CSA (Margin Set 2)

could group all trades for which collateral is exchanged in USD (e.g. for foreign exchange derivatives),

whereas another CSA (Margin Set 3) could be relevant for all instruments collateralized in EUR.

Finally, trades that are not collateralized, but whose exposures are netted among each other, can be

also grouped in a separate margin/funding set, corresponding to Margin Set 1 in Figure 1.

The protection provided by collateralization agreements might however be imperfect, hence a legal

agreement between the bank and the counterparty might allow for the netting of residual post collat-

eral exposures arising from different margin sets. This corresponds to Netting Set 1 in Figure 1.

Another typical source of multiple aggregation levels is the historical stratification of legal agreements:

in Figure 1 we have a second netting set, corresponding to a second subsidiary of the parent coun-

terparty, where legacy trades are covered by an old CSA agreement involving monthly margin calls,

whereas all trades entered after a certain date are covered by a newer CSA agreement involving daily

margin calls.

Remark 3.23. A further level of complexity could arise when the parent and the subsidiaries have

different default times: this introduces further complications when modeling the close-out condition

because one might have e.g. a situation where the default of a subsidiary is covered by the parent.

Such issues are left for future research. From a practical point of view it is also difficult to find

calibration instruments for default probabilities, since subsidiaries typically do not enjoy a liquid CDS

market.

We assume that the portfolio A of trades between the bank and the counterparty consists of K trades,

that we identify by means of the respective payment processes, i.e., A =
{
A1, . . . AK

}
. We use again

V̂ m to denote the clean reference value of the claims Am, m = 1, . . .K, representing also their credit

exposure before collateral is applied.

For every claim Am ∈ A, m = 1, . . .K, we assume that the margin set for initial and variation margin

coincide.

The structure of the portfolio is illustrated in Figure 1, where the first row depicts the composition of

all margin sets as groups of claims and the second line describes the netting sets as groups of margin

sets. Hence,

A = {A1, . . . , AN1}︸ ︷︷ ︸
M1

∪{AN1+1, . . . , AN2}︸ ︷︷ ︸
M2

∪ . . . ∪ {ANNM−1+1, . . . , ANNM}︸ ︷︷ ︸
MNM

= {M1, . . . ,MM1}︸ ︷︷ ︸
N1

∪{MM1+1, . . . ,MM2}︸ ︷︷ ︸
N2

∪ . . . ∪ {MMNM−1+1, . . . ,MMNM
}︸ ︷︷ ︸

NNN

(3.46)

where we have NNM = K.

We now provide a G-BSDE for the portfolio at the m2-th netting set-level in (3.46) by using the results

of Section 3.1. The presence of different margin sets is represented by the introduction of different

collateral accounts. Multiple netting sets are accounted for by summing value adjustments over all

netting sets, each netting set possibly featuring several margin sets.

To this purpose, we resort to a multi-index notation for the processes involved. In particular, we

denote by Ām,m1,m2
t the m-th contingent claim in the portfolio A belonging to the m1-th netting set-

level and at the m2-th margin set-level. The same notation applies to the control processes Zk,m1,m2
t

and U j,m1,m2
t , for k = 1, . . . , d and j ∈ {B,C}. Hence, the value process V m2

t corresponding to the
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m2-th netting set, m2 = 1, . . . , NN , satisfies the following m2-th netting set-level BSDE

−dV m2
t (ϕ) =

|Nm2 |∑
m1=1

|Mm1 |∑
m=1

dĀm,m1,m2
t

+
[
f
(
t, V m2 , (CMm1 ,Nm2 )m1=1,...,|Nm2 |, (I

Mm1 ,Nm2 )m1=1,...,|Nm2 |

)
− rtV m2

t (ϕ)
]
dt

−
|Nm2 |∑
m1=1

|Mm1 |∑
m=1

d∑
k=1

Zk,m1,m2
t dW k,Q

t −
|Nm2 |∑
m1=1

|Mm1 |∑
m=1

∑
j ∈{B,C}

U j,m1,m2
t dM j,Q

t ,(3.47)

for m2 = 1, . . . , NN .

By applying Theorem 3.21, we obtain the following

Proposition 3.24. There exists a unique solution (V m2 , Zm1,m2 , Um1,m2)∈ S2(Q)×H2,d(Q)×H2,2
λ (Q)

to the G-BSDE (3.47) with close-out condition

V m2
τ (ϕ) = θm2

τ =

|Nm2 |∑
m1=1

|Mm1 |∑
m=1

(
P̂m,m1,m2
τ −DiscV Am,m1,m2

τ

)

+ 1τC<τB (1−RC)

|Nm2 |∑
m1=1

|Mm1 |∑
m=1

(
P̂m,m1,m2
τ −DiscV Am,m1,m2

τ

)
− CMm1 ,Nm2

τ− − ITC,Mm1 ,Nm2
τ−

−

− 1τB<τC (1−RB)

|Nm2 |∑
m1=1

|Mm1 |∑
m=1

(
P̂m,m1,m2
τ −DiscV Am,m1,m2

τ

)
− CMm1 ,Nm2

τ− − IFC,Mm1 ,Nm2
τ−

+

.

(3.48)

Remark 3.25. It is easy to see that the value V K(ϕ) of a portfolio consisting of K claims is given by

(3.49) V K
t (ϕ) =

K∑
m=1

P̂mt − X̂V A
K

t , t ≤ τ ,

where each Pm, m = 1, . . . ,K, satisfies a BSDE of the form (3.35), while

(3.50) X̂V A
K

t := XV AKt +

NN∑
m2=1

|Nm2 |∑
m1=1

|Mm1 |∑
m=1

DiscV Am,m1,m2
t ,

and

(3.51) XV AKt := FV AKt + ColV AKt +MVAKt − CV AKt +DV AKt ,

for t ≤ τ. We further observe that each XV AK in (3.51) is of the form
∑NN

m2=1XV A
m2 , where XV Am2

are the valuation adjustments appearing in the solution to the G-BSDE (3.47).

3.5. Incremental xVA charge. The G-BSDE (3.47) encompasses two levels of complexity. The

first is the presence of several sub-portfolios, which we have discussed above. Secondly, the presence

of bid-offer spread in the rates, coupled with the recursive nature of the FVA terms implies that the

XVA of a portfolio of K trades does not coincide with the sum of the XVAs of the single K trades.

This determines non-linearity effects in the xVA valuation as we describe below.

Let us assume now that the counterparty wishes to enter into a further (K + 1)-th trade with the

bank. If entered, the newly introduced (K+1)-th claim would contribute to the global riskiness of the

portfolio between the bank and the counterparty. It is natural to ask then what is the price the bank

should charge to the newly introduced (K + 1)-th claim given the presence of the already existing K
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claims. The current market practice involves the computation of an incremental xVA charge, where

two different scenarios are compared.

(i) Base scenario: The value of the portfolio is given by V K(ϕ) as in formula (3.49). This

corresponds to the value of the portfolio before the inclusion of the candidate new trade.

(ii) Full scenario: The value of the portfolio is given by V K+1(ϕ), computed in line with formula

(3.49). This corresponds to the value of the portfolio after the inclusion of the candidate

(K + 1)-th contingent claim.

The bank determines the price to be charged to the counterparty as the difference between the value

of the portfolio under the full and the base scenario given by the incremental value

∆V K+1
t (ϕ) := V K+1

t (ϕ)− V K
t (ϕ).(3.52)

We can isolate the impact of the (K + 1)-th trade by considering

∆V K+1
t (ϕ) = V K+1

t (ϕ)− V K
t (ϕ)

=
K+1∑
m=1

P̂mt − X̂V A
K+1

t −
K∑
m=1

P̂mt + X̂V A
K

t

= P̂K+1
t −

(
XV AK+1

t −XV AKt
)
−DiscV AK+1

t

= P̂K+1
t −∆XV At −DiscV AK+1

t ,

(3.53)

for t ≤ τ, where, in the last step, we implicitly defined the incremental xVA charge

(3.54) ∆XV At := XV AK+1
t −XV AKt

as the adjustment to be charged on the (K + 1)-th claim, given the presence of the already existing

K claims in the portfolio. We obtain the non-linearity effect defined as

NLt
(
V K+1

)
:= V K+1

t (ϕ)−∆V K+1
t (ϕ), t ≤ τ ,(3.55)

where V K+1 is the value of the portfolio consisting only of the (K+ 1)-th claim and ∆V K+1
t (ϕ) is the

incremental charge as defined in (3.52). The non-linearity effect coincides with the difference of the

incremental xVA charge and the xVA associated only to the (K + 1)-th claim, in fact

NLt
(
V K+1

)
= V K+1

t (ϕ)−∆V K+1
t (ϕ)

=
(
P̂K+1
t −XV At −DiscV AK+1

t

)
−
(
P̂K+1
t −∆XV At −DiscV AK+1

t

)
= ∆XV At −XV At.

(3.56)

In the present setting the clean valuation of the contingent claim is still linear, hence the clean value

of the portfolio still corresponds to the sum of the clean values of the single claims,but in general

∆XV At−XV At 6= 0. The stand-alone xVA of the (K+1)-th claim is higher than ∆XV A. Moreover,

NLt
(
V K+1

)
= 0 only when there are no portfolio/netting effects.

4. Example and numerical illustration

We conclude the paper by presenting an example using a lognormal model for a single risky asset.

Under the setting and assumptions of the previous sections we consider a single risky asset S =

(St)t∈[0,T ] that pays dividends at a rate κ = (κt)t∈ [0,T ], with dividend process Dt =
∫ t
0 κsSsds, t ∈

[0, T ].
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Under the martingale measure Q the risky asset evolves according to

dSt = St

(
(rrt − κt)dt+ σtdW

Q
t

)
,(4.1)

where rr = (rrt )t∈[0,T ] is the repo rate associated to the asset S. We now consider a simple contingent

claim, namely a forward written on the asset S. The dividend process of the claim A1 = (A1
t )t∈[0,T ],

is given by

A1
t = 1{t=T}(ST −K1),(4.2)

for K1 a positive constant. We recall that the clean value V̂ satisfying (3.13) represents a fictious

value process for the claim under the assumption of a perfect collateralization scheme that annihilates

counterparty risk, see Assumption 3.4.

According to Theorem 3.6 the arbitrage free price of the forward is

V̂ 1
t (ϕ) = EQ

[
Br
t

∫
(t,T ]

dA1
u

Br
u

∣∣∣∣∣Ft
]

= Br
tEQ

[
ST −K1

Br
T

∣∣∣∣Ft] .(4.3)

Assume now that the bank enters a forward with a counterparty without any collateral agreement

and without any previous existing trade: there is no exchange of variation or initial margin, meaning

that C = ITC = IFC = 0, dQ ⊗ dt-a.s. Exposures on such transactions are to be funded by the

internal treasury desk of the bank, hence, due to internal rules of the bank, the front office desk

decides to discount cashflows via a synthetic unsecured discount curve with associated short rate

process rf = (rft )t∈[0,T ] defined via rf = rf,l+rf,b

2 .

Hence, the official clean price from the bank perspective is

P̂1
t = EQ

[
Bf
t

∫
(t,T ]

dA1
u

Bf
u

∣∣∣∣∣Ft
]

= Bf
t E

Q

[
ST −K1

Bf
T

∣∣∣∣∣Ft
]
.(4.4)

The xVA desk is forced by the internal policy of the bank to employ (4.4) as the official clean price for

the transaction. However, using Proposition 3.21 it is possible to compute a consistent price which is

then given by

V 1
t (ϕ) = V 1

t (ϕ) = P̂1
t −XV A1

t −DiscV A1
t ,

where

XV A1
t = −CV A1

t +DV A1
t + FV A1

t

= −Br
tEQ

[
1{τC<τB}(1−RC)

1

Br
τ

(
P̂1
τ −DiscV A1

τ

)−∣∣∣∣Gt] ,
+Br

tEQ
[

1{τB<τC}(1−RB)
1

Br
τ

(
P̂1
τ −DiscV A1

τ

)+∣∣∣∣Gt] ,
+Br

tEQ

[∫ τ

t

(rf,lu − ru)
(
V 1
u (ϕ)

)+ − (rf,bu − ru)
(
V 1
u (ϕ)

)−
Br
u

du

∣∣∣∣∣Gt
]
,

(4.5)

while the discounting adjustment is

DiscV A1
t := Bf

t E
Q

[∫ T

t
(ru − rfu)

V̂ 1
u

Bf
u

du
∣∣∣Ft] .(4.6)
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The G-BSDE solved by (4.5) is given by
−dXV A1

t = −
[
f(t, V̂ 1 −XV A1, 0, 0) + rtXV A

1
t

]
dt

−
∑d

k=1 Z̃
k
t dW

k,Q
t −

∑
j∈{B,C} Ũ

j
t dM

j,Q
t ,

XV A1
τ = V̂ 1

τ (ϕ)− θτ (V̂ 1, 0, 0).

(4.7)

We observe that the non-linearity effect NLt(V
1) = 0 is of course zero, since the portfolio between

the bank and the counterparty consists of a single contingent claim.

Assume now that the counterparty is interested in a second product, e.g. a second forward contract

on the risky asset S with maturity T and opposite direction, so that

A2
t = 1{t=T}(K

2 − ST ).(4.8)

In line with the previous reasoning, the clean values from the perspective of the xVA desk and the

front-office desk are respectively

V̂ 2
t (ϕ) = Br

tEQ
[
K2 − ST
Br
T

∣∣∣∣Ft] , P̂2
t = Br

tEQ

[
K2 − ST
Bf
T

∣∣∣∣∣Ft
]
.(4.9)

Given the presence of the first forward contract in the portfolio, the full value of the portfolio, now

including the second claim, is

V 2
t (ϕ) = P̂1

t + P̂2
t −XV A2

t −DiscV A1
t −DiscV A2

t ,

where

XV A2
t = −CV A2

t +DV A2
t + FV A2

t

= −Br
tEQ

[
1{τC<τB}(1−RC)

1

Br
τ

(
P̂1
τ + P̂2

τ −DiscV A1
τ −DiscV A2

τ

)−∣∣∣∣Gt] ,
+Br

tEQ
[

1{τB<τC}(1−RB)
1

Br
τ

(
P̂1
τ + P̂2

τ −DiscV A1
τ −DiscV A2

τ

)+∣∣∣∣Gt] ,
+Br

tEQ

[∫ τ

t

(rf,lu − ru)
(
V 2
u (ϕ)

)+ − (rf,bu − ru)
(
V 2
u (ϕ)

)−
Br
u

du

∣∣∣∣∣Gt
]
,

(4.10)

and DiscV A2 is given by

DiscV A2
t := Bf

t E
Q

[∫ T

t
(ru − rfu)

V̂ 2
u

Bf
u

du
∣∣∣Ft] .

The solution to the G-BSDE
−dXV A2

t = −
[
f(t, V̂ 2 −XV A2, 0, 0) + rtXV A

2
t

]
dt

−
∑d

k=1 Z̃
k
t dW

k,Q
t −

∑
j∈{B,C} Ũ

j
t dM

j,Q
t

XV A2
τ =

(
V̂ 1
τ (ϕ) + V̂ 2

τ (ϕ)− θτ (V̂ 1 + V̂ 2, 0, 0)
)(4.11)

is given by (4.5).

Given the presence of the first claim in the portfolio, the xVA charge on the second claim is ∆XV A =
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XV A2 −XV A1, whereas the non-linearity is effect is given by

NLt(V
2) = XV A2

t +Br
tEQ

[
1{τC<τB}(1−RC)

1

Br
τ

(
P̂2
τ −DiscV A2

τ

)−∣∣∣∣Gt] ,
−Br

tEQ
[

1{τB<τC}(1−RB)
1

Br
τ

(
P̂2
τ −DiscV A2

τ

)+∣∣∣∣Gt] ,
−Br

tEQ

[∫ τ

t

(rf,lu − ru)
(
V 2
u (ϕ)

)+ − (rf,bu − ru)
(
V 2
u (ϕ)

)−
Br
u

du

∣∣∣∣∣Gt
]
.

(4.12)

Observe that in the last FVA term appearing in (4.12) we have the presence of V 2, i.e. a portfolio

consisting only of the second claim: all expectations in (4.12) represent the stand-alone xVA correction

for the second contingent claim. In (4.10) we observe instead the presence of V 2, i.e. a portfolio

consisting of the first and the second claim. The role of netting effects in reducing the overall impact

of value adjustments can be seen by observing that

P̂1
t + P̂2

t − (DiscV A1
t +DiscV A2

t )

=

(
Bf
t E

Q

[
1

Bf
T

∣∣∣∣∣Ft
]
−Bf

t E
Q
[∫ T

t
(ru − rfu)

Br
u

Bf
u

EQ
[

1

Br
T

∣∣∣∣Fu] du∣∣∣∣Ft]
)

(K2 −K1)

= Br(t, T )(K2 −K1),

(4.13)

where Br(t, T ) denotes the time t price of a zero coupon bond with maturity T and short rate r.

This shows that the combined exposure of the two forward contracts is obviously independent of the

volatility of the asset S.

We finally stress that, given a numerical scheme that allows to estimate the evolution of the conditional

expectation V̂ , e.g. a regression estimator in the context of a Monte Carlo simulation, the xVA desk

can immediately estimate the DiscVA, hence only a simulation in terms of r discounting is required

for the implementation.

4.1. A numerical illustration. We conclude the paper by presenting two numerical illustrations3.

The first one aims at providing evidence regarding the last claim of the previous section, namely that

the estimation of DiscVA is a feasible task. We postulate that the risky asset evolves according to

(4.1). We assume, for the sake of simplicity, that all parameters are constant and we set rr = r = 0.01,

κ = 0, σ = 0.25, S0 = 100. In line with the previous section we consider the forward contract (4.2)

written on 1000 units of S with strike K1 = 80 and T1 = 1.

For such a simple claim we can compute prices without resorting to simulations. In particular, the

xVA desk computes the price V̂ 1
0 according to (4.3), i.e. V̂ 1

0 = 20795.22 EUR, obtained by assuming

a perfect collateralization with collateral rate r. However, the claim is perfectly uncollateralized,

hence the front office function employs for valuation the unsecured discount rate rf = 0.05 and hence

computes the price P 1
0 according to (4.4). The front office price is P 1

0 = 19980.62 EUR. As we have

already seen, the front office price is not consistent with the portfolio-wide valuation of the xVA desk,

however the xVA desk can solve the consistency problem by computing DiscV A1
0 as in (4.6).

In this very simple example DiscV A1
0 can be computed in closed form and we have DiscV A1

0 =

−814.70.

Note however that in more general cases the computation of DiscV A can be performed at no additional

costs via Monte Carlo methods, which are usually employed for xVA simulations.

3The source code for our examples is available at https://github.com/AlessandroGnoatto/BiaginiEtAlExamples

https://github.com/AlessandroGnoatto/BiaginiEtAlExamples
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The second experiment we propose aims at showing the relevance of portfolio effects in xVA compu-

tations. Again a simple example will suffice to provide enough intuition. To illustrate the issue we

simplify the treatment by assuming that there is a unique risk-free rate r involved in all valuations.

We consider again the bank trading two forwards on the stock S as before. We assume again T 1 = 1

and set K1 = S0 = 100. We suppose that the forward is written on 1000 units of the stock, and

that only the counterparty can default. In summary, the whole xVA adjustment is solely given by the

CVA. We suppose that the counterparty has a constant hazard rate λC,Q = 0.04 and a recovery rate

RC = 0.4.

The base scenario we consider is represented by the sole presence of the forward above in the portfolio

between the bank and the counterparty. Using the same Monte Carlo framework we developed for

the previous numerical test, we simulate again paths of the underlying S. After that, we perform a

pathwise simulation of the exposure of the forward, which we then numerically integrate with respect

to time and average over all paths. This procedure produces a Monte Carlo estimation of the CVA

under the filtration F according to Corollary 3.17. We obtain an estimate for CV A1
0 = 148.17 EUR.

Let us now introduce the second forward mentioned above, where we assume again that T 2 = T 1 = 1

and set K2 = 90. We also suppose that the second forward is written on the same quantity of shares

of S, namely 1000. We observe that, due to the different strikes, the second forward does not perfectly

offset the first one. We first assumed that the second forward is the only claim in the portfolio and thus

obtained an estimate of the stand alone CVA of 309.22 EUR, so that the sum of the CVAs of the two

forwards, ignoring portfolio effects, is 457.49 EUR. Such value clearly overestimates the outstanding

credit exposure between the bank and the counterparty.

By relying on a Monte Carlo simulation under the same assumptions as above, we compute the

portfolio-wide CVA, i.e. CV A2 and we obtain the estimate CV A2 = 232.69 EUR. We observe then

that the incremental CVA, ∆CV A = 84.52 EUR. Finally, the non-linearity from (3.55) is estimated

by NL0(V
2) = 232.69− 84.52 = 148.17 EUR.

The example we propose shows quite clearly the relevance of portfolio effects: if the xVA desk ignored

portfolio effects, the xVA charge would be 457.49 EUR. By applying the incremental approach to xVA

charge instead, when the second forward is included in the portfolio, there is only an additional charge

of 84.52 EUR. This is due to the fact that the two credit exposure partially compensate each other.

In Figure 2 we provide a further visualization of the portfolio effects. We compute the Monte Carlo

sample average of the negative and positive part of the credit exposure of the forwards under con-

sideration: such quantities are usually termed expective negative (resp. positive) exposure. Also, we

compute the 95%-quantile of the exposure. Red lines correspond to the first forward with strike K1

whereas green lines refer to the second forward with strike K2. Finally, the portfolio resulting from the

combination of the two forwards is represented by a blue line. We can clearly observe that combining

the two claims has a beneficial effect in terms of reduction of the exposure: in particular we observe

that the 95%-quantile is constant.

Appendix A. Existence and Uniqueness of BSDEs

In this section we review some results on existence and uniqueness for some BSDEs. Our main

references are Nie and Rutkowski (2016), which in turn extends results from Carbone et al. (2008),

and Agarwal et al. (2019).

Let M =
(
M1, . . .Md

)>
be a d-dimensional, real-valued, continuous and square integrable martin-

gale on a filtered probability space (Ω,F ,F,Q) , where the filtration is assumed to satisfy the usual
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Figure 2. Expected positive and negative exposure and potential future exposure for
the portfolio of two forwards. The red and green lines refer to the first and second
forward taken in isolation, whereas the blu line represents a portfolio containing the
two claims.

hypotheses and we assume that the predictable representation property holds with respect to M for

(F,Q)-martingales. We use 〈M〉 to denote the quadratic variation of M .

Assumption A.1 (Nie and Rutkowski (2016) Assumption 3.1). There exists an Rd×d-valued process

m and an F-adapted, continuous, bounded, increasing process Q with Q0 = 0 such that, for all t ∈ [0, T ],

〈M〉t =

∫ t

0
mum

>
u dQu.(A.1)

If M = W is a one-dimensional standard Brownian motion, then Qt = t, whereas m corresponds to

the identity matrix. Next we introduce the driver of the BSDE via the following

Assumption A.2 (Nie and Rutkowski (2016) Assumption 3.2). Let h : Ω × [0, T ] × R × Rd 7→ R be

an F ⊗B([0, T ])⊗B(R)⊗B(Rd)-measurable function such that h(·, ·, y, z) is an F-adapted process for

any fixed (y, z) ∈ R× Rd.

The BSDEs of interest in view of financial applications are forward-backward SDEs (FBSDEs). Fol-

lowing Nie and Rutkowski (2016), we introduce a generic (forward) factor matrix-valued process given
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by

Xt :=


X1
t 0 . . . 0

0 X2
t . . . 0

...
...

. . . 0

0 0 . . . Xd
t

 , t ∈ [0, T ],

where the auxiliary processes Xi, i = 1, . . . , d, are assumed to be F-adapted. The processes Xi

represent market risk factors or traded assets. We assume that the function h of Assumption A.2 can

be written as h(ω, t, y, z) = g(ω, t, y,Xtz), for g satisfying Assumption A.2.

Definition A.3 (Nie and Rutkowski (2016) Definition 4.1). We say that an Rd×d-valued process γ

satisfies the ellipticity condition if there exists a constant Λ > 0 such that

d∑
i=1

(
γtγ
>
t

)
ij
aiaj ≥ Λ ‖a‖(A.2)

for all a ∈ Rd and t ∈ [0, T ].

Assumption A.4 (Nie and Rutkowski (2016) Assumption 4.2). The Rd×d-valued F-adapted process

m in (A.1) is given by

mtm
>
t = Xtγtγ>t X>t ,

where γ = [γ]ij is a d-dimensional square matrix of F-adapted processes satisfying the ellipticity

condition (A.2).

In the following we recall some definitions from Nie and Rutkowski (2016).

Definition A.5. We say that the function h : Ω× [0, T ]× R× Rd 7→ R satisfies

• the uniform Lipschitz condition if there exists a constant L such that for any t ∈ [0, T ] and

all y1, y2 ∈ R, z1, z2 ∈ Rd

|h(t, y1, z1)− h(t, y2, z2)| ≤ L (|y1 − y2|+ ‖z1 − z2‖) ;

• the uniform m-Lipschitz condition if there exists a constant L̂ such that for any t ∈ [0, T ] and

all y1, y2 ∈ R, z1, z2 ∈ Rd

|h(t, y1, z1)− h(t, y2, z2)| ≤ L̂
(
|y1 − y2|+

∥∥∥m>t (z1 − z2)
∥∥∥) ;

• the uniform X-Lipschitz condition if there exists a constant L̃ such that for any t ∈ [0, T ] and

all y1, y2 ∈ R, z1, z2 ∈ Rd

|h(t, y1, z1)− h(t, y2, z2)| ≤ L̃ (|y1 − y2|+ ‖Xt(z1 − z2)‖) .

Lemma A.6 (Nie and Rutkowski (2016) Lemma 4.2). If Assumption A.4 holds and the generator

h is uniform X-Lipschitz, then h is uniform m-Lipschitz with L̂ = L̃max
{

1,Λ−
1
2

}
, where Λ is the

constant defined in (A.2).

Theorem A.7 provides the existence and uniqueness result, which is relevant for our purposes.

Theorem A.7 (Nie and Rutkowski (2016) Theorem 4.1). Assume that the function h can be repre-

sented as h(t, y, z) = g(t, y,Xtz), where the function g : Ω× [0, T ]×R×Rd 7→ R satisfies the uniform

Lipschitz condition. Let the process h(·, 0, 0) belong to the space H2(Q), the random variable η belong
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to L2(FT ,Q) and U be a real-valued F-adapted process such that U ∈ H2(Q) and UT ∈ L2(FT ,Q).

Assume that the process m satisfies Assumption A.4 for some constant Λ > 0. Then the BSDEdYt = Z>t dMt − h(t, Yt, Zt)dQt + dUt,

YT = η,
(A.3)

has a unique solution (Y, Z) such that (Y,m>Z) ∈ H2(Q)×H2,d(Q). Moreover the processes Y and

U satisfy

EQ

[
sup
t∈[0,T ]

|Yt − Ut|2
]
<∞.

Assumption A.8 (Agarwal et al. (2019) Assumption (S)). For any y, z, λ ∈ R×Rd×R, f(·, y, z, λ)

is an F-adapted stochastic process with values in R and there exists a constant Cf > 0 such that P-a.s.,

for all (s, y1, z1, λ1), (s, y2, z2, λ2) ∈ [0, T ]× R× Rd × R,

|f(s, y1, z1, λ1)− f(s, y2, z2, λ2)| ≤ Cf (|y1 − y2|+ |z1 − z2|+ |λ1 − λ2|) .

Moreover, E
[∫ T

0 |f(s, 0, 0, 0)|2ds
]
<∞.

A.1. Proof of Proposition 2.11. Since we are only trading in the basic risky assets, the position in

the initial margin is zero hence, by (2.9) and (2.17), the value process is of the form

Vt(ϕ) = ψf,bt Bf,b
t + ψf,lt Bf,l

t , t ∈ [0, T ].(A.4)

Recalling that simultaneous borrowing and lending at the same time is not allowed, we have by (A.4)

that

ψf,l = (Vt(ϕ))+
(
Bf,l
t

)−1
, ψf,b = − (Vt(ϕ))−

(
Bf,b
t

)−1
, t ∈ [0, T ].

Moreover, we can rewrite the funding term of the generic i-th risky assets as follows∫ t

0
ψiudB

i
u = −

∫ t

0

ξiuS
i
u

Bi
u

dBi
u = −

∫ t

0
riuξ

i
uS

i
udu, t ∈ [0, T ].

Upon substitution in the self-financing condition (2.18), we obtain

dVt(ϕ) =

d∑
i=1

ξit
(
dSit + dDi

t − ritSitdt
)

+
∑

j∈{B,C}

ξjt

(
dP jt − r

j
tP

j
t−dt

)
− rf,bt (Vt(ϕ))− dt+ rf,lt (Vt(ϕ))+ dt.

We now use the inequality rf,lt ≤ r
f,b
t from Assumption 2.10, hence

dVt(ϕ) =

d∑
i=1

ξit
(
dSit + dDi

t − ritSitdt
)

+
∑

j∈{B,C}

ξjt

(
dP jt − r

j
tP

j
t−dt

)
+ rf,lt (Vt(ϕ))+ dt− rf,bt (Vt(ϕ))− dt

≤
d∑
i=1

ξit
(
dSit + dDi

t − ritSitdt
)

+
∑

j∈{B,C}

ξjt

(
dP jt − r

j
tP

j
t−dt

)
+ rf,lt Vt(ϕ)dt.

Introducing Ṽ l
t (ϕ) :=

(
Bf,l
t

)−1
Vt(ϕ), we have then the inequality

dṼ l
t (ϕ) ≤

d∑
i=1

ξit

(
Bf,l
t

)−1 (
dSit + dDi

t − ritSitdt
)

+
∑

j∈{B,C}

ξjt

(
Bf,l
t

)−1 (
dP jt − r

j
tP

j
t−dt

)
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or equivalently,

dṼ l
t (ϕ) ≤

d∑
i=1

ξit
Bi
t

Bf,l
t

(
dSit + dDi

t − ritSitdt
)

Bi
t

+
∑

j∈{B,C}

ξjt
Bj
t

Bf,l
t

(
dP jt − r

j
tP

j
t−dt

)
Bj
t

,

and so, by (2.19), we arrive at the inequality

dṼ l
t (ϕ) ≤

d∑
i=1

ξit
Bi
t

Bf,l
t

dS̃i,cldt +
∑

j∈{B,C}

ξjt
Bj
t

Bf,l
t

dP̃ jt ,(A.5)

We observe that the right-hand side in (A.5) is a local martingale, which is bounded from below by

Definition 2.7 and because rf is bounded. This implies that the aforementioned right-hand side is a

supermartingale. Absence of arbitrage follows along the usual lines.
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