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A formal translation of CIL (i.e., .Net) bytecode into Java bytecode is introduced and proved 
sound with respect to the language semantics. The resulting code is then analyzed with 
Julia, an industrial static analyzer of Java bytecode. The overall process of translation and 
analysis is fast, scales to industrial programs, and introduces a negligible number of false 
alarms. The main contribution of this work is to leverage existing, mature, and sound 
analyzers for Java bytecode by applying them also to the wide range of .Net software 
systems. Experimental results show the actual effectiveness of this approach when applied 
to all the system libraries of the Microsoft .Net framework version 4.0.30319 (about 
5 MLOCs).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Static analysis infers, at compile-time, properties about the run-time behavior of computer programs. It allows one 
to verify, for instance, the absence of run-time errors or security breaches. Static analysis applies also to compiled code 
in assembly or bytecode format. This is particularly interesting for applications distributed on the Internet, or downloaded 
from public (and possibly unsafe) application repositories (e.g., the Google Play store), when the source code is not available, 
but the user would like to statically check some safety or security properties.

The analysis of Java bytecode (from now on, JB) for the Java Virtual Machine has a long research tradition and many 
analyzers exist [1]. Some analyses build on formal mathematical roots, such as abstract interpretation [2–6]. Moreover, JB 
makes the design of static analysis easier by requiring bytecode to be type-checkable [7] and without unsafe operations 
such as free pointer operations. On the contrary, CIL bytecode, that is, the compiled bytecode used for the .Net platform 
(from now on, just CIL), has not received much attention from the static analysis community yet. Therefore, while there 
are several syntactic (that is, not based on formal methods) static analyzers for CIL, there are very few industrial semantic 
analyzers based on formal methods. Moreover, CIL can be used in an unsafe way, that is, by allowing free pointer operations, 
which makes its static analysis harder. However, these operations are very often used in very controlled contexts. Hence, in 
most cases, a static analyzer could possibly capture their actual behavior anyway.

Despite clear differences, JB and CIL share strong similarities: both are low-level object-oriented languages where objects 
are stored and shared in the heap. Hence, it is tempting to leverage mature existing static analyses and tools for JB by 
translating CIL into equivalent JB and by running the tools on the latter. Obviously, this introduces issues about the exact 
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meaning of equivalence between CIL and its translation into JB. Moreover, the translation should not introduce code artifacts 
that confuse the analyzer and should work on industrial-size CIL applications, supporting as many unsafe pointer operations 
as possible.

1.1. Contribution

The main contribution of this work1 is the introduction of a translation of CIL to JB that is both theoretically sound and 
effective in practice, so that an industrial static analyzer for JB can be applied to .Net (and in particular C#) programs. More 
languages compile into JB (e.g., Java and Scala) and CIL (e.g., VB.Net and F#), with distinct features and code structures. Here, 
we focus on Java and C#, that have similar structure and compile into comparable bytecode.

We start by formalizing the concrete semantics of a representative subset of CIL and JB, and the translation of CIL into 
JB. Then, we prove this translation sound, in the sense that the concrete semantics of the initial CIL program is equivalent to 
that of the translated JB program. This guarantees that, if we prove a property of the JB program, then such property holds 
also for the original CIL program. Our implementation supports the full set of CIL safe statements. Fig. 7 in Appendix B
reports all the CIL statements as defined by ECMA 335 standard [9], and if and how we translate them. Then we present a 
deep experimental evaluation over industrial-size open-source popular programs, by applying the Julia static analyzer [4] to 
the translated JB.

Our experiments are focused on three main research hypotheses to prove the scalability, precision, and coverage of our 
approach. In particular, this article answers the following research questions:

Research Question 1 (Scalability). Does the CIL to JB translation scale, that is, (i) can it deal with libraries of industrial size (100 KLOCs) 
in a few minutes, and (ii) is its computational time negligible w.r.t. that required by the overall analysis?

Research Question 2 (Precision). Does the CIL to JB translation introduce less than 10% of false alarms w.r.t. the overall number of 
alarms produced by the analyzer when considering high severity warnings?

Research Question 3 (Libraries). Despite supporting only a subset of CIL, does the CIL to JB translation succeed on at least 95% of the 
system libraries?

About scalability, the overall goal is to obtain a tool that can be applied during the normal software development life-
cycle, that is, it can perform the analysis at each build of the system. Therefore, we need a tool that analyzes hundreds of 
thousands of LOCs in few minutes.

About precision, the 10% bound was chosen as such limit is perceived as standard by the community when evaluating 
the effectiveness of static analyzers. False alarms are not real issues in the code, but they are due to some forms of approx-
imation performed by the analysis. For instance, a recent paper [10] stated that Google adopts a static analyzer during code 
review if it “produces less than 10% effective false positives” (aka, alarms), since such amount of noise does not compromise 
the practical effectiveness of the tool when used by software developers. Note that our research question refers to the false 
alarms due to the translation, and that would not be produced on the same code written in Java by the Java analyzer. For 
instance, let us assume that an analyzer produces 10 false alarms on a Java program. Research Question 2 is satisfied if the 
analysis on the same program written in .NET (and translated to JB before being analyzed by the Java analyzer) produces 
at most 11 false alarms (the 10 produced on the Java program – that are due to the imprecision of the analysis – and 1 
introduced by the translation). In our experience, these false alarms usually happen because the .NET compiler introduces 
some patterns (e.g., when checking the nullness of a variable) that are different from those produced by the Java compiler, 
and the Java static analyzer approximates them too coarsely.

With respect to question 3, it is crucial that a static analyzer understands the behavior of system libraries (e.g., semantics 
of method calls and assumptions made on their parameters) or otherwise it could only rely on manual annotations or (pos-
sibly unsound) assumptions on their execution. However, system libraries need to access memory through unsafe pointer. 
Java allows such behaviors through native methods (written in languages other than Java and bound through the Java Native 
Interface), while .Net allows unsafe pointers directly in its same code. In these cases, our translation produces Java native 
methods. Through Research Question 3, we ensure that the effort of manually annotating .Net libraries is comparable to that 
needed for Java.

Our translation could also be applied to let Java and C# code interoperate, by compiling them both into Java bytecode. 
This requires, however, the translation of the libraries called by the applications, including the standard library of C# that 
contains relevant portions of unsafe and native code, which is out of the scope of this work.

1 This paper is a revised and extended version of [8], distinguished paper award at ICSE-FormaliSE (2018). In particular, this paper adds detailed formal 
proofs of soundness in Section 4.3, and extended experimental results in Section 5.
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1.2. Related work

Few attempts have been made in the past to translate CIL to JB. Grasshopper is probably the most popular one. How-
ever, it is not available anymore.2 As far as we can see, it was abandoned about a decade ago, and we cannot make 
any comparison with our translation. A similar tool is CLR2JVM [11]: it translates CIL to an intermediate X MLC LR rep-
resentation, that can be then translated into X ML J V M , and finally to JB. As far as we can see,3 the tool should read 
.NET executables, but it failed to parse all the executable files of our experiments (see Section 5 for the complete 
list). This probably happened because CLR2JVM is not maintained any more (the last commit to the repository https://
sourceforge .net /p /xmlvm /code /HEAD /tree /trunk /xmlvm /src /clr2jvm/ occurred more than six years ago), and it does not sup-
port the last CIL versions. Neither Grasshopper nor CLR2JVM has any documentation or discussion about how the translation 
is performed (in particular, how they handle instructions that are different between CIL and JB, such as direct references). 
Therefore, as far as we can see, our translation from CIL to JB is the only one that works on recent releases of CIL and JB, 
and is formalized and proved sound.

Other translations between low-level languages exist, justified by the need of applying verification tools that work on 
a specific language only. For instance, [12] defines a translation from Boogie into WhyML and proves its soundness, as we 
have done from CIL to JB. Similar translations work also at run time, in particular inside a just-in-time compiler, as in [13]. 
However, we did not find any literature on the translation of CIL into JB for industrial-size software.

Many other static analyzers for .Net exist, in particular for C# code. There are tools that verify compliance to some 
guideline, such as Fxcop [14] and Coverity Prevent [15]. Others, such as NDepend [16] and CodeMetrics [17], provide met-
rics about the code under analysis. ReSharper [18] applies syntactical code inspections, finds code smells and guarantees 
compliance against coding standards. As far as we can see, there exist only two main fundamental tools with scientific base: 
Spec# [19], an extension of C# with static checking of various kinds of manual specifications, and CodeContracts [20], an 
abstract interpretation-based static analyzer for CIL. In the Java world, the number of static analyzers based on syntactic 
reasoning (that is, not based on formal methods), such as Checkstyle [21], FindBugs [22] and PMD [23], is comparable to 
that for .Net. However, Java attracted much more attention from the scientific community, and more semantic analyzers 
have been introduced during the last decade, such as CodeSonar [24], ThreadSafe [25] and Julia [4]. Instead, there are quite 
fewer semantic static analyzers for .NET. In addition, few semantic analyzers, such as WALA [26], have been applied to 
various languages (e.g., Java and JavaScript), but with ad-hoc translation of the source to the analyzed language.

Our approach lets us apply all the Java analyzers on .Net programs (almost) for free, that is, by translating CIL into JB 
and by using the analyzers as they are (we expect that few manual annotations are needed to improve the precision of 
the analysis, in particular when dealing with library calls). We have also studied performance and results with Julia. As far 
as we know, our work is the first translation of CIL into JB for static analysis that is proven to be sound and comes with 
evidence that this translation applies to industrial-size software, with results that are comparable in terms of precision and 
efficiency to those obtained on JB.

2. Background

This section provides some background on CIL and JB, a running example, and a discussion on the architecture of our 
approach. For an exhaustive definition of JB and CIL, see [7] and [9], respectively.

2.1. CIL and JB

Bytecode is a machine-independent low-level programming language, used as target of the compilation of high-level 
languages, that hence becomes machine-independent. Bytecode languages are interpreted by their corresponding virtual 
machine, specific to each execution architecture. Both .Net and Java compile into bytecode. However, they use distinct 
instructions and virtual machines. .Net compiles into CIL, while Java compiles into JB. These have strong similarities: both 
use an operand stack for temporary values and an array of local variables standing for source code variables; both are 
object-oriented, with instructions for object creation, field access and virtual method dispatch. Despite these undeniable 
similarities, CIL and JB differ for the way of performing parameter passing (CIL uses a specific array of variables for the 
formal parameters, while JB merges them into the array of local variables); they handle object creation differently (CIL 
creates and initializes the object at the same time, while these are distinct operations in JB); they allocate memory slots 
differently (in CIL each value uses a slot, while JB uses 1 or 2 slots per 32- or 64-bit values, respectively); finally, CIL uses 
pointers explicitly, also in type-unsafe ways, while JB has no notion of pointer. We focus our formalization on a minimal 
representative subset of JB and CIL, as defined in Fig. 1. That figure presents bytecode instructions for:

arithmetic: JB has type-specific operations, such as iadd and ladd to add two integer or long values, respectively. Instead, 
CIL has generic operations, such as add to add two numerical values of the same type;

2 We were unable to access the website http://dev.mainsoft .com that, from past forum discussions (http://stackoverflow.com /questions /95163 /differences -
between -msil -and -java -bytecode), seems to be the website of the tool.

3 http://xmlvm .org /documentation/.

https://sourceforge.net/p/xmlvm/code/HEAD/tree/trunk/xmlvm/src/clr2jvm/
http://dev.mainsoft.com
http://stackoverflow.com/questions/95163/differences-between-msil-and-java-bytecode
http://xmlvm.org/documentation/
https://sourceforge.net/p/xmlvm/code/HEAD/tree/trunk/xmlvm/src/clr2jvm/
http://stackoverflow.com/questions/95163/differences-between-msil-and-java-bytecode
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JB CIL

iadd
add (arith. op.)

ladd

iload i ldloc i

(local vars)

lload i stloc i
aload i ldarg i
istore i
lstore i
astore i

invokevirtual call
(meth. call)

invokestatic

new T newobj T(· · ·)
(objects)getfield f ldfld f

putfield f stfld f

if_icmpgt bgt (cond. branch)

dup dup
(stack)

dup2

ldloca i
(pointers)stind

ldind

Fig. 1. JB and CIL minimal bytecode languages.

local variables access: JB has a single array of variables for both local variables and method arguments, and reads and writes 
values from this array through xload and xstore, where x is i for integer values, l for long values and a for references, 
respectively. In this array, 64 bits values use two subsequent slots. CIL, instead, uses two arrays: one for method’s arguments 
(ldarg i loads the value of the i-th argument) and one for local variables (ldloc i and stloc i read and write the 
i-th local variable, respectively). In addition, it uses one slot both for 32- and 64-bit variables;

method call: JB has several kinds of method call instructions, such as invokevirtual and invokestatic. Instead, CIL 
has a unique call instruction;

object manipulation: in JB, instructions new, getfield, and putfield allocate a new object, read, and write its fields, 
respectively. CIL has similar instructions newobj, that also calls the constructor, ldfld and stfld;

conditional branch: JB has type-specific conditional branch instructions such as if_icmpgt (to branch if the greater than 
operator returns true on the topmost two integer values of the operand stack); CIL has generic instructions such as bgt;

stack: CIL duplicates the top value of the stack through the dup instruction. JB does the same with dup for 32 bits values 
and dup2 for 64 bits values;

pointers: CIL contains some instructions to load the address of a local variable (ldloca i), and to store and load a 
value into the memory cell pointed by a reference (stind and ldind, respectively). Instead, JB has no direct pointer 
manipulation.

In the rest of this article, StCIL and StJB denote CIL and JB instructions or statements, respectively. A method (both in CIL 
and JB) is represented by (i) a sequence of (possibly conditional and branching) statements, and (ii) the number and static 
types of arguments and local variables.

2.2. Running example

Fig. 2 shows the running example that Sections 3 and 4 use to clarify the formalization. The C# code in Fig. 2a defines 
a class Wrap that wraps an integer value, and a static method WrapsCollection that, given an integer n, returns a 
collection of n wrappers containing values from 0 to n − 1. Fig. 2b presents the (simplified) CIL obtained from its compi-
lation: as usual with CIL, code is unstructured (e.g., there are branches at lines 7 and 20), and each source code statement 
could be translated into many bytecode statements (e.g., line 7 in Fig. 2a compiles into lines 3 and 4 in Fig. 2b). Fig. 2c 
presents the results of our translation of CIL into JB. The next sections explain the steps of the translation. First of all, notice 
some of the differences highlighted in Section 2.1. Namely, the type-generic CIL statement stloc.1 at line 6 of Fig. 2b is 
translated into the type-specific istore_2 at line 7 of Fig. 2c. Similarly, newobj (line 11) is translated into multiple JB 
statements (line 12-16). The running example contains some instructions that are not part of the minimal language defined 
in Section 2.1, and in particular (i) ldc and iconst_* that load constant (integer) values in CIL and JB, respectively, (ii)
blt and if_icmplt for conditional branching when an (integer) value is strictly less than another, (iii) invokespecial
to invoke a specific method in JB, and (iv) ret and areturn to return a (reference) value.
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1 public class Wrap
2 {
3 int f ;
4 Wrap(int f) { this . f = f ; }
5 static ICollection <Wrap>WrapsCollection(int n)
6 {
7 ICollection <Wrap> result = new List<Wrap>();
8 for ( int i = 0; i < n; i++)
9 result .Add(new Wrap(i));

10 return result ;
11 }
12 }

(a) The C# source of the running example.

1 static ICollection <Wrap>
2 WrapsCollection(int n) {
3 newobj List<Wrap>::.ctor()
4 stloc.0
5 ldc.0
6 stloc.1
7 br #18
8
9 ldloc.0

10 ldloc.1
11 newobj Wrap::.ctor(int32)
12 call ICollection <Wrap>::Add
13 ldloc.1
14 ldc.1
15 add
16 stloc.1
17
18 ldloc.1
19 ldarg.0
20 blt #9
21
22 ldloc.0
23 ret
24 }

(b) Compiling (a) into CIL.

1 static WrapsCollection(I)LICollection {
2 new List
3 dup
4 invokespecial List.< init >
5 astore_1
6 iconst_0
7 istore_2
8 goto 23
9

10 aload_1
11 iload_2
12 istore_3
13 new Wrap
14 dup
15 iload_3
16 invokespecial Wrap.<init>
17 invokevirtual <ICollection .Add>
18 iload_2
19 iconst_1
20 iadd
21 istore_2
22
23 iload_2
24 iload_0
25 if_icmplt 10
26
27 aload_1
28 areturn
29 }

(c) Translating (b) into JB.

Fig. 2. The C# code, CIL, and JB of the running example.

1 void init ( ref int i )
2 {
3 i++;
4 }
5
6 void run()
7 {
8 int i=0;
9 init ( ref i );

10 }

(a) C# code

1 void init (WrapRef i) {
2 i .value = i .value + 1;
3 }
4
5 int run() {
6 int i = 0;
7 WrapRef wrap = new WrapRef();
8 wrap.value = i ;
9 init (wrap);

10 i = wrap.value;
11 }

(b) Java code

1 void init ( ref A& A)
2 {
3 ldarg.0
4 ldarg.0
5 ldind. i4
6 ldc. i4.1
7 add
8 stind. i4
9 }

10
11 int run()
12 {
13 ldc. i4.0
14 stloc.0
15 ldloca.s 0
16 call void Temporary.Foo
17 ::’ init ’( int32&)
18 }

(c) CIL

Fig. 3. CIL code using ref parameters.

2.2.1. Example with direct references
Safe C# code adopts direct pointers only for out and ref method parameters. These parameters can be assigned (and 

read as well in case of ref) inside the method, and “any change to the parameter in the called method is reflected in the 
calling method”.4 In our translation, we build wrapper objects to soundly represent their semantics. Consider for instance 
the C# code in Fig. 3a. Method init receives a ref parameter and it increments it by one. This is compiled (Fig. 3c) into 
a method that reads the value pointed by the direct reference (line 5), and writes it (line 8). Our goal is to translate this 
code into the Java code in Fig. 3b: we simulate the direct reference by constructing a wrapper object (line 7), assigning 
the value of the local variable to field value of the wrapper (line 8), and then propagating back the results of the call to
init (line 9) by assigning the value of the local variable with the one stored in the wrapper (line 10). In addition, the ref
parameter is replaced by the type of the wrapper object.

4 https://msdn .microsoft .com /en -us /library /14akc2c7.aspx.

https://msdn.microsoft.com/en-us/library/14akc2c7.aspx
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Fig. 4. Architecture of the analysis.

2.3. Julia

Julia [4] is a static analyzer for JB, based on abstract interpretation [2]. It transforms JB to basic blocks of code, that 
it analyzes through a fixpoint algorithm. Analyses are constraint-based or denotational. Currently, Julia features around 70
checkers, including nullness, termination, synchronization and taint analysis. Since Julia works on JB, in principle it analyzes 
any programming language that compiles into that bytecode. In particular, in this article we apply it to the analysis of the 
compilation of CIL into JB. Note that Julia verifies that the analyzed bytecode is well-formed, that is, it mainly performs 
sanity checks to avoid the static analyzer to fail while analyzing the bytecode. Therefore, all the translated bytecode is 
verified by Julia before being analyzed. Julia relies on Java annotations in order to allow a user to specify the semantic 
model of some components (e.g., if a method is an entry point in a particular runtime environment, or an API call returns 
user input). https://static .juliasoft .com /docs /latest /annotations .html reports the full list of Julia’s annotations. While these 
annotations add semantic information about the application and the libraries, they do not affect the translation from CIL to 
JB.

Fig. 4 is a high level view of our analysis, where the gray components have been implemented and modified to support 
.NET analyses. Java code is compiled by javac into a jar file, then parsed through the Byte Code Engineering Library [27]
(BCEL). Julia receives this latter format, applies its analysis (by using many components such as the checkers, that define 
the analyses relying on various abstract domains, a fixpoint engine, and the framework specifying the semantics of some 
specific components of the programming language), and outputs a list of warnings. The added component in our approach 
is the translation of CIL into BCEL format (grey arrow in the upper part of Fig. 4). Since a program in BCEL format can be 
dumped into a jar file, we can dump a .dll file in this format.

We instructed Julia by adding manual annotations to the main components of the .NET run-time environments. 
All together, this amounts to about 1.500 annotations on the main library APIs. For instance, we annotated field 
System.Decimal.One to specify that it is externally initialized with Julia’s annotation Injected, and method System.

Web.HttpRequest.Params with UntrustedUserInput to specify this returns a user input (that is, it is a source for Julia’s In-
jection analysis).

3. Concrete semantics

3.1. Notation

We briefly recall some standard notation adopted by the further formalization in this section and the next one.

Common mathematical elements. First of all, we adopted standard set notations, that is: (i) a ∈ A denotes that element a
is contained in set A, (ii) A × B denotes the Cartesian product of sets A and B (that is, the set of all ordered pairs (a, b)

such that a ∈ A and b ∈ V , (iii) ∪ and ∩ denote set union and intersection, respectively, and (iv) |A| denotes the cardinality 
(that is, the number of elements) of set A.

About functions, we denote by (i) F : D → C the set of all functions relating elements in a domain D to a codomain C , 
(ii) [d �→ c] the function that relates element d to c, (iii) f [d �→ c] the function that behaves like f except for element d that 
is related to c, and (iv) f (d) the application of function f to the element of the domain d (e.g., f (d) = c if f = [d �→ c]).

We represent lists and stacks as functions mapping natural indexes to elements. In particular, a stack s (or list) of 
elements in T is a function in N → T such that ∃i ∈ N : ∀i1 ≤ i : i1 ∈ dom(s) ∧ ∀i2 > i : i2 /∈ dom(s); dom(s) denotes the 
domain of the given function (that is, the indexes on which stack s is defined in this particular case). We will refer to i as 
the height of s (height(s)). Given a stack s and an element e, s :: e denotes a stack whose top element (that is, the one with 

https://static.juliasoft.com/docs/latest/annotations.html
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typeOf (v1) = typeOf (v2)

〈add, (s :: v1 :: v2, l,a,h)〉 →CIL (s :: (v1 + v2), l,a,h)
(add) 〈ldloc i, (s, l,a,h)〉 →CIL (s :: l(i), l,a,h)

(ldloc)

〈stloc i, (s :: v, l,a,h)〉 →CIL (s, l[i �→ v],a,h)
(stloc) 〈ldarg i, (s, l,a,h)〉 →CIL (s :: a(i), l,a,h)

(ldarg)

isStatic(m(arg0, · · · ,argi)) = false ∧ t �= null∧
〈body(m(arg0, · · · ,argi), (t, v1, · · · , vi)), ([],∅, [0 �→ t, j �→ v j : j ∈ [1..i]],h)〉 →CIL (s′, l′,a′,h′)

〈call m(arg1, · · · ,argi), (s :: t :: v1 :: · · · :: vi , l,a,h)〉 →CIL (s, l,a,h′)
(call)

isStatic(m(arg0, · · · ,argi)) = true∧
〈body(m(arg0, · · · ,argi), (v1, · · · , vi)), ([],∅, [ j − 1 �→ v j : j ∈ [1..i]],h)〉 →CIL (s′, l′,a′,h′)

〈call m(arg1, · · · ,argi), (s :: v1 :: · · · :: vi , l,a,h)〉 →CIL (s, l,a,h′)
(call static)

fresh(T,h) = (r,h1) ∧ 〈body(ctor(arg1, · · · ,argi), (v1, · · · , vi)), ([],∅, [0 �→ r, j �→ v j : j ∈ [1..i]],h1)〉 →CIL (s′, l′,a′,h′)
〈newobj T(a1, · · · ,ai), (s :: v1 :: · · · :: vi , l,a,h)〉 →CIL (s :: r, l,a,h′)

(newobj)

o �= null

〈ldfld f, (s :: o, l,a,h)〉 →CIL (s :: h(o)(f), l,a,h)
(ldfld)

o �= null s′ = h(o)[f �→ v]
〈stfld f, (s :: o :: v, l,a,h)〉 →CIL (s, l,a,h[o �→ s′]) (stfld)

typeOf (v1) = typeOf (v2) ∧ v1 > v2

〈bgt l, (s :: v1 :: v2, l,a,h)〉 →CIL 〈l, (s, l,a,h)〉 (bgt true)
typeOf (v1) = typeOf (v2) ∧ v1 ≤ v2

〈bgt l, (s :: v1 :: v2, l,a,h)〉 →CIL (s, l,a,h)
(bgt false)

〈ldloca i, (s, l,a,h)〉 →CIL (s :: ri , l,a,h)
(ldloca) 〈stind, (s :: ri :: v, l,a,h)〉 →CIL (s, l,a,h[ri �→ v]) (stind)

〈dup, (s :: v, l,a,h)〉 →CIL (s :: v :: v, l,a,h)
(dup) 〈ldind, (s :: ri , l,a,h)〉 →CIL (s :: h(ri), l,a,h)

(ldind)

Fig. 5. Concrete CIL semantics.

the highest index) is e followed by the stack s. In addition, < ... > denotes a list of elements (e.g., < a, b > denotes the list 
represented by the function [0 �→ a, 1 �→ b]).
Semantics. When formalizing concrete states and semantics, we denoted by � the set of concrete states of execution for JB 
(�JB) and CIL (�CIL). The small step semantics of JB and CIL is denoted by →JB and →CIL , respectively, where, for instance, 
〈st, σ1〉 →JB σ2 represents that the execution of JB statement st with an entry state σ1 results in the exit state σ2. The small 
step semantics is defined through inference rules. For instance,

n′ = n + 1
〈increment,n〉 → 〈n′〉

formalizes that when we execute statement increment on a value n we obtain a value n′ defined as n′ = n + 1.

Object-oriented components. We denote the sets of reference and numerical values by Ref and Num, respectively, and 
values by Val = Ref ∪ Num. As usual for object-oriented programming languages, an object is a map from field names to 
values, and a heap is a map from references to objects. Formally, Heap : Ref → Field → Val, where Field is the set containing 
all field names. fresh(T , h) = (r, h′) allocates an object of type T in heap h and returns (i) the reference r of the freshly 
allocated object, and (ii) the heap h′ resulting from the allocation of memory on h.

For simplicity, we consider only integer (Int) and long (Long) numerical types (NumTypes = {Int, Long}), and references 
(Ref). Given a value v , typeOf (v) returns its type (Int, Long, or Ref). Since JB instructions often prepend a prefix to distinguish 
instructions dealing with different types (e.g., iadd and ladd), we define a support function JVMprefix that, given a type t , 
returns the prefix of the given type (i.e., i if t = Int, l if t = Long, and a if t = Ref). We define by WRef an object type with 
a unique field value.

Given a method signature m and a list of arguments L (with the receiver in the first argument if m is not static), 
body(m, L) : N → St returns the body of the method resolving the call, that is, a sequence of statements (represented 
by a function mapping indexes to statements). Similarly, each statement belongs to a method; hence getBody(st) = b is the 
body of the method where st occurs. Finally, isStatic(m) means that m is static.

3.2. CIL

We define the concrete semantics of the CIL fragment of Section 2.1.
Concrete State. A local state in CIL is composed by a stack of values or reference to local variables Stack :N → Val∪RefLoc

(where ri ∈ RefLoc represents the cell’s reference of the i-th local variable), an array of local variables Loc : N → Val, and 
an array of method arguments Arg : N → Val. A concrete CIL state consists of a local state and a heap, that is, �CIL =
Stack × Loc × Arg × Heap.

Concrete Semantics. Fig. 5 shows the concrete CIL semantics 〈st, σ 〉 →CIL σ ′ . For a statement st and an entry state σ , it 
yields the state σ ′ resulting from the execution of st over σ ; or a program label l, meaning that the next instruction to 
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typeOf (v) �= Long

〈dup, (s :: v, l,h)〉 →JB (s :: v :: v, l,h)
(dup)

typeOf (v1) �= Long

〈dup2, (s :: v1 :: v2, l,h)〉 →JB (s :: v1 :: v2 :: v1 :: v2, l,h)
(dup2 32)

typeOf (v) = Long

〈dup2, (s :: v, l,h)〉 →JB (s :: v :: v, l,h)
(dup2 64)

typeOf (v1) = Int ∧ typeOf (v2) = Int

〈iadd, (s :: v1 :: v2, l,h)〉 →JB (s :: (v1 + v2), l,h)
(iadd)

typeOf (v1) = Long ∧ typeOf (v2) = Long

〈ladd, (s :: v1 :: v2, l,h)〉 →JB (s :: (v1 + v2), l,h)
(ladd)

x = JVMprefix(typeOf (l(i)))

〈xload i, (s, l,h)〉 →JB (s :: l(i), l,h)
(xload)

x = JVMprefix(typeOf (v))

〈xstore i, (s :: v, l,h)〉 →JB (s, l[i �→ v],h)
(xstore)

isStatic(m(arg0, · · · ,argi)) = false ∧ t �= null∧
〈body(m(arg0, · · · ,argi), (t, v1, · · · , vi)), ([], [0 �→ t, j �→ v j : j ∈ [1..i]],h)〉 →JB (s′, l′,h′)

〈invokevirtual m(arg1, · · · ,argi), (s :: t :: v1 :: · · · :: vi , l,h)〉 →JB (s, l,h′)
(invokevirtual)

isStatic(m(arg0, · · · ,argi)) = true∧
〈body(m(arg0, · · · ,argi), (v1, · · · , vi)), ([], [ j − 1 �→ v j : j ∈ [1..i]],h)〉 →JB (s′, l′,h′)

〈invokestatic m(arg1, · · · ,argi), (s :: v1 :: · · · :: vi , l,h)〉 →JB (s, l,h′)
(invokestatic)

fresh(T,h) = (r,h′)
〈new T, (s, l,h)〉 →JB (s :: r, l,h′)

(new)
o �= null

〈getfield f, (s :: o, l,h)〉 →JB (s :: h(o)(f), l,h)
(getfield)

o �= null s′ = h(o)[f �→ v]
〈putfield f, (s :: o :: v, l,h)〉 →JB (s, l,h[o �→ s′]) (putfield)

typeOf (v1) = Int ∧ typeOf (v2) = Int ∧ v1 > v2

〈if_icmpgt l, (s :: v1 :: v2, l,h)〉 →JB 〈l, (s, l,h)〉
(
if_icmpgt

true

)

typeOf (v1) = Int ∧ typeOf (v2) = Int ∧ v1 ≤ v2

〈if_icmpgt l, (s :: v1 :: v2, l,h)〉 →JB (s, l,h)

(
if_icmpgt
false

)

Fig. 6. Concrete JB semantics.

execute is that at l. Otherwise, the next instruction to execute is implicitly assumed to be the subsequent one, sequentially 
(if any).

For the most part, the concrete semantics is a straightforward formalization of the run-time semantics defined by the CIL 
ECMA Standard [9]. For instance, rule add pops the two topmost values of the operand stack and replaces them with their 
addition. However, its semantics is defined iff the two values have the same type. Instead, ldloc i pushes to the operand 
stack the value of the i-th local variables, while stloc i stores the top of the operand stack into the i-th local variable. 
Statements working with objects, such as ldfld and stfld, read from and write into the heap, if their receiver is not
null. Rules call and call static create a frame (i.e., an array of arguments, an empty array of local variables and an 
empty operand stack), execute the callee and leave its returned value on the stack, if any. For simplicity, the formalization 
assumes that there is no returned value.5 Finally, ldloca i loads the reference to the i-th local variable to the stack 
(represented by ri), stind stores the given value to the given reference, and ldind loads the value pointed by the given 
reference.

3.2.1. Running example
Consider the running example in Fig. 2b and apply the concrete semantics when n is 1, that is, when the entry state 

consists of an empty operand stack and of an array of local variables, while the value of the arguments is [0 �→ 1]. Assume 
that newobj allocates the object at address #1. Then after the first block (lines 3-7) the address of the object is stored in 
local variable 0, local variable 1 (representing variable i of the source program) holds 0, and address #1 in the heap holds 
an object of type List〈Collection〉. Formally, the concrete state at line 7 is (∅, [0 �→ #1, 1 �→ 0], [0 �→ 1], [#1 �→<>]), 
where <> stands for the empty list. Then the body of the for loop (lines 9-16) is executed once and creates a new Wrap
object (assume at address #2) wrapping 0, adds it to the list at address #1 and increments counter i (i.e., local variable 0) 
by 1. Hence the execution of the concrete semantics of the body of the loop leads to the concrete state σ = (∅, [0 �→ #1, 1 �→
1], [0 �→ 1], [#1 �→< #2 >, #2 �→ [ f �→ 0]]) at line 16. The condition at line 20 will then route the program to line 22 (since 
argument 0 and local variable 1 hold 1). In conclusion, the concrete semantics will reach statement ret at line 23 with a 
state σCIL equal to σ , but where the operand stack contains reference #1.

3.3. JB

We define the concrete semantics of the JB fragment of Section 2.1.
Concrete State. A local state in JB consists of a stack of values Stack : N → Val and an array of local variables Loc :N →

Val. A concrete JB state consists of a local state and a heap, that is, �JB = Stack × Loc × Heap.

5 This would have required to define two distinct rules (the one with returned values where the final stack contains the returned value followed by 
the previous stack in addition to the one already formalized). However, the implementation fully supports this case as well, and we omit it here only to 
improve the readability of the formalization and formal proofs.
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Concrete Semantics. Fig. 6 reports the concrete JB semantics →JB . For a statement st and an entry state σ , it yields the 
state σ ′ resulting from the execution of st over σ . For the most part, the behavior of this semantics is identical to that for 
CIL. The main differences are that JB instructions work on specific types (e.g., while CIL add statement adds two values of 
the same type, JB iadd and ladd statements add the values iff they are both int or long, respectively), and new only 
allocates a new object, while CIL newobj statements also calls a constructor.

3.3.1. Running example
The application of the JB concrete semantics is similar to that for CIL, but there are two minor differences: (i) there is 

only one array of local variables representing both CIL arguments and local variables (e.g., CIL local variable 0 is represented 
by JB local variable 1, since the first local variable holds the argument of the method); and (ii) there is an instrumentation
local variable6 at index 3. Therefore, after we apply the JB concrete semantics from the entry state that maps the argument 
to 1, we obtain the concrete state ([0 �→ #1], [0 �→ 1, 1 �→ #1, 2 �→ 1, 3 �→ 0], [#1 �→< #2 >, #2 �→ [ f �→ 0]]).

4. From CIL to JB

4.1. Concrete states

Function Tσ � � : �CIL → �JB translates CIL concrete states into JB concrete states (where l represents the number of 
elements in the stack of s): Tσ �(s, l,a,h)� = (s′, cnvrtLoc(l, a), h′

l).
This function (i) replaces direct references with wrapper objects, and (ii) merges the array of local variables and argu-

ments, adjusting variable indexes for 64 bits values. Formally:

i ∈ dom(s), l = height(s), s′ =
[

i �→
{

s(i) if s(i) ∈ Val

ri if s(i) ∈ RefLoc

]

where h′−1 = h, and (h′
i, ri) = allocWrp(h′

i−1, i),allocWrp(h, j) =
⎧⎨
⎩

(h,null) if s( j) ∈ Val
(h′[r �→ h(r)[value �→ l( j)]])

where (r,h′) = fresh(WRef,h)
if s(i) ∈ RefLoc

Intuitively, each direct reference in the operand stack (that is, s(i) ∈ RefLoc) is replaced by another reference pointing to 
a wrapper object freshly allocated and containing in its field the value pointed by the original direct reference.

Then, for an array of values b and an index i, the following function counts the 64 bits types among the first i:

64i
b = |{ j : 0 ≤ j < i and b[ j] is a 64 bit value}|

Then the array cnvrtLoc(l, a) is defined as follows:

∀0 ≤ i < |a| : cnvrtLoc(l,a)[i + 64i
a] = a[i]

∀0 ≤ i < |l| : cnvrtLoc(l,a)[|a| + 64|a|
a + i + 64i

l ] = l[i]

Definition 1. Consider a function f that maps elements of a pair of arrays (a, b) into elements of an array c. Let f (a[i]) =
c[i′] and f (b[i]) = c[i′′]. The function f is an identity embedding if the following conditions hold:

1) ∀0 ≤ i < |a| : a[i] = c[i′] and ∀ j < |b| : b[ j] = c[ j′′]
2) ∀0 ≤ i, j < |a| : i ≤ j ⇒ i′ ≤ j′ and ∀0 ≤ h,k < |b| : h ≤ k ⇒ h′′ ≤ k′′
3) {i′ : 0 ≤ i ≤ |a|} ∩ { j′′ : 0 ≤ j ≤ |b|} = ∅

Lemma 1. The function cnvrtLoc is an identity embedding.

Proof. It is sufficient to observe that, by construction, the function concatenates the two arrays by shifting indexes when a 
64 bits value occurs, hence preserving the values and the ordering of the elements’ indexes. �
4.1.1. Running example

Consider the CIL exit state computed in Section 3.2, that is, σCIL = ([0 �→ #1], [0 �→ #1, 1 �→ 1], [0 �→ 1], [#1 �→< #2 >,

#2 �→ [ f �→ 0]]). The CIL to JB translation computes Tσ �σCIL � = ([0 �→ #1], [0 �→ 1, 1 �→ #1, 2 �→ 1], [#1 �→< #2 >, #2 �→
[ f �→ 0]]) (it merges CIL arguments and local variables). This state is almost identical to the exit state of the JB concrete 
semantics applied to the running example (Section 3.3) except for the instrumentation local variable at index 3.

6 Section 4.2 will introduce instrumentation variables and why they are needed.
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T�dup, s :: t, l,a,w� =

{
dup if t �= Long
dup2 if t = Long

T�add, s :: t1 :: t2, l,a,w� =

{
iadd if t1 = t2 = Int
ladd if t1 = t2 = Long

T�ldloc i, s, l,a,w� = xload j where j = |a| + 64|a|
a + i + 64i

l
∧ x = JVMprefix(typeOf (l(i)))

T�stloc i, s :: t, l,a,w� = xstore j where j = |a| + 64|a
a + i + 64i

l
∧ x = JVMprefix(typeOf (l(i)))

T�ldarg i, s, l,a,w� = xload j where j = i + 64i
a ∧ x = JVMprefix(typeOf (a(i)))

T�call m(arg1, · · · ,argi), = invoke ; aload p1
idx1

; getfield value ; xidx1store p2
idx1

; · · ·
s :: t1 :: · · · :: ti , l,a,w :: p1 :: · · · :: pi � · · ·aload p1

idx j
; getfield value ; xidx jstore p2

idx j
;

where invoke=
{
invokestatic m(arg1, · · · ,argi) if isStatic(m(arg1, · · ·,argi))
invokevirtual m(arg1, · · · ,argi) otherwise

{idx1, · · · , idx j} = {k : argk ∈ RefLoc}
∀k ∈ [1.. j] : xidxk = JVMprefix(typeOf (l(p2

idxk
))) ∧ ∀r ∈ [1..i] : pi = (p1

i , p2
j )

T�newobj T(a1, · · · ,ai), = xistore idxi ; · · · ; x1store idx1 ; new T ; dup ;
s :: t1 :: · · · :: ti , l,a,w� x1load idx1 ; · · · ; xiload idxi ; invokevirtual < init> (arg1, · · · ,argi)

where ∀ j ∈ [1..i] : x j = JVMprefix(a j) ∧ idx j = freshIdx(newobj T(a1, · · · ,ai), j)

T�ldfld f, s :: to, l,a,w� = getfield f

T�stfld f, s :: to :: tv, l,a,w� = putfield f

T�bgt k, s :: t1 :: t2, l,a,w� = if_icmpgt k′ where k′ = statementIdx(getBody(bgt k)(k)) if t1 = t2 = Int

T�ldloca i, s, l,a,w� = T�newobj WrapRef() ;dup2 ;stloc j;ldloc i;stfld value, s, l,a,w�
where j = freshIdx(ldloca i,0)

T�stind, s, l,a,w� = T�stfld value, s, l,a,w�

T�ldind, s, l,a,w� = T�ldfld value, s, l,a,w�

Fig. 7. Translation of CIL statements into JB.

4.2. Statements

Fig. 7 formalizes the translation T�stCIL,K� = stJB of a single CIL statement into a sequence of JB statements. The 
components with a linear accent (e.g., s) denotes static information about computational values. In particular, our translation 
relies on static type information about locals (denoted by l), arguments (a) and stack elements (s), computed at stCIL by 
a standard algorithm [9]. In particular, types and height of the stack are fixed and known for each bytecode. In addition, 
the fourth component w is a stack of element in ⊥ ∪ (N ×N) that, for each element in the stack, tells (i) ⊥ if it is not a 
direct reference, or (ii) (i, j) where i is the index of the local variables pointed by the direct reference,7 and j is the index 
of the local instrumentation variable containing a pointer to the wrapper simulating the reference. Instrumentation local 
variables are appended at the end of the array of JB local variables (that is, after the arguments and the local variables used 
in the program). They are needed in order to cache some values that are later needed to represent the semantics of the CIL
program in its JB translation.

Few CIL statements (namely, ldfld and stfld) have a one-to-one translation into a JB statement (getfield and
putfield). The statements reading and writing local variables and arguments (ldarg, ldloc, and stloc) are translated 
into their JB counterpart (xload, xstore, respectively), taking into account the type of the value at the top of the stack, 
and adjusting the index of the variable, taking into account arguments and 64 bit variables. Some CIL statements (dup) get 
translated into different JB statements on the basis of contextual information such as the type of values in the operand stack 
(dup and dup2). Other CIL statements can be translated only if the type of the values in the operand stack is numeric: (i)
add can be translated into ladd and iadd, and (ii) bgt to is_icmpgt; if they are applied to references (as in generic 
CIL code), then the code is considered unsafe and is not translated.

call requires to (i) translate the method call to the corresponding static or dynamic invocation statement in JB, and 
(ii) to propagate the side effects on direct pointers passed to the method as out/ref parameters to the local variables of 
the callee. The translation of newobj is tricky because of the different patterns used in CIL and JB for object creation.8

While CIL creates and initializes the object (i.e., calls its constructor) with a single instruction, JB splits these operations 
and requires the newly created object to occur below the arguments on the stack, before calling the constructor. Hence, the 
translation relies on a function freshIdx to store and load the values of the constructor arguments through instrumentation 
local variables. In particular, given a CIL method m, the number and types of arguments and local variables of the method 
are known (Section II.15.4 of [9]). Therefore, function cnvrtLoc tells which local variables the translated JB method already 
uses. Then, for each argument of each newobj statement in m, it is possible to allocate a fresh local variable to store and 
load its value. In this way, the translation allocates a new object and puts its address below the constructor arguments.

7 Since the language we introduced in Fig. 1 supports only ldloca to get a direct pointer, we need to track only this information in the formalization.
8 For sake of simplicity, we assume the constructor does not have out/ref parameters. In the implementation, they are treated as for the call

statements.
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Instructions dealing with direct pointers (namely, ldloca, stind, and ldind in our minimal language) are translated 
through equivalent CIL instructions dealing with wrapper objects (and their field value). Therefore, stind and ldind
are simply translated through equivalent write and read of field value, respectively. ldloca instead requires to allocate 
a wrapper object newobj, stores a reference to the wrapper (stloc) in an instrumentation variable obtained through 
freshIdx, stores the value pointed by the direct reference in the local variable to its field value (ldloc and stfld), and 
leaves a reference to the wrapper in the stack (dup).

Each CIL statement is translated into one or more JB statements, hence offsets are not preserved. Thus, function 
statementIdx : St → N yields the JB offset of the first statement in the translation of the given CIL statement. In addi-
tion, since direct references are replaced by wrapper objects, when a method parameter has a direct reference type &T (and 
this happens when it is a ref or out parameter in safe C#), this is replaced by a wrapper object WRef.

4.2.1. Running example
Consider the running example in Fig. 2. Most CIL statements are translated into a single JB statement (e.g., lines 18-20 

and 22-23 of Fig. 2b are translated into lines 23-25 and 27-28 of Fig. 2c), with the noticeable exception of the CIL newobj
statements at lines 3 and 11, translated into lines 2-4 and 12-16, respectively. The former passes no argument to the 
constructor; the latter (that instantiates a Wrap) calls a constructor with an argument, hence requiring an instrumentation 
variable at index 3.

4.2.2. Direct references
As sketched in Section 2.2.1, we model the semantics of pointers in safe C# code through wrapper objects. In particular,

ldind (line 5 of Fig. 3c) is translated into the field access i.value (right side of the assignment at line 2 of Fig. 3b), while
stind (line 8 of Fig. 3c) is translated into the assignment of i.value (left side of the assignment at line 2 of Fig. 3b). 
In addition, ldloca (line 15 of Fig. 3c) leads to the construction and assignment of a wrapper object (lines 7 and 8 of 
Fig. 3b), while after the method call the value contained in the wrapper object is written into the local variable (line 10 of 
Fig. 3b).

4.3. Correctness

This section proves that the translation from CIL to JB statements is correct. Namely, given a concrete CIL state σCIL and 
applying the operational semantics for a statement st, one obtains a state that, when translated into JB, is exactly the state 
resulting from the translation of σCIL into JB and the application of the JB semantics to it:

∀st ∈ StCIL,σCIL ∈ �CIL : 〈st, σCIL〉 →CIL σ ′
CIL and 〈T�st,K�,Tσ �σCIL �〉 →JB σ ′

JB⇓
Tσ �σ ′

CIL � =• σ ′
JB

where σ1 =• σ2 means that the two states are equal up to instrumentation variables introduced by the translation process. 
Formally, let σ1 = (s1,l11 :: . . . :: ln1,h1) and σ2 = (s2,l12 :: . . . :: ln2, :: ln+1

2 :: . . .:: ln+k
2 ,h2), then σ1 =• σ2 iff s1 = s2 , and 

∀i≤ n : li1 = li2 , and h1 = h2 . Note that instrumentation variables are present only in the JB state, hence in the right 
hand-side of the equality.

4.3.1. Formal proof of soundness

Lemma 2. The translation of ldloc is correct.

Proof. Let us consider the case of integer arguments (the other case can be treated analogously). Let us prove that the 
translation of ldloc for integer values is correct, i.e., that ∀σCIL ∈ �CIL , if 〈ldloc i, σCIL〉 →CIL σ ′

CIL and〈T�ldloc i, (s, l,
a,w)�, Tσ �σCIL �〉 →JB σ ′

JB then Tσ �σ ′
CIL � =• σ ′

JB . Let σCIL = (s, l, a, h) be arbitrary. By the ldloc−CIL rule we have σ ′
CIL =

(s :: l[i],l,a,h). By rule (3) of Fig. 7, T�ldloc i, s, l,a,w� = iload j where j = |a| + 64|a|
a + i + 64i

l
. By definition of 

Tσ � �:

Tσ �σCIL � = Tσ �(s,l,a,h)� = (s′, cnvrtLoc(l,a),h′).

By the iload−JB rule:

〈iload j, (s′, cnvrtLoc(l,a),h′)〉 →JB (s′ :: cnvrtLoc(l,a)[j], cnvrtLoc(l,a),h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � = Tσ �(s :: l[i],l,a,h)� = (s :: l[i], cnvrtLoc(l,a),h).

By definition of cnvrtLoc we have cnvrtLoc(l, a)[j] = l[i], which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
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Lemma 3. The translation of ldarg is correct.

Proof. Let us consider the case of integer arguments (the other case can be treated analogously). Let us prove that the 
translation of ldarg for integer values is correct, i.e., that ∀σCIL ∈ �CIL , if 〈ldarg i, σCIL〉 →CIL σ ′

CIL and〈T�ldarg i, (s, l,
a,w)�, Tσ �σCIL �〉 →JB σ ′

JB then Tσ �σ ′
CIL � =• σ ′

JB . Let σCIL = (s, l, a, h) be arbitrary. By the ldarg−CIL rule we have σ ′
CIL =

(s :: a[i],l,a,h). By rule (5) of Fig. 7, T�ldarg i, s, l,a,w� = iload j where j = i + 64|a|
a + i + 64i

l
. By definition of 

Tσ � �:

Tσ �σCIL � =Tσ �(s,l,a,h)� = (s′, cnvrtLoc(l,a),h′).

By the iload−JB rule:

〈iload j, (s′, cnvrtLoc(l,a),h′)〉 →JB (s′ :: cnvrtLoc(l,a)[j], cnvrtLoc(l,a),h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � =Tσ �(s :: l[i],l,a,h)� = (s :: l[i], cnvrtLoc(l,a),h).

By definition of cnvrtLoc we have cnvrtLoc(l, a)[j] = l[i], which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
Lemma 4. The translation of stloc is correct.

Proof. Let us consider the case of integer arguments (the other case can be treated analogously). Let us prove that the 
translation of stloc for integer values is correct, i.e., that ∀σCIL ∈ �CIL , if 〈stloc i, σCIL〉 →CIL σ ′

CIL and〈T�stloc i, (s, l,
a,w)�, Tσ �σCIL �〉 →JB σ ′

JB then Tσ �σ ′
CIL � =• σ ′

JB . Let σCIL = (s :: v, l, a, h) be an arbitrary state where the stack has 
an integer value v at the top. By the stloc−CIL rule we have σ ′

CIL = (s,l[i �→ v],a,h). By rule (4) of Fig. 7, 
T�stloc i, s :: t, l,a,w� = istore j where j = |a| + 64|a|

a + i + 64i
l
. By definition of Tσ � �:

Tσ �σCIL � =Tσ �(s :: v,l,a,h)� = (s′ :: v, cnvrtLoc(l,a),h′)

By the istore−JB rule:

〈istore j, (s′ :: v, cnvrtLoc(l,a),h′)〉 →JB (s′, cnvrtLoc(l,a)[j �→ v],h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � =Tσ �(s,l[i �→ v],a,h)� = (s, cnvrtLoc(l[i �→ v],a),h′)

By definition of cnvrtLoc we have that cnvrtLoc(l[i �→ v], a) = cnvrtLoc(l, a)[j �→ v] which implies Tσ �σ ′
CIL � = σ ′

JB , and 
thus Tσ �σ ′

CIL � =• σ ′
JB . �

Lemma 5. The translation of add is correct.

Proof. Let us consider the case of integer arguments (the other case can be treated analogously). Let us prove that the 
translation of add for integer values is correct, i.e., that ∀σCIL ∈ �CIL , if 〈add, σCIL〉 →CIL σ ′

CIL and〈T�add, (s, l,a,w)�,

Tσ �σCIL �〉 →JB σ ′
JB then Tσ �σ ′

CIL � =• σ ′
JB . Let σCIL = (s :: v1 :: v2, l, a, h) be an arbitrary state where the stack has two 

integer values v1 and v2 at the top. By the add−CIL rule we have σ ′
CIL = (s :: (v1 + v2),l,a,h). By rule (2) of Fig. 7, 

T�stloc i, s :: t1 :: t2, l,a,w� = iadd j. By definition of Tσ � �:

Tσ �σCIL � =Tσ �(s :: v1 :: v2,l,a,h)� = (s′ :: v1 :: v2, cnvrtLoc(l,a),h′)

By the iadd−JB rule:

〈iadd j, (s′ :: v1 :: v2, cnvrtLoc(l,a),h′)〉 →JB (s′ :: (v1 + v2), cnvrtLoc(l,a),h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � =Tσ �(s :: (v1 + v2),l,a,h)� = (s′ :: (v1 + v2), cnvrtLoc(l,a),h′)

which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
Lemma 6. The translation of dup is correct.
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Proof. Let us consider the case of integer arguments (the other case can be treated analogously). Let us prove that the 
translation of dup for integer values is correct, i.e., that ∀σCIL ∈ �CIL , if 〈dup, σCIL〉 →CIL σ ′

CIL and〈T�add, (s, l,a,w)�,

Tσ �σCIL �〉 →JB σ ′
JB then Tσ �σ ′

CIL � =• σ ′
JB . Let σCIL = (s :: v, l, a, h) be an arbitrary state where the stack has an integer value 

v at the top. By the dup−CIL rule we have σ ′
CIL = (s :: v :: v,l,a,h). By rule (1) of Fig. 7, T�dup, s :: t, l,a,w� = dup j. 

By definition of Tσ � �:

Tσ �σCIL � = Tσ �(s :: v,l,a,h)� = (s′ :: v, cnvrtLoc(l,a),h′).

By the dup−JB rule:

〈dup, (s′ :: v, cnvrtLoc(l,a),h′)〉 →JB (s′ :: v :: v, cnvrtLoc(l,a),h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � = Tσ �(s :: v,l,a,h)� = (s′ :: v, cnvrtLoc(l,a),h′)

which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
Lemma 7. The translation of ldfld is correct.

Proof. Let us consider the case of a numerical field (the case of a reference field can be treated analogously). We want to 
prove that ∀σCIL ∈ �CIL , if 〈ldfld f, σCIL〉 →CIL σ ′

CIL and 〈T�ldfld f, (s, l,a,w)�, Tσ �σCIL �〉 →JB σ ′
JB then Tσ �σ ′

CIL � =•
σ ′

JB . Let σCIL = (s :: o, l, a, h) be an arbitrary where the stack contains a reference o at the top. By the ldfld−CIL rule we 
have σ ′

CIL = (s :: h(o)(f),l,a,h). By rule (8) of Fig. 7, T�ldfld f, s :: to, l,a,w� = getfield f. By definition of Tσ � �:

Tσ �σCIL � = Tσ �(s :: o,l,a,h)� = (s′ :: ro, cnvrtLoc(l,a),h′)

where ro is defined as a reference to a wrapper JB object representing the CIL object. By the getfield−JB rule:

〈getfield f, (s′ :: ro, cnvrtLoc(l,a),h′)〉 →JB (s′ :: h′(ro)(f), cnvrtLoc(l,a),h′) = σ ′
JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � = Tσ �(s :: h(o)(f),l,a,h)� = (s′ :: h(ro)(f), cnvrtLoc(l,a),h′)

which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
Lemma 8. The translation of stfld is correct.

Proof. Let us consider the case of a numerical field (the case of a reference field can be treated analogously). We want to 
prove that ∀σCIL ∈ �CIL , if 〈stfld f, σCIL〉 →CIL σ ′

CIL and 〈T�stfld f, (s, l,a,w)�, Tσ �σCIL �〉 →JB σ ′
JB then Tσ �σ ′

CIL � =•
σ ′

JB . Let σCIL = (s :: o :: v, l, a, h) be an arbitrary where the stack contains a reference o and a value v at the top. By the 
stfld−CIL rule we have σ ′

CIL = (s,l,a,h[o �→ h(o)[f �→ v]]). By rule (9) of Fig. 7, T�stfld f, s :: to :: tv, l,a,w� =
putfield f. By definition of Tσ � �:

Tσ �σCIL � = Tσ �(s :: o :: v,l,a,h)� = (s′ :: ro :: v, cnvrtLoc(l,a),h′)

where ro is defined as a reference to a wrapper JB object representing the CIL object. By the putfield−JB rule:

〈putfield f, (s′ :: ro :: v, cnvrtLoc(l,a),h′)〉 →JB (s′ :: h′(ro)(f), cnvrtLoc(l,a),h′[ro �→ h′(ro)[f �→ v]])
= σ ′

JB.

By definition of Tσ � � we have

Tσ �σ ′
CIL � = Tσ �(s,l,a,h[o �→ h(o)[f �→ v]])�

= (s′, cnvrtLoc(l,a),h′[ro �→ h(o)[f �→ v]])
= (s′, cnvrtLoc(l,a),h′[ro �→ h′(ro)[f �→ v]])

which implies Tσ �σ ′
CIL � = σ ′

JB , and thus Tσ �σ ′
CIL � =• σ ′

JB . �
Lemma 9. The translation of call is correct.
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Proof. Let us consider the case of static call (the other case can be treated analogously). Moreover, let us denote 
by �[i, j] the sequence �i, . . . , � j , and by s(i,j) the sequence of types [k1, . . . ,ki,t1,. . . ,tj]. We show that: ∀σCIL =
([u[1,n], v[1,i]], l, a, h), if 〈call m(arg[1,i]), σCIL〉 →CIL σ ′

CIL = ([u[1,n]], l, a, h′) and 〈T�call m(arg[1,i]), (s(n,i), l,a,w[1,i])�,

Tσ �σCIL �〉 →JB σ ′
JB , then Tσ �σ ′

CIL � =• σ ′
JB .

Rule 〈call m(arg[1,i]), σCIL〉 →CIL σ ′
CIL requires, to be applied, that the condition

〈body(m(arg[0,i]), (v[1,i])), ([ ],∅, [ j − 1 �→ v j : j ∈ [1..i]],h)〉 →CIL (s′, l′,a′,h′)

is satisfied.
Observe that for a = [ j − 1 �→ v j : j ∈ [1..i]], we get Tσ �([ ],∅,a,h)� = ([ ], l′′, h), where for each j ∈ [1..i], l′′[ j + 64 j

a] =
v j . Moreover, T�body(m(arg[0,i])), (t1, . . . ,ti),∅,a,h� = body(m(arg[0,i])). Therefore, by inductive hypothesis, we get 
that 〈body(m(arg[0,i])(v[1,i])), ([], [ j − 1 �→ v j : j ∈ [1..i]], h)〉 →JB (s′′, l′′, h′′) is such that Tσ �(s′, l′,a′,h′)� =• (s′′, l′′, h′′), 
and in particular h′ = h′′ . It is sufficient now to recall that by Fig. 7 (static call) T�call m(arg[1,i]),s(n,i), l,a,w[n,i]� is 
obtained by applying invokestatic m(arg[1,i]) followed by the update of all the local variables passed by reference to 
the called method, and that by the invokestatic rule of Fig. 6, σ ′

JB = ([u[1,n],l′′,h). Finally, by the definition of Tσ � �, 
we get Tσ �σ ′

CIL � =• σ ′
JB . �

Lemma 10. The translation of bgt is correct.

Proof. Consider T�bgt k, s :: t1 :: t2, l,a,w� in the case t1 = t2 = int, and assume σCIL = ([s[1,n] :: v1, v2], l, a, h) with 
v2 > v2 (the other case is similar), yielding to 〈bgt l, σCIL〉 →CIL σ ′

CIL = 〈l, σCIL〉.
We show that if 〈T�bgt k, s :: t1 :: t2, l,a,w�, Tσ �σCIL �〉 →JB σ ′

JB , then Tσ �σ ′
CIL � =• σ ′

JB . By the corresponding rule in 
Fig. 7, T�bgt k, s :: t1 :: t2, l,a,w� = if_icmpgtk′ where

k′ = statementIdx(getBody(bgt k)(k)).
By the semantics of if_icmpgt we have that 〈if_icmpgtk′, ([s[1,n] :: v1 :: v2], convertLocals(l,a),h) →JB 〈k′, (s[1,n],

convertLocals(l,a),h)〉. As Tσ �σCIL � = ([s[1,n] :: v1 :: v2], convertLocals(l,a),h), and by definition of statementIdx(), we get 
that Tσ �〈l, σCIL〉� = 〈k′, Tσ �σCIL �〉 = σ ′

JB , and thus Tσ �〈l, σCIL〉� =• σ ′
JB . �

Lemma 11. The translation of newobj is correct.

Proof. Assume σCIL = ([s[1,n] :: v[1,i]], l, a, h). By definition, 〈newobjT(arg[1,i]), σCIL〉 →CIL σ ′
CIL = (s :: r, (l, a, h′)), where r

and h′ satisfy the constraints of the corresponding rule of Fig. 5. In particular, fresh T h = (r, h′) allocates the memory for 
an object of type T on heap h and returns (i) the reference r of the freshly allocated object, and (ii) the heap h′ resulting 
from the allocation of memory on h.

Let σ ′
JB = 〈T�newobj T(a[1,i]), s :: t[1,i], l,a,w�, Tσ �σCIL �〉, and compare Tσ �σ ′

CIL � and σ ′
JB componentwise. We may 

observe that in both cases the store is equal to s :: r, as the new elements added to the store during the translation in order 
to implement the object initialization are finally removed when applying the invokevirtual call, whose correctness is 
granted by structural inductive hypothesis. Moreover, the single array in JB for both local variables and method arguments 
is updated properly by storing and loading the values of the constructor arguments in the expected ordering. Finally, the 
heap h′ results in both cases from the allocation of corresponding memory on h. �
Lemma 12. The translation of stind is correct.

Proof. By Fig. 7, we have that
T�stind, s, l,a,w� =T�stfld value, s, l,a,w� = putfield value
By Fig. 5, we have that 〈stind, (s :: ri :: v, l, a, h)〉 →CIL (s, l, a, h[ri �→ v]). By definition of the translation of con-

crete states (assuming that the only direct reference in the stack is ri ), we have that Tσ �(s :: ri :: v, l,a,h)� = (s :: r′ ::
v, cnvrtLoc(l, a), h[r′ �→ [value �→ l(i)]]) where r′ is a freshly allocated reference pointing to a wrapper. Then by Fig. 6, we 
have that 〈putfield value, (s :: r′ :: v, cnvrtLoc(l, a), h[r �→ [value �→ l(i)]])〉 →JB (s, cnvrtLoc(l, a), h[r′ �→ [value �→ v]]). 
Finally, we obtain that Tσ �(s, l,a,h[ri �→ v])� =• (s, cnvrtLoc(l, a), h[r′ �→ [value �→ v]]) proving the soundness of the 
translation of stind. �
Lemma 13. The translation of ldind is correct.

Proof. By Fig. 7, we have that
T�ldind, s, l,a,w� =T�ldfld value, s, l,a,w� = getfield value
By Fig. 5, we have that 〈ldind, (s :: ri, l, a, h)〉 →CIL (s :: h(ri), l, a, h). By definition of the translation of concrete states 

(assuming that the only direct reference in the stack is ri ), we have that Tσ �(s :: ri, l,a,h)� = (s :: r′, cnvrtLoc(l, a), h[r′ �→
[value �→ l(i)]]) where r′ is a freshly allocated reference pointing to a wrapper. Then by Fig. 6, we have that 
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1 if_icmpeq 4
2 iconst_0
3 goto 5
4 iconst_1
5 nop

(a) ceq on integers.

1 lcmp
2 iconst_0
3 if_icmpeq 6
4 iconst_0
5 goto 7
6 iconst_1
7 nop

(b) ceq on longs.

1 ldloc.0
2 ldc. i4.0
3 callvirt !0 List<A>::get(int32)
4 stloc.1

(c) Getting a list element in CIL.

1 aload_0
2 iconst_0
3 invoke List .get :( I )LObject;
4 checkcast A
5 astore_1

(d) Getting a list element in JB.

Fig. 8. Examples of numerical comparisons and generics.

〈getfield value, (s :: r′, cnvrtLoc(l, a), h[r′ �→ [value �→ l(i)]])〉 →JB (s :: l(i)]], cnvrtLoc(l, a), h[r′ �→ [value �→ v]]). Fi-
nally, we obtain that Tσ �(s :: l(i), l,a,h)� =• (s, cnvrtLoc(l, a), h[r′ �→ [value �→ l(i)]]) proving the soundness of the trans-
lation of ldind. �
Lemma 14. The translation of ldloca is correct.

Proof. By Fig. 5, we have that 〈ldloca i, (s, l, a, h)〉 →CIL (s :: ri, l, a, h) where ri is the direct reference pointing to the 
i-th local variable. By Fig. 7, we have that ldloca i is translated into a sequence of statements that (i) creates a wrapper 
object containing the value of the i-th local variable, (ii) stores its reference into an instrumentation variable, and (iii) leaves 
its reference on the operand stack as well. Then, by definition of the concrete semantics of JB, we obtain a final state σ ′

JB
appending to the initial stack a reference to the wrapper object whose value is the one of the i-th local variable. Therefore, 
σ ′

JB =• Tσ �(s :: ri, l,a,h)� since =• ignores the instrumentation variables. This proves the soundness of the translation of
ldloca. �
Theorem 1. The translation of the presented set of CIL instructions into JB code is correct.

Proof. We prove that the translation of each statement from CIL to JB depicted in Fig. 7 satisfies the correctness property 
introduced in Section 4.3. In fact, Lemma 2, Lemma 3, Lemma 4, Lemma 5, Lemma 6, Lemma 7, and Lemma 8 prove the 
correctness of the translation of ldloc, ldlarg, stloc, add, dup, ldfld, and stfld, respectively. The correctness of a 
new object creation is proved by Lemma 11. The correctness proof of static and dynamic calls translation has been given in 
Lemma 9, and that of stind, ldind, ldloca was proved by Lemmas 12, 13 and 14, respectively. Finally, the correctness 
of the comparison statements translation is shown in Lemma 10. �
4.3.2. Running example

Section 3.2 showed that, starting from σCIL = (∅, ∅, [0 �→ 1], ∅), the concrete semantics on the program in Fig. 2b ends 
up in σ ′

CIL = ([0 �→ #1], [0 �→ #1, 1 �→ 1], [0 �→ 1], [#1 �→< #2 >, #2 �→ [ f �→ 0]]). Then Section 3.3 showed that, starting 
from the corresponding Tσ �σCIL � state, the JB concrete semantics leads to σ ′

JB = ([0 �→ #1], [0 �→ 1, 1 �→ #1, 2 �→ 1, 3 �→
0], [#1 �→< #2 >, #2 �→ [ f �→ 0]]. Hence, by definition of Tσ � �, we have Tσ �σ ′

CIL � = •σ ′
JB since the two stacks and the 

two heaps are equal, the values of three local variables of the JB state correspond to the values of the argument and the 
two local variables of the CIL state, respectively, and =• projects away the fourth variable of the JB state σ ′ .

4.4. Other instructions

In this section, we informally discuss how our approach deals with CIL instructions that are slightly different from other 
instructions in JB. We decided to handle these instructions informally since their translation is mostly straightforward. 
However, our implementation, whose experimental results will be discussed in Section 5, fully supports them. It is intended 
for readers that are expert of JB, CIL and more advanced C# features, such as generic type erasure in JB, or delegates in C#.

Numerical and reference comparison. CIL compares numerical or reference values in two ways: through conditional 
branches (e.g., beq branches when the topmost two values on the stack are equal) and comparisons (e.g., ceq pushes 
1 iff the topmost two values on the stack are equal, and 0 otherwise). As usual, these instructions are type-independent and 
apply to numerical (int, float, long, . . . ) as well as reference values. JB uses a different approach, since its instructions are 
type-dependent. If the topmost two values on the stack are integers, it uses a conditional branch instruction (if_icmpeq) 
similar to that of CIL (beq). However, JB has no comparison instruction on integers and we need to simulate it through a 
sequence of JB instructions relying on constants and branch. For instance, a ceq statement on integers is simulated as in 
Fig. 8a. Instead, if the topmost two values on the stack are long, JB uses a comparison statement lcmp that pushes to the 
stack 1, 0, or -1 iff the first value is less than, equal to, or greater than the second, respectively. Hence, we simulate CIL 
conditional branch and comparison instructions through lcmp, integer constants and a conditional branch on integers. For 
instance, beq is translated into the sequence lcmp; ifne #i; where i is the target JB instruction of beq. Instead, the 
treatment of comparisons over long is similar to int. Namely, ceq is translated into the code in Fig. 8b. Moreover, condi-
tional branch and comparison work also on references. Equality and inequality statements are treated as for integers, since 
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1 delegate void Del(string message);
2 void DelegateMethod(string message) {...}
3 void go() {
4 Del handler = DelegateMethod;
5 handler("Hello World");}

(a) C# code.

1 void go () {
2 ldarg.0
3 ldftn A::DelegateMethod(string)
4 newobj A/Del::.ctor(object, int)
5 ldstr "Hello World"
6 call void A/Del::Invoke(string)}

(b) CIL

1 void go() {
2 ldc "DelegateMethod(LString;)V"
3 invokestatic

Reflection .GetMethod:(LString;)LMethod;
4 ldc "Hello World"
5 invokevirtual A/Del.Invoke:(LString ;)}

(c) JB.

Fig. 9. An example of CIL delegate.

JB defines an if_acmpeq statement. Other CIL operators (e.g., bgt) can be applied to arbitrary references, as long as one 
of them is null. For instance, it might branch if a reference is strictly greater than null (that is, if it is not null) and we 
translate these cases accordingly.

Generic types. CIL keeps information about generic types, while JB erases it into Object. For instance, imagine that we 
have a local variable list of type List〈A〉. At source code level, a method call like A a = list.get(0) in Java or A 
a = list[0] in C# is legal since the elements of the list have type A in both languages. At bytecode level, getting an 
element from the list effectively returns an object of type A in CIL (see Fig. 8c), while it returns an object whose static type 
is Object in JB and casts it dynamically to A through a checkcast (Fig. 8d). Hence, our translation of a CIL method call 
with generic return type T adds a checkcast instruction to T after the call.

Primitive types (e.g., int and long) can be passed as generic types in CIL but not in JB. Hence, when using a primitive 
type for the generic parameter or return value of a CIL method call, we box and unbox the primitive value into a Java 
wrapper class such as java.lang.Integer.

Delegates. Lambda expressions have only been introduced in Java 8, while C# has been using delegates since its very 
beginning. C# implements delegates through CIL instructions that load a pointer to a method (ldftn) and execute it, 
sometime by using inner classes. Namely, C# accesses a pointer to the method through ldftn and calls the Invoke
method of the delegate class. Consider for instance Fig. 9. The C# code in Fig. 9a uses a delegate to call a method. In 
Fig. 9b, this is compiled into a ldftn statement at line 4 followed by a call to Invoke at line 7. We translate this by using 
reflection and string constants, since at the time our approach was developed Julia did not support yet Java 8 and thus
invokedynamic statements. Namely, the signature of the method pointed by ldftn is represented by a string, passed 
to an instrumentation library call in class Reflection, that calls this method by reflection (Fig. 9c). However, many static 
analyzers (including Julia) are unsound for reflection. Hence, our translation marks all signatures accessed in this way as 
entry points (that is, methods that might be directly called from outside the application and therefore are analyzed under 
the most generic assumptions). This might cause a loss of precision, since contextual information on delegates is lost, but 
preserves soundness.

Async and await. In C#, an async method returns a Task object that allows the caller to execute the code of the method 
asynchronously. On the other hand, statement await waits until the execution of the asynchronous method ends and 
extracts the results of the computation. This pattern is compiled into method pointers and reflection at CIL bytecode level, 
in the same way delegates are treated. Therefore, we apply the same solution for delegates that we described in Section 8.

Exceptions. While the throw of exceptions is identical in JB (athrow) and CIL (throw), exceptions handlers are different. In 
particular, JB has an exception table for each method that, for each try block, defines the code portion guarded by the 
block and the catch block that manages the exception. finally blocks are translated in JB using these constructs. Instead, CIL 
supports natively finally blocks. When translating them, we apply the same semantics of Java when compiling finally blocks 
to bytecode, that is, we add to the JB exception table a block guarding both try and catch, and pointing to the code of finally.

5. Experimental results

Our experiments are aimed at answering the research questions in Section 1.1, hence assessing the practical interest of 
our translation for static analysis purposes.

5.1. Experimental setup

We implemented our translation from CIL to JB through (i) a C# program that translates a CIL program to an intermediate 
XML representation (representing Java bytecode), and (ii) a Java program that produces a jar file from an XML represen-
tation. We had to split the implementation in this way since the library to read CIL bytecode (Mono.Cecil) is written in 
.NET, while the library writing jar bytecode (BCEL) is written in Java. The first part of the translation (performing the real 
CIL to JB translation) runs in parallel on different classes through the System.Threading.Tasks library (part of the standard 
.Net framework). We ran our experiments on an Intel Core i5-6600 CPU at 3.30 GHz machine with 16 GB of RAM, 64-bit 
Windows 7 Professional, and Java SE Runtime Environment version 1.8.0_111-b14.

The CIL to JB translator has been incorporated inside the Julia static analyzer. Such tool is exposed as a cloud service at 
http://portal .juliasoft .com, where one can register and get credits to analyze about 10 KLOCs. The quickstart manual points 
to the Visual Studio plugin that allows one to run the analyses from this IDE.

http://portal.juliasoft.com
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Table 1
The 5 most starred GitHub C# projects.

Program LOC Overall analysis time Translation time # fail

Shadowsocks 17,175 1’28” 4” 0
CodeHub 51,387 1’54” 8” 0
Wox 19,911 1’03” 2” 0
Dapper 26,613 1’04” 7” 0
ShareX 144,904 3’13” 19” 21

*l Total 259,990 8’42” 40” 21

We ran two distinct experiments. First of all, in order to study the precision of our approach, we analyzed with Julia’s 
basic checkers9 the five most popular GitHub repositories (as of April 9th, 2019) written in C# and tagged as C# repos-
itories.10 All the analyses were run on the Julia cloud services version 2.7.0. In particular, we inspected all the warnings 
with Critical and Major severity.11 Table 1 reports the libraries we analyzed, the number of lines of code (Column LOC),12

the time (Overall Analysis Time) consumed by the overall analysis (including both the translation from CIL to JB, the time 
(Translation Time) consumed by the translation of CIL to JB (note that this is comprised in the preceding column), and the 
time of Julia’s analyses), and the number of unsafe methods (Column # fail) that our approach failed to translate. Table 2
reports the detailed experimental results, and in particular for each application the number of alarms (divided into Category 
- Bug or Efficiency -, Severity - Critical or Major -, and warning type13) produced by the analysis (Column # a), and the 
number of false alarms caused by loss of information in the translation from CIL to JB (Column # f, that is a subset of 
Column # a).

Then, in order to assess the efficiency and library coverage of our approach, we also analyzed all system libraries of 
the Microsoft .Net framework version 4.0.30319. They contain unsafe code (such as cryptographic code in mscorlib.dll) and 
might not be compiled from C#, but possibly from VB.Net or other programming languages. Table 3 reports the number of 
methods of the library that were correctly translated (# met.), the number and percentage of methods where the translation 
fails because of unsafe code (# fail and % fail). These translations took all together 23’39” on a Windows 10 machine with 
a 2-core Intel® Core™ i7-7500U CPU and 16 GB of RAM memory.

5.2. Research question 1: efficiency

As discussed in the previous section, the translation of all the .NET libraries (almost 500K methods for a total of about 
5 MLOCs) took about 24 minutes, that is, about 4 methods per millisecond. The translation took at most 238 MB of RAM 
memory. In addition, on the 5 GitHub projects (more than 250 KLOCs), the overall analysis time took about 9 minutes, and 
only 40 seconds were consumed by the translation of CIL to JB (that is, about 8% of the overall analysis time). Therefore, we 
conclude that both the computational time and the memory consumption are negligible w.r.t. the overall analysis time. This 
shows that our approach respects Research Question 1: it deals with industrial-size software in a few minutes and with a 
negligible translation time.

5.3. Research question 2: precision

We manually investigated all the warnings with severity Critical and Major issued by Julia on the top 5 Github projects. 
Table 2 reports, for each project, the detailed experimental results. The static analysis might generate false alarms as well 
because of inherent approximations applied by the static analysis engine. For instance, Julia approximates together the 
analysis of distinct branches of if statements after the statement itself. Imagine that the condition is a Boolean flag, and 
if this is true, then the program initializes a variable to a non-null value. Later, the program tests again the same Boolean 
guard, and if true it dereferences the local variable previously initialized. In this case, Julia’s BasicNullness analysis produces 
a false alarm since it is not able to infer that the value of the Boolean flag guarantees that the variable is non-null. Such 
analysis could be improved with trace partitioning [28], but the analysis probably would not scale up. We do not count 
these as false alarms, since we want to evaluate the imprecision due to the translation, and not inherent to Julia’s analysis 
engine.

All together, the analyses produced 2, 008 Critical and Major warnings. Among these, 88 (that is, 4%) are false alarms 
due to our translation from CIL to JB. In particular:

9 https://juliasoft .com /resources /checkers/ contains a comprehensive list of Julia’s checkers.
10 We consider the number of received stars as measure of popularity of a repository. We discarded some projects tagged as C# that actually mostly 

contain native code (corefx, coreclr, aspnetcore), that did not compile in Visual Studio (roslyn, powershell), or that are particularly small (wavefunction, 
below 1 KLOC).
11 Julia’s warnings have 4 distinct levels of severity: Critical, Major, Minor and Info.
12 LOC are computed with LocMetrics http://www.locmetrics .com/.
13 Table A.4 in the Appendix reports the exhaustive lists of Julia warnings.

https://juliasoft.com/resources/checkers/
http://www.locmetrics.com/
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Table 2
Experimental results on the 5 most starred GitHub C# projects.

Category Severity Warning ShadowSocks CodeHub Wox Dapper ShareX Total

#a #f #a #f #a #f #a #f #a #f #a #f % f

Bug Critical

ActualNull 3 0 15 0 1 0 2 0 14 2 35 2 6%
AssigningInsteadOfComparing 1 0 1 0 0%
CallOnNull 5 1 1 1 5 4 6 2 17 8 47%
CastIntegralComputationIntoFloatingPoint 5 0 5 0 0%
CompareToWithDefaultEquals 1 0 1 0 0%
EqualsOnDisjointTypes 3 3 3 3 100%
FloatComparison 5 0 5 0 0%
FormalNull 1 0 1 0 0%
GetFieldFromNull 1 1 1 1 100%
ReturnValueShouldBeUsed 1 0 1 0 2 0 0%
UnsafeLazyInitialisation 6 0 2 0 3 0 5 0 16 0 0%
XXEAttack 4 0 4 0 0%

Total Critical Bug 18 2 16 1 6 3 11 4 40 4 91 14 15%

Bug Major

ArrayStore 4 0 1 1 5 1 20%
AssignmentoToUnreadParameter 1 0 10 0 11 0 0%
AssignmentoToUnusedParameter 3 0 2 0 1 0 6 0 0%
CastIntComputationIntoLong 7 0 3 0 10 0 0%
ClasscastOfFormal 14 0 4 4 5 0 10 0 32 2 65 6 9%
ImpossibleInstanceOf 3 3 2 0 7 5 12 8 67%
InadequateCallInProduction 1 0 1 0 0%
MissingNullnessCheckOfReturnedValue 1 0 1 0 2 0 0%
NonShortCircuitAND 4 4 3 3 4 4 3 3 14 14 100%
NonShortCircuitOR 2 0 2 0 0%
ResourceNotClosedAtEndOfMethod 8 0 248 0 3 0 2 0 55 0 316 0 0%
SuspiciousInheritanceOfEquals 9 0 32 0 4 4 2 0 28 28 75 32 43%
TestIsPredetermined 18 3 2 0 2 0 111 0 133 3 2%
Uncalled 2 0 13 2 23 2 33 0 28 0 99 4 4%
UnexpectedInstanceof 1 1 1 1 100%
UnreachableInstruction 12 3 2 0 1 0 72 0 87 3 3%
UnsafeBase64Encoding 3 0 1 0 2 0 6 0 0%
VariableCanOnlyBeNull 1 0 1 0 0%
WeakHashingAlgorithmWarning 1 0 7 0 8 0 0%

Total Major Bug 74 6 311 13 43 9 62 4 364 40 854 72 8%

Efficiency Major

BlockingCallInsideSynchronization 1 0 1 0 0%
Equals 2 0 2 0 0%
FieldIsOnlyUsedInConstructors 2 0 3 0 6 0 11 0 0%
FieldShouldBeReplacedByLocals 43 0 5 0 3 0 978 0 1029 0 0%
TautologicalInstanceof 2 0 2 0 0%
UselessCall 2 0 2 0 4 0 0%
UselessConstruction 1 0 1 0 0%
UselessTest 5 0 4 2 9 2 22%
UseLogInstead 4 0 4 0 0%

Total Major Inefficiency 54 0 5 0 7 0 3 0 994 2 1063 2 0%

Total Critical and Major 146 8 332 14 56 12 76 8 1398 46 2008 88 4%

• the nullness checker produced 11 false alarms (ActualNull, CallOnNull, and GetFieldFromNull) because of nullness checks 
introduced by the C# compiler that were not considered as synthetic (that is, code generated by the compiler) by Julia 
analyses;

• 19 false alarms (ArrayStore, ClasscastOfFormal, ImpossibleInstanceOf, and UnexpectedInstanceOf) were due to missing 
type information in JB (in particular, since CIL contains information about generic types, while JB does not support it) 
and type casts introduced by the C# compiler and not considered synthetic by Julia analyses;

• 14 false alarms are NonShortCircuitAND warnings (that were all false alarms). These are due to instrumentation checks 
added by the C# compiler on conditions on nullable variables;

• 32 false alarms are SuspiciousInheritanceOfEquals warnings due to the fact that C# structs do not need to explicitly 
implement Equals (even if this is often done for performance reasons); and

• the remaining 12 false alarms (TestIsPredetermined, Uncalled, UnreachableInstruction, and UselessTest) are due to lack of 
knowledge in Julia of the C# frameworks.

Julia analyses have been further refined in order to take into account synthetic code that caused false alarms as well as 
knowledge about some C# frameworks through ad-hoc framework specification [29]. However, we leave these refinements 
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Table 3
Experimental results on libraries.

Library # met. # fail % fail Library # met. # fail % fail

Accessibility 55 0 0,0% System.Dynamic 518 4 0,8%
AspNetMMCExt 462 0 0,0% System.EnterpriseServices 1.456 2 0,1%
CustomMarshalers 113 0 0,0% System.EnterpriseServices.Wrapper 61 105 63,3%
ISymWrapper 82 73 47,1% System.IdentityModel 5.150 15 0,3%
Microsoft.Activities.Build 109 0 0,0% System.IdentityModel.Selectors 426 1 0,2%
Microsoft.Build.Conversion.v4.0 84 0 0,0% System.IdentityModel.Services 822 0 0,0%
Microsoft.Build 6.753 14 0,2% System.IO.Compression 228 0 0,0%
Microsoft.Build.Engine 3.098 1 0,0% System.IO.Compression.FileSystem 45 0 0,0%
Microsoft.Build.Framework 717 0 0,0% System.IO.Log 758 6 0,8%
Microsoft.Build.Tasks.v4.0 5.293 9 0,2% System.Management 1.672 0 0,0%
Microsoft.Build.Utilities.v4.0 1.190 2 0,2% System.Management.Instrumentation 728 0 0,0%
Microsoft.CSharp 2.341 0 0,0% System.Messaging 986 0 0,0%
Microsoft.Data.Entity.Build.Tasks 64 0 0,0% System.Net 861 10 1,1%
Microsoft.Internal.Tasks.Dataflow 1.217 1 0,1% System.Net.Http 1.142 0 0,0%
Microsoft.JScript 3.943 0 0,0% System.Net.Http.WebRequest 29 0 0,0%
Microsoft.Transactions.Bridge 2.796 4 0,1% System.Numerics 584 3 0,5%
Microsoft.Transactions.Bridge.Dtc 840 63 7,0% System.Numerics.Vectors 1 0 0,0%
Microsoft.VisualBasic.Activities.Compiler 152 40 20,8% System.Printing 2.024 235 10,4%
Microsoft.VisualBasic.Compatibility.Data 604 3 0,5% System.Reflection.context 797 0 0,0%
Microsoft.VisualBasic.Compatibility 3.994 8 0,2% System.Runtime.Caching 485 0 0,0%
Microsoft.VisualBasic 2.446 64 2,5% System.Runtime.DurableInstancing 746 0 0,0%
Microsoft.VisualC 11 0 0,0% System.Runtime.Remoting 1.438 3 0,2%
Microsoft.VisualC.STLCLR 538 39 6,8% System.Runtime.Serialization 5.592 72 1,3%
mscorlib 27.932 880 3,1% System.Runtime.Serialization.Formatters.Soap 343 0 0,0%
PresentationBuildTasks 2.355 0 0,0% System.Security 1.375 39 2,8%
PresentationCore 22.425 394 1,7% System.ServiceModel.Activation 916 0 0,0%
PresentationFramework-SystemCore 21 0 0,0% System.ServiceModel.Activities 3.092 1 0,0%
PresentationFramework-SystemData 7 0 0,0% System.ServiceModel.Channels 859 0 0,0%
PresentationFramework-SystemDrawing 16 0 0,0% System.ServiceModel.Discovery 2.168 0 0,0%
PresentationFramework-SystemXml 14 0 0,0% System.ServiceModel 34.687 20 0,1%
PresentationFramework-SystemXmlLinq 6 0 0,0% System.ServiceModel.Internals 1.212 33 2,7%
PresentationFramework.Aero 273 0 0,0% System.ServiceModel.Routing 602 0 0,0%
PresentationFramework.AeroLite 89 0 0,0% System.ServiceModel.ServiceMoniker40 4 0 0,0%
PresentationFramework.Classic 133 0 0,0% System.ServiceModel.WasHosting 71 0 0,0%
PresentationFramework 36.971 31 0,1% System.ServiceModel.Web 1.485 0 0,0%
PresentationFramework.Luna 272 0 0,0% System.ServiceProcess 294 13 4,2%
PresentationFramework.Royale 202 0 0,0% System.Speech 3.100 0 0,0%
PresentationUI 1.434 0 0,0% System.Transactions 1.565 0 0,0%
ReachFramework 4.143 4 0,1% System.Web.ApplicationServices 183 0 0,0%
SMDiagnostics 204 0 0,0% System.Web.DataVisualization.Design 286 0 0,0%
sysglobl 291 0 0,0% System.Web.DataVisualization 5.746 1 0,0%
System.Activities.Core.Presentation 2.147 0 0,0% System.Web 28.462 25 0,1%
System.Activities 9.854 1 0,0% System.Web.DynamicData.Design 44 0 0,0%
System.Activities.DurableInstancing 490 4 0,8% System.Web.DynamicData 1.605 0 0,0%
System.Activities.Presentation 9.088 0 0,0% System.Web.Entity.Design 513 0 0,0%
System.AddIn.Contract 197 0 0,0% System.Web.Entity 589 0 0,0%
System.AddIn 659 0 0,0% System.Web.Extensions.Design 1.700 0 0,0%
System.ComponentModel.Composition 1.831 0 0,0% System.Web.Extensions 4.245 0 0,0%
system.componentmodel.composition.registration 184 0 0,0% System.Web.Mobile 4.683 0 0,0%
System.ComponentModel.DataAnnotations 529 0 0,0% System.Web.RegularExpressions 216 0 0,0%
System.Configuration 2.049 0 0,0% System.Web.Services 2.696 0 0,0%
System.Configuration.Install 166 0 0,0% System.Windows.Controls.Ribbon 3.128 0 0,0%
System.Core 7.935 114 1,4% System.Windows.Forms.DataVisualization.Design 159 0 0,0%
System.Data.DataSetExtensions 148 0 0,0% System.Windows.Forms.DataVisualization 5.798 1 0,0%
System.Data 13.670 44 0,3% System.Windows.Forms 28.573 30 0,1%
System.Data.Entity.Design 1.322 0 0,0% System.Windows.Input.Manipulations 378 0 0,0%
System.Data.Entity 18.849 4 0,0% System.Windows.Presentation 36 0 0,0%
System.Data.Linq 4.224 0 0,0% System.Workflow.Activities 4.957 0 0,0%
System.Data.OracleClient 2.178 0 0,0% System.Workflow.ComponentModel 5.268 0 0,0%
System.Data.Services.Client 2.001 1 0,0% System.Workflow.Runtime 2.148 1 0,0%
System.Data.Services.Design 657 0 0,0% System.WorkflowServices 1.803 0 0,0%
System.Data.Services 3.334 1 0,0% System.Xaml 3.801 0 0,0%
System.Data.SqlXml 4.527 16 0,4% System.Xaml.Hosting 111 0 0,0%
System.Deployment 2.475 2 0,1% System.XML 12.582 163 1,3%
System.Design 13.513 2 0,0% System.Xml.Linq 925 0 0,0%
System.Device 224 0 0,0% System.Xml.Serialization 0 0 0,0%
System.Diagnostics.Tracing 51 0 0,0% UIAutomationClient 1.005 3 0,3%

(continued on next page)
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Table 3 (continued)

Library # met. # fail % fail Library # met. # fail % fail

System.DirectoryServices.AccountManagement 1.322 0 0,0% UIAutomationClientsideProviders 2.323 53 2,2%
System.DirectoryServices 2.072 4 0,2% UIAutomationProvider 145 0 0,0%
System.DirectoryServices.Protocols 873 2 0,2% UIAutomationTypes 977 2 0,2%
System 17.748 238 1,3% WindowsBase 6.843 9 0,1%
System.Drawing.Design 351 0 0,0% WindowsFormsIntegration 430 0 0,0%
System.Drawing 4.015 8 0,2% XamlBuildTask 612 0 0,0%

XsdBuildTask 199 0 0,0%

Total 473.864 2.921 0,6%

out of the experiments of this article since our goal is to evaluate if the CIL to JB translation introduces imprecision, without 
ad hoc refinements of the Julia core analyses.

Among the true alarms, there are two cases that produced quite a lot of warnings in specific projects:

• 978 FieldShouldBeReplacedByLocals alarms were issued on ShareX. These refer to fields introduced by ASP.NET in order 
to represent Web UI elements that are first initialized and then used only in one method; and

• 248 ResourceNotClosedAtEndOfMethod alarms were issued on CodeHub (and other 55 on ShareX) on instances of UI 
components. These components effectively are disposable objects, but often the developer does not take care of their 
disposal since such objects do not consume many resources.

Therefore, while these warnings are true alarms, one might prefer to switch them off (e.g., by not running these analyses or 
by adding framework specifications to avoid them) and focus on more critical alarms.

However, these experiments show that our approach respects Research Question 2, that is, the CIL to JB translation 
produced less than 10% false alarms because of the translation.

5.4. Research Question 3: libraries

Only ShareX, among the 5 top GitHub C# projects that we analyzed, contains unsafe methods. In particular, its 21 unsafe 
methods belong to 5 distinct classes: (i) the Item property of ShareX.HelpersLib.ConvolutionMatrix returns a pointer to a dou-
ble (that is, an element inside the matrix), (ii) ShareX.HelpersLib.ConvolutionMatrixManager contains seven methods (namely,
Apply, EdgeDetect, Emboss, GaussianBlur, MeanRemoval, Sharpen, and Smooth) that deal with instances of such matrixes 
in an unsafe way, (iii) ShareX.HelpersLib.UnsafeBitmap contains 11 unsafe methods (namely, getter of property Pointer, the 
2 implementations of ClearPixel, Compare, the 2 implementations of GetPixel, IsTransparent, and the 4 implementations of
SetPixel), (iv) ShareX.ImageEffectsLib.GaussianBlur and (v) ShareX.ImageEffectsLib.MatrixConvolution both implement an Apply
unsafe method.

About the libraries, Table 3 shows that the translation succeeds to translate 99.4% of their methods. Among the most 
representative libraries (that is, with at least 1, 000 methods), mscorlib (that contains the basic classes and implementation 
of the .NET framework and is therefore expected to contain several unsafe methods) exposed the highest percentage (that 
is, 3.1%) of unsafe methods.

Therefore, we conclude that our approach respects Research Question 3, since we were able to always translate at least 
95% of method even in the libraries containing the most unsafe code, such as mscorlib.

6. Conclusion

This article formalizes a correct translation from CIL to JB, for static analysis. To assess its feasibility and interest, the 
translation has been implemented and connected to the Julia analyzer. Experiments show positive results for efficiency, 
precision, and libraries’ coverage. As future work, we plan to (i) improve Julia precision in the corner cases highlighted by 
our experiments, (ii) investigate new .Net properties of interest (e.g., deprecated cryptographic APIs, or pairing begin and 
end invoke in C# delegates), and (iii) rely on invokedynamic when translating delegates (see Section 8). In the longer 
term, our translation could let Java and C# interoperate, by compiling both into JB. This will require the full translation of 
the C# framework, including unsafe code.

Appendix A. Julia warnings

Table A.4 reports the complete list of warnings that could be produced by Julia (version 2.7.0), where column Warning
reports the type of the warning, Checker the checker that produces the warning, Description the description of the warning, 
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Table A.4
Warnings of Julia 2.7.0.

Warning Checker Description CWE

AbsOfRandom AbsOfRandom The absolute value of a random number might actually be negative 682
ApproximateE Approximation An approximate value of E is used instead of a constant in the 

libraries
197

ApproximatePI Approximation An approximate value of PI is used instead of a constant in the 
libraries

197

CastIntComputationIntoLong Approximation The result of an integer computation that might overflow is cast 
into long, with possible loss of precision

190

CastIntegralComputationIntoFloatingPoint Approximation The result of an integral computation that might lose precision is 
cast into a floating point value

197

FloatComparison Approximation A comparison between non-integral values might be unreliable 197
AuthenticationSetToAnonymous Authentication The LDAP authentication is set to anonymous, thus compromising 

security
287

HostNameInCondition Authentication A host name is used in a condition 287
UnauthenticatedWebAPI Authentication A Web API method is not annotated for authentication 287
AssigningInsteadOfComparing BadEq The assignment into a Boolean value is used in a condition, while == 

would be expected
481

Equality BadEq Two objects are compared with == but equals() seems more 
appropriate instead

595

EqualsOnArrays BadEq Two arrays are compared with equals() 595
EqualsOnDisjointTypes BadEq Two objects are compared by equals() but they have always distinct 

types
596

Equals BadEq Two objects are compared with equals() but == seems more 
appropriate instead

480

ImpossibleEquality BadEq Two objects are compared by == but the comparison will always fail 595
ImpossibleEquals BadEq Two objects are compared by equals() but the comparison will 

always fail
596

InefficientStringEmptynessTest BadEq A string is compared to the empty string instead of using isEmpty() 597
CaseOverride BadExtension A method has a name identical to another in a superclass, up to 

capitalisation
628

FieldShadowed BadExtension A class defines a field with the same name as another in a 
superclass

485

ParametersOverride BadExtension A method has the same signature as another in a superclass, up to 
the package of some class

686

RedundantImplements BadExtension An implements clause is already present and could be removed 398
AddressInjectionIntoField BasicInjection Tainted data flows into a field annotated as @AddressTrusted 74
AddressInjection BasicInjection Tainted data might flow into the creation of an Internet address 74
CodeInjectionIntoField BasicInjection Tainted data flows into a field annotated as @CodeTrusted 94
CodeInjection BasicInjection Tainted data might flow into a script execution routine 94
CommandInjectionIntoField BasicInjection Tainted data flows into a field annotated as @CommandTrusted 78
CommandInjection BasicInjection Tainted data might flow into a command execution routine 78
ControlInjectionIntoField BasicInjection Tainted data flows into a field annotated as @ControlTrusted 74
ControlInjection BasicInjection Tainted data might flow into a control modifying method 74
DOSInjectionIntoField BasicInjection Tainted data flows into a field annotated as @DenialTrusted 74
DOSInjection BasicInjection Tainted data might flow into a method that makes the computer 

sleep or wait
74

DeviceInjectionIntoField BasicInjection Tainted data flows into a field annotated as @AddressTrusted 74
DeviceInjection BasicInjection Tainted data might flow into the creation of an Internet address 74
EvalInjectionIntoField BasicInjection Tainted data flows into a field annotated as @EvalTrusted 95
EvalInjection BasicInjection Tainted data might flow into code that dynamically evaluates an 

expression
95

GenericInjectionIntoField BasicInjection Tainted data flows into a field annotated as @Trusted 74
GenericInjection BasicInjection Tainted data might flow into a trusted parameter 74
HttpResponseInjectionIntoField BasicInjection Tainted data flows into a field annotated as @HttpResponseTrusted 113
HttpResponseSplitting BasicInjection Tainted data might flow into an HTTP response 113
LDAPAttributeInjectionIntoField BasicInjection Tainted data flows into a field annotated as @AttributeTrusted 90
LDAPAttributeInjection BasicInjection Tainted data might flow into an LDAP attribute 90
LDAPFilterInjectionIntoField BasicInjection Tainted data flows into a field annotated as @FilterTrusted 90
LDAPFilterInjection BasicInjection Tainted data might flow into the filter of an LDAP search 90
LogForging BasicInjection Tainted data might flow into a log 117
LogInjectionIntoField BasicInjection Tainted data flows into a field annotated as @LogTrusted 117
MessageInjectionIntoField BasicInjection Tainted data flows into a field annotated as @MessageTrusted 319
MessageInjection BasicInjection Tainted data might flow into a message sent by the device 319
PathInjectionIntoField BasicInjection Tainted data flows into a field annotated as @PathTrusted 22
PathInjection BasicInjection Tainted data might flow into a file path creation method 22
ReflectionInjectionIntoField BasicInjection Tainted data flows into a field annotated as @ReflectionTrusted 470
ReflectionInjection BasicInjection Tainted data might flow into a reflection method 470
ResourceInjectionIntoField BasicInjection Tainted data flows into a field annotated as @ResourceTrusted 74
ResourceInjection BasicInjection Tainted data might flow into a variable annotated as 

@ResourceTrusted
74

(continued on next page)
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Table A.4 (continued)

Warning Checker Description CWE

SessionInjectionIntoField BasicInjection Tainted data flows into a field annotated as @SessionTrusted 501
SessionInjection BasicInjection Tainted data might flow into a session 501
SqlInjectionIntoField BasicInjection The request of a servlet might flow into a field annotated as 

@SqlTrusted, unsanitized
89

SqlInjection BasicInjection Tainted data might flow into an sql query, unsanitized 89
TrustBoundaryViolationIntoField BasicInjection Tainted data flows into a field annotated as @BoundaryTrusted 501
TrustBoundaryViolation BasicInjection Tainted data might flow into a bundle of information that should 

not contain tainted pieces of information
501

URLInjectionIntoField BasicInjection Tainted data flows into a field annotated as @UrlTrusted 74
URLInjection BasicInjection Tainted data might flow into a URL creation 74
XPathInjectionIntoField BasicInjection Tainted data flows into a field annotated as @XPathTrusted 643
XPathInjection BasicInjection Tainted data might flow into an xpath creation method 643
XSSInjectionIntoField BasicInjection Tainted data flows into a field annotated as @CrossSiteTrusted 79
XSSInjection BasicInjection Tainted data might flow into a script execution routine 79
ActualNull BasicNullness An actual parameter passed to a method might be null 476
ArrayLengthOfNull BasicNullness The length of a possibly null array is computed 476
ArrayLoadFromNull BasicNullness An element of a possibly null array is read 476
ArrayStoreIntoNull BasicNullness An element of a possibly null array is written 476
CallOnNull BasicNullness A method call might occur on a null receiver 476
FormalNull BasicNullness A formal parameter of a method or constructor might hold null 476
GetFieldFromNull BasicNullness A field is read from a possibly null receiver 476
MethodShouldNotReturnNull BasicNullness A method returns null but is normally assumed to return a non-null 

value
227

MissingNullnessCheckOfReturnedValue BasicNullness The return value of a method is checked against null, but not here 252
PutFieldIntoNull BasicNullness A field is written into a possibly null receiver 476
ReturningNullForArray BasicNullness A method returns null instead of an empty array 476
ReturningNullForBoolean BasicNullness A method returns null instead of a java.lang.Boolean 476
ReturningNullForOptional BasicNullness A method returns null instead of a java.util.Optional 476
SynchronizationOnNull BasicNullness A synchronization might occur on null 476
ThrowOfNull BasicNullness A throw command might throw null 476
VariableCanOnlyBeNull BasicNullness A variable that can only hold null is dereferenced 456
CallSuper CallSuper A call to super() is missing 573
CallToToStringOnArray CallsOnArray toString() is called over an array 440
ArrayStore Classcast The value written into an array cannot be assigned to the type of 

the elements of the array
704

ClasscastGeneric Classcast A classcast might be incorrect at runtime 704
ClasscastOfField Classcast A classcast of a field might be incorrect at runtime 704
ClasscastOfFormal Classcast A classcast of a formal parameter might be incorrect at runtime 704
ClasscastOfMethodReturn Classcast A classcast of the return value of a method might be incorrect at 

runtime
704

UselessClasscast Classcast A classcast is useless and can be removed from the code 398
CloneForNonCloneable Clone Method clone() is defined in a non-cloneable class 491
NonFinalCloneMethod Clone Method clone() is not final, which allows object-hijack 491
SubclassesMayBeCloned Clone A subclass of a non-cloneable class may be cloned 491
AsymmetricalCompareTo CompareTo compareTo() is not symmetrical 596
CompareToForNonObject CompareTo compareTo() is defined for a non-java.lang.Object argument but the 

comparable class is raw
227

CompareToInNonComparable CompareTo compareTo() is defined in a class that is not an instance of 
java.lang.Comparable

227

CompareToInconsistentWithEquals CompareTo compareTo() is defined inconsistently from equals() 596
CompareToWithDefaultEquals CompareTo compareTo() is defined but equals() is inherited from Object 596
BlockingCallInsideSynchronization Concurrency A blocking call occurs inside a synchronization block, hence 

increasing monitor contention and reducing performance
833

ExpensiveSynchronizationOnStatic Concurrency A synchronized statement on a static guard should lock an instance 
guard instead

413

ImpossibleClientSideLocking Concurrency Synchronisation occurs on a concurrent map that does not allow 
client-side locking

413

SynchronisationOnInternedString Concurrency Synchronisation occurs on an interned string 412
SynchronousCallToThreadBody Concurrency The body of a thread is called synchronously 572
UnsafeLazyInitialisation Concurrency A static field is lazily initialized in an incorrect way 609
UselessSynchronization Concurrency A synchronized statement is useless 585
UselessVolatileModifier Concurrency A field should not be declared volatile 662
VolatileArrayField Concurrency An array field has been declared volatile 567
VolatileContainerField Concurrency A container field has been declared volatile 567
InsecureCookie Cookie An insecure cookie has been used 614
PossibleInsecureCookieCreation Cookie An insecure cookie might have been created 614
InsecureKeyDerivationFunction Cryptography An insecure key derivation function is used 326
RiskyCryptographicAlgorithm Cryptography An unsafe cryptographic algorithm is used 327
UnsafeBase64Encoding Cryptography The Base64 encoding is used, but it is nowadays easy to read 327
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Table A.4 (continued)

Warning Checker Description CWE

WeakHashingAlgorithm Cryptography A weak, possibly reversible cryptographic algorithm is used 328
ClassNeverInstantiated Deadcode A class is never instantiated 561
Uncalled Deadcode A method or constructor is not called 561
UnreachableInstruction Deadcode An instruction will never be executed 561
EqualsNotAgainstObject EqualsHashCode equals() is defined against a non-object class 227
NoEquals EqualsHashCode The equals() method seems needed 581
NoHashCode EqualsHashCode The hashCode() method seems needed 581
SuspiciousInheritanceOfEquals EqualsHashCode equals() is inherited but extra fields have been added 187
BroadThrowsClause ExceptionHandlers The throws clause of a method or constructor declares a very 

generic exception type
397

EmptyExceptionHandler ExceptionHandlers An exception handler has an empty body 390
GenericExceptionHandler ExceptionHandlers An exception handler is used for a very generic exception type 396
InappropriateExceptionHandler ExceptionHandlers An exception class is caught that should be rather prevented 395
FieldNeverRead FieldAccess A field is never read in the code 772
FieldNeverUsed FieldAccess A field is never read nor written in the code 398
FieldNeverWritten FieldAccess A field is never written in the code 456
MissingSynchronized GuardedBy A synchronized statement is needed to access a field 567
UnguardedField GuardedBy A field is accessed without the expected lock being held 567
UnguardedMethodOrConstructor GuardedBy A public or protected method or constructor might be called 

without the expected lock being held
820

UnguardedParameter GuardedBy A parameter of a method or constructor is accessed without the 
expected lock being held

567

FieldIsOnlyUsedInConstructors ImproperField A field is only used in a constructor and could hence be replaced by 
a local variable

772

FieldIsOnlyUsedInStaticInitialiser ImproperField A field is only used inside a static initializer and could hence be 
replaced by a local variable

772

FieldShouldBeReplacedByLocals ImproperField A field should be replaced by local variables inside the methods that 
use it

772

MutableEnum ImproperField An enumeration can be muted 607
UselessFieldUpdate ImproperField A field is updated but the written value is never used later 563
InefficientBoxUnbox InefficientConstruction A box/unbox sequence can be simplified and made more efficient 227
InefficientConstructionForGetClass InefficientConstruction A class is only instantiated to get its class tag, instead of using its 

name and the .class pseudo-field
227

InefficientConstruction InefficientConstruction The construction of an object might be replaced by a literal or by a 
call to a factory method

400

PassingEmptyArray InefficientConstruction An empty array is passed to a method instead of an array of the 
proper size

227

InfiniteRecursion InfiniteRecursion A method call looks infinitely recursive 674
AmbiguousCallFromInnerClass InnerClasses A method call from an inner class is ambiguous 227
InnerClassShouldBeStatic InnerClasses An inner class should be made static 492
LDAPPoisoning Ldap An LDAP poisoning attack seems possible 349
LeakThroughCallbackField Leak Data might be leaked by being stored into a field of an operating 

system callback
664

LeakThroughCallback Leak Data might be leaked through an operating system callback 664
LeakThroughField Leak Data might be leaked by being stored into a field 664
LeakThroughInnerClass Leak Data might be leaked because of a non-static inner class 664
ActualInnerNull Nullness An actual parameter passed to a method is an array or collection 

possibly containing null
476

ActualNull Nullness An actual parameter passed to a method might be null 476
ArrayLengthOfNull Nullness The length of a possibly null array is computed 476
ArrayLoadFromNull Nullness An element of a possibly null array is read 476
ArrayStoreIntoNull Nullness An element of a possibly null array is written 476
CallOnNull Nullness A method call might occur on a null receiver 476
FieldInnerNull Nullness A field holds an array or collection possibly containing null 476
FieldNull Nullness A field might hold null 476
FormalInnerNull Nullness A formal parameter of a method or constructor is an array or 

collection possibly containing null
476

FormalNull Nullness A formal parameter of a method or constructor might hold null 476
GetFieldFromNull Nullness A field is read from a possibly null receiver 476
MethodReturnsInnerNull Nullness A method returns an array or collection possibly containing null 476
MethodReturnsNull Nullness A method might return null 476
PutFieldIntoNull Nullness A field is written into a possibly null receiver 476
SynchronizationOnNull Nullness A synchronization might occur on null 476
ThrowOfNull Nullness A throw command might throw null 476
UselessNullnessTestOfField Nullness A comparison of a field against null is always true or always false 398
UselessNullnessTestOfFormal Nullness A comparison of a formal parameter against null is always true or 

always false
398

UselessNullnessTestOfMethodReturn Nullness A comparison of the return value of a method against null is always 
true or always false

253

(continued on next page)
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Table A.4 (continued)

Warning Checker Description CWE

UselessNullnessTest Nullness A comparison of a value against null is always true or always false 398
HardcodedPassword Passwords A hardcoded password is used 259
PasswordInPropertyFile Passwords A password is retrieved from a property file 522
InadequateCallInProduction Production A method should not be called in production code 477
UseLogInstead Production A method should be replaced with a logging code in production 

code
477

InsecureRandom Random An insecure random number generator is used instead of a secure 
one

330

SuboptimalRandomNumber Random A random number generator is recreated just before its use 332
HardcodedFileName Resources A file name is provided as a hardcoded string 547
MissingSerialVersionField Serialization Missing or incorrect serialVersionUID in serializable class 913
NonSerializableElementsOfField Serialization A non-transient field of a serializable class might hold a map or 

collection whose elements might be non-serializable
913

NonSerializableField Serialization A non-transient field of a serializable class might hold a 
non-serializable value

913

NonSerializableOuterClass Serialization An inner non-static serializable class has a non-serializable outer 
class

913

UnexpectedSerialVersionField Serialization A serialVersionUID field is defined where it is not expected 913
ANDAgainstConstant ShortCircuit An & operation operates on a Boolean constant 480
InefficientSameValueAND ShortCircuit && should be used instead of & for better efficiency 480
InefficientSameValueOR ShortCircuit || should be used instead of | for better efficiency 480
NonShortCircuitAND ShortCircuit There is a suspicious use of & instead of && 768
NonShortCircuitOR ShortCircuit There is a suspicious use of | instead of || 768
ORAgainstConstant ShortCircuit An | operation operates on a Boolean constant 480
SideEffectInAssertion SideEffects An assertion checks a condition with side-effects 665
SetStaticInNonStatic StaticFieldAccess A static field has been modified from a non-static method 398
UnusedClass UnusedClass A class is not used 398
ReturnValueShouldBeUsed UnusedReturnValue The returned value of a non-void method is thrown away but should 

instead be checked or used
252

UselessCallToAPureMethod UnusedReturnValue A call to a pure method is performed and the returned value is 
missing or discarded

227

AssignmentToUnreadParameter UselessAssignment A parameter is assigned before being read 563
AssignmentToUnusedParameter UselessAssignment A parameter is assigned but the written value is never used later 563
AssignmentToUnusedVariable UselessAssignment A variable is assigned but the written value is never used later 563
TautologicalAssignment UselessAssignment A field is assigned to itself 665
UselessAssignmentToDefaultValue UselessAssignment A field is assigned in a constructor or finaliser to its default value 665
UselessCallForIntegralValue UselessCall A call is useless when its argument is an integral value 227
UselessCall UselessCall A method call seems useless 398
UselessConstruction UselessConstruction An object is created and not assigned, although its construction has 

only side-effects on that object
392, 771

ImpossibleInstanceof UselessInstanceof An instanceof test is always true or always false 570
TautologicalInstanceof UselessInstanceof An instanceof test is always true or always false 571
UnexpectedInstanceof UselessInstanceof An instanceof test should not be used 227
TestIsPredetermined UselessTest A test is always true or always false and can hence be removed 571
UselessTest UselessTest The result of a test is not used and the test can hence be removed 398
XXEAttack Xxe A method call might perform an unrestricted XML external entity 

reference
611

EmptyJarEntry Zip An empty jar entry is added to a jar file 909
EmptyZipEntry Zip An empty zip entry is added to a zip file 909

and CWE the CWE identifier14 of the weakness reported by the warning. The list of warnings of the latest release can be 
retrieved at https://juliasoft .com /resources /warnings/.

Appendix B. Translation of CIL statements

Table B.5 reports the translation of all CIL statements as defined by the ECMA-335 [30]. When presenting this translation, 
we adopted the following shortcuts:

• < i > denotes the character representing a numerical type (l for long, f for float, d for double, i for integer, b for Boolean, 
c for char, s for short, a for references) computed by the static type inference on the top values of the stack before the 
instruction,

• < iboxed> denotes the boxed representation of a native type < i > (Boolean, Byte, Char, Double, Float, Integer, Long, or 
Short), and < boxedi > the native type of a boxed type,

14 http://cwe .mitre .org/.

https://juliasoft.com/resources/warnings/
http://cwe.mitre.org/
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Table B.5
Translation of CIL statements.

CIL Description JB Translation

BASIC INSTRUCTIONS (Section III.3 of [30])
add[.ovf] add numeric values See Fig. 7

and bitwise AND < i > and

arglist get argument list Unsafe instruction

beq. < length > branch on equal if_< i > cmpeq

bge[.un]. < length > branch on greater than or equal to if_< i > cmpge

bgt[.un]. < length > branch on greater than if_< i > cmpgt

ble[.un]. < length > branch on less than or equal to if_< i > cmple

blt[.un]. < length > branch on less than if_< i > cmplt

bne.un < length > branch on not equal or unordered if_< i > cmpne

br. < length > unconditional branch goto

break breakpoint instruction nop

brfalse. < length > branch on false null or zero ifeq or ifnull

brtrue. < length > branch on non-false or non-null ifne or ifnonnull

call call a method See Fig. 7

calli indirect method call Unsafe instruction

ceq compare equal

if_< i > cmpeql1
iconst0
gotol2
l1 : iconst1
l2 : nop

cgt[.un] compare greater than

[if_< i > cmpgt|if_acmpne]l1
iconst0
gotol2
l1 : iconst1
l2 : nop

ckfinite check for a finite real number nop

clt[.un] compare less than unsigned or unordered

if_< i > cmpltl1
iconst0
gotol2
l1 : iconst1
l2 : nop

conv[.ovf]. < type > [.un] data conversion < i > 2 < typei >

cpblk copy data from memory to memory Unsafe instruction

div[.un] divide values < i > div

dup duplicate the top value of the stack See Fig. 7

endfilter end exception handling filter clause

aload < excindex >
swap
ifne < handler >
athrow

endfinally
end the finally or fault
clause of an exception block

nop

initblk initialize a block of memory to a value Unsafe instruction

jmp jump to method Unsafe instruction

ldarg. < length > load argument onto the stack See Fig. 7

ldarga. < length > load an argument address
See Fig. 7 (translation of ldloca replacing the
correct index for arguments instead of variables)

ldc. < type > load numeric constant < i > const

ldftn load method pointer

if followed by newobj T(a1...an) :
pop
ldc “T(a1...an)′′
invokestaticReflection.getMethod(LString; )Method;
Otherwise, unsafe instruction
(continued on next page)



26 P. Ferrara et al. / Science of Computer Programming 191 (2020) 102392
Table B.5 (continued)

CIL Description JB Translation

ldind. < type > load value indirect onto the stack See Fig. 7

ldloc load local variable onto the stack See Fig. 7

ldloca. < length > load local variable address See Fig. 7

ldnull load a null pointer aconstnull

leave. < length > exit a protected region of code goto

localloc
allocate space in the
local dynamic memory pool

Unsafe instruction

mul[.ovf. < type >] multiply values < i > mul

neg negate < i > neg

nop no operation nop

not bitwise complement
< i > const − 1
< i > xor

or bitwise OR < i > or

pop remove the top element of the stack pop

rem[.un] compute remainder < i > rem

ret return from method < i > return

shl shift integer left < i > shl

shr[.un] shift integer right < i > shr

starg. < length > store a value in an argument slot
See Fig. 7 (translation of stloc replacing
the correct index for arguments instead of variables)

stind. < type > store value indirect from stack See Fig. 7

stloc pop value from stack to local variable See Fig. 7

sub[ovf. < type >] subtract numeric values < i > sub

switch table switch based on value switch

xor bitwise XOR < i > xor

OBJECT MODEL INSTRUCTIONS (Section III.4 of [30])
box convert a boxable value to its boxed form invokestatic< iboxed > .box(< boxedi >)Z >

callvirt
call a method associated
at runtime with an object

See Fig. 7, case call

castclass cast an object to a class checkcast

cpobj copy a value from one address to another

If the value comes from ldflda < f > :
putfield < f >
If the value comes from ldsflda < f > :
putstatic < f >
Otherwise, unsafe instruction

initobj initialize the value at an address

If the value comes from ldarg < i > of type t : pop
newt
astorej
where j represent argument i as formalized in
Fig. 7 for statement ldarg.

Otherwise, unsafe instruction

isinst
test if an object is an instance
of a class or interface

dup
instanceof
ifnel1
pop
aconstnull
gotol2
l1 : checkcast
l2 : ...

ldelem[. < type >] load an element of an array < i > aload
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Table B.5 (continued)

CIL Description JB Translation

ldelema load address of an element of an array

If the value is used by ldobj
aaload
Otherwise unsafe instruction

ldfld load field of an object See Fig. 7

ldflda load field address

If the value is used by ldobj
getfield
If the value is used by cpobj
nop
Otherwise unsafe instruction

ldlen load the length of an array arraylength

ldobj copy a value from an address to the stack

If the value comes from ldloca, ldflda,orldelema
nop
Otherwise, unsafe instruction

ldsfld load static field of a class getstatic

ldsflda load static field address

If the value is used by ldobj
getstatic
If the value is used by cpobj
nop
Otherwise unsafe instruction.

ldstr load a literal string ldc

ldtoken
load the runtime representation
of a metadata token

If the token < t > is a field reference:ldc “< t >”
invokestaticReflection.getTypeHandle(LString; )LRuntimeTypeHandle;
If the token < t > is a method reference:ldc “< t >”
invokestaticReflection.getMethod(LString; )LMethod;
Otherwise, unsafe instruction

ldvirtftn load a virtual method pointer

pop
ldc “< par >”
invokestaticReflection.getMethod(LString; )Method;

mkrefany push a typed reference on the stack Unsafe instruction

newarr create a zero -based one-dimensional array anew_array or new_array

newobj create a new object See Fig. 7

refanytype load the type out of a typed reference Unsafe instruction

refanyval load the address out of a typed reference Unsafe instruction

rethrow rethrow the current exception
aload < excindex >
athrow

sizeof load the size in bytes of a type invokeReflection.sizeOf(LObject; )I
stelem[. < type >] store an element of an array < i > astore

stfld store into a field of an object See Fig. 7

stobj store a value at an address
If the value comes from ldflda< f > of type t : putfield < f >
Otherwise, unsafe instruction

stsfld store a static field of a class putstatic

throw throw an exception athrow

unbox[.any] convert boxed value type to its raw form invokestatic< boxedi > .unbox(< boxedi >)< ijvm >

• < ijvm > denotes the Java Virtual Machine representation of type < i > (I for integer, F for float, D for double, S for short, 
B for byte, J for long, C for char, and Z for Boolean),

• < typei > denotes the character < i > of the token < type > contained in CIL instructions,
• < f > denotes the name of a field,
• < type > denotes a CIL type,
• < t > denotes the name of a CIL metadata token,
• < length > denotes an integer value in CIL (e.g., index of an argument or target of a branching instruction),
• < par > denotes the signature of a method pointed by a ldftn CIL statement,
• < excindex > denotes the integer index of the local variable containing the name of a caught exception in JB, and
• < handler > denotes the offset where an exception handler begins.
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