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Abstract 

During the process of drug discovery and development the pharmacodynamic 

models have been serving as the driving force for evaluating drugs at target 

sites and controlling drug-receptor interactions. Under the umbrella of sys-

tems biology and pharmacology, these quantitative models have been rapidly 

evolving from empirical descriptions to complex mathematical models of bio-

chemical systems. The central idea is the delineation and quantification of 

drug-receptor interactions, internalization, signaling, and cellular effects ena-

bling the rationalization of drug’s modes of actions. Therefore, with the advent 

of in silico approaches in their many renditions, quantitative systems pharma-

cology attempts to advance our understanding on the relationships between 

the molecular level of drug-target interactions and higher-level cellular and 

physiologic mechanisms, pushing the new era of personalized and precision 

medicine closer. 

In this thesis, it was intended to correlate the intracellular effects of the ac-

tivation of neural-signaling cascades on ligand binding to neuroreceptors ap-

plying a combined structure-quantitative systems pharmacology approach. 

For this purpose, we started by implementing signaling pathways of the Oxy-

tocin and the NMDA receptors to illustrate how merging structural macromo-

lecular data with network biology allows us to explore the subcellular effects 

upon receptor activation and understand complex biological phenomena. The 

lack of a common interrelationship between structural biology and systems 

pharmacology, prompted us to propose a computational framework that inte-

grates structure and quantitative systems pharmacology approaches. Here, it 

is also proposed a biocomputing framework designed for in-depth studies of 

post-synaptic neuroreceptors, in particular G-protein coupled receptors, in or-

der to improve current empirically driven drug discovery approaches in a 

more precise drug design.
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Sommario 

Durante il processo di ricerca e sviluppo di farmaci, modelli farmacodinamici 

vengono utilizzati per descrivere l’accesso dei farmaci ai siti di legame dei ri-

spettivi target molecolari, caratterizzando l’interazione farmaco-recettore. 

Sotto l’ombrello della system biology a della farmacologia, questi modelli 

quantitativi si sono rapidamente evoluti da semplici descrizioni empiriche a 

dettagliati modelli matematici di sistemi biochimici. L’idea centrale è quella 

di delineare e quantificare gli effetti cellulari generati dell’interazione far-

maco-target, come ad esempio l’internalizzazione del recettore o l’attivazione 

di cascate di segnalazione, al fine di elucidare i meccanismi d’azione del far-

maco a livello molecolare. Con l’avvento del potere descrittivo fornito dagli 

approcci in silico, nelle loro diverse declinazioni, la farmacologia sistemica 

quantitativa cerca quindi di approfondire la nostra comprensione delle rela-

zioni che si creano tra i meccanismi molecolari attivati localmente dall’intera-

zione farmaco-recettore e gli effetti fisiologici osservabili a livello cellulare e/o 

sistemico, avvicinandoci sempre più all’era della medicina personalizzata e 

consapevole. 

Il lavoro presentato in questa tesi si focalizza sull’attività di cellule neuro-

nali: l’obbiettivo è quello di correlare effetti molecolari intracellulari, generati 

dall’attivazione di vie di segnalazione, all’interazione tra recettori espressi in 

membrana ed i rispettivi ligandi, applicando un approccio ibrido di farmaco-

logia sistemica quantitativa-strutturale. A tal fine, abbiamo cominciato imple-

mentando le vie di segnalazione molecolare associate ai recettori dell’Ossito-

cina ed ai recettori NMDA, per dimostrare come, unendo dati ottenibili 

dall’analisi strutturale di queste macromolecole a tecniche di biologia siste-

mica, sia possibile esplorare gli effetti intracellulari generati dell’attivazione 

dei recettori e comprendere così fenomeni biologici complessi. Avendo con-

statato a tutt’oggi l’assenza di una comunicazione consistente ed efficace tra 
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il mondo della biologia strutturale e quello della farmacologia sistemica, in 

questa tesi viene proposto un framework computazionale multi-scala atto a 

definire un approccio ibrido ed innovativo, capace di integrare informazioni 

strutturali dettagliate di singole macromolecole con descrizioni quantitative 

di ampie reti di interazioni tra molteplici macromolecole. Il framework bio-

computazionale descritto nel seguente lavoro è stato progettato e sviluppato 

al fine di condurre analisi approfondite su recettori post-sinaptici, in partico-

lare GPCR, con lo scopo di migliorare le tecniche di sviluppo di farmaci cor-

rentemente basate su approcci empirici fornendo gli strumenti conoscitivi per 

perseguire studi di sviluppo di farmaci razionale più consapevoli e precisi.  
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CHAPTER 1 

General Introduction 

 

‘So, in short, what we develop is a way, which requires a com-
puter, to take the structure of a protein and then to eventu-

ally understand how exactly it does, what it does… you could 
use it, for example, to design drugs or just, like in my case, to 

satisfy your curiosity.’ 
 

Arieh Warshel,  
Nobel Prize in Chemistry, FGHI 

 

 

The use of computers to apply biological theoretical ideas has shaped up our 

understanding on the dynamic of biological and biochemical events. In par-

ticular, the era of computers and computational methods has changed all as-

pects of drug research. The reality is that the use of computer has reduced the 

time, the cost, and the risk of failure of drug research by up [\%, allowing 

potent HITs to be obtained in a matter of weeks [_,`]. 

Although computational pharmacology has speeded up the drug discovery 

and development pipeline (Fig. =.=), according to the Pharmaceutical Research 
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and Manufacturers of America - PhRMA (phrma.org) - the research and devel-

opment process of a new drug is still taking more than _\ years from the start-

ing project to the final approval from the FDA (US Food and Drug Administra-

tion).  

Despite all the available technology, the insights provided by the genomic 

research and the growing resources and founding, the number of new molec-

ular entities, that is, a medication containing an active ingredient that has not 

been previously approved for marketing in any form, had been decreasing in 

the early `\\\s; probably, due to several facts, such as clinical failures, in-

creasing demands by regulatory authorities, and the disconnection between 

business and research goals [d–[]. More specifically, many promising drug 

candidates have been failing in the clinical phases, mainly due the poor un-

derstanding of the pathways involved in the mechanism of actions and the 

Fig. &.& This infographic provides a summary of the sequential steps that are necessary 

for a drug to progress through the research and development pipelines. Adapted from 

researchamerica.com. 
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little attention paid to biochemical aspects like affinities and specificities of 

compounds [f,g].  

However, in a recent outlook on how the pharmaceutical industry is look-

ing upon their research and development strategies, reports that scientists are 

now working in fewer diseases areas with focus on a deeper scientific under-

standing of diseases’ biology and mechanisms, and on the evolution of their 

approach to target validation, hit and lead optimization, pharmacoki-

netic/pharmacodynamic modeling and drug safety test. The pharma industry 

is now implementing a new decision-making framework that focuses on the 

right target, right tissue, right safety, right patient, and right commercial po-

tential [h]. Thus, the process of drug discovery and development no longer 

focus only on single macromolecules, but on the understanding of the chem-

ical and biological functions of organisms.  

Under the umbrella of network and systems biology, protein targets have 

been now considered in a much broader systemic perspective of their physio-

logic environment, without losing the macromolecular details [g]. Since cells, 

tissues, organs, and all the biochemical entities underneath them, such as 

genes, proteins and metabolites exist in a form of complex nested networks, 

systems biology rose up as a new interdisciplinary field in which its main con-

cern is to unveil the biochemical pathways and to catalogue all the biological 

complexes and the relationships between them [i]. 

Network and systems biology approaches have been already making im-

portant contributions to drug discovery and development and, despite being 

incomplete and error-prone, they are accurate enough to provide useful infor-

mation [g]. As a matter of fact, such approaches have been assisting in the 

identification and evaluation of drug targets, for instance in tumor associated 

diseases [_\,__].  

Even if network and systems biology approaches changed the way biomed-

ical research thinks about drug action in complex diseases, the truth is that 

these approaches only focus on the interactions between its elements. This 

means that the quantitative element that is missing should be, undoubtedly, 

included into systems biology. In other words, not only network and systems 
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biology should study the physical and functional interactions between the el-

ements that constitute the biological system, but also should measure the con-

centrations and kinetic parameters that govern these interactions [g]. There-

fore, applying such concepts to pharmacology studies, the quantitative sys-

tems pharmacology rises up as a new discipline [i]. 

Based on mathematical models, quantitative systems pharmacology pro-

vides, then, a framework that bridges spatial and temporal dimensions allow-

ing a better understanding on how drugs affect complex biological systems 

and pathophysiological processes [_`]. Such mathematical models rely on the 

fundamental concept of the receptor occupancy theory initially proposed by 

A. J. Clark, thereby making the central idea of quantitative systems pharma-

cology as the quantification of ligand-receptor interaction and subsequent cel-

lular effects. The receptor occupancy theory states that on drug binding a cel-

lular effect mediated by the activation of a signaling cascade may result. And 

the intensity of the cellular effect depends on drug-receptor parameters like 

specificity, affinity (strength and time of binding), and availability (drug and 

receptor concentration) [_`]. 

The cellular response mediated by those signaling pathways are, actually, 

an intricate series of molecular events, commonly proteins’ phosphorylation 

catalyzed by kinases, and each one of these events can be described by a math-

ematical equation. Typically, a mathematical model of a biochemical network 

consists of a set of ordinary differential equations (ODEs), and since ODEs 

depend only in one variable, they can be used to describe the change of the 

states of the system. For instance, if ODEs are integrated as a function of time, 

such reactions can describe how the concentration of species inside the net-

work changes over time [_d]. However, the biochemical reactions underneath 

a signaling cascade are, normally, governed by kinetic parameters. While 

drug-receptor binding or protein-protein interactions are characterized by a 

second-order association constant, kon, and a first-order dissociation constant, 

koff [_`], the reactions of enzyme catalysis are characterized by Km, Vmax and 

Kcat [_d]. Because under steady-state conditions these processes, from drug-

receptor binding to downstream subcellular effects, occur at relatively short 
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time scales equilibrium assumptions allow the explicit numerical calculation 

of concentration values of drugs, receptors, drug-receptor complexes and of 

all elements that make part of the signaling cascade [_`]. 

Mathematical models of signal-transduction cascades have been developed 

for decades for a variety of systems such as the signaling mechanisms of hal-

lucinogens towards the serotonin receptors [_l], the sensing reward mecha-

nism of dopaminergic receptors [_[], the mechanism of phototransduction 

mediated by rhodopsin receptors [_f–_h], or the signaling mediated by the ep-

idermal growth factor receptor [_i]. In fact, the number of mathematical mod-

els of signaling cascades have been growing so fast that many databases to 

store them have also been developed. Today, many repository of pathways and 

mathematical models of biological and biomedical systems can be easily found 

across the internet, such as the BioModels database [`\,`_]. 

However, the dynamic modeling of biochemical networks is still hampered 

by the lack of kinetic parameters needed to feed the network. Ideally, such 

parameters should be determined experimentally under relevant conditions 

to the model; however, the truth is that the existing parameters are distributed 

in literature and relate to different experimental conditions [_d,``]. 

This is where protein structural data plays its role. Since all the kinetic pa-

rameters are encoded in the three-dimensional macromolecular structure of 

proteins, such information can be used to estimate these parameters. In fact, 

at the same time as the number of mathematical models grow, the number of 

protein structures that are being solved also rises concurrently [`d]. For these 

reasons, the role of high-resolution three-dimensional protein structures in 

systems biology/pharmacology has become unquestionable, making many re-

searchers claiming and advocating a new paradigm of structure systems 

pharmacology [``,`l]. The proof of this is the tremendous quantity of com-

putationally methods, developed in the past years, to derive quantitative 

structure-kinetics relationships. For instance, molecular dynamics (MD) sim-

ulations in their many renditions have been used to estimate drug-receptor 

binding kinetics [`[–`g], specially, metadynamics [`h]. Another approach is 

the comparison of molecular interaction fields by similarity indices. Assuming 



6 Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

 

 

 

 

that the molecular interaction fields are the most relevant factors in determin-

ing the kinetic parameters values, such parameters can be transferable be-

tween related proteins [_d]. More recently, thanks to the power of machine 

and deep learning, many approaches using convolution neural networks have 

been promising the prediction of binding affinity data from protein-ligand 

complex structures [`i,d\]. 

Taken as a whole, structural-quantitative systems pharmacology provides 

an unprecedented molecular framework for understanding complex cell pro-

cesses and molecular networks related to diseases. Bringing to light the dy-

namic interplay between those complex biological systems and drugs, systems 

pharmacology has been proposed as an alternative to overcome the critical 

steps in the drug discovery pipeline [`l], promising then to be next-genera-

tion of drug-discovery and personalized medicine. 
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CHAPTER 2 

About this thesis 

 

 

The research aims of this thesis rely on the pharmacological study of post-

synaptic receptors. Hereby, I intend to correlate the intracellular effects of the 

activation of neurosignaling cascades upon ligand binding to neuroreceptors 

applying a structure-quantitative systems pharmacology approach. 

Having seen that, in the systems biology community, there is a lack of a 

common language to annotate, exchange, reuse and update biochemical net-

work models, I was prompted to build a common framework to integrate 

structure and quantitative systems pharmacology approaches. The goal is, 

thereby, to build a computational platform to predict individual and context-

specific drug response phenotypes by correlating molecular interactions with 

cellular functions.  

This thesis is then divided in two main parts. In Part I – Network and sys-

tems biology in structure-function studies of neuroreceptors. I present two dis-

tinct studies where signaling pathways are used to explore the subcellular ef-

fects upon receptor activation. The intention is to illustrate how merging 

structural macromolecular data with network biology allow us to understand 

complex biological phenomena. Firstly, in Chapter P, I start by presenting the 

development and implementation of the signaling pathway of the oxytocin 

receptor in order to provide a rationale on the structure-function relationships 

of a disease variant of that receptor. Then, in Chapter Q, I present a mechanis-

tic model for NMDA and AMPA receptors mediated-synaptic transmission in 
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individual hippocampal synapses, with which the functional impact caused by 

disease associated variants of NMDA receptors related to severe cognitive im-

pairment is predicted. 

In Part II - Pharmacology modeling and simulation workflows: integrating 

tools to create and investigate pharmacological models, the aim is to integrate 

the state-of-the-art open-source structural bioinformatic tools in a systems 

pharmacology platform. Specifically, in Chapter S, structural-quantitative sys-

tems pharmacology protocols for the prediction of classical pharmacodynamic 

models towards G-protein coupled receptors (class A) are proposed. In Chap-

ter T, instead, the conceptual idea of assembling a biocomputing platform to 

settle a new drug discovery pipeline towards those receptors is presented. The 

aim is building a web-interface platform that implements the protocols pro-

posed on Chapter S interconnected with more computational-demanding 

structure systems biology web-services. 

In the end, the intention is to create a biocomputing platform designed for 

in-depth studies of post-synaptic neuroreceptors, in particular G-protein cou-

pled receptors (class A), in order to improve current empirically driven drug 

discovery approaches in a more precise drug design. 

 



 

 

 

 

Part I 
 

Network and systems biology in structure-

function studies of neuroreceptors  
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CHAPTER 3 

Systems biology modeling of the 

Gq-activated Ca2+ signals at the 

Endoplasmic Reticulum 

 

This chapter describes my contribution to: Structure-function relationships of the dis-

ease-linked AFHbT oxytocin receptor variant; M. Meyer, B. Jurek, M. Alfonso-Prieto, R. 

Ribeiro, V. Milenkovic, J. Winter, P. Hoffmann, C. H. Wetzel, A. Giorgetti, P. Carloni, 

I. D. Neumann; submitted. 

 

 

 

3.1 Introduction 

The neuropeptide oxytocin (OXT) regulates multiple social and emotional be-

haviors, such as social bonding, reciprocal trust, aggression, fear and anxiety, 

both in animals and humans [_,`]. For example, synthetic OXT, intranasally 

applied, improves social impairments of autistic children [d,l] and has been 

suggested as a biomarker and target for the treatment of autism spectrum dis-

order (ASD) [[]. Unfortunately, however, the therapeutic efficacy is highly var-

iable across individuals [f]. 
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OXT exerts its function by binding to its target receptor (OXTR), a member 

of the Class A G-protein coupled receptors (GPCR) family. Single nucleotide 

polymorphisms (SNPs) in the gene encoding for OXTR have been associated 

with a plethora of psychological traits in genome-wide association studies 

(GWAS). Although most of the described disease-associated SNPs are intronic 

and/or synonymous mutations [_], non-synonymous SNPs (nsSNPs), which 

are likely to affect OXTR structure and function, have also been associated 

with severe psychopathological conditions of ASD. This is the case for the 

rslfhfd\` nsSNP, which has been associated with deficits in social commu-

nication and cognition, as well as restricted and repetitive behaviors [g,h], 

along with differences in emotional empathy in a non-clinical Chinese cohort 

[i]. Another study investigated the association of the rslfhfd\` nsSNP with 

premature birth, as well as reduced cesarean section prevalence, and found 

that this variant results in increased contractility upon OXT stimulation in 

human myometrium biopsies [_\]. 

The nsSNP rslfhfd\` is located within the coding region of exon d in the 

human OXTR gene, leading to an amino acid exchange of alanine to threonine 

at position `_h (A`_hT) of the OXTR protein. Intriguingly, in silico sequence-

based predictions of the functional significance of this variant did not identify 

it as damaging [__], in contrast to the observed phenotype. Thus, shedding 

light on the functional consequences of nsSNP rslfhfd\` is crucial to assem-

ble a comprehensive model of subcellular effects that may ultimately affect 

complex behavioral traits associated with ASD. 

Here, we propose a systems biology model of the signaling pathway of 

OXTR in order to give a better understand behind the difference on dynamics 

of the intracellular Ca!+ between the OXTR-WT and OXTR-A`_hT observed 

experimentally, and on the impact of the downstream events. However, to the 

best of our knowledge, there isn’t a mathematical system biology model of the 

OXTR signaling pathway available in the literature that allows the simulation 

of the IP#-mediated Ca!+ release from internal storages stimulated by the re-

ceptor. For this reason, we integrated two existing models: a model of Gq type 
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G-protein signaling pathway and a model of the dynamics of the IP#-mediated 

Ca! release from endoplasmic reticulum. 

3.2 The OXTR associated signaling pathway 

OXTRs are able to couple to different G-proteins. OXTR-mediated activation 

of Gαq, Gαo , and Gαi -proteins affect, together with the Gβγ subunit, a diversity 

of signaling cascades (such as the PLC, PKA, PKC, DAG kinase, MAPK, CaMK, 

and PIl-Kinase-Rho pathways), as well as membrane ion channels (conduct-

ing calcium, potassium and sodium) [_,_`]. These pathways will, consequently, 

converge on the activation of transcription factors like CREB or MEF-`, which, 

depending on the G-protein coupling, can transduce growth-inhibitory or 

proliferatory signals [_], Fig. P.=. 

The specific coupling of the different G proteins to the receptor, and con-

sequently the triggered physiological effect, is determined by the expression 

level of the individual G proteins and the local ligand concentration [_d]. 

Busnelli et al. have demonstrated that the Gq-mediated pathways are the first 

Fig 1.& Signaling pathway of the OXTR. Figure taken from Busnelli and Chini FGHg [uv]. 
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to be triggered at low OXT concentrations, whereas activation of the Gi/o-me-

diated pathways needs at least a _\-fold higher OXT concentration [_l]. In-

deed, it has been proposed that, at such high OXT concentrations, all the ac-

tivated G-proteins may act synergistically, causing a rapid desensitization of 

the OXTR [_[]. 

At low concentrations values of OXT [_l] the Gq-mediated pathway is trig-

gered. Both the Gq-α and Gq-βγ subunits activate phospholipase C beta (PLC-

β), which consequently generates inositol-_,l,[-trisphosphate (IP#) and diacyl-

glycerol (DAG) from phosphatidylinositol l,[-bisphosphate (PIP!). IP#, as well 

as other phospholipid metabolites, are implicated in the release of Ca!+ from 

internal stores, especially from the endoplasmic reticulum (ER). This was ex-

perimentally measured by our collaborators using Ca!+ imaging techniques for 

both WT and A`_hT cells in a Ca!+-free Ringer medium (Fig. P.W). The IP#-

dependent release of Ca!+ from the ER is mediated by IP# receptors (IP#Rs) 

expressed on the organelle membrane. However, this Ca!+ release mechanism 

is also governed by the Ca!+ itself, making this dual activation of IP#Rs central 

for the oscillatory nature of the intracellular concentration of Ca!+ [_f]. DAG, 

together with Ca!+, activates the phosphokinase C (PKC) that, in turn, acti-

vates the MAPK pathway [_], in particular phosphorylation of ERK_/`. 

At higher OXT concentrations [_l], the Gi/o proteins coupled to the OXTR 

are also activated, affecting kinase pathways and membrane ion channels’ ac-

tivity. Some Gi/o-α subunit isoforms and Gi/o-βγ subunits directly inhibit ade-

nylyl cyclase, reducing the intracellular levels of cAMP and affecting the acti-

vation of PKA. In addition, the Gi/o-α subunits can also interfere with PKA 

function indirectly, by altering its nuclear translocation [_`]. Although not yet 

demonstrated in mammalian cells, evidence in C. elegans indicated that the 

Go-α subunits trigger a decrease in the levels of DAG, acting on the DAG kinase 

pathway. Since activation of PKC is highly dependent on DAG, Go-α subunits 

thus indirectly inhibit PKC [_`]. Taking also into account that phosphorylation 

of IP#Rs by PKA and PKC plays an important role in modulation of IP#-induced 

Ca!+ signals [_g], the effect on PKA/C by activation of Gi/o proteins might not 



CHAPTER 3 – Systems biology modeling of the 

Gq-activated Ca2+ signals at the endoplasmic reticulum 

17 

 

 

affect the generation and regulation of IP#-induced Ca!+ signals by IP#Rs, but 

rather have a modulatory effect [_`,_h]. 

The direct activation of PLC-β by Gi/o proteins has been shown to be medi-

ated through the βγ subunit. However, the general rapid desensitization of the 

Gi/o signaling implies that the concentration of IP# generated by PLC-β activa-

tion mediated by Gi/o-βγ subunit will be too low to generate a robust Ca!+-

release from ER [_[]. 

Altogether, activation of Gi/o proteins will have a very limited contribution 

to the IP#-mediated Ca!+ signals at the ER. Moreover, the very low expression 

of Go proteins in HEK`id cells [_i], used in the experiments presented here, 

will further minimize their contribution. Therefore, in our experimental setup, 

the regulation of the IP#-mediated Ca!+ signals at the ER is probably mainly 

due to the activation of the Gq-mediated pathway.  

 

3.3 Methods 

The cascade from OXT-triggered Gq activation to the downstream Ca!+ release 

from the ER through IP#R was modeled by integrating two previously existing 

mathematical models: (i) a model of the activation of the eukaryotic MAPK 

pathway (via PKC/Raf-_) upon serotonin `A receptor activation [`\]; and (ii) 

a dynamic model of the IP#R action, with a change in Ca!+ and IP# concentra-

tions resulting in intracellular Ca!+ oscillations [`_]. The equations and kinetic 

constants for each of the reactions of the systems biology model developed 

here are shown in Tab. P.AW. Namely, we selected from model (i) [`\] the re-

actions upstream from the production of IP# by PLC-β. This is the crossroad 

with model (ii) [`_], which dynamically simulates the IP# and Ca!+-dependent 

Ca!+ release from the ER into the cytosol. In particular, Keizer and De Young 

proposed a simple model [`_] to account for both IP# stimulation and Ca!+ in-

hibition by considering the IP#R as a homotetramer, in which each subunit has 

one binding site for IP# and one for the Ca!+. Each subunit can thus exist in 

one of four states: S, (unbound), S- (bound to IP#), S! (bound to Ca!+), and S# 
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(bound to IP# and Ca!+); however, channel opening requires all four subunits 

to be in state S-. Under such assumptions, Keiser and De Young [`_] defined 

the flux of Ca!+ through the IP#R as proportional to the open probability for 

one IP#R at equilibrium. Considering that the species in each deterministic 

reaction of our model are expressed in concentration values (Tab. P.AP), we 

defined the IP#R open probability as the equilibrium fraction of subunits in 

state S- (see [IP#R_IP#] in reaction `` in Tab. P.AW).  

Our model was developed under the PySB framework [``] and integrated 

using the SciPy ODE numerical integrator [`d]. The results were analyzed us-

ing NumPy [`l], SciPy [`d] and scikit-learn [`[] libraries. All the simulations 

and analysis codes were written and run in a Jupyter notebook [`f] (available 

at https://github.com/rribeiro-sci/OXTR.git).  

 

3.4 Results 

The systems biology model described above was used to rationalize the exper-

imentally measured Ca!+ concentrations with _\\ nM OXT and in the absence 

of extracellular Ca!+ (Fig. P.W E, blue bars). Simulation’s parameters and initial 

concentrations of the model are provided in Tab. P.A= and Tab. P.AP. Since the 

molecular modeling results had suggested that the A`_hT variant affects re-

ceptor activation (not shown here), we modified the forward kinetic constant 

of reaction d in Tab. P.AW. This parameter describes Gq-protein binding to the 

receptor, which implicitly depends on receptor activation. We introduced a 

scaling factor, so that this kinetic constant remains unmodified for WT OXTR 

(kf_coupling_wt = _), whereas it is adjusted for the A`_hT mutant (kf_cou-

pling_mut = variable) to attempt to simulate the experimentally observed 

higher Ca!+ signal in A`_hT compared with WT cells incubated in Ca!+-free 

Ringer (Fig. P.W E).  

Simply scaling, by trial and error, the kf_coupling_mut by a factor of _.l[, 

our in silico model is able to reproduce the shape of the experimental Ca!+  
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concentration curves (Fig. P.W E) and the ratio between the WT and A`_hT 

OXTR amplitudes (Fig. P.W D). The calculated WT/A`_hT ratios for the AUC 

and full width at half maximum (Fig. P.W H and P.W J) are also in agreement 

with the experimental results (Fig. P.W G and P.W I).  

 

Fig. 1.2 Intracellular Cax+ dynamics in the 

OXTR WT and AxuzT variant in vitro and in 

silico. A) and B), representative Ca!+-traces of 

OXTR WT or AxuzT cells upon stimulation 

with u{{ nM OXT in Ca!+-containing (grey 

line) or Ca!+-free (blue line) Ringer’s solution. 

C), Basal cytosolic Ca!+ levels of OXTR WT 

and AxuzT cells. D) mean amplitude of OXT-

induced Ca!+-signals in Ca!+-free and Ca!+-

containing Ringer’s solution in WT and mu-

tant cells. E) mean area under the curve cal-

culated as integral over time above baseline in 

OXTR AxuzT compared to OXTR WT cells 

under both conditions. F) two-way ANOVA 

revealed a main effect between the cell lines 

regarding the full width at half maximum. G) 

graphical representation of the simulation 

curves of Ca!+ concentration upon stimula-

tion with OXT in Ca!+-free Ringer’s solution. 

H) Maximal amplitude of OXT-induced Ca!+ 

simulation curves' peaks of OXTR WT and 

AxuzT. ∗ ratio = u.uv. I) area under simula-

tion's curves of OXTR WT and AxuzT. ∗ ratio 

= u.u{. J, FWHM of the OXT-induced Ca!+ 

simulation's curves of OXTR WT and OXTR 

AxuzT. ∗ ratio = u.{~. C), D), E) and F), Bars 

show mean + SEM in presence (grey bars) or 

absence (blue bars) of extracellular Ca!+. 
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3.5 Discussion 

Autism is a multifactorial neurodevelopmental disorder. Although various 

SNPs in the OXTR, including the A`_hT variant, have been associated with 

ASD symptoms, a comprehensive understanding of the molecular conse-

quences are not yet fully understood, but essential to promote the develop-

ment of an effective treatment. Understanding the chain of intracellular 

events caused by disease-linked mutations may provide a “master-regulator” 

in the ASD pathway that could be exploited for clinical treatment options.  

Here, using a computational systems biology modeling approach, we help 

to unravel key subcellular consequences of expression of the pathological 

OXTR variant A`_hT. We show that the change in receptor activation caused 

by the mutation might be the key factor for the observed changes in intracel-

lular Ca!+ concentrations. The observed differences in Ca!+ dynamics might 

play an important role in maintaining downstream signal specificity, e.g., in 

the MAPK cascade (not shown here), which will likely result in changes in 

gene expression. 

Although our model is able to qualitatively predict a relative change in the 

concentration of Ca!+ comparable with the experimental data, one should 

keep in mind that it was developed based on two previous independent mod-

els. Some of the kinetic constants in those models were tuned in order to 

mimic specific experimental data for other GPCRs. Hence, future improve-

ments of our model should involve fitting of kinetic constants to experimental 

data obtained for the OXTR signaling pathway. Moreover, since the activation 

of the MAPK/ERK pathway depends also on the extracellular Ca!+ and on the 

activation of the epidermal growth factor receptor (EGFR), further extensions 

of our model should incorporate these secondary pathways. Therefore, future 

improvements of the cascade description need to include this possibility. 
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3.6 Appendix 

 
Tab. 1.A& Simulation Parameters. 

Parameter Value Description 

ttotal x�{ s total simulation time 

nsteps u{{{{ number integration steps 

time_in, time_out �{ s, �u s 
time of the simulation in which OXT 

can bind to OXTR 

kf_coupling_wt, kf_cou-
pling_mut 

u, variable 

Scaling factor that multiplies the for-
ward kinetic constant of reaction v in 

Tab. &.A(.  
See text for more details. 

   



22 Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

 

 

 

Tab. 1.A2 Equations and kinetic constants for each of the reactions of the proposed 

mathematical model of the OXTR signaling pathway. 
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Tab. 1.A1 Initial concentrations of each of the species in the mathematical model. 

Parameter Value (µM) Reference 

Rinit u.�u{~ [x{] 

Linit {.u 

OXT concentra-

tion used in the 

experiments pre-

sented in this work 

Ginit {.{{x~~v� [x{] 

Gα-GTPinit �.�u~xE-� [x{] 

Gβγinit {.{{v~u~v [x{] 

R_Gαβγinit {.x~*Rinit [x{] 

Gαβγinit {.�uz�� [x{] 

RGS�init {.{u���� [x{] 

RGS�_Gα-GTPinit �.�u�zE-� [x{] 

Cai
!+

init {.u* [xu] 

CaER
!+

init u - 

PLCβinit {.{�{{xx [x{] 

PLCβ_Gα_GTPinit u.���xE-� [x{] 

PLCβ_Cainit {.{{�vzx� [x{] 

PLCβ_Ca_G_GTPinit u.�{vzE-� [x{] 

PIP!init x.��~z [x{] 

IP*init {.xu��x [x{] 

DAGinit {.{����� [x{] 

IP*Rinit {.uu� [u�] 

*Value chosen according to the resting value of cytosolic calcium concentration pre-

sent in typical experiments for a variety of cells (�{-u{{ nM) [xu] that ensures the 

correct parameters for the reaction xx of Tab. &.A(.  
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CHAPTER 4 

A mechanistic model of NMDA 

and AMPA receptors-mediated 

synaptic transmission in individual 

hippocampal CA3-CA1 synapses 

 

The work described in this chapter is taken from: P. Micheli*, R. Ribeiro*†, A Giorgetti†; 

A Mechanistic Model of NMDA and AMPA Receptors-Mediated Synaptic Transmission 

in Individual Hippocampal CA&-CAK Synapses: A Computational Multiscale Approach. 

Int. J. Mol. Sci. (M(K, ((, KN&O. https://doi.org/ KM.&&QM/ijms((MSKN&O. 

 

 

4.1 Introduction 

Ionotropic glutamatergic receptors are a class of membrane receptors divided 

in three main subtypes classified according to their activation to the selective 

agonists: NMDA, AMPA, and Kainato. They play a key role in the process of 

synaptic transmission, which takes place in excitatory glutamatergic synapses, 

 
* First author 

† Correspondent author 



28 Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

 

 

 

and dysregulations in their normal activities have been widely linked to nu-

merous neurological disorders and synaptopathies [_–[]. Particularly, NMDA 

and AMPA receptors have been identified as crucial in the molecular mecha-

nism underlying the process of synaptic plasticity, a process that leads to the 

modulation in the strength of the neuronal response to stimulation, linked to 

learning and memory [f–h]. 

Complex cognitive functions such as learning and multiple forms of 

memory are carried out by the hippocampal formation, which can dynamically 

sample, encode, store and retrieve information coming from the sensory ex-

perience [i–__]. The constant encoding and integration of new information is 

possible thanks to the ability of a neural circuit to continuously reshape its 

topology and modulate the strength of its connections. In the hippocampal 

circuits, synaptic plasticity events that individual cells may undergo during 

synaptic transmissions occur in the form of Long Term Potentiation (LTP) and 

Long Term Depression (LTD). The trisynaptic circuit, particularly, has been 

extensively studied because of its apparently simple connectivity and the ex-

perimental accessibility of its structures. Inside this pathway, CAd Shaffer col-

lateral axons innervate CA_ pyramidal cells forming excitatory glutamatergic 

synapses (Fig. Q.=). The high density of NMDA receptors expressed on the sur-

face of the dendritic CA_ spines confers to this synapse the ability to easily 

undergo NMDA receptor-mediated LTP and LTD, which has been substan-

tially evidenced to be essential for some forms of explicit learning in mammals 

[_`,_d].  

In Schaffer collateral-CA_ synapses, AMPA and NMDA receptors populate 

the membrane of CA_ spine, actively participating in synaptic transmission. 

AMPA receptors are GluR_-GluRl containing homo/hetero-tetrameric recep-

tors which mediate fast excitatory neurotransmission in glutamatergic synap-

ses. Early phase of synaptic plasticity events which occur in Schaffer collateral-

CA_ synapses are associated with alterations in the number of AMPA receptors 

expressed on the spine membrane through activation of exocytosis or endocy-

tosis mechanisms, as well as changes in AMPA receptors conductance through 
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phosphorylation modifications [_g,_h]. Together, these molecular mechanisms 

lead to fine modulations in the strength of the synaptic transmission.  

The reactions underlying such modulation are controlled by the transient 

variations in the Ca!+ concentration that occur in the post-synaptic spine, es-

pecially, due to the activation of NMDA receptors (Fig. Q.W). NMDA receptors 

Fig. Q.& Schematic image of Brain with a magnified illustration of hippocampal 

CAv-CAu synapses (Adapted from Stangor and Walinga, (MKS [KS], and Sheppard et 

al. (MKQ [KN]). Bottom left, the image of Golgi-Cox stained hippocampal CAu neu-

rons from mouse (taken from Sheppard et al. (MKQ [KN]). Bottom right, drawing used 

by Cajal to show the existence of dendritic spines on pyramidal cells with the meth-

ylene blue method (taken from DeFilipe, (MKN [KO]). 
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are hetero-tetrameric glutamatergic ionotropic receptors permeable to Na!+, 

K+, Ca!+ and Mg!+ ions [_i,`\]. The permeability to Mg!+ ions gives to NMDA 

receptors a pronounced voltage-dependent behavior. At resting membrane 

potentials external Mg!+ ions enter into the receptor’s pore, but unlike the 

other permeating ions, they bind tightly to the pore blocking it and impairing 

further ion permeation [`_,``]. One of the most accepted physiological mech-

anisms needed to efficiently unblock NMDA receptors, thus generating an in-

ward Ca!+ flux, is a temporal coincidence between the release of presynaptic 

neurotransmitter and a depolarization of the postsynaptic spine (of sufficient 

amplitude and duration) elicited by post-synaptic activity. This synchronicity 

is taken into account in the Spike Timing Dependent Plasticity (STDP) para-

digm that also includes the postsynaptic dendritic activity expressed in the 

form of back-propagating action potentials (bAPs) [`d,`l]. The transient 

postsynaptic Ca!+ inward current generated by the activation and unblocking 

of NMDA receptors critically acts on the kinetic equilibrium of different 

Fig. Q.2 NMDAR-dependent signaling and downstream kinases and phosphatases 

implicated in learning and memory enhancement. The part of the image that is 

not faded represents the signaling pathway implemented in our framework. Figure 

taken and adapted from Lee and Silva, (MKQ [x�]. 



CHAPTER 4 – A mechanistic model of NMDA and AMPA receptors-mediated 

synaptic transmission in individual hippocampal CA3-CA1 synapses 

31 

 

 

calcium-binding proteins involved in LTP/LTD-inducing pathways, such as 

Ca!+/Calmodulin-dependent Kinase II (CaMKII) [`[–`g], (Fig. Q.W).  

Dysfunctions on LTP/LTD-mediated synaptic plasticity have been associ-

ated with many neurological disorders like epilepsy and Alzheimer, Hughting-

ton, and Parkinson’s diseases [l,`[–d\]. 

A comprehensive and detailed understanding of the molecular mecha-

nisms underlying synaptic transmission and neuroplasticity is then crucial for 

the physio-pathological characterization of many cognitive functions. How-

ever, even if LTP/LTD-mediated synaptic plasticity has been extensively stud-

ied, providing a substantial description of a full integration of the interaction 

networks underlying the whole synaptic transmission, deeply characterized at 

the molecular level, is currently a major challenge. This could be the starting 

point for the identification of new therapeutic strategies, aimed at re-tuning 

the global behavior of the intricate network of molecular interactions under-

lying synaptic plasticity, and thus, restoring its functional integrity. 

Here, we present, and render available to the scientific community, a math-

ematical model of the CAd Schaffer collateral-CA_ transmission. Although oth-

ers integrated and detailed models of glutamatergic synapses have been pro-

posed recently [d_,d`], a clinical-oriented application of such models, able to 

take into account also the molecular characterization of particular disease-

associated variants often lacks. The rationale of our work was to provide a syn-

aptic model which can be easily reproduced, run, and integrated into larger 

analytical pipelines, proposing a novel viewpoint on the possible applications 

of comprehensive and detailed system biology models.  

Our model allows us to simulate several features of the CAd-CA_ synaptic 

transmission process. These include (_) glutamate release inside the synaptic 

cleft as a result of a presynaptic stimulation, (`) bAP in the postsynaptic den-

dritic spine, (d) kinetic description of the gating mechanism of both NMDA 

and AMPA receptors, (l) estimation of the excitatory post-synaptic currents 

(EPSCs) and excitatory post-synaptic potentials (EPSPs), including the explicit 

calculation of the NMDA-mediated inward Ca!+ current, and ([) kinetic de-

scriptions of the Ca!+-dependent molecular reactions which take place inside 
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the post-synaptic spine, and lead to the activation of CaMKII. Here we report 

some of the qualitative features observed in the receptors-specific contribu-

tions to synaptic transmission, as well as in the timing of pre/post-synaptic 

stimulation.  

4.2 Results and Discussions 

This section is divided in two main subsections. In the first part, we present 

the implementation of the mechanistic model, providing an overview on the 

structure of the pipeline through the description of the individual modules, 

implemented to describe different fragments of the system. The second part 

contains the simulation of the model under different parameter configura-

tions. This allows us to infer some qualitative features of the system, with a 

particular focus on the timing between pre and post-synaptic stimuli, and fi-

nally to assess shifts in the global system behavior given by the introduction 

of rare variants in the NMDA receptors associated with diseases. 

4.2.1 An integrative, Python-based, pipeline for simulating glu-
tamatergic synaptic transmission 

We developed an integrative mathematical pipeline for easily running numer-

ical simulations of synaptic transmission in individual CAd Schaffer collateral-

CA_ synapses, driven by both pre and post-synaptic stimulation. The pipeline 

is composed of l different main modules, each of them aimed to model a dif-

ferent part of the whole transmission process. Starting from the definition of 

a stimulation pattern, new modules were progressively implemented and 

added on top of each other, defining a linear pipeline for simulating the syn-

aptic transmission following the scheme represented in Fig. Q.P. 

4.2.1.1 Stimulation Pattern Design (SPD) 

This module implements a series of functions which easily allow to define a 

stimulation pattern that will drive the synaptic transmission. Such stimulation 
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patterns can be composed by both pre and post-synaptic stimuli, organized as 

trains of bursts. Here, highly customizable patterns can be designed by setting 

the number of stimuli composing each burst, the intra-burst and inter-burst 

frequencies for both pre and post-synaptic stimuli (Fig. Q.Q). 

Pre-synaptic stimuli are idealized and modeled as instantaneous rise and 

fall of the free glutamate concentration in the synaptic cleft, assuming a square 

pulse-like shape. In this article, we will refer to a pre-synaptic stimulus as “glu-

tamate pulse”. The quantity of released glutamate (i.e., the pulse amplitude, 

expressed in µM) and the glutamate exposure time inside the cleft (i.e., the 

pulse width, expressed in ms) of each pre-synaptic stimulus can be inde-

pendently parameterized. Post-synaptic stimuli are modeled as dendritic 

back-propagating action potentials, consisting in transient depolarization po-

tentials of the post-synaptic spine membrane. The shape of such stimuli has 

been defined using a two-component exponential function (see methods, sec-

tion l.P.=.= for further details), as proposed by Shouval et al. [dd]. The stimula-

tion pattern defined in this module will constitute the input of the following 

modules. 

Fig. Q.1 Conceptual scheme of the pipeline to simulate our synaptic transmission 

model.  
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4.2.1.2 Receptors Gating Simulation (RGS) 

Pre-synaptic stimuli defined during the design of the stimulation pattern are 

used as input to a second module, which is aimed to simulate the interactions 

between the neurotransmitter and the AMPA and NMDA receptors. This 

module contains the compartmental kinetic description of both the receptor-

neurotransmitter binding reactions and the gating mechanisms which lead to 

the opening of the channels. Particularly, the latter consists in state-transition 

models (including closed, pre-open, open, and desensitized states) which sta-

tistically represent the stochastic distribution of the current traces recorded 

by electrophysiological experiments. We selected and integrated one kinetic 

model for both, AMPA and NMDA receptors, proposed by Koike and collabo-

rators and Amico-Ruvio and Popescu [dl,d[], respectively. Then, we translated 

both models into systems of first-order differential equations, implemented in 

Fig. Q.Q Example scheme of a stimulation pattern. Pre and post-synaptic stimuli 

are organized as trains or bursts. Each burst is composed by a sequence of stimuli, 

delivered at an intra-burst frequency. Inter-burst frequency defines the interval 

between each burst. Number of stimuli per burst, intra-burst and inter-burst fre-

quencies can be defined during the stimulation pattern design, for both pre and 

post-synaptic patterns. 
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a single larger kinetic model using the PySB python package (see methods for 

further details). Finally, a numerical integration is performed allowing the 

simulation of the receptor’s behavior with a high temporal resolution (inte-

gration step of _ µs). We tested the reliability of these ex-novo implementa-

tions by comparing the behaviors predicted by our model, for both AMPA and 

NMDA receptors, with the behaviors reported in the works by Koike and col-

laborators and by Amico-Ruvio and Popescu [dl,d[] (Tab. Q.A=). We observed 

a strong consistency between the kinetic features of both AMPA and NMDA 

receptors predicted by our PySB-based model and the respective original mod-

els, pointing out to a high reliability of our implementation. 

4.2.1.3 EPSCs/EPSPs Calculation (CPC) 

The third module of our framework consists of a system of equations used to 

explicitly calculate the EPSCs and the respective EPSPs generated during the 

simulation of the synaptic transmission. The EPSCs are estimated by calculat-

ing, over the simulation, the ion fluxes that permeate each open channel (pre-

dicted with the RGS module, described in section l.W.=.W). This estimation is 

made according to the channel-specific conductance, the channel-specific re-

versal potential, and the depolarization level of the post-synaptic membrane.  

The EPSPs are then derived from the EPSCs (see methods section l.P.=.P for 

further details). All the depolarization potentials, which includes the EPSPs 

and, eventually, the bAPs arising from the post-synaptic stimulation, are 

summed together to assess the global changes in the membrane depolariza-

tion value. In this module the equation for the explicit estimation of the 

NMDA-mediated Ca!+ current, is used to assess the post-synaptic changes in 

the Ca!+ concentration according to a simple model proposed by Shouval et al. 

[dd] (see methods, section l.P.=.P for further details).  

4.2.1.4 CaMKII Activation Simulation (CAS) 

The last module of our pipeline aims to simulate a kinetic description of the 

post-synaptic molecular interactions that controls the CaMKII 
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autophosphorylation events. For this purpose, as previously described for the 

RGS module (section l.W.=.W), we selected from literature a detailed kinetic 

model based on its reproducibility, and we transcribed all its reactions into a 

second PySB model as a system of first-order differential equations. We chose 

to implement a model for the CaMKII activation proposed by Pepke et al. [df], 

and we integrated it into the simulation pipeline. This kinetic model includes 

a large number of reactions, mainly characterizing the interactions between 

free Ca!+
 ions, calcium-binding messenger CaM and the CaMKII enzyme. Par-

ticularly, the Ca!-CaM mediated autophosphorylation of CaMKII enzyme, 

which leads to its own activation, directly plays a pivotal role in inducing the 

early phase of synaptic plasticity [``–`l]. Although the changes in the synap-

tic strength are currently not explicitly assessed in our model, the variations 

in the activated CaMKII accumulation allows one to assess the relative effi-

ciency of the simulated synaptic transmission. 

4.2.2 Kinetic behavior analysis of AMPA and NMDA receptors un-
der different pre-synaptic stimulation conditions 

We explored how AMPA and NMDA receptors kinetically behave under dif-

ferent stimulations patterns exploiting the RGS module (section l.W.=.W). For 

this purpose, we simulated the model using different pre-synaptic stimulation 

patterns, consisting of either a single glutamate pulse or bursts of multiple 

glutamate pulses, delivered at different frequencies (ranging from _\ to _\\ 

Hz). The amplitude of the glutamate pulses was set into a physiological range 

of _-` mM [dg,dh], while the time width was varied in a range between _ ms 

and _.[ s. 

We firstly focused on the kinetic behavior of AMPA receptors under a sin-

gle glutamate pulse of _ mM, simulated with _, [ and _\ ms width. The desen-

sitization kinetics of AMPA receptors predicted by the gating model shows a 

much slower time course (τ = ~`[ ms, fitted with single exponential function) 

compared to the deactivation kinetics (τ = ~\.[[ ms, fitted with single expo-

nential function) after the end of a single glutamate pulse (Fig. Q.S A). Moreo-

ver, both the exposure time of the glutamate (defined by the pulse width) and 
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the stimulation frequency seems to strongly affect the amount of desensitized 

receptors reached after a single pre-synaptic event [dl], (Fig. Q.S B). The faster 

deactivation compared to the desensitization predicted by the model, points 

to the property of AMPA receptors to preferentially undergo a temporal accu-

mulation of desensitized states instead of the open states. 

We then analyzed how the variation of the glutamate pulses duration af-

fects the summation of desensitized states under a single pre-synaptic burst 

stimulation. The latter was simulated by a single burst composed by [ gluta-

mate pulses of _ mM amplitude and _, [ and _\ ms width, with an intra-burst 

frequency of _\\ Hz. We observed a significant increase in the temporal sum-

mation of desensitized AMPA receptors as the glutamate exposure values rise 

(Fig. Q.S C, D, and E, respectively). 

Next, we analyzed the predicted kinetic behavior of NMDA receptors. By 

simulating a single glutamate pulse of _ mM amplitude and _ ms, [\\ ms, and 

_.[ s width, we observed a significatively slower deactivation and desensitiza-

tion kinetics compared to AMPA receptors (Fig. Q.T). Fitting the curves with a 

single exponential function we found time constants of _fd, _i[ and ̀ _\ ms for 

the deactivation kinetics after _ ms, [\\ ms and _.[ s of glutamate exposure, 

respectively, and a time constant of _.i[ s for the desensitization kinetics (Fig. 

Q.T A, B). From these results, we got a ratio between the desensitization and 

the deactivation time constant (𝜏desens/𝜏deact) of ~_` for NMDA receptors and 

~l[ for AMPA receptors. The lower value found for NMDA receptors leads to 

a more efficient temporal summation of its open states. In fact, when we sim-

ulated our model with a single pre-synaptic burst of [ glutamate pulses of _ 

mM amplitude and _, [, _\ ms width, with intra-burst frequencies of _\, [\ and 

_\\ Hz, we observed, effectively, summation of the open NMDAs (Fig. Q.T C, 

D, E) 

To have a better insight on the difference between the kinetic behavior of 

AMPA and NMDA receptors, we simulated our model with a single pre-syn-

aptic burst of [ glutamate pulses of _ mM amplitude and _, [ and _\ ms width, 

varying the intra-burst frequency between _\ and _\\ Hz. For each intra-burst 

frequency, we calculated the ratio between the total number of desensitized 
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Fig. Q.R Opening and desensitization kinetics of the AMPA receptors. (A) Open frac-

tion kinetics following a stimulation with a single glutamate pulse of umM amplitude 

and width of u ms (black), �ms (dark grey) and u{ ms (light grey). Blue dotted trace 

shows the desensitization kinetics, while red dotted traces show the deactivation ki-

netics following glutamate removal from the synaptic cleft. (B) Desensitized fraction 

kinetics following a stimulation with a single glutamate pulse of umM amplitude and 

width of u ms (black), �ms (dark grey) and u{ ms (light grey). (C, D, E) Kinetics of 

open and desensitized fractions following pre-synaptic stimulations with a burst com-

posed of � glutamate pulses, with glutamate pulse amplitude of u mM, an intra-burst 

frequency of u{{ Hz, and a pulses width of u ms (C), � ms (D) and u{ ms (E). 
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Fig. Q.T Opening and desensitization kinetics of the NMDA receptors. (A) Open 

fraction kinetics following a stimulation with a single glutamate pulse of umM am-

plitude and width of u ms (black), �{{ ms (dark grey) and u.� s (light grey). Blue 

dotted trace shows the desensitization kinetics, while red dotted traces show the 

deactivation kinetics following glutamate removal from the virtual synaptic cleft. 

(B) Desensitized fraction kinetics following a stimulation with a single glutamate 

pulse of umM amplitude and width of u ms (light grey), �ms (dark grey) and u{ ms 

(black). (C, D, E) Kinetics of open and desensitized fractions following pre-synap-

tic stimulations with a burst composed of � glutamate pulses, with glutamate pulse 

amplitude of u mM, pulse width of u ms (black), � ms (dark grey), u{ ms (light grey) 

and an intra-burst frequency of u{ Hz (C), �{ Hz (D) and u{{ Hz (E). 
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and open receptors. According to our model, these simulations pointed out 

that the desensitized/open ratio of AMPA receptors depends more on the 

stimulation frequencies and on the glutamate pulses durations compared to 

the desensitized/open ratio of the NMDA receptors (Fig. Q.b). 

4.2.3 Temporal relationship between pre and post-synaptic stim-
uli strongly impacts synaptic transmission efficiency 

During the stimulation of the synapse, the equations implemented in the CPC 

module (section l.W.=.P) allow us to explicitly assess the individual contribu-

tion of both AMPA and NMDA receptors to the global electrical transmission.  

Pre-synaptic-induced excitatory potentials and post-synaptic dendritic 

back-propagation events programed during the stimulation pattern design are 

integrated together to continuously estimate the variations in the NMDA per-

meability, as well as in the Ca!+ flux driving force (see methods section l.P.=.P 

for further details). We explored through several simulations how the tem-

poral relationship between pre and post-synaptic stimuli can shape the effi-

ciency of the electro-chemical transmission.  

Fig. Q.U Desensitized/Open ratio expressed as a function of stimulation frequency. 

Simulations were performed using a single pre-synaptic burst composed by � glu-

tamate pulses of u mM amplitude and u, �, u{ ms width. For each simulation the 

ratio between the desensitized and the open fraction has been calculated for (A) 

AMPA and (B) NMDA receptors. 
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4.2.3.1 AMPA-mediated EPSPs are not sufficient to efficiently re-
lieve the Mg2+ block from NMDA receptors 

The pronounced voltage-dependent affinity of NMDA receptors for the extra-

cellular Mg!+ ions causes the actual permeation of the channel to be strongly 

modulated by the depolarization level of the membrane [_i]. We have previ-

ously observed that the kinetic equations implemented in the RGS module 

predict no effective temporal summations of open AMPA receptors because of 

their fast desensitization and deactivation kinetics, as also observed in other 

studies [dl,di]. Analyzing the output of the RGS module using the equations 

implemented in the CPC module (sections Q.W.=.W and Q.W.=.P) we then ob-

served that, coherently, also the AMPA-mediated responses tend not to sum-

mate (Fig. Q.A=).  

This observation prompted us to investigate if the amplitude of an AMPA-

mediated EPSP evoked by a single pre-synaptic event was high enough to re-

lieve the Mg!+ block from NMDA receptors. Since the EPSPs amplitudes of 

AMPA and NMDA receptors are influenced by their levels of expression on the 

post-synaptic spine surface, we performed multiple simulations of a single glu-

tamate pulse of _ mM amplitude, _, [ and _\ ms width, varying the level of 

available AMPA receptors in a range between `\ and `\\ [l\]. Simulation 

results reported that the maximum AMPA-mediated EPSPs peaks elicited by 

single-pulse pre-synaptic stimulations reach -l\ mV with `\\ units of AMPA 

receptors (Fig. Q.c A). According to the Mg!+ unblocking probability function 

that we have incorporated into the model (see methods section Q.P.=.P for fur-

ther details), such depolarization level can effectively release the Mg!+ ion 

from NMDA receptors only if the extracellular Mg!+ concentration is very low 

compared to the physiological concentration (Fig. Q.c B), which is near to _ 

mM [_i]. 

These results emphasize the fact that only pre-synaptic events may be not 

enough to ensure an effective Ca!+ permeation. As supported by the STDP par-

adigm, temporal coordination between pre and post-synaptic events must 
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occur in order to allow a significant Ca!+ influx which can effectively trigger 

plasticity [l_]. 

4.2.3.2 Synchronization between pre and post-synaptic stimula-
tion significantly increases the NMDA receptor contribution to 
synaptic transmission. 

We further investigated how the synchrony between pre and post-synaptic 

activity can affect the efficiency of synaptic transmission, particularly by in-

creasing the amplitude of the NMDA receptors-mediated EPSCs and EPSPs.  

For this purpose, we compared the individual responses of AMPA and 

NMDA receptors obtained from two different stimulation patterns, one in-

cluding only pre-synaptic stimulation and one including coupled pre and 

post-synaptic stimulations. In both stimulation patterns the pre-synaptic 

stimulation consisted in a single theta burst composed of [ glutamate pulses 

of _mM amplitude and _, [ and _\ ms width, with an intra-burst frequency of 

_\\ Hz [l`]; post-synaptic stimulation was designed as a single dendritic 

Fig. Q.V (A) Simulated AMPA-mediated EPSPs evoked by different numbers of 

available AMPA receptors, ranging from x{ (lower trace) to x{{ (upper trace). 

Solid, dashed and dotted traces refer to single pulse stimulation performed with a 

glutamate pulse width of, respectively, u, � and u{ ms. (B) Sigmoidal unblocking 

probability function for Mg!+ block, expressed as function of membrane voltage. 

Each trace corresponds to a different value of extracellular Mg!+ concentration. 
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back-propagation event, which occurs in the post-synaptic spine _ ms after the 

first pre-synaptic stimuli was delivered. Simulations were performed in the 

presence of ̀ \ AMPA and _[ NMDA receptors [l\,ld], with extracellular Mg!+ 

concentration set to _ mM. As expected, significant increases in the total 

NMDA receptor-mediated current peak (~`.[ fold) as well as in the Ca!+ that 

permeated the channel (~l.[ fold) were observed during the coupled pre and 

post-synaptic stimulation compared to the pre-synaptic stimulation alone, 

showing the impact of bAP-mediated synaptic facilitation on the NMDA re-

ceptors conductance (Fig. Q.d). 

Since we had observed that the presence of a bAP during stimulation sig-

nificantly increases the NMDA receptor mediated EPSC, we analyzed how var-

iations in temporal coordination level between pre and postsynaptic stimuli 

impacts the amplitude of the elicited Ca!+ influx. For this purpose, we per-

formed multiple simulations varying the time interval between pre and post-

synaptic stimuli (Δt = tpost-tpre). For each simulation we then evaluated the ef-

fect of the bAP-induced synaptic facilitation by calculating the maximum Ca!+ 

concentration reached in the post-synaptic spine. Simulating a single pre-syn-

aptic glutamate pulse of _ mM amplitude and _ ms width, together with a sin-

gle post-synaptic bAP, we found that post-synaptic Ca!+ rises from a value of 

~`\\ nM (the post-synaptic Ca!+ concentration elicited by a single pre-synap-

tic event alone) to a maximum of ~_.l µM (Fig. Q.=e). This value is obtained 

when the pre-synaptic event precedes the post-synaptic event (positive Δt) of 

~`\ ms, in agreement with the Hebbian STDP paradigm for synaptic plasticity 

(see Feldman We=W [`\] for a review). 

4.2.4 Kinetic and pharmacological analysis of NMDA variants: 
Multiscale integration 

Deactivation time course defines the time required by the receptor-mediated 

current to decay after the removal of the agonist from the synaptic cleft. This 

kinetic feature, together with EC9, value of the agonist, constitute a prominent 

quantitative feature used to perform functional analysis of ion channels [ll]. 

Many published studies on rare NMDA receptor variants tried to assess 
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Fig. Q.W Simulation of synaptic transmission elicited by a single pre-synaptic burst 

of � glutamate pulses, in absence (A, B, C) or in presence (D, E, F) of a single post-

synaptic back-propagating action potential (bAP). (A, D) Time course of the indi-

vidual AMPA-mediated EPSC. (B, E) Time course of the individual NMDA-medi-

ated EPSC. (C, F) Time curse of the Ca!+ molar flowrate that permeate NMDA re-

ceptors during the simulations. Pre-synaptic bursts were composed of � glutamate 

pulses of u mM amplitude and u ms (black pulses), � ms (dark grey pulses) and u{ 

ms (light grey pulses) width; in each plot the responses elicited by u to u{ ms widths 

are represented by different colors, respectively, from the darkest to the brightest. 

Post-synaptic activity (red trace) was programmed as a single dendritic back-prop-

agation event which occurs u ms after the first pulse of the pre-synaptic burst be-

gan. Both simulations were performed in the presence of x{ AMPA, u� NMDA and 

u mM of extracellular Mg!+. 
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the severity of a certain mutation considering its impact on both glutamate 

potency and deactivation time constant [`[,l[–lg]. 

On that account, we used our model to predict how mutations on the bind-

ing site affects the koff rate of the glutamate binding reaction and, conse-

quently, the glutamate affinity to the receptor. For this study we have selected 

variants with a negative impact on the glutamate affinity (Kd) and for which 

data of EC9,, calculated through peak current measurements, and data of ac-

tivation kinetics have been reported in different experimental and computa-

tional studies [`[,l[,lf,lh]. In particular, we focused on two rare variants: 

Glul_dGly and Cyslf_Phe that fall inside the Glun`B binding pocket (Fig. Q.==). 

These variants have been shown to decrease the glutamate potency, which 

may result from a decrease in the glutamate affinity [lf,lh,li]. 

Fig. Q.&X Relationship between pre/post-synaptic stimulation timing and Ca!+ con-

centration peaks reached in the post-synaptic spine. Simulations were performed 

in the presence of x{ AMPA, u� NMDA and u mM of extracellular Mg!+. Maximum 

post-synaptic Ca!+ concentration was reached with Δt ≈ x{ ms. Gray rectangle 

highlights negative Δt values in which post-synaptic stimuli precede pre-synaptic 

stimuli. 
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Therefore, we tuned the NMDA kinetic model to reproduce the same con-

centration-response behaviors experimentally observed for both the 

Glul_dGly and Cyslf_Phe variants. 

Exploiting our kinetic model, we were able to computationally assess the 

NMDA-glutamate concentration-response relationship by using the following 

approach: firstly, we sampled concentration values in a range between \.\_ 

and _\\\ mM; next, for each value we run the RGS module, simulating a single 

glutamate pulse, with amplitude corresponding to the current glutamate con-

centration value and width of _.[ s, as reported by experiments [l[], setting 

the number of AMPA receptors to \ (since we were interested in isolate the 

NMDA response). Finally, calculating from each simulation the peak of 

evoked current, EC9, value was obtained by fitting the concentration-response 

data with logistic function. 

Fig. �.uu Structure of human GluNu/GluNxA NMDA receptor (PDB accession code: 

�TLM). GluNxB subunit is colored in light blue. The insights show the glutamate 

binding domain of the wild-type (WT) receptor and the two structural variants 

Glu�uvGly and Cys��uPhe. Each window focuses on the docked glutamate (white 

molecule) and the crucial residues that directly participate to the interaction. Red 

arrows point to the residue substitution of each of the two structural variants.  
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To predict the shifts in the NMDA receptor-glutamate affinity associated 

to the rare variants Glul_dGly and Cyslf_Phe, knowing their experimental 

EC9, values (g[-gi µM for Glul_dGly [l[,lf] and _fi µM for Cyslf_Phe [l[]), 

we progressively increase, during a sequence of multiple simulations, the ratio 

between the rate constants koff and kon (i.e., the Kd) of the equations describing 

the interaction between NMDA receptor and glutamate. For each simulation 

we computed the EC9, value, and in the end of all simulations we selected the 

Kd that rendered the EC9, values closest to experimental ones.  

As a result, we found that the NMDA receptor kinetic behavior generated 

by predicted Kd values shows a current deactivation time constant very close 

to the experimental ones (Tab. Q.=).  

The kinetic model of the NMDA receptor was tuned by only increasing the 

koff rate constant of the glutamate binding reactions. Therefore, we reasoned 

that the coherence between our results and the experimental data points to 

the fact that the analyzed variants are likely to affect the affinity of the recep-

tor (thus causing an EC9, shifting) by negatively altering the glutamate resi-

dence time inside the binding pocket of the receptor.  

 Predicted Kd (µM) 

Weighted Tau (ms) 

Predicted Exp. 

Wt $.& '$( ')*-&,- [*&,*0,&-]  

Glu*)'Gly )6-.& $6 $--'* [*&,*0]  

Cys*0)Phe **0.& $, $( [*0]  

Tab. Q.& Predicted Kd and deactivation time constant for NMDA WT and variants. 

Deactivation decay was fitted with a two-components exponential function, and 

the weighted Tau was then calculated (see methods section �.v.x.x). 
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For NMDA wild-type receptor we found a Kd value of `.[ µM and a deacti-

vation constant of d`h ms, whereas for the Glul_dGly and Cyslf_Phe variants 

we found Kd values of _i\.[ and llf.[ µM and deactivation constants of `i 

and `g ms, respectively (Fig. Q.=W and Tab. Q.=). As these results imply, the 

Glul_dGly and Cyslf_Phe variants increase the Kd of glutamate of ~g[ and 

~_h\-fold (Tab. Q.=). 

The next step in our multiscale analysis of NMDA Glul_dGly and 

Cyslf_Phe receptor variants consisted in further investigating if the calculated 

affinity alterations can impact the synaptic plasticity mechanism. To address 

this question, we simulated the effects of the structural variants on the ampli-

tude of the raise in the post-synaptic Ca!+ concentration and on the amount 

of activated CaMKII, an enzyme which directly plays a pivotal role in trigger-

ing synaptic plasticity events in CAd-CA_ synapses. This latter estimation was 

Fig. Q.&2 Dose-response curves of the effect of glutamate on wild-type (WT) and 

variants-NMDA receptors. Simulation data was fitted with logistic regression. EC+, 

values of x.~, ~� and u�� µM for WT, Glu�uvGly and Cys��uPhe-NMDA receptors, 

respectively. 
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done by exploiting the CAS module (section l.W.=.Q). This module contains a 

mathematical description of the Ca!+-dependent CaM-CaMKII transduction 

pathway, which, starting from Ca!+ transients, leads to activation of CaMKII 

kinase (see methods section Q.P.=.Q for further details). We stimulated our vir-

tual synapse with a pair of single pre and post-synaptic stimuli (glutamate 

pulse of _ mM amplitude and _ms width, time interval between pre and post-

synaptic stimuli of `\ ms). As expected, we found that the predicted decrease 

in the NMDA glutamate affinity significatively attenuates the amplitude of the 

elicited post-synaptic Ca!+ variation of ~[ and ~h.[ fold for the Glul_dGly and 

Cyslf_Phe variants, respectively (Fig. Q.=P A). Moreover, the kinetic model for 

the Ca!+-mediated activation of the CaMKII enzyme predicted much lower 

amounts of activated CaMKII for Glul_dGly (~_d fold) and Cyslf_Phe (~`d 

fold) variants compared to the wild type (Fig. Q.=P B). Considering the key role 

that CaMKII enzyme plays in the molecular mechanism underlying synaptic 

plasticity process, the predicted drastic decrease in the activation efficiency of 

such enzyme points out the severity of these rare structural variants. In fact, 

since CaMKII-driven neuroplasticity seems to be negatively affected in a 

Fig. Q.&1 Variation of (A) Cax+ concentration and (B) activated CaMKII over time 

for the WT and variants NMDA receptors. All simulations were performed under 

one pair of single pre and postsynaptic pulses, with a presynaptic pulse of u ms of 

glutamate exposure, a delay between the pre and the postsynaptic stimuli of x{ 

ms, and u mM of Mg!+. 
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significant way, severe neuropathological phenotypes, including learning and 

memory impairment, are likely to arise.  

In the last part of our in silico experiment we were interested in reporting 

a more general representation of the relationship between NMDA-glutamate 

affinity and CaMKII enzyme activation efficiency. Here, our rationale was to 

search for an NMDA-glutamate affinity threshold that can be used for discrim-

inating between high and low-severity variants, knowing their respective Kd. 

We proceeded, for this purpose, to simulate the whole synaptic model with 

the same basic stimulation pattern previously adopted for the analysis of 

Glul_dGly and Cyslf_Phe variants but varying the Kd affinity value in a range 

between _ and _\\\ µM. For each simulation (i.e., for each Kd value) we se-

lected the maximum amount of activated CaMKII observed. Data were firstly 

normalized to the maximum response observed across all the simulation and 

then fitted with the four-parameters logistic function (see methods section 

l.P.W.P for further details) (Fig. Q.=Q). Finally, the threshold has been calculated 

by finding the bending point of the fitted curve, which corresponded to a Kd 

value of ~_i µM (Fig. Q.=Q). 

Fig. Q.&Q Variation of activated CaMKII as function of the NMDA-glutamate Kd 

values. All simulations were performed under one pair of single pre and postsyn-

aptic pulses, with a presynaptic pulse of u ms of glutamate exposure, a delay be-

tween the pre and the postsynaptic stimuli of x{ ms, and u mM of Mg!+. 
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The identification of this type of thresholds can be very useful for a rapid 

assessment of the downstream effects of variants and can be easily integrated 

in larger analytical pipelines. We are currently working on a further imple-

mentation of this synaptic model which also integrates a detailed kinetic de-

scription of the reactions controlling the phosphorylation of AMPA receptors 

by the CaMKII enzyme, an event which is known to directly control synaptic 

strength modulations (LTP and LTD) by altering the conductance and traf-

ficking of these receptors. With this further extension, we aim to explicitly 

quantify synaptic plasticity events that can occur during the stimulations. 

4.3. Methods  

In this section we provide a full and detailed description of all the individual 

modules that compose the proposed mathematical model, each of which im-

plements a different fragment of the whole synaptic transmission process. 

This modular rationale at the base of the framework implementation guar-

antees an easy customization of the simulation pipeline, as well as the further 

extensibility of the system. 

The current build of the framework includes:  

● Stimulation Pattern Design (SPD) module, where both pre and 

post-synaptic stimuli can be programmed independently. This 

module allows to define the inputs of the virtual synapse. 

● Receptors Gating Simulation (RGS) module. This module per-

forms a compartmentalized kinetic simulation of the virtual syn-

aptic cleft, where neurotransmitter released from pre-synaptic 

stimuli interacts with ionotropic membrane receptors expressed 

on the post-synaptic spine. 

● EPSCs/EPSPs Calculation (CPC) module. This module analyzes 

the data coming from the RGS module and, calculating synaptic 

currents and their respective potentials, integrates pre and post-

synaptic stimuli. It constitutes a “bridge” between the extracellu-

lar and the intracellular compartments. 
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● CaM/CaMKII Activation Simulation (CAS) module. This module 

performs a compartmentalized kinetic simulation of a set of mo-

lecular reactions which takes place in the virtual post-synaptic 

spine, which includes the interactions between Ca!+, Calmodulin 

(CaM) and Ca!+/CaM-dependent Kinase II (CaMKII). 

 

The kinetic equations used to describe the reactions contained in both RGS 

and CCS modules are implemented, exploiting the PySB python package [[_], 

as systems of first-order differential equations. Numerical integration is per-

formed using the SciPy ODE integrator [[`]. All of the data analysis and fit-

tings were performed using SciPy and Numpy packages [[`,[d]. Finally, all the 

plots were generated using the Matplotlib library [[l].  

All the code is stored in a publicly available github repository 

(https://github.com/rribeiro-sci/CAP-CA=_SynapticModel), where a jupyter 

notebook file for running simulations and performing basic analysis can be 

also found.  

4.3.1 Mathematical model implementation 

4.3.1.1 SPD module 

In this module the stimulation pattern of the virtual synapse can be designed. 

Bidirectionality is a crucial feature of neuronal communication. The func-

tional and topological properties of the brain neural network can be signifi-

cantly shaped by the temporal relationship between forward and backward 

signals, as the STDP paradigm for the synaptic plasticity claims [`\,`_,[[]. 

Therefore, integration of pre and post-synaptic stimuli constitute a logic core 

of our implementation. For this purpose, patterns of pre and post-synaptic 

stimuli can be programmed and simulated independently, in order to analyze 

how the system behaves under different levels of synchronization between pre 

and postsynaptic activities. Each pattern is modeled as a train of bursts. Num-

bers of stimuli per burst, intra-burst and inter-bursts frequencies can be spec-

ified to design custom stimulation patterns (Fig. Q.Q). 
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In our model, pre-synaptic stimuli have been idealized as glutamate pulses, 

representing the instantaneous rise and fall in the free neurotransmitter con-

centration available inside the cleft compartment following pre-synaptic ac-

tion potentials. Amplitude (i.e., the amount of available free glutamate) and 

width (i.e., the exposure time of the free glutamate) of the pre-synaptic gluta-

mate pulses can be defined during the stimulation design. 

On the other side, post-synaptic stimuli have been modeled as transient 

depolarizations of the post-synaptic spine generated by dendritic back-prop-

agating action potentials (bAP). Each bAP is shaped using a two-component 

exponential function, taken from the work by Shouval and coworkers [dd]:                                                                                                                                                                           

(𝑒𝑞.		4.1)										𝑏𝐴𝑃(𝑡) = 𝑉!"# ∗ +,𝐼$"%& ∗ 𝑒𝑥𝑝 1
−𝑡
τ$"%&

45 + ,𝐼%'() ∗ 𝑒𝑥𝑝 1
−𝑡
τ$"%&

457 

where Vmax is the maximum depolarization value for bAP value set to +fg mV 

[[f], Ifast and Islow are the relative magnitudes of the fast and slow components 

of the bAP that sum to one, and 𝜏fast and 𝜏slow are the relative time constants 

that describe the exponential decays of the two components. 

4.3.1.2 RGS module 

This module contains a system of kinetic equations describing the interactions 

between glutamate and AMPA/NMDA receptors, which take place inside the 

cleft compartment. The aim of this module is to accurately simulate both the 

receptors-neurotransmitter binding reactions and the gating mechanism that 

leads to opening or desensitization of the receptors.  

Individual models describing the kinetic behavior of both AMPA and 

NMDA receptors have been selected from literature based on their reproduc-

ibility, and subsequently implemented as systems of first-order differential 

equations inside the PySB framework. To reproduce the kinetic behavior of 

AMPA receptors we chose a model proposed by Koike et al. [dl] for homo-

meric GluR` (flip) receptors. The model assumes two glutamate binding steps, 

one pre-open transient state, three desensitized states, and one open state of 
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the receptor (Fig. Q.AW B). For the kinetic description of the gating mechanism 

of NMDA receptors we used the model for GluN_/GluN`B NMDA receptor 

proposed by Amico-Ruvio and Pospescu [d[]. This kinetic scheme includes two 

sequential glutamate binding steps, three pre-open transient states, two de-

sensitization states and one open state of the receptor (Fig. Q.AW A). Since we 

assume a saturating concentration of glycine inside the clef compartment, the 

binding steps with this molecule are not included in the kinetic model. Thus, 

all the resting NMDA receptors are considered glycine bound. 

 

4.3.1.3 CPC module 

In this module we implemented a set of equations that aims to assess the EP-

SCs and the respective EPSPs generated by the open fractions of both AMPA 

and NMDA receptors. EPSPs are then integrated with the back-propagating 

action potentials programmed during the stimulation design. Finally, the sum 

of all the depolarizing contributions is used to assess the variations of the post-

synaptic membrane potential.  

Many synaptic models that have been proposed in the past estimated the 

EPSCs and/or the EPSPs simply by using two-components exponential func-

tions fitted on electrophysiological recordings [dd,[f–[h]. On the contrary, in 

our model the open probabilities of the receptors vary according to a system 

of deterministic rate equations, that represent mass-action kinetics of recep-

tors-neurotransmitter interactions [[_]. For this reason, the rising and decay 

phases of both receptors-mediated EPSCs and EPSPs responses are shaped by 

the complex receptors-specific interaction kinetics with the neurotransmitter. 

This confers more flexibility to our model, allowing us, for example, to explore 

the responses generated by mutant forms of the receptors by tuning the rate 

constants of some of the kinetic equations. 

We defined the EPSCs of AMPA and NMDA receptors as follows: 

(𝑒𝑞.		4.2)										𝐸𝑃𝑆𝐶*+,*(𝑡) = 𝑂*+,*(𝑡) ∗ 𝐺*+,* ∗ =𝑉!(𝑡 − Δ𝑡) − 𝑉-!"#!? 
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(𝑒𝑞.		4.3)										𝐸𝑃𝑆𝐶.+/*(𝑡)

= 𝑂.+/*(𝑡) ∗ 𝐺.+/* ∗ =𝑉!(𝑡 − Δ𝑡) − 𝑉-$"%!? ∗ 𝐵=𝑉!(𝑡 − Δ𝑡)?					 

where 𝑂!"#!(𝑡) and 𝑂$"%!(𝑡) are the number of open NMDA and AMPA re-

ceptors at each time step; 𝐺$"%! and 𝐺!"#! are the single channel conduct-

ance set to l\ pS and _[ pS, respectively [[i–f_]; 𝑉&(𝑡 − 𝛥𝑡) is the membrane 

potential at time (𝑡 − 𝛥𝑡); 𝑉' is the channel-specific equilibrium reversal po-

tential and defines the value of the membrane potential for which the electro-

chemical equilibrium is reached, and thus, the net flux through the channel is 

\ (we assume that 𝑉'!"#!=	𝑉'$"%! = \ [f`]; B(Vm) describes the voltage de-

pendence of the NMDA current given by the Mg!+ blocks defined by [dd]: 

(𝑒𝑞.		4.4)										𝐵(𝑉!) =
1

1 − 𝑒𝑥𝑝(−𝐾+𝑉!) ∗ C
[𝑀𝑔01]
3.27 L

 

Once the EPSCs have been calculated, the relative EPSPs are determined 

simply by applying the law of Ohm: 

(𝑒𝑞.		4.5)										𝐸𝑃𝑆𝑃*+,* (𝑡) = 𝐸𝑃𝑆𝐶*+,*(𝑡) ∗ 𝑅% 

(𝑒𝑞.		4.6)										𝐸𝑃𝑆𝑃.+/* (𝑡) = 𝐸𝑃𝑆𝐶.+/*(𝑡) ∗ 𝑅% 

where 𝑅( is the spine’s resistance set to [\\ MΩ [fd].  

Finally, the total membrane potential, defined as the sum of the partial de-

polarization contributions, is calculated according to the equation: 

(𝑒𝑞.		4.7)										𝑉!(𝑡) = 𝑉2 + 𝐸𝑃𝑆𝑃*+,*(𝑡) + 𝐸𝑃𝑆𝑃.+/*(𝑡) + 𝑏𝐴𝑃(𝑡) 

where 𝑉) is the resting membrane potential of the spine (-f[ mV). 

In CAd Schaffer collateral-CA_ synapses, the key mediator of the postsyn-

aptic response is the elicited intracellular Ca!+ variation. Since NMDA 
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receptors are the major source of Ca!+ during spine stimulation [fl], we ex-

plicitly calculate the NMDA receptor-mediated Ca!+ molar flow rate as follows: 

(𝑒𝑞.		4.8)										𝐼3"&'(𝑡) = 𝑂.+/*(𝑡) ∗ 𝐺3"&' ∗ O𝑉+(𝑡 − Δ𝑡) − 𝑉-()&'P ∗ 𝐵=𝑉!(𝑡 − Δ𝑡)? 

where 𝐺*+&' expresses the permeability of the NMDA receptor to Ca2+ ions, 

set to 2 nM·ms-1·mV-1 [56] and 𝑉'()&' is the reversal equilibrium potential for 

Ca2+ set to +130 mV [56].  

Finally, the calcium dynamics in the postsynaptic cell is integrated by a 

simple first-order differential equation [33,56]: 

(𝑒𝑞.		4.9)										
𝑑[𝐶𝑎01(𝑡)]

𝑑𝑡 = 𝐼3"&'(𝑡) −
[𝐶𝑎01(𝑡)]
𝜏3"&'

 

where 𝜏Ca.+ is the passive decay time constant of postsynaptic Ca!+ concentra-

tion, set to `\ ms [dd]. 

A full list of all the parameters used in the equations described above is 

provided in Tab. Q.AW. 

4.3.1.4 CAS module 

The last module of the pipeline contains a compartmentalized kinetic descrip-

tion of a reaction network which takes place inside the post-synaptic spine.  

Here, our rationale was to assess the variability in the amount of activated 

CaMKII enzyme upon different stimulation conditions. Since CaMKII plays a 

crucial role in the positive regulation of the early phase of LTP in CAd Schaffer 

collateral-CA_ synapses [``–`l], this estimation allows us to qualitatively infer 

the strength and the efficiency of the synaptic transmission. As previously de-

scribed for the RGS module, we selected from literature a kinetic model based 

on its reproducibility, we translated it inside the PySB framework, and we, fi-

nally, appended the new block to the pipeline. For this purpose, we selected 
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from BioModels database [f[] a model describing a set of interactions that, 

starting from post-synaptic rise in Ca!+ concentration, leads to the autophos-

phorylation (i.e., the activation) of monomeric CaMKII [df]. Particularly, the 

set of reactions implemented includes: 

● Binding reactions between Ca!+ ions and CaM and CaM-CaMKII 

species;  

● Dimerization reactions between Ca!+-CaM and monomeric 

CaMKII; 

● Dimerization reactions between two Ca!+-CaM-CaMKII com-

plexes; 

● Autophosphorylation reactions of CaMKII monomers inside the 

`(Ca!+-CaM-CaMKII) complexes. 

4.3.2 Data fitting 

4.3.2.1 Concentration-Response curves 

We computed the glutamate concentration-response curves for NMDA recep-

tors by stimulating the system with _ glutamate pulse of _.[ s and in the ab-

sence of Mg!+ [l[]. We run multiple simulations varying the amplitude of the 

glutamate pulse, with a concentration range between \.\_ and _[\\ µM, and 

calculating the NMDA receptor-mediated current peaks values. The EC9, val-

ues were then calculated by fitting the concentration-response data with the 

following equation: 

(𝑒𝑞.		4.10)										𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒	% =
100

C1 + 𝐸𝐶45
[𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒]L

6 

where n is the Hill slope. 
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4.3.2.2 Two-component exponential function fitting 

The deactivation time constant for NMDA wild-type receptor and Glul_dGly 

and Cyslf_Phe variants were estimated as weighted time constant of the dou-

ble exponential fit of the NMDA receptor current decay after the exposure of 

_ mM glutamate for _.[ s. The two-component exponential function used for 

the fitting takes the form: 

(𝑒𝑞.		4.11)										𝐼(𝑡) = 𝐼$"%& ∗ 𝑒𝑥𝑝 C
−𝑡
τ%'()

L + 𝐼%'() ∗ 𝑒𝑥𝑝 C
−𝑡
τ%'()

L 

where I is the current, Ifast and Islow are the amplitudes of the fast and slow 

components, respectively, and τfast and τslow are the respective decay time con-

stants. The weighted time constant of decay (τw) was calculated using the fol-

lowing equation: 

(𝑒𝑞.		4.12)										τ) =
𝐼$"%&

𝐼$"%& + 𝐼%'()
∗ τ$"%& +

𝐼%'()
𝐼%'() + 𝐼$"%&

∗ τ%'() 

4.3.2.3 Four-parameter logistic function and bending points 

The data generated by the simulation of the relationship between different 

glutamate-NMDA Kd values and the concentration peaks of activated CaMKII 

enzyme (see results section Q.W.Q) were fitted with the four-parameter logistic 

function: 

(𝑒𝑞.		4.13)										𝑌 =
𝑎 − 𝑑

1 + O𝑋𝑐P
7 + 𝑑 

where Y represents the activated CaMKII response, X represents the affinity 

value Kd (expressed in µM), a is the lower asymptote, d is the upper asymptote, 

c represents the Kd that generates a mid-way response between the estimated 
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a and d, and b is a slope factor. The bending point of the curve was then com-

puted as follow: 

(𝑒𝑞.		4.14)										𝑋7869 =
𝑎 − 𝑑
1 + 𝑘 + 𝑑 

(𝑒𝑞.		4.15)										𝑌7869 = 𝑐 ∗ C
𝑎 − 𝑌7869
𝑌7869 − 𝑑

L
:
7

 

 

where k is a constant value, set to l.fh\[ [ff]. 

 

4.4 Conclusions 

We proposed a compartmental model for the hippocampal synapse CAd-CA_. 

Our goal was to provide a simple and portable*, python-based, program to run 

kinetics simulations of the synaptic transmission, which embodied both pre 

and post-synaptic activity. The rationale that drove us through the implemen-

tation, as well as the application, of this model was to focus on the integration 

between system biology and structural biology viewpoints. Exploiting this hy-

brid multiscale approach, we analyzed the impact of single disease associated 

variants of NMDA receptors, related to neurological disorders and cognitive 

impairments, may have on the whole synaptic transmission process. We were 

able to consistently reproduce experimental data and to quantitatively infer 

molecular-level causality of a variant-related functional impairment. There-

fore, these results show the predictive power of such multiscale approach, 

aimed to observe behavioral shifts of a complex system that emerge from am-

plification of small, quantifiable, molecular-level alterations. 

  

 
*Our model can be applied to any glutamatergic system. It can also be integrated with other models of the downstream 

signaling pathways. 
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4.5 Appendix  

 

Tab. Q.A& Comparison between peak open probability and deactivation time constants 

values obtained from our implementation and the ones reported by the original mod-

els. Values were obtained by simulating the respective models with u glutamate pulse 

of u mM amplitude and u ms of glutamate width. 

  Peak open probability Deactivation time constant 
(ms) 

PySB model Original 
model 

PySB model Original 
model 

AMPA &.() &.() [(+]  &.-+ &.-) [(+]  

NMDA &.)0 &.)0 [(-]  12) 10( [(-] 

 

Tab. Q.A2 List of the parameters used in the equations of the CPC module. 

Parameter Value Parameter Value 

Vmax +20 (mV) VAMPA & (mV) 

Ifast &.0- VNMDA & (mV) 

Islow &.)- KM &.&:( (mV-1) 

𝜏fast ( (ms) RS -&& (MΩ) 

𝜏slow )- (ms) GCa4+ &.&&) (µM·ms-1·mV-1) 

GAMPA 1- (pS) VCa4+ 1(& (mV) 

GNMDA +& (pS) 𝜏Ca4+ )& (ms) 
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Fig. Q.A& AMPA-mediated EPSPs generated by pre-synaptic stimulations composed of 

(A) a single glutamate pulse or (B) a burst of � glutamate pulses delivered at u{{ Hz. 

For each stimulation pattern glutamate pulses of u mM amplitude were simulated with 

different widths of u ms (black traces), � ms (dark gray traces) and u{ ms (light gray 

traces). We can observe that a small temporal summation only occurs with a pulse 

duration of u{ ms, reflecting the fast deactivation and desensitization kinetics pre-

dicted by the model. Simulations were performed in the presence of x{ AMPA, u� 

NMDA and u mM Mg!+. 
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Fig. Q.A2 Kinetic schemes used for simulating the gating mechanisms of (A) NMDA 

and (B) AMPA receptors. RU represent unbound states, RM represent mono-liganded 

states (bound to one glutamate), Cn represent closed, fully bound states (bound to two 

glutamate), Dn represent desensitized states and O represent open states. All the re-

action rate constants can be found in the respective articles [v�,v�]. 
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CHAPTER 5 

Development of a structure-quantitative 

systems pharmacology computational 

framework 

 

 

 

5.1 Introduction 

GPCRs are the most common family of human receptors comprising more 

than _% of the coding human genome. As they are expressed within every or-

gan system they regulate, consequently, virtually every aspect of physiology. 

Many statistical studies claim that GPCRs as the largest group of drug targets 

making up on average ca. dd% for commercial available small-molecule drugs 

[_–l]. 

Although many big companies lost their interest and expertise in GPCR 

targets, the truth is that around `\% of FDA approved drugs each year target 

these receptors and a new opening up in GPCR-based drug discovery have 

been stated [[]. In fact, GPCRs are still offering emerging therapeutic oppor-

tunities: peptide therapeutics and modification of natural ligands [`,l,f], 

GPCRs-target antibody therapeutics [g], allosteric sites [h], orphan human 

GPCRs [i,_\], oligomerization [__,_`], and biased [_] and bivalent [_d] ligands 

for GPCRs. 
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Given the importance of the assessment of pharmacodynamic models dur-

ing the process of drug discovery and the rise of systems pharmacology as a 

new interdisciplinary field (see General Introduction for more details), it ap-

peared reasonable to attempt to develop a computational framework that 

brings together structural biology information to the systems biology simula-

tions in order to predict the effect of drug-receptor interactions on the recep-

tors’ signaling response. In this sense, we are presenting here, a programmable 

pipeline able to predict dose-response curves from docking structures of ago-

nist/antagonists-receptor interactions. 

5.2 The framework pipeline 

We develop a fully computational framework to easily predict classical phar-

macodynamic models of drug-GPCR (class A) interactions given just as input 

structural information of the receptor and the ligand. Our framework doesn’t 

use any novel or untested methods. Instead, it brings together free and/or 

open source bioinformatic tools into a user-friendly pipeline to be used by ex-

perts and non-experts. The pipeline was built, as a first instance, in a jupyter 

notebook – an interactive computational environment for replication and ex-

ploration of scientific code and analysis. Nowadays, jupyter notebooks are be-

ing extensively used by the computational biology community, making them 

the preferred choice to share and rerun computational protocols [_l].  

All the code under the framework was developed as a python module - a 

python file containing python classes, functions and statements. This helped 

us to modularize our code granting its readability, reusability, and deploy-

ment. Although the code will not be detailed in this thesis, many libraries were 

used for its development, such as SciPy [_[], Numpy [_f], Matplotlib [_g], Pan-

das [_h], scikit-learn [_i], PySB [`\] and Biopython [`_]. 

The pipeline we propose (graphically resumed in Fig. S.=), is not static. That 

is, the users can interact with it at different stages by giving their own data as 

inputs. We call these stages as input-points, rendering our framework highly 

dynamic and modular. As a matter of fact, we propose, here, two different 
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ways of using this conceptual framework. Firstly, we propose a stimulation 

protocol to predict the dose-response curves of agonists in order to compare 

their potencies against a receptor. Secondly, we propose a competitive inhibi-

tion protocol to predict the inhibition curves of antagonists in the presence of 

a saturation of agonist.  

 

5.2.1 Initial Inputs 

Since with this framework we propose a link between biological structure in-

formation and quantitative systems pharmacology, the atomic coordinates of 

the GPCR and ligands constitute the first input-point of the pipeline. Depend-

ing on the protocol to be run, the action of the ligand, i.e., agonist or antago-

nist, must be specified. This is the case for running the competitive inhibition 

protocol, where the user must classify manually which ligands are agonists 

and antagonists. 

Once the atomic coordinates file of the receptor is obtained, the framework 

can automatically query an internal in-house built database to retrieve 

Fig. R.& Structure-quantitative systems pharmacology framework’s pipeline. 
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relevant information about the protein (see chapter T section T.W for more de-

tails), like the associated G protein and the gene. The former is important to 

automatically select, later, which signaling network to simulate (see section 

S.W.Q).  

5.2.2 Molecular docking 

In the second step of the pipeline, molecular docking calculations are per-

formed. Our python framework has implemented a function that performs 

AutoDock VINA calculations [``] for each ligand to each receptor. This func-

tion accepts as inputs some parameters that allow the controlling of the VINA 

algorithm, like the dimensions of the grid, exhaustiveness, and number of 

modes [``]. In addition, since the transmembrane binding pocket of GPCRs 

for small ligands is well conserved, by default, the framework already includes 

an algorithm that sets automatically the center of the docking grid. Since the 

results of Vina come out as sorted clusters of binding poses, the cluster with 

the best Vina score is selected, by default, as the binding pose used to predict 

the ligand dissociation constant. 

5.2.3 Drug-receptor binding and Kd calculation 

The concept of drug-receptor binding constitutes the baseline of pharmaco-

dynamics’ studies. When a drug or an endogenous ligand such as a neuro-

transmitter or a hormone binds though complementary to protein confor-

mations, a cellular effect may result from that binding interaction (such as 

biochemical metabolic effects of second messengers or modulation of basal 

activity), which is typically described in quantitative terms. This complemen-

tary binding depends mainly on the affinity and efficacy of the ligand – param-

eters unique to its chemical structure [`d]. While the affinity of a ligand can 

be defined as a measure of how strong the ligand binds to the receptor, the 

efficacy is the measure of the maximum biological effect that results from the 

binding.  
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The affinity of a ligand to a receptor can be calculated according to the law 

of mass action, from which the equilibrium constant for bound versus un-

bound ligand is defined as the dissociation constant (Kd), as follows: 

(𝑒𝑞.		5.1)										𝐿 + 𝑅 ⇌ 𝐿𝑅																																			(𝑒𝑞.		5.2)										𝐾, =
[𝐿][𝑅]
[𝐿𝑅]

	 

being [L], [R] and [LR] the ligand, receptor and the ligand-receptor complex’s 

concentration, respectively, and Kd the equilibrium dissociation constant.  

If one assumes that the concentration of the receptor is constant: 

[LR]+[R]=[Rtotal]; it comes that: 

(𝑒𝑞.		5.3)										
[𝐿𝑅]
[𝑅-.-+/]

=
[𝐿]

[𝐿] + 𝐾,
 

being [LR]/[Rtotal]	the fraction of all available receptors that are bound to the 

ligand at equilibrium. That is to say that if the ligand acts as an agonist, ac-

cording to the occupancy theory, this fraction represents the concentration of 

Fig. R.2 Drug-binding curve. Since ligands can occur in a wide range of concentra-

tion values, if the ligand’s concentration is plotted semi-logarithmically, the hy-

perbolic shape of the curve becomes sigmoid. When the curve is presented in this 

way, a straight line can be obtained between x{% and z{% of the curve, being easy 

to calculate the concentration of ligand needed to activate specific a fraction of 

receptors. Moreover, it also makes easier to compare affinities between ligands. 
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active receptors at equilibrium [`d]. From this equation, is possible then, to 

plot the fraction of bound receptors in the equilibrium over a range of ligand’s 

concentration, rendering the so-called drug-receptor binding curve (Fig. S.W).  

Taking into account the importance of affinity as a structural binding pa-

rameter of ligands and since that our framework intends to link structural bi-

ology information with systems biology, the next step in our pipeline is the 

calculation of Kd from docked structures.  

In recent years, with the “hype” on machine-learning and artificial intelli-

gence, the cheminformatics’ community have been putting a lot of effort on 

the development of deep learning algorithms tailored for drug-target binding 

affinity predictions (Tab. S.A). However, most of these machine-learning scor-

ing functions were not already peer-reviewed neither they were trained to es-

timate drug-target affinities from three-dimensional structural data. On that 

account, we chose to implement in our framework the DLSCORE deep learn-

ing scoring function [`l]. Even if it wasn’t already peer-reviewed, it was devel-

oped and trained on three-dimensional structural data extracted from the re-

fined PDBBind v.`\_f [`[] and described by BINding ANAlyser (BINANA) de-

scriptors [`f]. Moreover, DLSCORE proved to outperform other scoring func-

tion regarding consistency and variability, getting the closest values to the ex-

perimental data in terms of ∆G values [`l]. In addition, it is the only trained 

neuro-network with such properties that is open source hitherto.  

Nevertheless, this stage of the pipeline constitutes another input-point in 

our framework: one can use the docking structures resolved from the previous 

steps or give as input one’s docking structures obtained with other popular 

software, for instance GOLD [`g], SurFlex [`h], or Glide [`i], or even give as 

input its own experimental or computational Kd values.  

After obtaining a list of Kd estimated values for each ligand, with our frame-

work it is then possible to obtain a drug-receptor binding curve for each ligand 

by calculating eq. S.P in function of a range of ligand concentrations. In our 

framework, by default, the range of ligand concentration is defined as a geo-

metric progression of `\ concentration values between a minimum value 

(close to zero) and a maximum value defined by the user (normally, d orders 
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of magnitude higher). In the end, a binding curve for each ligand is obtained 

by fitting a logistic regression to the discrete data: 

(𝑒𝑞.		5.4)										𝑌	 = 	
𝑎 − 𝑑

1 + F𝑋𝑐I
0 + 𝑑 

where Y is the response§; X, is the arithmetic ligand concentration; a, the re-

sponse when X	= \; d, the response when X is equal to the maximum ligand’s 

concentration; c**; is the concentration value corresponding to the halfway be-

tween a and d; and b is the “slope” value that describes the steepness of the 

curve [d\]. 

The reason why a geometric progression is used to obtain the range of lig-

and concentrations, is due to the impact of the dilution factor on the accuracy 

of Kd and EC9,/IC9, values experimentally estimated. This factor, that defines 

the spacing between the adjacent concentration values, has an impact on the 

concentration values that are on the linear portion of the curve. Using a geo-

metric progression we can mimic the experimental conditions where each 

concentration equals the power of ` of the previous lowest concentration [d_].  

Obtaining then the drug-receptor binding curve for each ligand, allows us 

to compare the potencies between them. Considering the assumption that Kd 

can be defined as the concentration of ligand at which [\% of the available 

receptors are occupied, the more the Kd shifts to right in the plot, the more 

ligand concentration is needed to achieve the [\% of available occupied re-

ceptors (see Fig. S.W). In other words, the more the Kd goes to right in the plot 

the less potent the drug is. 

However, this analysis is just valid if we are dealing with agonists. If antag-

onists come into play the scenario is different. By definition, an antagonist is 

a drug that inhibits the action of an agonist, having no effect in the absence of 

 
§ The response of a drug-binding curve is the fraction of receptors occupied in the equilibrium. 

** For a drug-response curve, the c value corresponds to the Kd value. 
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the agonist [d`]. Therefore, to incorporate the effect of a competitive antago-

nist, a modified version of eq. S.P must be applied: 

(𝑒𝑞.		5.5)										
[𝐿1𝑅]
[𝑅-.-+/]

	= 	
[𝐿1]

[𝐿1] + 𝐾,*+ P1 +
[𝐿2]
𝐾,*&

Q
 

The only difference is the increase in the Kd of the effective ligand by a fac-

tor of: 1+[L2]/Kd	L2 [`d]. 

In order to apply eq. S.S to obtain drug-receptor binding curve of an antag-

onist in the presence of an agonist we mimic computationally a binding assay 

experiment. In a radioligand binding assay, a known ligand for the target re-

ceptor is labelled with radioactivity and added to the system (cell or tissue). 

After reaching the equilibrium the radioligands are “washed out” and the ef-

fective ligand (radioactively unlabeled) is added to the system. The latter 

called “displacer”, will compete with the radioligand for the binding site in the 

receptor, and the stronger its affinity, the more effectively will bind and dis-

place the radioligand. Such affinity can be inferred by the amount of radioac-

tivity observed in the system [dd]. 

In the same vein, in our framework, we obtain the drug-receptor binding 

curve of antagonist in the presence of an agonist applying then, the eq. S.S over 

a range of antagonist concentration values with a fixed concentration value 

for the agonist. However, to find the agonist concentration value that satu-

rates the receptor, we have to calculate first its submaximal concentration, i.e., 

the concentration of agonist for which the fraction of occupied receptor 

reaches the maximum plateau on the agonist-receptor binding curve (Fig. S.W). 

This plateau can be defined as the upper bend point of the linear portion of 

the sigmoid curve [dl]. Mathematically, this bend point can be obtained by 

calculating the maximum value of the derivative function of the logistic func-

tion (eq. S.Q) with respect to b (Fig. S.P) [dl]. 
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As a matter of fact, in functional studies, the IC9, values of antagonists are 

useful if the concentration of the agonist is submaximal, because higher con-

centration of agonist increases the IC9, of antagonist well above its Kd [d`]. 

5.2.4 Network response 

Up to this point, with our framework we are able to predict from a structure 

of a ligand docked to a receptor its affinity constant and, consequently, obtain 

a drug-receptor binding curve. However, the pharmacodynamics of a drug is 

characterized by the relationship between the dose – i.e., the drug’s concen-

tration – and the response to that drug.  

Since drug targets are coupled to the cell through a myriad of biochemical 

reactions, the response of a drug is characterized by signaling effects of second 

Fig. R.1 Bending point – The red curve is the first derivative with respect to b. The 

minimum and maximum values of this curve give us the bending points. The green 

curve is the first derivative with respect to b and x. The bending points can be 

obtained resolving numerically this function in order a zero. Figure adapted from 

Sebaugh and McCray,(MM& [v�]. 
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messengers or the modulation of basal activity of the cell. In functional stud-

ies, this response is normally represented by a dose-response curve (Fig. S.Q) 

from which the potency parameters can be deduced. The potency parameter 

expresses the activity of a drug in terms of concentration of ligand needed to 

produce a defined effect, which is normally defined by the EC9, and IC9, values 

for agonist and antagonist, respectively. While EC9, represents “the molar con-

centration of an antagonist that produces Se% of the maximal possible effect of 

that agonist” [d`], the IC9, represents “the molar concentration of an antago-

nist that reduces the response to an agonist by Se% or the concentration of ag-

onist should be given” [d`].  

Typically, it is assumed that the response of a drug is proportional to the 

fraction of activated receptors, however, this assumption is not valid for the 

so-called “spare receptors” like GPCRs. That is to say that the maximum re-

sponse of a GPCR can be achieved with less than _\\% of occupancy [`d]. As 

this implies, we can’t estimate the EC9,/IC9, of ligands of GPCRs without in-

cluding the signaling pathway associated with these receptors. 

Under the umbrella of systems biology, descriptive models of signaling 

pathways can be used to predict cellular responses. This is possible due to the 

fact that signaling pathways are an intricate series of molecular events, com-

monly protein phosphorylation catalyzed by kinases, that can be described by 

Fig. R.Q Dose-response curve demonstrating the effect of a drug as a function of its 

concentration. 
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mathematical equations. So, by simulating a mathematical model of a signal-

transduction pathway it is possible to predict how the concentration of species 

(metabolites and proteins) change over time depending on certain initial con-

ditions [d[]. Therefore, mathematical models of the GPCR signaling pathways 

make part of the core of our framework.  

Since G-protein subfamilies are classified by their α subunits, this classifi-

cation has been served to define either the receptor and the effector coupling, 

and also the signaling pathway [df]. Hence, GPCR pathways have been divided 

into four families: Gs, Gi/o, Gq/--, and G-!/-# (Fig. S.S). 

To implement the GPCR signaling pathways in our framework we devel-

oped them based on pre-existing models. The Gs and Gi/o pathways were im-

plemented based on the model proposed by Nair et al. [dh], whereas the Gq/-- 

pathway were based on the model proposed by Chang et al. [di]. Although we 

didn’t find, in the literature, a suitable descriptive model for the G-!/-# signaling 

pathway, this pathway shares the same receptors as the Gq/-- pathway. Moreo-

ver, from all known human GPCRs, just _% of them are known to couple the 

G-!/-# signaling pathway (Fig. S.T). 

Fig. R.R GPCRs' signaling pathways. Figure taken from Pfleger et al. x{u� [v~]. 
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All the three signaling pathways were developed using the PySB [`\] frame-

work, designed specifically for systems biology. Essentially, with PySB [`\] we 

start by defining all the species, initial concentrations, reactions and reactions 

constants. Then, all the differential equations are integrated over an array of 

time, and finally, the variation of the concentration of specific metabolites 

over time are obtained.  

To predict a dose-response curve from the simulation of signaling path-

ways, individual simulations of the pathway according to an array of ligand 

concentrations must be performed first. The dose-response curve is, then, ob-

tained by fitting a logistic regression (eq. S.Q††) to the maximum response val-

ues from each individual simulation. In the end, a curve of the response in 

function of the ligand concentration is obtained (Fig. S.b). The response of a 

 
†† For a drug-response curve, the c value of the logistic function corresponds to the 

EC50/IC50 value. 

Fig. R.T Percentage of human GPCRs in function of their G protein. Data based on 

GPCRdb and REACTOME database (last access on December x{x{) [�{,�u] (UNK 

= unknown). 
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signaling pathway is, naturally, represented by the increase or decrease of one 

of the species described by the model. Therefore, for each signaling pathway 

we defined, by default, a reference species. While cAMP was chosen as refer-

ence species for the Gs and Gi/o pathway, for the Gq/-- pathway we chose IP#, Fig. 

S.S.  

Having this in mind, with our framework it is then possible to obtain curves 

for the response of agonists (stimulation protocol) and antagonists (competi-

tive inhibition protocol). 

Since the comparison between drugs’ potencies should only be made under 

specific experimental conditions [d`], our framework might become a compu-

tational approach to systematically assess pharmacodynamic parameters dur-

ing virtual screening campaigns against GRCRs.  

 

 

Fig. R.U Conceptual scheme for predicting dose-response through signaling path-

ways’ simulation. For each concentration value the signaling model is simulated 

obtaining in the end several curve of the concentration of a specific species of the 

pathway as function of time. After, the maximum value of each curve is selected 

and plotted, resulting, in the end, in the dose-response curve. 
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5.3 Application cases: Adenosine 2A receptor 

The physiological role of adenosine on virtually every tissue and organ has 

long been reported. Adenosine is a physiological nucleoside which activates G 

protein-coupled receptors referred to as A-, A!A, A!B and A#. Due to their broad 

distribution across the human body, they are related to a multitude of pathol-

ogies, such as cardiovascular, renal, pulmonary, neurodegenerative and auto-

immune diseases, ischemia, diabetes, and even cancer. Their role is so im-

portant that during the last four decades, numerous agonists have been devel-

oped, all of them structurally based on adenosine. In fact, adenosine itself is 

being used as a vasodilatory agent either during cardiac surgeries either to 

treat tachycardia and arrhythmias [l`,ld].  

In particular, from all adenosine receptors, the A!A receptor is the best stud-

ied and characterized by a structural point of view [lf]. Therefore, due to the 

vast quantity of structural data, I will, hereby, apply the two proposed frame-

work protocols to obtain classical pharmacodynamics’ models of agonists and 

antagonists for A!A receptors. 

5.3.1 Stimulation protocol 

The proposed stimulation protocol was performed using adenosine - the en-

dogenous ligand - and the two more common agonists for A!A receptors used 

in functional studies: NECA and NGI (Fig. S.c A). The three-dimensional struc-

ture of each ligand was obtained from PubChem [ll], and three-dimensional 

structure of the receptor was obtained from the Protein Data Bank [l[]. We 

chose the PDB ID: WDYV, an X-ray solved structure complexed with the ago-

nist NECA with a resolution of `.f\ Å [lf]. Because this structure contains a 

thermostabilized mutation on the binding pocket, this residue was re-mu-

tated, in silico, to obtain the original amino acid sequence using the MODEL-

LER program [lg].  

Once receptor and ligand structures were obtained, we follow the protocol 

as described in sections S.W.P and [.`.l. For simulation of the network model, 

we used a receptor concentration of ` µM, a range of ligand concentration 
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between _\-# µM and _\# µM, and an integral time step of _\\\. The results 

obtained from our protocol (Fig. S.d and Tab. S.=) predicted that from the list 

of ligands tested, the NGI is the most potent agonist, followed by the NECA, 

being the Adenosine the less potent ligand. Compared with experimental data, 

Fig. S.cB, one can observe that even if our framework is not able to reproduce 

Fig. R.V A) chemical representation of the AxA receptor agonists adenosine, NECA 

and NGI. B) Statistical distribution of the experimental values of EC�{ relative to 

the interaction between the adenosine, NECA and NGI with the AxA receptor, re-

spectively. Data taken from PubChem [��] (last access on December x{x{). 
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the experimental EC9, absolute values, it is able to reproduce the potency pat-

tern: NGI > NECA > Adenosine.  

 

Tab. R.& Results obtained from our framework applied to agonists towards the A!A 

receptor. 

  

Ligand 
Vina score 

(kcal×mol-") 

DLSCORE 

(pKd) 
 

Predicted 

EC#$ 

(µM) 

Predicted 

pEC#$ 

Experimental* 

pEC#$ 

Adenosine -~.u �.��  u.�x �.~� �.u� 

NECA -z.{u �.~v  {.� �.{� ~.�� 

NGI -�.�� �.{�  {.uv �.�{ ~.�{ 

Fig. R.W Dose-response curves of agonists (Adenosine, NECA and NGI) of A!A re-

ceptor obtained through our framework.  

*Median values calculated from the experimental values of EC9, relative to the interaction between the agonists with the A!A receptor, respectively. 

Data taken from PubChem [QR] (last access on December !,!,). 



CHAPTER 5 – Development of a structure-quantitative 

systems pharmacology computational framework 

87 

 

 

5.3.2 Competitive inhibition protocol 

Although many adenosine A! selective agonists have been used therapeuti-

cally, due to the pathophysiological role of A!A receptors on Alzheimer and 

Parkinson’s disease, de development of antagonists for A!A receptors have 

been highly attractive [lh].  

Therefore, we applied the proposed competitive inhibition protocol to 

compare different antagonists for A!A receptors (Fig. S.=e A). Such antagonists 

were selected because not only are some of the most used commercial drugs 

(theophylline, caffeine, istradefylline and preladenant) or used in functional 

studies (ZM-WQ=PcS, XAC and DPCPX), but also because there are extensive 

experimental pharmacodynamic data on them. The three-dimensional struc-

ture of all ligands were obtained, once again, from PubChem [ll], and the 

three-dimensional structure of the receptor was obtained from the Protein 

Data Bank [l[]. In this study, we chose the PDB ID: SIUQ, an X-ray solved 

structure complexed with the agonist ZM-`l_dh[ with a resolution of _.g\ Å 

[li]. Because this structure contains thermostabilized mutations on the bind-

ing pocket, such residues were re-mutated, in silico, to obtain the original 

amino acid sequence using the MODELLER program [lg].  

The protocol was performed as described in sections S.W.P and [.`.l. For 

simulation of the network model, we used a receptor concentration of ` µM, 

a range of ligand concentration between _\-# µM and _\# µM, and an integral 

time step of _\\\. The results obtained from our protocol (Fig. S.== and Tab. 

S.W), predicted that from the list of antagonists tested, the preladenant is the 

most potent antagonist, followed sequentially by ZM-WQ=PcS, XAC, DPCPX, 

istradefylline, and caffeine, being the theophylline the less potent predicted lig-

and. Since experimental values for IC9, of these antagonists are scarce, and 

due to the fact that IC9, is an ambiguous term, being sometimes used as a 

measure regarding the reduction of a response to an antagonist or regarding 

the inhibition of binding of radioligand [d`], we compared the predicted po-

tency’s values with the affinity constants. Even if such constants represent dif-

ferent biochemical properties, one should expect that they are proportionately 
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related. Thus, comparing with experimental affinity data (Ki
‡‡) (Fig. S.=e B), 

we can observe that the predicted inhibition pattern follows the experimental 

affinity pattern: preladenant > ZM-WQ=PcS > XAC > DPCPX > istradefylline > 

caffeine and theophylline.  

5.4 Discussion 

Hereby, we developed a computational framework able to qualitatively predict 

the dose-response curves from docking structures of agonist/antagonists-re-

ceptor interactions. However, there are many challenges to overcome in order 

to implement such a framework in drug discovery high-throughput virtual 

screening campaigns.  

The first pitfall arises from the docking technique. Although it has been the 

best option to predict favorable binding conformations of ligands, many of 

them fail in in vivo experiments despite their high docking scores [[\]. As well 

as other techniques, what is suitable for certain systems may not work for oth-

ers. Indeed, the accuracy of docking algorithms vary depending on the target 

being tested and the kind of molecules being docked. For instance, if the 

screening library is beyond the chemical space for which the algorithms were 

trained and developed, they will not provide the same results with the same 

reliability [[\]. In addition, in our framework we implement a rigid docking 

approach. In this kind of docking, the bond angles and lengths of protein and 

ligand are fixed. The search algorithm will then dock randomly the ligand, 

rotating and translating it after. Finally, the fact that the target protein, nor-

mally obtained from the PDB database, has already a specific conformation, 

because proteins are commonly co-crystalized with ligands, can affect the 

docking results [[\]. 

Although a flexible docking type could be an alternative to the rigid docking 

in order to enhance the results, molecular dynamics may be the best option to 

 
‡‡ The lower case subscript of the binding constant describes the pharmacological experi-

ment: direct binding for Kd and inhibition for Ki [32]. 
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predict binding poses. The drawback, here, is the time and computational cost 

that molecular dynamics simulations require. However, the Hybrid MM/CG 

(molecular mechanics/coarse-grained) technique proposed by Schneider et al. 

promises to predict with high quality the ligand binding poses, even with low 

resolution protein models, keeping the computational cost low [[_]. 

Another pitfall in our framework is the use of the affinity constants, Kd, as 

the exclusive parameter for calculate the concentration of activated receptors. 

The reality is that not only docking scores and experimental binding affinities 

are still poorly correlated, but also new activation models of receptors are tak-

ing into account three distinct parameters: i) the dissociation constant (Kd) 

that characterizes the equilibrium binding affinity; ii) the efficacy parameter 

that describes the receptor activation; iii) and the amplification parameter 

that represents the post-activation signal transduction [[`]. Furthermore, 

some studies have recently demonstrated that the residence time (koff 
-8) of the 

ligand inside the binding pocket plays a more important role in regulating cel-

lular responses than its affinity and potency [[d–[[]. As this implies, recently 

many computational approaches, applying statistical machine learning or mo-

lecular dynamics simulations combined with enhanced sampling techniques, 

have been developed to derive drug binding kinetics [[[–[h]. Since our math-

ematical models of signaling pathways are based on binding kinetic equations, 

we intend, in the near future, to implement the prediction of the drug-recep-

tor binding koff parameter in order to enhance our receptor activation model. 

Finally, the accuracy of the kinetic parameters constitutes the last limita-

tion of our framework. Although many of them are derived experimentally, 

they are dependent on the experimental conditions. Also, despite the next 

generation of binding kinetics predictors, we have yet to understand if such 

parameters are transferable, so they can be used in molecular systems other 

than those for which they were predicted and how they can be optimized. 
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Fig. R.&X A) chemical representation of the A!A receptor antagonists: caffeine, DPCPX, 

Istradefylline, preladenant, theophylline, xanthine amine congener (XAC) and ZM-

xuvz�. B) Statistical distribution of the experimental values of Ki relative to the bind-

ing interaction between the antagonists with the A!A receptor. Data taken from Pub-

Chem [��] (last access on December x{x{). 
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Fig. R.&& Inhibition curves of antagonists (caffeine, DPCPX, Istradefylline, preladenant, 

theophylline, xanthine amine congener (XAC) and ZM-xuvz�) of A!A receptor ob-

tained through our framework. The curves of caffeine and theophylline are superim-

posed.  

 

Tab. R.2 Results obtained from our framework applied to agonists towards the A!A 

receptor. 

Ligand 
Vina score 

(kcal×mol-") 

DLSCORE 

(pKd) 
 

Predicted 

IC#$ 

(µM) 

Predicted 

pIC#$ 

Experi-

mental* 

pKi 

Theophylline -�.�� v.~{  u�.u �.z� �.u{ 

Caffeine -�.vv v.�u  z.~� �.{� �.�v 

Istradefylline -z.vx �.uz  {.�~ �.vv ~.�� 

DPCPX -~.~� �.vz  {.x� �.�v �.�z 

XAC -z.~x �.�{  {.{� ~.{� ~.~� 

ZM-x�uvz� -�.ux �.u~  {.{� ~.v{ z.z� 

Preladenant -~.� �.xz  {.{� ~.�x z.�� 

  *Median values calculated from the experimental values of pKi relative to the interaction between the antagonists for the A!A receptor, respec-

tively. Data taken from PubChem [QQ] (last access on December !,!,)). 
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5.5 Appendix  

Tab. R.A Comparison of the computational estimation tools for drug-target binding 

affinities. 

 



CHAPTER 5 – Development of a structure-quantitative 

systems pharmacology computational framework 

93 

 

 

References 
9. Oprea, T.I.; Bologa, C.G.; Brunak, S.; Campbell, A.; Gan, G.N.; Gaulton, A.; Gomez, 
S.M.; Guha, R.; Hersey, A.; Holmes, J.; et al. Unexplored Therapeutic Opportunities in 
the Human Genome. Nature Reviews Drug Discovery '(*+, ab, C9^–CCG, 
doi:9F.9FCB/nrd.GF9B.9T. 

G. Rask-Andersen, M.; Almén, M.S.; Schiöth, H.B. Trends in the Exploitation of Novel 
Drug Targets. Nature Reviews Drug Discovery '(**, a\, Z^J–ZJF, 
doi:9F.9FCB/nrdCT^B. 

C. Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, 
A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A Comprehensive Map of Molecular 
Drug Targets. Nature Reviews Drug Discovery '(*., ad, 9J–CT, 
doi:9F.9FCB/nrd.GF9H.GCF. 

T. Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. 
Trends in GPCR Drug Discovery: New Agents, Targets and Indications. Nature Reviews 
Drug Discovery '(*., ad, BGJ–BTG, doi:9F.9FCB/nrd.GF9^.9^B. 

Z. Mullard, A. Fiona Marshall. Nature Reviews Drug Discovery '(*+, ab, 9ZB–9ZJ, 
doi:9F.9FCB/nrd.GF9B.GZ. 

H. Demartis, A.; Lahm, A.; Tomei, L.; Beghetto, E.; Di Biasio, V.; Orvieto, F.; Frattolillo, 
F.; Carrington, P.E.; Mumick, S.; Hawes, B.; et al. Polypharmacy through Phage Dis-
play: Selection of Glucagon and GLP-9 Receptor Co-Agonists from a Phage-Displayed 
Peptide Library. Scientific Reports '(*+, _, ZBZ, doi:9F.9FCB/sT9ZJB-F9^-9BTJT-Z. 

^. Hutchings, C.J.; Koglin, M.; Olson, W.C.; Marshall, F.H. Opportunities for Thera-
peutic Antibodies Directed at G-Protein-Coupled Receptors. Nature Reviews Drug 
Discovery '(*., ad, ^B^–B9F, doi:9F.9FCB/nrd.GF9^.J9. 

B. Thal, D.M.; Glukhova, A.; Sexton, P.M.; Christopoulos, A. Structural Insights into 
G-Protein-Coupled Receptor Allostery. Nature '(*+, ^^e, TZ–ZC, 
doi:9F.9FCB/sT9ZBH-F9B-FGZJ-z. 

J. Cohen, L.J.; Esterhazy, D.; Kim, S.-H.; Lemetre, C.; Aguilar, R.R.; Gordon, E.A.; Pick-
ard, A.J.; Cross, J.R.; Emiliano, A.B.; Han, S.M.; et al. Commensal Bacteria Make GPCR 
Ligands That Mimic Human Signalling Molecules. Nature '(*., ^Ze, TB–ZC, 
doi:9F.9FCB/natureGCB^T. 

9F. Kim, K.-S.; Seeley, R.J.; Sandoval, D.A. Signalling from the Periphery to the Brain 
That Regulates Energy Homeostasis. Nature Reviews Neuroscience '(*+, ae, 9BZ–9JH, 
doi:9F.9FCB/nrn.GF9B.B. 

99. George, S.R.; O’Dowd, B.F.; Lee, S.P. G-Protein-Coupled Receptor Oligomerization 
and Its Potential for Drug Discovery. Nature Reviews Drug Discovery '((', a, BFB–
BGF, doi:9F.9FCB/nrdJ9C. 

9G. Ferré, S. The GPCR Heterotetramer: Challenging Classical Pharmacology. Trends 
in Pharmacological Sciences '(*,, [d, 9TZ–9ZG, doi:9F.9F9H/j.tips.GF9Z.F9.FFG. 



94 Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

 

 

 

9C. Pérez-Benito, L.; Henry, A.; Matsoukas, M.-T.; Lopez, L.; Pulido, D.; Royo, M.; Cor-
domí, A.; Tresadern, G.; Pardo, L. The Size Matters? A Computational Tool to Design 
Bivalent Ligands. Bioinformatics '(*+, [Z, CBZ^–CBHC, doi:9F.9FJC/bioinformat-
ics/btyTGG. 

9T. Rule, A.; Birmingham, A.; Zuniga, C.; Altintas, I.; Huang, S.-C.; Knight, R.; Moshiri, 
N.; Nguyen, M.H.; Rosenthal, S.B.; Pérez, F.; et al. Ten Simple Rules for Writing and 
Sharing Computational Analyses in Jupyter Notebooks. PLoS Comput Biol '(*/, a^, 
e9FF^FF^, doi:9F.9C^9/journal.pcbi.9FF^FF^. 

9Z. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, 
D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 9.F: Fundamental 
Algorithms for Scientific Computing in Python. Nat Methods '('(, ab, GH9–G^G, 
doi:9F.9FCB/sT9ZJG-F9J-FHBH-G. 

9H. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Courna-
peau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with 
NumPy. Nature '('(, ^_^, CZ^–CHG, doi:9F.9FCB/sT9ZBH-FGF-GHTJ-G. 

9^. Hunter, J.D. Matplotlib: A GD Graphics Environment. Computing in Science Engi-
neering '((., e, JF–JZ, doi:9F.99FJ/MCSE.GFF^.ZZ. 

9B. Mckinney, W. Data Structures for Statistical Computing in Python. Proceedings of 
the eth Python in Science Conference '(*(, ZZ^, Z9–ZH. 

9J. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; 
Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine 
Learning in Python. J. Mach. Learn. Res. '(**, a], GBGZ–GBCF. 

GF. Lopez, C.F.; Muhlich, J.L.; Bachman, J.A.; Sorger, P.K. Programming Biological 
Models in Python Using PySB. Mol Syst Biol '(*-, e, HTH, doi:9F.9FCB/msb.GF9C.9. 

G9. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, 
I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python 
Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics '((/, 
]^, 9TGG–9TGC, doi:9F.9FJC/bioinformatics/btp9HC. 

GG. Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of 
Docking with a New Scoring Function, Efficient Optimization, and Multithreading. 
Journal of Computational Chemistry '(*(, [a, TZZ–TH9, 
doi:https://doi.org/9F.9FFG/jcc.G9CCT. 

GC. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy; Golan, 
D.E., Tashjian, A.H., Eds.; Crd ed.; Wolters Kluwer Health/Lippincott Williams & Wil-
kins: Philadelphia, GF9G; ISBN J^B-9-HFBC9-G^F-G. 

GT. Hassan, M.; Mogollón, D.C.; Fuentes, O.; Sirimulla, S. DLSCORE: A Deep Learning 
Model for Predicting Protein-Ligand Binding Affinities. '(*+, 9H. 

GZ. Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the Basis for 
Developing Protein–Ligand Interaction Scoring Functions. Acc. Chem. Res. '(*., ^\, 
CFG–CFJ, doi:9F.9FG9/acs.accounts.HbFFTJ9. 



CHAPTER 5 – Development of a structure-quantitative 

systems pharmacology computational framework 

95 

 

 

GH. Durrant, J.D.; McCammon, J.A. BINANA: A Novel Algorithm for Ligand-Binding 
Characterization. J Mol Graph Model '(**, ]e, BBB–BJC, 
doi:9F.9F9H/j.jmgm.GF99.F9.FFT. 

G^. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Valida-
tion of a Genetic Algorithm for Flexible Docking99Edited by F. E. Cohen. Journal of 
Molecular Biology *//., ]db, ^G^–^TB, doi:9F.9FFH/jmbi.9JJH.FBJ^. 

GB. Jain, A.N. Surflex:  Fully Automatic Flexible Molecular Docking Using a Molecular 
Similarity-Based Search Engine. J. Med. Chem. '((-, Zd, TJJ–Z99, 
doi:9F.9FG9/jmFGFTFHh. 

GJ. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; 
Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide:  A New Approach for 
Rapid, Accurate Docking and Scoring. 9. Method and Assessment of Docking Accu-
racy. J. Med. Chem. '((), Zb, 9^CJ–9^TJ, doi:9F.9FG9/jmFCFHTCF. 

CF. DeLean, A.; Munson, P.J.; Rodbard, D. Simultaneous Analysis of Families of Sig-
moidal Curves: Application to Bioassay, Radioligand Assay, and Physiological Dose-
Response Curves. Am J Physiol */.+, ][^, EJ^-9FG, doi:9F.99ZG/aj-
pendo.9J^B.GCZ.G.EJ^. 

C9. Sebaugh, J.L. Guidelines for Accurate ECZF/ICZF Estimation. Pharm Stat '(**, 
a\, 9GB–9CT, doi:9F.9FFG/pst.TGH. 

CG. Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International Union of 
Pharmacology Committee on Receptor Nomenclature and Drug Classification. 
XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacol 
Rev '((-, ^^, ZJ^–HFH, doi:9F.99GT/pr.ZZ.T.T. 

CC. Patrick, G.L. An Introduction to Medicinal Chemistry; Fifth edition.; Oxford Uni-
versity Press: Oxford, GF9C; ISBN J^B-F-9J-JHJ^CJ-^. 

CT. Sebaugh, J.L.; McCray, P.D. Defining the Linear Portion of a Sigmoid-Shaped 
Curve: Bend Points. Pharmaceutical Statistics '((-, ], 9H^–9^T, doi:9F.9FFG/pst.HG. 

CZ. Stein, M.; Gabdoulline, R.R.; Wade, R.C. Bridging from Molecular Simulation to 
Biochemical Networks. Current Opinion in Structural Biology '((., ab, 9HH–9^G, 
doi:9F.9F9H/j.sbi.GFF^.FC.F9T. 

CH. Neves, S.R. G Protein Pathways. Science '((', ]ed, 9HCH–9HCJ, doi:9F.99GH/sci-
ence.9F^9ZZF. 

C^. Pfleger, J.; Gresham, K.; Koch, W.J. G Protein-Coupled Receptor Kinases as Ther-
apeutic Targets in the Heart. Nature Reviews Cardiology '(*/, ad, H9G–HGG, 
doi:9F.9FCB/sT9ZHJ-F9J-FGGF-C. 

CB. Nair, A.G.; Gutierrez-Arenas, O.; Eriksson, O.; Vincent, P.; Hellgren Kotaleski, J. 
Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled 
GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons. J Neurosci 
'(*,, [^, 9TF9^–9TFCF, doi:9F.9ZGC/JNEUROSCI.F^CF-9Z.GF9Z. 



96 Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

 

 

 

CJ. Chang, C.; Poteet, E.; Schetz, J.A.; Gümüş, Z.H.; Weinstein, H. Towards a Quanti-
tative Representation of the Cell Signaling Mechanisms of Hallucinogens: Measure-
ment and Mathematical Modeling of Z-HT9A and Z-HTGA Receptor-Mediated 
ERK9/G Activation. Neuropharmacology '((/, ^d, G9C–GGZ, doi:9F.9F9H/j.neuro-
pharm.GFFB.F^.FTJ. 

TF. Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; 
Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb in GFG9: Integrating GPCR Sequence, 
Structure and Function. Nucleic Acids Research '('*, Ze, DCCZ–DCTC, 
doi:9F.9FJC/nar/gkaa9FBF. 

T9. Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, 
K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The Reactome Pathway Knowledgebase. Nu-
cleic Acids Res '('(, Z_, DTJB–DZFC, doi:9F.9FJC/nar/gkz9FC9. 

TG. Gessi, S.; Merighi, S.; Varani, K. Adenosine Receptors: The Status of the Art. In The 
Adenosine Receptors; Borea, P.A., Varani, K., Gessi, S., Merighi, S., Vincenzi, F., Eds.; 
Springer International Publishing: Cham, GF9B; pp. 9–99 ISBN J^B-C-C9J-JFBF^-H. 

TC. Yan, L.; Burbiel, J.C.; Maaß, A.; Müller, C.E. Adenosine Receptor Agonists: From 
Basic Medicinal Chemistry to Clinical Development. Expert Opinion on Emerging 
Drugs '((-, _, ZC^–Z^H, doi:9F.9Z9^/9T^GBG9T.B.G.ZC^. 

TT. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; 
Thiessen, P.A.; Yu, B.; et al. PubChem in GFG9: New Data Content and Improved Web 
Interfaces. Nucleic Acids Research '('*, Ze, D9CBB–D9CJZ, 
doi:9F.9FJC/nar/gkaaJ^9. 

TZ. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shin-
dyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Research '(((, ]_, 
GCZ–GTG, doi:9F.9FJC/nar/GB.9.GCZ. 

TH. Lebon, G.; Warne, T.; Edwards, P.C.; Bennett, K.; Langmead, C.J.; Leslie, A.G.W.; 
Tate, C.G. Agonist-Bound Adenosine AGA Receptor Structures Reveal Common Fea-
tures of GPCR Activation. Nature '(**, ZbZ, ZG9–ZGZ, doi:9F.9FCB/nature9F9CH. 

T^. Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, 
M.-Y.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller. 
Curr Protoc Bioinformatics '((0, Chapter ^, Unit-Z.H, 
doi:9F.9FFG/FT^9GZFJZC.biFZFHs9Z. 

TB. de Lera Ruiz, M.; Lim, Y.-H.; Zheng, J. Adenosine AGA Receptor as a Drug Discov-
ery Target. J Med Chem '(*), ^b, CHGC–CHZF, doi:9F.9FG9/jmTF99HHJ. 

TJ. Segala, E.; Guo, D.; Cheng, R.K.Y.; Bortolato, A.; Deflorian, F.; Doré, A.S.; Errey, 
J.C.; Heitman, L.H.; IJzerman, A.P.; Marshall, F.H.; et al. Controlling the Dissociation 
of Ligands from the Adenosine AGA Receptor through Modulation of Salt Bridge 
Strength. J Med Chem '(*0, ^e, HT^F–HT^J, doi:9F.9FG9/acs.jmedchem.HbFFHZC. 

ZF. Gupta, M.; Sharma, R.; Kumar, A. Docking Techniques in Pharmacology: How 
Much Promising? Computational Biology and Chemistry '(*+, bd, G9F–G9^, 
doi:9F.9F9H/j.compbiolchem.GF9B.FH.FFZ. 



CHAPTER 5 – Development of a structure-quantitative 

systems pharmacology computational framework 

97 

 

 

Z9. Schneider, J.; Korshunova, K.; Musiani, F.; Alfonso-Prieto, M.; Giorgetti, A.; Car-
loni, P. Predicting Ligand Binding Poses for Low-Resolution Membrane Protein Mod-
els: Perspectives from Multiscale Simulations. Biochemical and Biophysical Research 
Communications '(*+, Ze_, CHH–C^T, doi:9F.9F9H/j.bbrc.GF9B.F9.9HF. 

ZG. Buchwald, P. A Receptor Model With Binding Affinity, Activation Efficacy, and 
Signal Amplification Parameters for Complex Fractional Response Versus Occupancy 
Data. Front. Pharmacol. '(*/, a\, HFZ, doi:9F.CCBJ/fphar.GF9J.FFHFZ. 

ZC. Yun, Y.; Chen, J.; Liu, R.; Chen, W.; Liu, C.; Wang, R.; Hou, Z.; Yu, Z.; Sun, Y.; 
IJzerman, A.P.; et al. Long Residence Time Adenosine A9 Receptor Agonists Produce 
Sustained Wash-Resistant Antilipolytic Effect in Rat Adipocytes. Biochemical Pharma-
cology '(*/, adZ, TZ–ZG, doi:9F.9F9H/j.bcp.GF9J.FC.FCG. 

ZT. Guo, D.; Mulder-Krieger, T.; IJzerman, A.P.; Heitman, L.H. Functional Efficacy of 
Adenosine A₂A Receptor Agonists Is Positively Correlated to Their Receptor Resi-
dence Time. Br J Pharmacol '(*', add, 9BTH–9BZJ, doi:9F.9999/j.9T^H-
ZCB9.GF9G.F9BJ^.x. 

ZZ. Schuetz, D.A.; de Witte, W.E.A.; Wong, Y.C.; Knasmueller, B.; Richter, L.; Kokh, 
D.B.; Sadiq, S.K.; Bosma, R.; Nederpelt, I.; Heitman, L.H.; et al. Kinetics for Drug Dis-
covery: An Industry-Driven Effort to Target Drug Residence Time. Drug Discovery To-
day '(*., ]], BJH–J99, doi:9F.9F9H/j.drudis.GF9^.FG.FFG. 

ZH. Bruce, N.J.; Ganotra, G.K.; Richter, S.; Wade, R.C. KBbox: A Toolbox of Computa-
tional Methods for Studying the Kinetics of Molecular Binding. J. Chem. Inf. Model. 
'(*/, ^e, CHCF–CHCT, doi:9F.9FG9/acs.jcim.JbFFTBZ. 

Z^. Nunes-Alves, A.; Kokh, D.B.; Wade, R.C. Recent Progress in Molecular Simulation 
Methods for Drug Binding Kinetics. Current Opinion in Structural Biology '('(, dZ, 
9GH–9CC, doi:9F.9F9H/j.sbi.GFGF.FH.FGG. 

ZB. Capelli, R.; Lyu, W.; Bolnykh, V.; Meloni, S.; Olsen, J.M.H.; Rothlisberger, U.; Par-
rinello, M.; Carloni, P. On the Accuracy of Molecular Simulation-Based Predictions of 
Koff Values: A Metadynamics Study. bioRxiv '('(, GFGF.FC.CF.F9ZCJH, 
doi:9F.99F9/GFGF.FC.CF.F9ZCJH. 

 

 





Structural Systems Biology: multiscale insights into the effect 

of drug-receptor interactions in neurosignaling pathways 

99 

 

 

 

 
 

CHAPTER 6 

Building the structure-quantitative 

systems pharmacology biocompu-

ting web-platform  

 

 

 

6.1 Introduction 

Due to the sheer amount of biological data and bioinformatics tools that have 

become available in the last decades, mainly thanks to the advent of the inter-

net and the constant increase in computational power, the need for a system-

atic and standardized approach to use these tools and data has become fun-

damental [_,`]. For this reason, the use of web-services in life sciences have 

changed our approach in conducting biological research [d]. 

Web-services are, essentially, a platform to provide a standard way of pub-

lishing applications and data sources over the internet. But they are not lim-

ited to access biological information. Actually, one of the most prominent 

benefits of web-services is the accessible standardized environments, where 

non-IT experts, effectively, can carry out transparent, reproducible and reus-

able computational analysis and tasks from genome analysis to protein struc-

ture prediction [_–d]. 
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Giving the importance of web-services in life sciences and the importance 

of bringing together the structure systems biology to the quantitative systems 

pharmacology (see General Introduction), the development of a web-service 

for structural quantitative pharmacology studies, became paramount. There-

fore, we present in this chapter the conceptual design of a biocomputing plat-

form tailored for in-depth studies of G-protein coupled receptors in order to 

improve current empirically driven drug discovery approaches in a more pre-

cise drug design towards these receptors. The central ideal of this platform is 

to easily predict classical pharmacodynamics’ models of drug-target interac-

tions given just as input basic structural information of the receptor and the 

drug. To accomplish this, we intend to combine individual services in a single 

common workflow, allowing them to communicate with each other by sharing 

data at execution time (Fig. T.=). For this purpose we intend to combine i) the 

GOMoDo web-service [l], specific designed for homology modelling of hu-

man GPCRs; ii) the Hybrid MM/CG web-service [[] for predict binding poses 

in human GPCRs; iii) the structure-quantitative systems pharmacology frame-

work, described in Chapter S; and iv) a database for human GPCRs structures 

specific for structural systems biology. 

The development of this integrative platform is still an ongoing process. 

The heterogenicity of the different tools makes their cross-communication ar-

duous to implement. The platform has also been object of an intensive sys-

tematic validation before it is ready to be publicly released.  

6.2 GPCR database for Structure Systems Biology 

Obtaining atomic coordinates is crucial for any structural biology study. 

Thanks to the constant improvement in techniques for structure determina-

tion like high-throughput X-ray crystallography, multidimensional NMR 

spectroscopy, Cryo-Electron microscopy (cryo-EM), or small angle X-ray scat-

tering (SAXS), the number of three-dimensional structures of proteins have 

been rapidly increasing (Fig. T.W) [f]. 
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Fig. T.& Conceptual pipeline of the structure-quantitative systems pharmacology 

biocomputing platform. 
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However, even if such structures are deposited in free-accessible databases, 

like The Protein Databank [h], under a standardized format, once a protein is 

selected it can’t be used directly. For instance, when a protein is being pre-

pared for X-ray crystallography, it commonly undergoes a series of physio-bi-

ochemical processes, such as, the introduction of point mutations for thermo-

stabilization improvement [i], co-expression with proteins from different spe-

cies for better expression and solubility, or even the addition to the C-terminal 

of the protein a polyhistidine-tag for better protein purification [_\]. Worse 

still, most of the time, the description of these changes in the original protein 

is hidden deeply into the metadata of the coordinate files, being often missed 

even by experienced researchers. 

Taking all this into account, we came up with the idea of creating a data-

base for human GPCR structures specific for structural systems biology. The 

main ideal is then, aggregate in one single database clean and ready-to-go hu-

man GPCR structures for modeling, docking, and molecular dynamics simu-

lations.  

Fig. T.2 Total number of GPCR structures deposited on the Protein Data Bank and 

the number of GPCR structures released per year. Data taken from the GPCRdb [h] 

(last access on December x{x{). 
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To build this database, we start by getting from the GPCRdb [g] all the al-

ready identified human GPCRs, extracting, then, for each one, its class, type, 

subtype, name, gene and UniProtKB [__] identifiers. After, through the Uni-

ProtKB identifier we have queried the REACTOME database [_`] to get the G 

protein to which the receptor is coupled with, and the UniProtKB database [__] 

itself to obtain all the PDB identifiers from the Protein Data Bank [h] belong-

ing to the receptor of interest. Once all the PDB files of human GPCRs have 

been identified and downloaded, each one underwent a series of steps to be-

come ready for structure biology studies. In a first step, the exogenous resi-

dues, those that don’t belong to the GPCR of interest, as well as the 

Fig. T.1 Screenshot of the SQL database of human GPCRs for structure systems 

biology. 
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expressions tags, like the polyhistidine-tags, were removed. Then, the thermo-

stabilizing mutations were identified and re-mutated to the original residue 

using the MODELLER program [_d]. Lastly, the amino acid sequence of each 

chain was compared with the related sequence from UniProtKB [__] in order 

to obtain a percentual value of the coverage. 

Finally, all the information obtained was compiled into a SQL database 

(Fig. T.P), so that it can be better integrated with APIs (application programing 

interfaces). Lastly, considering the constant increase in the number of solved 

protein’s structures, the database was built into a framework that keeps the 

database automatically updated.  

6.3 GOMoDo v2.0 

The GOMoDo web-service is a GPCRs online modeling and docking web-ser-

vice, developed in the Applied Bioinformatics Laboratory of the University of 

Verona, and publicly available since `\_d. With a very easy user interface, this 

biocomputing platform allows users to effortlessly model GPCR structures and 

dock ligands to the model, obtaining biologically and pharmacologically rele-

vant data, in a consistent pipeline: protein sequence alignment, homology 

modeling and model quality assessment, and docking [l].  

One of the novelties that GOMoDo brought to the bioinformatic commu-

nity was the use of local GPCR sequences and pre-generated alignments data-

bases. However, at the time of its development and deployment, only less than 

d% of the human GPCR structures were available, and those databases have 

never been updated since then. In addition, the code behind the back- and 

front-end of the web-service not only is difficult to maintain, but also no 

longer satisfies the necessary requisites for the utmost web performance and 

security, and also the interconnection with other web-services. These reasons 

prompted us to create the version `.\ of GOMoDo, with a simplified back-end 

workflow, updated internal databases, and a refreshed graphical interface. To 

accomplish that, we start by re-coding all GOMoDo’s workflow in the python 

programming language, which will facilitate the integration with other web-
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services developed under the same programming language. All the bioinfor-

matic tools inside the server were also updated to their latest version, like HH-

suited [_l], for the multiple sequence alignment, and MODELLER [_d] for ho-

mology modeling. In the same way, the databases used by these tolls, such as 

UNIREFd\ and PDBg\ databases [_[] were also updated. 

Finally, the next stage, which was not yet accomplished, is the development 

of the new graphical interface for the renewed GOMoDO’s workflow. To en-

sure an effective interconnection with the other services that will make part 

of the main biocomputing platform, this task must, ideally, be undertaken 

concomitantly with the development of the other parts of the platform. 

6.4 The Hybrid MM/CG Webserver 

 

The work described in this section is taken from: Schneider, J.; Ribeiro, R.; Alfonso-

Prieto, M.; Carloni, P.; Giorgetti, A. Hybrid MM/CG Webserver: Automatic Set up of 

Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Re-

ceptor/Ligand Complexes. Front. Mol. Biosci. (M(M, h, doi:KM.&&iQ/fmolb.(M(M.NhOOiQ. 

 

The MM/GC Webserver is an online server that automatizes and speeds up 

the MM/CG simulation set up of huma GPCR/ligands complexes. Hybrid Mo-

lecular Mechanics/Coarse-Grained (MM/CG) simulations help to predict lig-

and poses in human GPCRs, even if the receptor’s structure is a lower resolu-

tion model [_f,_g]. 

In MM/CG simulations the receptor/ligand interactions are described in 

atomistic detail, including explicit water molecules in the binding site (MM 

region), while the rest of the receptor is coarse-grained (CG region) [_f]. The 

all-atom force fields used [_g] for the MM part of the protein and water are the 

Amber_lSB [_h] and TIPdP [_i], respectively, whereas the ligand can be de-

scribed using either GAFF or GAFF` [`\,`_]. The CG region is described by a 

Gō-like [``] potential. A region at the interface between the MM and CG parts 

couples the two levels of resolution. The membrane is described implicitly by 
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introducing five potential walls [_f,`d]. Two planar walls coincide with the 

height of the head groups of the membrane lipids, two hemispheric walls cap 

the extracellular and intracellular ends of the protein and prevent water evap-

oration, and the last wall follows the initial shape of the interface between 

protein and membrane, mimicking the effect of the lipid acyl tails (for more 

details please see the original article).  

This approach turned out to be able to reproduce the ligand poses for four 

different human GPCRs [_g]. These include the adenosine `A receptor in com-

plex with caffeine, the human bitter receptor _f in complex with phenyl-β-D-

glucopyranoside, the β`-adrenergic receptor with adrenaline, and the dopa-

mine Dd receptor with eticlopride [_g]. Retrospective validation against avail-

able X-ray structures and mutagenesis data confirmed that the MM/CG ap-

proach can predict correct ligand poses and identify experimentally deter-

mined binding residues [_g], regardless of the model resolution. In addition, 

the MM/CG simulations can provide insights into the flexibility of receptor–

ligand interactions and hydration of the binding cavity, at a lower computa-

tional cost than all-atom molecular dynamics simulations. 

6.5 Future perspectives 

With the conceptual design we are presenting here, we intend to build a com-

puting platform designed for in-depth studies of post-synaptic receptors, in 

particular human GPCRs, in order to improve the current empirically driven 

drug discovery pipeline.  

One of the advantages of building a biocomputing platform where many 

individual web-services can communicate with each other, is the possibility, 

at any time, to expand, improve and reintegrate the platform. We aim in the 

near future, integrate other services, for example, a web-service for kinetic 

constants prediction not only from drug-receptor binding, but also from bind-

ing and catalysis of the species downstream the signaling pathways. 
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CHAPTER 7 

Conclusions 

 

 

 

In this thesis we attempted to, applying a structure-quantitative systems phar-

macology approach, correlate the intracellular effects of the activation of neu-

rosignaling cascades on ligand binding to neuroreceptors, and build a compu-

tational platform that integrates such approaches. 

Firstly, we began by bridging structural macromolecular data with network 

biology to provide a rationale on the structure-function relationships of a dis-

ease variant of the oxytocin receptor and the NMDA receptor. With regard to 

the former study, we implemented a systems biology model of the signaling 

pathway of the oxytocin receptor in order to give a better understand behind 

the difference on dynamics of the intracellular Ca!+ between the OTXR-WT 

and OXTR-A`_hT that had been observed experimentally. Here, we have 

shown that the change in receptor activation caused by the mutation might 

be the key factor for the observed changes in intracellular Ca!+ concentrations, 

which may be implied in the maintaining downstream signal specificity. Sim-

ilarly, we also implemented a systems biology model of the NMDA and AMPA 

mediated synapse CA_-CAd transmission, which allow us to analyze the im-

pact of single disease associated variants of NMDA receptors, related to neu-

rological disorders and cognitive impairments. In this study, we were able to 

consistently reproduce experimental data and to quantitatively infer molecu-

lar-level causality of a variant-related functional impairment. All in all, with 
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these studies we showed that the predictive power of such multiscale ap-

proaches can help us to understand complex biological and pathophysiologi-

cal phenomena. 

In second place, we developed a structural-quantitative systems pharma-

cology framework for the prediction of classical pharmacodynamic models to-

wards G-protein coupled receptors. Here, we demonstrated that even with 

some limitations, the framework is able to predict efficacy and potency pa-

rameters of drugs comparable qualitatively to experimental values. 

At last, we proposed the conceptual structure-quantitative systems phar-

macology web-interface biocomputing platform. With this platform we want 

to make it possible to access the drug-receptor binding effects at different lev-

els: from the molecular level to the entire network of interactions through a 

systems biology approach. Specifically, we are creating a platform where one 

can easily predict classical pharmacodynamics models of drug-target interac-

tions given just as input basic structural information of the receptor and the 

drug. Consequently, the platform will return ligand receptor binding and 

dose-response curves allowing the comparison between the effects of different 

drugs upon receptor binding or between a ligand and receptors with associ-

ated disease variances. 
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Addendum 

The work presented in this thesis doesn’t cover all the research activities that 

I endeavor during my Ph.D. Program in Biotechnology. 

In fact, during the three years of my doctoral studies I participated in sev-

eral other projects in collaboration with different research groups. In particu-

lar, I would like to highlight the project entitled “Understanding the molecular 

properties responsible for the pharmacology of Cys-loop receptors” that I un-

dertook for three months in the "Institut de Biologie Physico-Chimique”, 

which belongs to the “Centre National de la Recherche Scientifique” (CNRS) 

based in Paris, France, under the supervision of Prof. Dr. Marc Baaden. I am 

deeply grateful to Prof. Baaden for hosting me and for his insightful comments 

and suggestions. 

From these collaborations some articles were published: 

• Amundarain, M.J.; Ribeiro, R.P.; Costabel, M.D.; Giorgetti, A. GABAA 
Receptor Family: Overview on Structural Characterization. Future Me-
dicinal Chemistry ?@AB, __, ``i–`l[, doi:_\.l_[[/fmc-`\_h-\ddf. 

• De Rosa, C.; Melchior, A.; Sanadar, M.; Tolazzi, M.; Giorgetti, A.; Ri-
beiro, R.P.; Nardon, C.; Piccinelli, F. Effect of the Heteroaromatic An-
tenna on the Binding of Chiral Eu(III) Complexes to Bovine Serum Al-
bumin. Inorg. Chem. ?@?@, Sd, _`[fl–_`[gg, doi:_\._\`_/acs.inorg-
chem.\c\_ffd. 

• Marchetto, A.; Si Chaib, Z.; Rossi, C.A.; Ribeiro, R.; Pantano, S.; Ros-
setti, G.; Giorgetti, A. CGMD Platform: Integrated Web Servers for the 
Preparation, Running, and Analysis of Coarse-Grained Molecular Dy-
namics Simulations. Molecules ?@?@, WS, [idl, doi:_\.ddi\/mole-
cules`[`l[idl. 
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Lastly, apart from all research activities and collaborations I was also involved 

in tutoring and teaching activities, which, in my judgment, were extremely 

valuable for my career as a researcher.
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Abbreviations 

A 

ASD Autism spectrum disorder 

AMPA α-amino-d-hydroxy-[-methyl-l-isoxazolepropionic acid 

 

B 

bAP back-propagating action potential 

 

C 

CaM Calmodulin 

CaMK Ca`+/CAM-dependent Kinase 

CaMKII Ca`+/CAM-dependent Kinase 

cAMP Cyclic adenosine monophosphate 

CAS CaMKII Activation Simulation 

CPC Current/Potential Calculation 

 

D 

DAG  Diacylglycerol 

  

E 

ER Endoplasmic Reticulum 

 

F 

FDA Food and Drug Administration 

 

G 

GPCR G protein coupled receptor 
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H 

HIT small molecule that binds to the target and is able to modify 

its function 

 

I 

IP# Inositol-_,l,[-trisphosphate 

IP#R Inositol-_,l,[-trisphosphate receptor 

 

L 

Lead A chemical compound that has pharmacological or biologi-

cal activity with a possible therapeutic use. 

LTD Long Term Depression 

LTP Long Term Potentiation 

 

M 

MAPK Mitogen-activated protein kinase 

mCaMKII Individual subunits of Calmodulin Kinase II 

MD Molecular Dynamics 

MM/CG Molecular mechanics/Coarse-grained 

 

N 

NMDA N-Methyl-D-aspartic acid 

NMR Nuclear magnetic resonance 

nsSNP Non-synonymous single nucleotide polymorphisms 

 

O 

ODE Ordinary differential equations 

OXT Oxytocin 

OXTR Oxytocin receptor 
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P 

PDE Partial differential equations 

PIP! Phosphatidylinositol l,[-bisphosphate 

PKA Phosphokinase A 

PKC Phosphokinase C 

PLC Phospholipase C 

 

R 

RGS Receptors Gating Simulation 

 

S 

SQL Structured Query Language 

 

W 

WT Wild type 

 





 

 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

  

# Quem vier atrás, feche a porta! 

(Portuguese saying) 



 

 

 

 

 

 

 

 

 

 

  

 

 


