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Field-sensitive static analyses of object-oriented code use approximations of the computa-
tional states where fields are taken into account, for better precision. This article presents
a novel and sound definite analysis of Java bytecode that approximates two strictly related
properties: field-sensitive unreachability between program variables and field-sensitive
non-cyclicity of program variables. The latter exploits the former for better precision. We
build a data-flow analysis based on constraint graphs, whose nodes are program points and
whose arcs propagate information according to the semantics of each bytecode instruction.
We follow abstract interpretation both to approximate the concrete semantics and to prove
our results formally correct. Our analysis has been designed with the goal of improving
client analyses such as termination analysis, asserting the non-cyclicity of variables with
respect to specific fields.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Static analysis builds compile-time approximations of the set of values, states or behaviors arising dynamically, at run–
time i.e., during the execution of a computer program. This is important to improve the quality of software by detecting
illegal operations, such as divisions by zero or dereferences of null, erroneous executions, such as infinite loops, or security
flaws, such as unwanted disclosure of information. In order to make static analysis computable, we follow abstract interpre-
tation [1] here, a framework that lets one define approximated but sound static analyses from the formal specification of
the properties of interest and of the semantics of the language.

In modern object-oriented languages such as Java, a typical problem related to the verification of real, large software
programs is how the dynamic allocation of objects shapes the heap: namely, objects can be instantiated on demand and
can reference other objects through fields, that can be updated at run-time. There are several articles in literature describing
memory-related properties and providing pointer analyses that statically determine approximations of the possible run-time
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values of a pointer [3]. Shape analysis [11] builds the possible shapes that data structures might assume at run-time; aliasing
analysis [6] determines which variables point to the same location; sharing analysis [14] infers which variables are bound
to overlapping data structures; reachability analysis [7] looks for paths between locations and non-cyclicity analysis [10]
spots variables bound to non-cyclical data. In this context, we present here a definite data-flow analysis for field-sensitive
unreachability and non-cyclicity. Namely, we build an under-approximation of the program fields that are never used in the
paths between two variables or in a cycle bound to a variable, respectively. Under-approximations in the context of abstract
interpretation have been studied in [13] through predicate transformers where the abstract transition function is a sound
postcondition transformer of the state-transition function. A field-sensitive pointer analysis has been developed in [9], with
a constraint-based approach as ours but not for object-oriented languages with dynamic memory allocation; instead, C
and fields of structures are considered. Furthermore they extended a set constraint language and an inference system to
model each field as a separate variable. Here instead, unreachability and non-cyclicity specify which fields cannot be used
to establish the property. The work most related to ours is [2], that introduces an acyclicity analysis as the reduced product
of abstract domains for reachability and cyclicity, over a semantics similar to ours. They highlight that cyclicity supports
reachability i.e., one can exploit unreachability information to improve non-cyclicity analysis. The main difference with our
work is that we compute the fields not involved in reachability or cyclicity, getting higher precision. Furthermore, we have
provided formal correctness proofs for the propagation rules of each bytecode instruction and method call, including its
side-effects (see [12]).

Our analysis is designed with the goal of improving client analyses of the Julia analyzer for Java and Android byte-
code (http://www.juliasoft.com). Namely, its termination checker finds method calls that might diverge at run-time,
through the path-length property [16] i.e., an estimation of the maximal length of a path of pointers rooted at each given
program variable. For the Java instruction x = x.next, Julia estimates the path-length of x; in the original definition, it is
decreasing only if it is possible to assert the non-cyclicity of x. With the analysis of this article, we can now assert it more
precisely, by considering the accessed field: the path-length decreases if next belongs to the set of non-cyclical fields Fx for
variable x.

2. Overview of the analyses

We provide here a high-level description of the analyses that we are going to define in the next sections.
Our definite unreachability and non-cyclicity analyses are built over the assumption that the program has been already

processed into a graph of basic blocks. There is a subgraph for every method or constructor and those subgraphs are linked
at method calls, where each call is bound to an over-approximation of the runtime targets of the call. Bytecodes are assumed
to be typed. While Java bytecodes are often untyped, they are guaranteed to be typable by the traditional type inference
Kindall algorithm [4]. The construction of the graph and the type inference is already performed in fully implemented tools,
such as the Julia analyzer.

Once this preprocessing has been performed, actual static analyses can be performed. We assume that three preliminary
static analyses are already available before we run our unreachability and non-cyclicity analyses. They are a definite aliasing
analysis between program variables and possible sharing and reachability analyses between program variables. Note that
these preliminary analyses do not use field names and are consequently much simpler to define and implement that the
new analyses described in this article. They are actually all already available and highly optimized in the Julia analyzer. They
are used for these reasons:

• definite aliasing analysis is used to determine variables of a caller method that are definite alias of parameters passed
to a callee. If the parameter is not reassigned inside the callee, then its value at the end of the callee stands for the
variable of the caller as well and can be used to reconstruct the side-effects of the callee on that variable;

• possible sharing analysis is used at method call, again, since the locations reachable from a variable of the caller that
does not share with any parameter of the callee are unaffected by the call itself. This improves the approximation of
the side-effects of the call;

• possible reachability analysis is used to clean-up our new unreachability analysis. If a variable does not possibly reach
another, then the latter is unreachable from the former, for any set of fields that might be used to state unreachability.
This removes spurious pairs of unreachable variables from the approximation and can be seen as the basis over which
our new unreachability analysis builds, by providing more fine-grained information that considers the fields used for
reachability as well.

These supporting analyses and our new analyses are plugged inside the same framework of analysis. Namely, the graph
of basic blocks is translated into a graph where nodes stand for bytecodes and arcs propagate abstract information among
nodes, in a monotonic way. Abstract information is propagated until fixpoint, by using any fixpoint strategy. The Julia
analyzer includes a fixpoint strategy that uses a workset of arcs still to propagate. Arcs are sequentially picked up from
the workset and propagated; other arcs are added to the workset when the approximation of the heads changes. Token
of abstract information are kept inside bitsets, for compact representation and efficient propagation. This propagation is
extremely efficient for relatively simple analyses such as definite aliasing, possible sharing and reachability. Instead, it might
be expensive for complex analyses as those described in this article, that are still to be implemented. This complexity can

http://www.juliasoft.com
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Fig. 1. The Java code of our examples (a) and the CFG of its second constructor (b).

be tamed by fixing a worst-case approximation at the beginning of each method or constructor, so that the analyses fall
back to being intraprocedural. It is also possible, and much better for precision, to apply a worst-case assumption when
and where the analyses require too much time to converge to the fixpoint. This situation should be compared to that of
shape analysis, that might be more precise than our analyses but requires the specification of the shapes of interest for
each program under analysis and has a very high computational cost. This is why a shape analysis for general purpose Java
programs is not yet available.

Since our new analyses are examples of definite analyses, approximation means in this context that the analyses feature
false negatives. That is, if they state the unreachability between two variables then those variables are actually unreachable,
but there might be unreachable variables that are not proved to be unreachable by our analyses.

3. Operational semantics

We present here a formal operational semantics of Java bytecode, inspired by the standard informal semantics [4]. It has
been first introduced in [15] and more widely explained in [12]. Java bytecode are the instructions executed by the Java
Virtual Machine (JVM). Our formalization is at bytecode level for reasons already highlighted in [5]: it is more faithful, as
it analyzes code that is actually executed; it enables the analysis of programs whose source code is not available; it lacks
complexities such as inner classes and name resolution; the analyzer can be applied to all the many programming languages
that compile to the JVM.

For simplicity, we assume that the only primitive type is int and reference types are classes with instance fields and
methods only. Julia handles other Java types, fields and methods.

We analyze bytecode preprocessed into a Control Flow Graph (CFG), a directed graph of basic blocks, with no jumps inside
the blocks. Fig. 1b shows it for the second constructor from Fig. 1a. Exception handlers start at a catch. A conditional, virtual
method call, or selection of an exception handler is a block with many subsequent blocks, starting with filtering bytecodes
such as excp_is K for exception handlers.

Definition 1 (Classes, type environment, state). The set of classes K of a program is partially ordered w.r.t. the subclass relation
�. A type is an element of T = {int} ∪ K, ordered by the extension of � with int � int. A class κ ∈ K has fields κ. f : t i.e.,
field f of type t ∈ T defined in κ . By letting F(κ) = {κ ′. f : t′ | κ � κ ′} be the fields defined in κ or in any of its superclasses,
we define the set of all fields F = ⋃

κ∈K F(κ). A class κ has methods κ.m(�t) : t (method m, defined in κ , with arguments of
type �t, returning a value of type t ∈ T∪ {void}).

V is the set of variables, divided in L = {l0, . . . , lm} (local variables) and S = {s0, . . . , sn} (stack variables). A type environ-
ment is a function τ : V → T, whose domain is written as dom(τ ). The set of all type environments is T .

A value V is an element of Z ∪ L ∪ {null}, where L is an infinite set of memory locations. A state over τ ∈ T is a pair
〈〈l ‖ s〉,μ〉: l is an array of values for the local variables in dom(τ ); s is a stack of values for the stack variables in dom(τ ),
that grows leftwards; μ is a memory that binds locations to objects. We often use another representation: 〈ρ,μ〉, where an
environment ρ maps each lk ∈ L to its value l[k] and each sk ∈ S to its value s[k]. An object o has class o.κ and an internal
environment o.φ that maps every field κ ′. f : t′ into its value (o.φ)(κ ′. f : t′). The set of states is Ξ . We write Ξτ when we
want to fix the type environment τ .



362 E. Scapin, F. Spoto / Science of Computer Programming 95 (2014) 359–375
Fig. 2. A JVM state σ = 〈ρ,μ〉.

Fig. 3. Bytecode semantics. Each instruction is modelled as a function mapping a pre-state to a post-state. V ∈ Z ∪ L ∪ {null} is a value; int ∈ Z is an
integer constant and � ∈ L ∪ {null} is a location. For exceptions, oome is a new instance of OutOfMemoryException, while npe a new instance of
NullPointerException.

Example 1. Let τ = [l1 �→ Element; l2 �→ int; l3 �→ Element; s1 �→ Element; s2 �→ Object; s3 �→ Element] be a type environment
and consider Fig. 2 representing a state σ = 〈ρ,μ〉 ∈ Στ . Environment ρ maps variables l1, l2, l3 and s1, s2, s3 to values
�2,9, �4 and �6, �5, �4, respectively. Memory μ maps locations �1, �3 and �5 to objects o1, o3 and o5 of class Integer; it also
maps locations �2, �4 and �6 to objects o2, o4 and o6 of class Element. Objects are represented as boxes with a class tag and
a local environment mapping fields to integers, locations or null. For instance, fields value and next of objects o2 contain
locations �1 and �4, respectively.

We assume that states are well-typed i.e., variables hold values consistent with their static types. Since the JVM supports
exceptions, we distinguish between normal states Ξ and exceptional states Ξ , which arise immediately after bytecode in-
structions that throw an exception and have a stack of height 1 containing a location bound to the thrown exception. When
we denote a state by σ , we do not specify if it is normal or exceptional. If we want to stress that, we write 〈〈l ‖ s〉,μ〉
or 〈〈l ‖ s〉,μ〉, respectively. The semantics of an instruction ins is a partial map ins : Στ → Στ ′ from initial to final states.
Number and type of local variables and stack elements at its start are specified by τ .

We now explain the denotational semantics of each bytecode instruction, as it is reported in Fig. 3.
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Basic instructions. const int pushes int ∈ Z on the top of the stack. Like any other bytecode except catch, it is defined only
when the JVM is in a normal state. Only catch starts the exceptional handlers from an exceptional state and is, therefore,
undefined on a normal state. dup t duplicates the top of the stack, of type t. load k t pushes on the stack the value of local
variable number k, lk , which must exist and have type t. Conversely, store k t pops the top of the stack of type t and writes
it in local variable lk; it might potentially enlarge the set of local variables, in the sense that it can provide a value for
a local variable that was still uninitialized before that program point and consequently not usable, according to the static
constraints of the JVM. In our formalization, conditional bytecodes are used in complementary pairs (such as ifne t and ifeq t),
at a conditional branch. For instance, ifeq t checks whether the top of the stack, of type t, is 0 when t = int or null when
t ∈ K. Otherwise, its semantics is undefined.

Object-manipulating instructions. These bytecode instructions create or access objects in memory. new κ pushes on the
stack a reference to a new object o of class κ , whose fields are initialized to a default value: null for reference fields, and
0 for integer fields. getfield κ. f : t reads the field κ. f : t of an object bound to a receiver location � popped from the stack,
of type κ . putfield κ. f : t writes the top of the stack, of type t, inside field κ. f : t of the object pointed by the underlying
location �, of type κ .

Exception-handling instructions. Bytecode throwκ throws the top of the stack, of type κ � Throwable. Bytecode catch starts
an exception handler: it takes an exceptional state and transforms it into a normal state at the beginning of the handler.
After catch, excp_is K selects an appropriate handler depending on the run-time class of the exception.

Method call and return. When a caller transfers control to a callee κ.m(�t) : t, the JVM runs an operation makescope κ.m(�t) : t
that copies the topmost stack elements, holding the actual arguments of the call, to local variables that correspond to the
formal parameters of the callee, and then clears the stack. We only consider instance methods, where this is a special
argument held in the local variable l0 of the callee. The makescope κ.m(�t) : t function is formally defined as follows: let
κ.m(�t) : t be a method and π the number of stack elements holding its actual parameters, including the implicit parameter
this; (makescope κ.m(�t) : t):Σ → Σ is defined as λ〈〈l ‖ vπ−1 :: · · · :: v1 :: rec :: s〉,μ〉.〈〈[rec, v1, . . . , vπ−1] ‖ ε〉,μ〉, provided
that rec �= null and the look-up of m(�t) : t from the class μ(rec).κ leads to κ.m(�t) : t; it is undefined otherwise.

We define the operational semantics of our language. It uses a stack of activation records to model method and con-
structor calls.

Definition 2 (Configuration). A configuration is a pair 〈b ‖ σ 〉 of a block b and a state σ representing the fact that the JVM
is about to execute b in state σ . An activation stack is a stack c1 :: c2 :: · · · :: cn of configurations, where c1 is the active
configuration.

The operational semantics of a Java bytecode program is a relation between activation stacks. It models the transformation
of the activation stack induced by the execution of each single bytecode.

Definition 3 (Operational semantics). The small step operational semantics of a Java Bytecode program P is a relation a′ ⇒P

a′′ (P is usually omitted) providing the immediate successor activation stack a′′ of an activation stack a′ . It is defined by the
rules in Table 1.

Rule (1) runs the first instruction ins of a block, different from call, by using its semantics ins.
Rule (2) calls a method on a non-null receiver: the call instructions are decorated with an over-approximation of the

set of their possible run-time target methods. This approximation can be computed by class analysis [8]. The dynamic
semantics of call looks up for the exact target implementation κi .m(�t) : t that is executed, by using the look-up rules of the
language, builds its initial state σ ′ by using makescope, and creates a new current configuration containing the first block
of the target implementation and σ ′ . It pops the actual arguments from the previous configuration and the call from the
instructions to be executed at return time. A method call may lead to many implementations, depending on the run-time
class of the receiver. Since in Java bytecode the look-up rule of methods is deterministic, only one thread of execution
actually continues here. If, instead, a call occurs on a null receiver, no actual call happens and Rule (3) creates a new stack
containing only a reference to a NullPointerException.

After the execution of the method, if the callee ends in a normal state, control returns to the caller by Rule (4): it
rehabilitates the caller configuration but keeps the memory at the end of the execution of the callee and pushes the return
value on the stack of the caller. If, instead, the callee ends in an exceptional state, Rule (5) propagates the exception back to
the caller.

Rule (6) applies when all instructions inside a block have been executed; it runs one of its immediate successors, if any.
In our formalization this rule is always deterministic: if a block has two or more immediate successors then they start with
mutually exclusive conditional instructions and only one thread of control is actually followed.
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Table 1
The transition rules of our semantics.

4. Field-sensitive properties

In this section, we formalize the two properties that we want to state for each program point: field-sensitive unreacha-
bility and field-sensitive non-cyclicity of program variables. To that purpose, we first introduce two preliminary definitions.

Definition 4 (Locations reachable from a variable). (See [7].) Let τ ∈ T . The set of locations reachable from a ∈ dom(τ ) in a state
σ = 〈ρ,μ〉 ∈ Στ is Lσ (a) = ⋃

i�0 Li
σ (a), where Li

σ (a) are the locations reachable from a in at most i steps:

Li
σ (a) =

{ {ρ(a)} ∩L if i = 0

Li−1
σ (a) ∪ ⋃

�∈Li−1
σ (a)

range(μ(�).φ) ∩L if i > 0

where range(μ(�).φ) = {V ∈ Z∪L∪ {null} | ∃ κ. f : t such that (μ(�).φ)(κ. f : t) = V} i.e., the set of values bound to the
fields of the object μ(�).

Intuitively, the locations reachable from a variable are computed by first collecting all the locations held in the fields of
the object bound to the variable, then by considering the contents of the fields of the objects held at these locations and so
on until reaching a fixpoint.

Example 2. Consider Fig. 2 representing the state σ = 〈ρ,μ〉 discussed in Example 2. Then, for instance, the locations
reachable from l1 are: L0

σ (l1) = {�2}, L1
σ (l1) = {�2, �1, �4}, L2

σ (l1) = {�2, �1, �4, �3, �6}, L3
σ (l1) = L4

σ (l1) = {�2, �1, �4, �3, �6�5}.
Hence, since we reached the fixpoint, we can assert that Lσ (l1) = {�2, �1, �4, �3, �6, �5}.

Definition 5 (Path between variables). Let τ ∈ T , σ = 〈ρ,μ〉 ∈ Στ , a,b ∈ dom(τ ) and ρ(a),ρ(b) ∈ dom(μ) ⊆ L. We define a
path P from a to b in σ as an n-tuple 〈κ1. f1 : t1, . . . , κn. fn : tn〉 ⊆F such that

∃�1, . . . , �n+1 ∈ dom(μ). �1 = ρ(a), �n+1 = ρ(b) ∧ ∀i = 1, . . . ,n.
(
μ

(
�i).φ)

(κi . f i : ti) = �i+1

We denote it by a �P
σ b.
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Hence, a path from a to b is a tuple of fields starting at location ρ(a) and reaching location ρ(b) simply by following
the fields in the tuple.

Example 3. Consider Fig. 2 representing the state σ = 〈ρ,μ〉 discussed in Example 2. Then, for instance the path from l1 to
s2, l1 ��P1

σ s2, is P1 = 〈El.next,El.next,El.value〉: El is an abbreviation for Element. On the other hand, the path from s1 to l1,
s1 ��P2

σ l1, is P2 = 〈El.prec,El.prec〉.

We can now introduce the two properties that we want to approximate at each point of the program under analysis.

Definition 6 (Field-sensitive unreachability between variables). Let τ ∈ T , σ = 〈ρ,μ〉 ∈ Στ , F ⊆ F and a,b ∈ dom(τ ). We say
that “for each path from a to b the fields in F are not in the path” if

∀P ⊆ F(a �P
σ b �⇒ P ∩ F = ∅)

We denote it as a ��F
σ b.

In other words, the fields in F are all program fields that do not belong to any path from the location bound to a to the
location bound to b. We note that, when a ��F

σ b, then either there are no paths from a to b i.e., the antecedent is false, or
ρ(a) = ρ(b).

Example 4. Consider Fig. 2 representing the state σ = 〈ρ,μ〉 discussed in Example 2 and let F = 〈El.next,El.prec,El.value〉.
Then, for instance, the unreachability between variables l1 and s2 is stated as l1 ��F1

σ s2 where F1 = {El.prec}, since the path
between them is P1 = 〈El.next,El.next,El.value〉 (Example 3) and therefore the only field which is not in P1 is {El.prec}. On
the other hand, the unreachability between variables s1 and l1 is stated as s1 ��F2

σ l1 where F2 = {El.next,El.value}, since the
path between them is P2 = 〈El.prec,El.prec〉 (Example 3) and therefore the fields that are not in P2 are {El.next,El.value}.

Definition 7 (Field-sensitive non-cyclicity). Let τ ∈ T , σ = 〈ρ,μ〉 ∈ Στ , F ⊆ F and a ∈ dom(τ ). We say that “for each cycle
reachable from a, the fields in F are not in the cycle” if

∀� ∈ Lσ (a),∀P ⊆ F(� �P
μ � ⇒ P ∩ F = ∅)

We denote it as a �

��

F
σ .

It is worth noting that the expression � �P
μ � denotes a cyclical-path and hence the cyclicity of � itself. That is, there is

a path with at least a field of the object stored at � through which we can reach the location itself. Therefore the fields in
F are all program fields that do not belong to any cycle reachable from the location bound to a. If from that location we
cannot reach any cycle, the we have a �

��F .

Example 5. Consider Fig. 2 representing the state σ = 〈ρ,μ〉 discussed in Example 2 and let F = 〈El.next,El.prec,El.value〉.

Then, for instance the non-cyclicity of variable l1 is stated as l1 �

��

F1
σ , where F1 = {El.value}: from the location bound to

l1 i.e., �2, we can reach the location itself by two paths, P1 = 〈El.next,El.prec〉 and P2 = 〈El.next,El.next,El.prec,El.prec〉,
but in both cases the field El.value is not part of the path. On the other hand, the non-cyclicity of variable s2 is stated

as s2 �

��

F2
σ , where F2 = 〈El.prec,El.next,El.value〉: there are no paths starting from the location bound to s2 i.e., �5, and

therefore it cannot reach any cycle.

It is worth noting that, when we assert v ��F
σ w or v �

��

F
σ for some v, w ∈ dom(τ ), these properties hold also for every

F ′ ⊆ F . This is important in our approximation.

5. Constraint-based fields-sensitive analysis

We define here an abstract interpretation of the concrete semantics introduced in Section 3 w.r.t. the two properties
introduced in Section 4. This will be an actual static analysis algorithm for interprocedural, whole-program analysis. While
the concrete semantics works over concrete states, the abstract interpretation abstracts it into ordered pairs of variables for
the unreachability property and into variables for the non-cyclicity one.

The fact that we define a whole-program analysis entails that the computational cost of our analysis might explode for
large programs. A solution, in that case, would be to assume that the approximation at the beginning of each method or
constructor is empty, which corresponds to a worst-case assumption at the calling context and to an intra-procedural only
analysis. On the other hand, experiments with our Julia analyzer (for other, equally expensive static analyses) have shown
that it is better to aim at a precise, interprocedural static analysis and let the analyzer downgrade that precision only when
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a timeout occurs. For instance, a worst-case (empty) approximation can be used, in our case, when the cost of the analysis
of a piece of code takes too long to be computed.

Definition 8 (Concrete and abstract domain). Given a type environment τ ∈ T , we define the concrete lattice over τ as Cτ =
〈℘(Στ ),⊆〉 and the abstract lattice over τ as Aτ = 〈URτ ∪ NCτ ,⊇〉 i.e., the union of two sets: URτ = ℘(dom(τ ) × dom(τ ) ×
℘(F)) and NCτ = ℘(dom(τ ) × ℘(F)). The former is the powerset of the product between the set of ordered pairs of
variables v, w ∈ dom(τ ) and the powerset of the program fields F ⊆ F . Its elements are written as v ��F w . The latter is
the powerset of the product between the set of variables v ∈ dom(τ ) and the powerset of the program fields F ⊆ F . Its
elements are written as v �

��

F .

An abstract element I ∈ Aτ represents those concrete states in Στ whose unreachability and non-cyclicity information is
under-approximated by the tokens in I . Thus, we induce a definite unreachability and non-cyclicity analysis w.r.t. an under-
approximation of the set of program fields.

Definition 9 (Concretization map). Let τ ∈ T and I ∈ Aτ . We define the concretization map γτ : Aτ → Cτ as

γτ (I) = {
σ ∈ Στ

∣∣ (∀a ��F b ∈ I,∃F ′ ⊆ F .a ��F ′
σ b ∧ F ⊆ F ′) ∧ (∀c �

��

F ∈ I,∃F ′ ⊆ F .c �

��

F ′
σ ∧ F ⊆ F ′)}

This map is co-additive, as shown in [12], and hence Aτ and Cτ are an abstract and concrete domain and γτ is the
concretization map of a Galois connection [1] between them.

Before introducing the field-sensitive analysis, we note that we use the result of other static analyses in order to achieve
better precision of the assertions that we are able to state. The analyses that we exploit are: Possible Reachability, an over–
approximation of the concrete reachability information [7], Possible Sharing, an over-approximation of the concrete sharing
information [14], and Definite Aliasing, an under-approximation of the concrete aliasing information [6], all between pairs
of variables and/or fields of the program. In particular, for each program point, we assume that three sets are available:
MRτ containing all pairs of variables/fields such that the former might reach the latter, MSτ containing all pairs of vari-
ables/fields such that they might be bound to an overlapped data structure and DAτ containing all pairs of variables/fields
definitely pointing to the same location. Furthermore, we assume that these analyses are processed asynchronously i.e.,
when we build our analysis we already have the related approximated information at each program point.

Let now introduce our analysis. It is constraint-based, in the sense that it builds an Abstract Constraint Graph (ACG, see
Fig. 4) from the program under analysis, by creating a node of the graph for each bytecode instruction ins of the program.
This node contains an element from Aτ , where τ is the static type information at the beginning of ins. Arcs of this graph
propagate abstract domain elements, reflecting, in abstract terms, the effects of the concrete semantics over the reachability
information. In other words, an arc from the node for bytecode instruction ins1 to the node for bytecode instruction ins2
propagates the information at ins1 into that at ins2. The exact meaning of propagates depends here on ins1, since each
bytecode instruction has different effects on our unreachability and non-cyclicity properties. Ours is a forward analysis,
since abstract information is propagated from the beginning of each instruction to its end.

Definition 10 (Abstract Constraint Graph). Let P be the program under analysis i.e., a control flow graph of basic blocks
for each method or constructor. The Abstract Constraint Graph (ACG) of P is a directed graph 〈V , E〉 (nodes, arcs) where:
i) V contains a node ins , for every bytecode instruction ins of P ; ii) V contains nodes exit@m and exception@m for each
method or constructor m in P , and these nodes correspond to the normal and exceptional end of m; iii) E contains directed
arcs from a source to a sink, reflecting, in abstract terms, the effects of the concrete semantics over the unreachability and
non-cyclicity information; iv) for every arc in E , there is a propagation rule Π i.e., a function over Aτ , from the information at
its source(s) to the information at its sink. Its exact definition depends on ins, since each bytecode instruction has different
effects on unreachability and non-cyclicity. The arcs in E are built from P as follows. We assume that τ and τ ′ are the
static type information at and immediately after the execution of a bytecode ins, respectively. Furthermore, we assume
that τ contains j stack elements and i local variables. Each arc is associated with its propagation rule Π . We now discuss
different types of arcs depending on the bytecode instructions that they link and define their propagation rules.

Sequential arcs. If ins is a bytecode in P , distinct from call, immediately followed by a bytecode ins′ , distinct from catch,
then a simple arc is built from ins to ins′ , with one of the propagation rules between #1 and #7.

Final arcs. For each return t and throw κ occurring in a method or in a constructor m of P , there are simple arcs from
return t to exit@m and from throw κ to exception@m , respectively, with one of the propagation rules #8 or #9.

Parameter passing arcs. For each insc = call m1 . . .mk to a method with π parameters (including this), we build a simple
arc from insc to the node corresponding to the first bytecode of mw with the propagation rule #10, for each
1 � w � k.

Side-effects arc. For each insc = call m1 . . .mk to a method with π parameters (including this) returning no value (void) and
each subsequent bytecode ins′ , we build a multi-arc from nodes C = call m1 . . .mk and E = exit@mw (2 sources,
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in that order) to Q = ins′ , where ins′ is not a catch for each 1 � w � k. The propagation rule is #13, where
max = j − π . Furthermore, we denote the static type information at C and Q as τ and τ ′ , respectively.

Return value arc. For each insc = call m1 . . .mk to a method with π parameters (including this) returning a value of type
t ∈ K and each subsequent bytecode ins′ distinct from catch, we build a multi-arc from C = call m1 . . .mk and
E = exit@mw (2 sources, in that order) to Q = ins′ with propagation rule #14, for each 1 � w � k. Furthermore,
we denote the static type information at C and Q as τ and τ ′ , respectively.

Exceptional arcs. For each ins different from call m1 . . .mk that might throw an exception, immediately followed by a catch,
an arc is built from ins to catch , with propagation rules #11 or #12. For each ins = call m1 . . .mk , method with π

parameters (including this), immediately followed by a catch, we build a multi-arc from nodes C = call m1 . . .mk

and E = exception@mw (2 sources, in that order) to Q = catch , for each 1 � w � k, with propagation rule #15.
Furthermore, we denote the static type information at C and Q as τ and τ ′ , respectively.

Definition 10 specifies how the ACG is built from the program under analysis, for each bytecode instruction ins in the
graph, decorated by an element of our abstract domain defined in 8 and representing an under-approximation of our two
properties that we want to state at that point. These rules state how this approximation is propagated along the arcs of
the ACG; before starting to fully explain them, we introduce the concept of Normalized Propagation Rules that help us to
formalize how to compute the abstract set I for every node whose in-degree is greater than 1.

Definition 11 (Normalized propagation rules). Let Π be a propagation rule, τ ∈ T , I ∈ Aτ . We define the Abstract Function Φ

as the composition of two functions:

Φ = norm ◦ Π

where the norm operator is defined as:

λI.I ∪ {
a ��F ′

b
∣∣ a ��F b ∈ I ∧ F ′ ⊆ F

} ∪ {
c �

��

F ′ ∣∣ c �

��

F ∈ I ∧ F ′ ⊆ F
}
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In other words, given an element I ∈ Aτ , for each unreachability and non-cyclicity token w.r.t. a set F , the norm operator
adds the same relations with every F ′ ⊆ F . In this way, to build the abstract set of a node with in-degree greater than 1
we simply use the join operator ∩. This is because, since the norm operator takes every token depending on a set of fields
F and adds the same relations for every F ′ ⊆ F , we can simply use the join operator to estimate the least upper bound of
these sets.

Example 6. Let I X the abstract set of the node X with in-degree greater than 1 (k � 1); let I1, . . . , Ik be the abstract sets
of its predecessors Y1, . . . , Yk and Π1, . . . ,Πk the propagation rules associated to the arcs linking Y1, . . . , Yk , respectively,
to node X . Then we can simply calculate I X as the intersection of the normalized propagation rules i.e., I X = Φ1(I1) ∩ · · · ∩
Φk(Ik). Example 11 shows how to handle nodes with in-degree greater than 1.

In the following lemma we are going to show that the application of the concretization map γ both on the propagation
rules Π and on the normalized counterpart Φ leads to the same result. In other words the set of states remains unchanged.

Lemma 1. Let τ ∈ T , I ⊆ Aτ , Π be a propagation rule and Φ the corresponding normalized rule. Then γτ (Π(I)) = γτ (Φ(I)).
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Fig. 4. The ACG of the CFG in Fig. 1b.

Proof. ⊆) By Definition 11 we have: Π(I) ⊆ norm(Π(I)) = Φ(I). Then, since γτ is part of a Galois connection, it preserves
the order i.e., γτ (Π(I)) ⊆ γτ (Φ(I)).

⊇) We are going to prove it for the unreachability tokens; for the non-cyclical ones we can follow the same reason-
ing. Let σ ∈ γτ (Φ(I)). Then, by Definition 9, we have that there exists F ′ ⊆ F such that a ��F ′

σ b and F ⊆ F ′ such that
a ��F b ∈ Φ(I). By Definition of Normalized Propagation Rules (Definition 11), it also exists a maximal set F such that F ⊆ F

and a ��F b ∈ Φ(I). Since every set of fields related to an abstract token in Φ(I) must not be larger than the concrete
counterpart (Definition 9), we also have F ⊆ F ′ and, therefore, σ ∈ γτ (a ��F b). Since a ��F b is also inside Π(I), we can
conclude σ ∈ γτ (Π(I)). �

We are now able to define how to build the solution of our ACG with respect to the unreachability and non-cyclicity
properties in order to obtain the most precise abstract set of tokens related to our properties for every node of it.

Definition 12 (Field-sensitive unreachability and non-cyclicity analysis). A solution of an ACG is an assignment of an element
Jn ∈ Aτ to each node n of the ACG, where τ is the type environment associated to n, such that the normalized propagation
rule Φ of the arcs is satisfied i.e., for every arc from nodes n1, . . . ,nk to n′ the condition Φ( Jn1 , . . . , Jnk ) ⊇ Jn′ holds. The
unreachability and non-cyclicity analysis of the program is the maximal solution i.e., the maximal fixpoint of its ACG w.r.t. the
partial order ⊇.

A maximal solution has to exist since all propagation rules are monotonic w.r.t. set inclusion ⊇: it can hence be computed
by starting from the complete approximation for every node i.e., a ��F b and a �

��F for every a,b ∈ dom(τ ) of that node,
and by propagating this approximation along the arcs, until the greatest fixpoint is reached.

Let now explain the propagation rules that we introduced. In order to provide some examples, we also use the Abstract
Constraint Graph in Fig. 4. We note that some nodes are in gray: three nodes (A, B, C) of a caller of this constructor and
two nodes of the callee of call java.lang.Object.〈init〉 : void, which invokes the superclass 〈init〉 method, in this case
Object. Each arc is decorated with the number of its associated normalized propagation rule. Finally, we note that the
graph for the whole program includes other nodes and arcs; in Fig. 4 is shown only the relevant subgraph of its second
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constructor. In [12], we present the whole execution of our analysis under this ACG, while here we provide just the relevant
examples to better explain the propagation rules.

Sequential arcs link an instruction to its immediate successor. Arc #1, starting from a node corresponding to a dup t and
going to the node corresponding to its immediate successor in the Control Flow Graph, states that the information of the
node remains unchanged at its successor’s node as well: λI.I .

Furthermore, since the new top of the stack, s j , is an alias of the old one, s j−1, its unreachability and non-cyclicity
information is the same as s j : I[s j−1 �→ s j]. Finally, we have to add the new unreachability information between these two
variables: since they are alias, we add two new unreachability relations between s j−1 and s j w.r.t. the same set of fields of
the unreachability relations between s j−1 and itself.

Arc #2 starts from a node corresponding either to new κ or to const z. In both cases, a new fresh variable is pushed on
top of the stack. It means that this new variable, s j , is only reachable from itself and hence, in addition to the information
provided by the previous node (λI.I), we have to add new unreachability relations w.r.t. all program fields between s j and
all the other variables in dom(τ ): {a ��F s j, s j ��F a|a ∈ dom(τ )}.

Furthermore, we add the non-cyclicity information of the new top of the stack, s j �

��F , and also the unreachability
information between this new variable and itself, s j ��F s j ; in both cases the set of fields is F because s j is fresh and,
therefore, no path can exist starting or ending at the location bound to it.

Arc #3, starting from a node corresponding to load k t, has been built through the same reasoning of the propagation rule
#1 with lk instead of s j−1.

Arc #4, starting from a node corresponding to store k t, states that the information that does not relate to lk and s j−1
(the old top of the stack) remains unchanged. Instead, the information on these two variables is replaced with information
on lk , having the same unreachability and non-cyclicity properties of the old top of the stack: (a ��F b)[s j−1 �→ lk] and

(c �

��

F )[s j−1 �→ lk].
Arc #5, starting from a node corresponding to catch, excp_is K , ifne t or ifeq t, states that these instructions do not change

the unreachability and non-cyclicity information. That is because the state after their execution is the same as before.
Arc #6, starting from a node corresponding to getfield κ. f : t, is more complicated. First of all we exploit two other static

analyses: possible reachability and definite aliasing. Since getfieldκ. f : t replaces the old top of the stack, s j−1, with the value
of its field κ. f : t, all reachability properties that do not consider s j−1 are still valid after its execution, as expressed in the
first set of the corresponding rule. The reachability information between this new variable and itself is inferred by checking
whether it is aliased to another variable: (a, s j−1.(κ. f : t)) ∈DAτ . In that case, as shown in its sixth set, the unreachability
information of s j−1 is the same as that of the variable it is alias of. Additionally, for all variables in dom(τ ) \ s j−1 that
may not reach this field or that may not be reached by this field, we can add the unreachability information with the new
variables w.r.t. all program fields. Instead, the variables that may reach the field of s j−1 are treated in the second set: if we
found a relation a ��F b ∈ I where b is alias to the field of s j−1 i.e., (b, s j−1.(κ. f : t)) ∈ DAτ , we obtain safety information
about the new top of the stack and then we can use it to produce the new token a ��F s j−1. Regarding the variables that
may be reached by this field (fifth set) we maintain all the unreachability information regarding s j−1 and we also add all
the other fields whose type cannot be reached by the type of our field κ. f : t: F ′ = F ∪ {κk. fk : tk ∈F |tk /∈ T(t)}. That is
because there could be other paths in the heap that involve both the old top of the stack and b without having κ. f : t
inside them. Therefore, since F does not contain the fields of these paths, in order to be more precise, we can add them
in F ′ , the set stating the unreachability information between the new top of the stack and b. Finally, the last set, with the
non-cyclicity information of the new top of the stack, is built by following the same reasoning just explained for the fifth
set.

Arc #7, starting from a node corresponding to putfield, states, in the first and third sets, that unreachability and non-
cyclicity information of the pairs of variables that do not reach or are not reached by the topmost two values of the stack
remain unchanged. Instead, if a pair of variables 〈a,b〉 is such that the former may reach s j−2 and the latter may be reached
from s j−1, then the putfield might create new paths between the two locations bound to these two variables. Hence the set
of fields that define the unreachability information between a and b must be consistent both with the unreachability in-
formation of a ��Fa2 s j−2 and s j−1 ��F1b b. Furthermore, since putfield links s j−2 with s j−1 through κ. f : t, that field must
be deleted from any set of unreachability information of pairs of variables such as 〈a,b〉, as shown in the second set. For
non-cyclicity, we distinguish if s j−1 may reach s j−2 or not i.e., if the putfield will create or not a new cycle in memory
between the locations. If s j−1 may not reach s j−2, then no new cycle is created. However, since s j−2 gets linked to s j−1,
all variables that may reach s j−2 will be able to reach s j−1 and hence their non-cyclicity information Fc must take into
account also the non-cyclicity information of s j−1, as shown in the fourth set. On the other hand, if s j−1 may reach s j−2,
then a new cycle could be created. Thus we delete the fields that might belong to that cycle: this information is provided
by unreachability since we know which fields are not in a path from s j−1 to s j−2 i.e., F12 such that s j−1 ��F12 s j−2 ∈ I . The
resulting set is then: F ′ = {Fc ∩ F j1 ∩ F12} \ {κ. f : t}. Hence, unreachability information between two variables is crucial in
order to correctly assert the non-cyclicity property.

Example 7. Consider nodes 11, 12 from Fig. 4, and suppose that the unreachability and non-cyclicity information at node
11 is
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I11 = {
l0 ��F {l0, s1}, l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} {l2, s0}, l1 ��F {l0, l1, l2, s0, s1}, l2 ��F {l0, l1, l2, s0, s1},
s0 ��F {l0, l1, l2, s0, s1}, s1 ��F {l0, s1}, s1 ��{El.prec,El.next} l1, s1 ��{El.value,El.next} {l2, s0},
{l0, l1, l2, s0, s1} �

��F}
where l0 = s1 = this, l1 = value, l2 = s0 = prec and F = {El.value,El.prec,El.next}. In order to build I12, we apply the
propagation rule for putfield, since s0 is linked to s1 by the field El.next. That application leads to the set:

I12 = {
l0 ��F l0, l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} l2, l1 ��F {l0, l1, l2},
l2 ��F {l1, l2}, l2 ��{El.value,El.prec} l0, l1 �

��F , {l0, l2} �

��{El.value}}
We note that field El.next is no more inside the set of fields associated to the pair 〈l2, l0〉. This is because 〈l2, s0〉, 〈s1, l0〉 ∈
MRτ 11 and hence their set of fields changes according to the second set of rule #7: Fl2,l0 = {Fl2,l0 ∩ Fl2,s0 ∩ Fs1,l0 } \
{El.next} = {El.value,El.prec}. Moreover, also the non-cyclicity tokens for l0 and l2 changed, because a new cycle might
be formed by executing this putfield. Indeed, since 〈l2, s0〉, 〈l0, s1〉, 〈s1, s0〉 ∈ MRτ 11, the rule modifies the non-cyclicity
information of l2 and l0 and, hence, both the operation and the result are the same. We show it only for l2, the latter being
the same: Fl2 = {Fl2 ∩ Fl0 ∩ Fs1,s0 } \ {El.next} = {El.value}. We note that, as shown in Fig. 1a, during the execution of the
second constructor a new cycle between the two locations bound to this and prec is actually built since this is linked to
prec through field El.prec, while prec is linked to this through field El.next. Hence fields El.prec and El.next set up a path
P = {El.prec,El.next} such that ρ(this) �P ρ(this) and, respectively, ρ(prec) �P ρ(prec). According to Definition 7, they
must not be in F this = Fl0 nor in Fprec = Fl2 .

Final arcs feed nodes exit@m or exception@m for each method or constructor of m. The former (respectively the latter)
contains the information present in all states at a non-exceptional (respectively exceptional) end of m. Hence, exit@m is
the sink of the arcs starting from the return t bytecodes inside m. The propagation rule states that either the stack is emptied
at the end of execution of m i.e., when t = void (rule #8 is applied) or only one element survives i.e., the returned value
(rule #9).

Similarly, exception@m is the sink of a bytecode instruction throw κ with no exception handler in m (i.e., not followed
by a catch inside m). The rule is the same as return t with t �= void (rule #9) since only a stack element, the topmost s j−1,
survives and it is renamed into the exception object s0. We observe that only instructions throw κ are allowed to throw an
exception to the caller since, in our representation of the code as basic blocks, all other instructions that might throw an
exception are always linked to an exception handler, possibly minimal (as the three putfield κ. f : t in Fig. 4).

Example 8. Consider nodes 12 and 13 in Fig. 4, and suppose that the unreachability and non-cyclicity approximation at
node 12 is

I12 = {
l0 ��F l0, l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} l2, l1 ��F {l0, l1, l2},
l2 ��F {l1, l2}, l2 ��{El.value,El.prec} l0, l1 �

��F , {l0, l2} �

��{El.value}}.
Nodes 12 and 13 are linked by a final arc with propagation rule #8. By Definition 10, I13 contains all the tokens of I12
containing no stack variable, and since j12 = 0 we conclude that I13 = I12.

Parameter passing arcs link every node corresponding to a method call to the node corresponding to the first bytecode
instruction of method(s) mw that might be called here. Propagation rule #10 simply states that the actual parameters
of mw , held in the stack variables s j−π , . . . , s j−1, are renamed into its formal parameters i.e., the local variables l0, . . . , lπ−1.
No other variables exist at the beginning of mw .

Example 9. Consider, for instance, nodes A and 1 in Fig. 4. We assume that the unreachability and non-cyclicity information
at node A is:

I A = {
l0 ��F {l0, l1, s0, s1, s2, s3}, l1 ��F {l0, l1, s0, s1, s2, s3}, s0 ��F {l0, l1, s0, s1, s3, s3},
s1 ��F {l0, l1, s0, s1, s3, s3}, s2 ��F {l0, l1, s0, s1, s3, s3}, s3 ��F {l0, l1, s0, s1, s3, s3}

}
∪{{l0, l1, s0, s1, s2, s3} �

��F}
Nodes A and 1 are linked by a parameter passing arc with propagation rule #10. We have j A = 4 and π = 3 (stack element
s1, s2 and s3 hold the actual parameters of a call to this constructor). Hence, by Definition 10, it must be:{(

a ��F b
)[ s1 �→l0

s2 �→l1

] ∣∣∣ a ��F b ∈ I A ∧ a,b ∈ {s1, s2, s3}
}

∪
{(

c �

��

F )[ s1 �→l0
s2 �→l1

] ∣∣∣ c �

��

F ∈ I A ∧ c ∈ {s1, s2, s3}
}

⊇ I1

s3 �→l2 s3 �→l2
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In particular, we obtain:

I1 =
{

l0 ��F {l0, l1, l2}, l1 ��F {l0, l1, l2}, l2 ��F {l0, l1, l2}, {l0, l1, l2} �

��F}

Side-effect multi-arcs link the nodes call m1 . . .mk and exit@mw to the next instruction after the non-exceptional
ending of method mw only if it does not return any value (void). Furthermore, since the propagation rule #13 of this
arc determines unreachability and non-cyclicity information of the caller’s variables after the execution of method mw , it
is also used as part of the propagation rules #14 and #15. For this reason, we add the (meta-)parameter max as input:
max = j − π when I2 is the information set of a node exit@mw , while max = 0 when I2 is the information set of a node
exception@mw . Finally, before explaining the rule, we remind that, when we use τ ′ as subscript of another static analysis

result (e.g. MRτ ′ ), we mean that it is the set after the abstract execution of that node and we can exploit this forward
information because we have assumed that these analyses are processed asynchronously.

Rule #13 states that between all the variables pairs 〈a,b〉 such that a cannot reach b after the execution of method mw

the unreachability information is a ��F b.
On the other hand, all the unreachability tokens before the method execution are still valid (first set), provided that

the first variable a cannot share with any actual parameters at that program point: ∀ j − π � p < j, (a, sp) /∈ MSτ . In this
way, inside mw we are sure that no paths through locations which share with a are modified and hence its unreachability
information remains unchanged. The same reasoning about non-cyclicity tokens leads to the second set of the rule.

Regarding the tokens coming from I2 we exploit them to add new unreachability and non-cyclicity information that are
available at the end of method mw . We add new unreachability tokens a ��F b if the following conditions are satisfied:

1. a may reach b after the execution of the method: 〈a,b〉 ∈MRτ ′ ;
2. a and b must be alias of at least a couple of actual parameters spa , spb respectively: (a, spa ), (b, spb ) ∈DAτ ;
3. the formal parameters lpa− j+π and lpb− j+π , corresponding to these two actual parameters, are not reassigned inside

mw through a store lpa− j+π or store lpb− j+π .

If these conditions are satisfied the unreachability information between lpa− j+π and lpb− j+π in I2 (i.e., at the end of the
callee method mw ) corresponds to the unreachability information of a and b in the caller: I2 � lpa− j+π ��F lpb− j+π = a ��F b.

For the non-cyclicity tokens in I2, we add the new information in a way similar to that used for unreachability, but
considering only one variable in both the caller and callee methods.

Example 10. Consider, for instance, nodes A and 13 in Fig. 4. The approximation information of these nodes, as already
presented above, is:

I A = {
l0 ��F {l0, l1, s0, s1, s2, s3}, l1 ��F {l0, l1, s0, s1, s2, s3}, s0 ��F {l0, l1, s0, s1, s3, s3},
s1 ��F {l0, l1, s0, s1, s3, s3}, s2 ��F {l0, l1, s0, s1, s3, s3}, s3 ��F {l0, l1, s0, s1, s3, s3}

}
∪{{l0, l1, s0, s1, s2, s3} �

��F}
and

I13 = {
l0 ��F l0, l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} l2, l1 ��F {l0, l1, l2},
l2 ��F {l1, l2}, l2 ��{El.value,El.prec} l0, l1 �

��F , {l0, l2} �

��{El.value}}.
Consider the side-effect multi-arc linking nodes A and 13 with node B; we illustrate the application of rule #13 on the

presence of the sharing, reachability and aliasing information MSτS ,MRτA ,MRτB ,DAτA . We remember that there are
π = 3 parameters: the implicit this and two parameters of type Object and Element. Since the return type of the constructor
is void we obtain iB = 3 while jB = 1, and for each variable v ∈ dom(τB) = {l0, l1, l2, s0}, τB(v) = τA(v). By the application
of the propagation rule #13 we obtain:

I B = {
l0 ��F {l0, l1, s0}, l1 ��F {l0, l1}, l1 ��{El.value,El.prec} s0, s0 ��F {l0, s0},
s0 ��{El.value,El.next} l1, l0 �

��F , {l1, s0} �

��{El.value}}
First of all we have max = j A − π = 4 − 3 = 1 i.e., regarding the stack elements, we have only to take into account the
information about s0. For the tokens that remain unchanged after the execution of the method, we have:{

l1 ��F l0, s0 ��F l0,
l0 ��F {l1, s0}

}
⊆ {

a ��F b
∣∣ a,b ∈ dom(τ ′) ∧ 〈a,b〉 /∈ MRτB

}
with MRτB = {〈s0, l1〉, 〈l1, s0〉, 〈l0, l0〉, 〈l1, l1〉, 〈s0, s0〉

}
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{
l0 ��F l0, l0 �

��F} ⊆
{

a ��F1 b,

a �

��

F2∈ I A

∣∣∣ a,b ∈ {l0, l1, s0}∧
∀1 � p < 4, (a, sp) /∈ MSτA

}

with MSτA = {
(s0, s1), (l1, s3), (l0, l0), (l1, l1), (s0, s0), (s1, s1), (s2, s2), (s3, s3)

}
For the unreachability and non-cyclicity tokens that derive from the information available at the end of method mw , we

have:

⎧⎨
⎩

l1 ��F l1, s0 ��F s0,

l1 ��{El.value,El.prec} s0,

s0 ��{El.value,El.prec} l1

⎫⎬
⎭ ⊆

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a ��F b

∣∣∣∣∣∣∣∣∣

1. a,b ∈ {l0, l1, s0} ∧ 〈a,b〉 ∈ MRτB

2. ∃1 � pa, pb < 4|(a, spa ), (b, spb ) ∈ DAτA ∧
[ no store lpa− j+π nor store lpb− j+π occurs in mw ]

3. lpa− j+π ��F lpb− j+π ∈ I13

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with DAτ A = {
(s0, s1), (l1, s3), (l0, l0), (l1, l1), (s0, s0), (s1, s1), (s2, s2), (s3, s3)

}
and

{{l1, s0} �

��{El.value}} ⊆

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c �

��

F

∣∣∣∣∣∣∣∣∣

1. c ∈ {l0, l1, s0}
2. ∃1 � p < 4|(c, sp) ∈ DAτA ∧

[ no store lp− j+π occurs in mw ]
3. lp− j+π �

��

F ∈ I13

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Return value multi-arcs link the nodes call m1 . . .mk and exit@mw to the next instruction after the non-exceptional
ending of method mw only if it returns a value. The rule #14 extends #13, since also in this case in the caller we have
side-effects due to the method execution, but now we have also to handle the unreachability and non-cyclicity tokens
related to the returned value s j−π . The returned value in the callee corresponds to the stack variable s0 and hence its
information at node exit@mw .

First of all the non-cyclicity information of s j−π in the caller is the same as that of s0 at the end of the callee. Further-
more the rule states that also the unreachability information between s j−π and itself is the same of that of s0 and itself in
the callee.

For the other variables after the call and different from the returned value i.e., a ∈ dom(τ ′) \ {s j−π }, if they do not reach
s j−π after the call we can add the triples such that a ��F s j−π , as shown in the second set. If they are not reached by s j−π

we can add the triples such that s j−π ��F a, as shown in the fourth set.
For the variables that may reach s j−π after the method execution i.e., 〈a, s j−π 〉 ∈ MRτ ′ , we add unreachability tokens

if the following conditions are satisfied:

1. a must be alias of at least an actual parameter spa : (a, spa ) ∈DAτ ;
2. the formal parameter corresponding to this actual parameter, lpa− j+π , is not reassigned inside mw through a

store lpa− j+π .

If these conditions are satisfied the unreachability information between lpa− j+π and s0 in I2 i.e., at the end of the callee
method mw , corresponds to the unreachability information of a and s j−π in the caller: I2 � lpa− j+π ��F s0 = a ��F s j−π .

For the variables that may be reached by s j−π after the method execution i.e., 〈s j−π ,b〉 ∈MRτ ′ , we add unreachability
tokens if the following conditions are satisfied:

1. b must be alias of at least an actual parameter spb : (spb ,b) ∈DAτ ;
2. the formal parameter corresponding to this actual parameter, lpb− j+π , is not reassigned inside mw through a

store lpb− j+π .

If these conditions are satisfied the unreachability information between s0 and lpb− j+π in I2 i.e., at the end of the callee
method mw , corresponds to the unreachability information of s j−π and b in the caller: I2 � s0 ��F lpb− j+π = s j−π ��F b.

Exceptional arcs link every instruction that might throw an exception to the catch at the beginning of their exception
handler(s).

Rule #11 is identical to #9 since it deals with the same source node, throw κ , but it is applied in the case of an
exceptional execution.

Rule #12 deals with all other bytecode instructions that might throw an exception (new κ , getfield κ. f : t, putfield κ. f : t):
it states that the stack disappears but the unreachability between local variables remains unaffected. Moreover a new stack
element containing a new fresh variable s0 of type κ � Throwable is created. It means that this new variable, s0, is only
reachable from itself and hence, in addition to the information provided by the previous node (λI.I), we have to add new
unreachability information w.r.t. all program fields between s0 and all the other variables in L: {a ��F s0, s0 ��F a|a ∈ L}.
Finally, we add the non-cyclicity information of the new top of the stack, s0 �

��F , and also the unreachability information
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between this new variable and itself, s0 ��F s0; in both cases the set of fields is F because s0 is fresh and, therefore, it is
isolated from the rest of the heap.

Rule #15 states a pessimistic assumption about the exceptional states after a method call. The peculiarity of this rule is
the handling of unreachability and non-cyclicity tokens about the new variable s0 of type κ � Throwable: we deal with
s0 as in rule #12 with the difference that we check if the other variables may not reach nor be reached from s0. That is
because this variable, bound to an exception object, may reach or be reached by another exception.

Example 11. Consider nodes 2, 5, 8, 11 and 14 in Fig. 4. We assume that the approximation information of the first three
nodes are:

I2 = {
l0 ��F {l0, l1, l2, s0}, l1 ��F {l0, l1, l2, s0}, l2 ��F {l0, l1, l2, s0}, s0 ��F {l0, l1, l2, s0}, {l0, l1, l2, s0} �

��F}
I5 = {

l0 ��F {l0, l1, l2, s0, s1}, l1 ��F {l0, l1, l2, s0, s1}, l2 ��F {l0, l1, l2, s0, s1},
s0 ��F {l0, l1, l2, s0, s1}, s1 ��F {l0, l1, l2, s0, s1}, {l0, l1, l2, s0, s1} �

��F}
I8 = {

l0 ��F {l0, l2, s0, s1}, l0 ��{El.prec,El.next} l1, l1 ��F {l0, l1, l2, s0, s1}, l2 ��F {l0, l1, l2, s0, s1},
s0 ��F {l0, l2, s0}, s0 ��{El.prec,El.next} l1, s1 ��F {l0, l1, l2, s0, s1}, {l0, l1, l2, s0, s1} �

��F}
I11 = {

l0 ��F {l0, s1}l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} {l2, s0}, l1 ��F {l0, l1, l2, s0, s1},
l2 ��F {l0, l1, l2, s0, s1}, s0 ��F {l0, l1, l2, s0, s1}, s1 ��F {l0, s1}, s1 ��{El.prec,El.next} l1,

s1 ��{El.value,El.next} {l2, s0}, {l0, l1, l2, s0, s1} �

��F}
These three nodes are all linked to node 14 through an exceptional arc with the same propagation rule #12. Thus the node
14 has in-degree greater than 1 and hence to establish the set I14 we have to compute the least upper bound of the sets
obtained by applying the normalized propagation rules of these arcs i.e.,

I14 ⊆ Φ#12(I2) ∩ Φ#12(I5) ∩ Φ#12(I8) ∩ Φ#12(I11)

The resulting set (not normalized) is:

I14 = {
l0 ��F {l0, s0}, l0 ��{El.prec,El.next} l1, l0 ��{El.value,El.next} l2, l1 ��F {l0, l1, l2, s0, s1},
l2 ��F {l0, l1, l2, s0}, s0 ��F {l0, l1, l2, s0}, {l0, l1, l2, s0} �

��F}
We note that this set is exactly I14 ⊆ Π#12(I11), since I11 is, among the sets of the three putfield κ. f : t nodes, that with the
least number of tokens concerning the local variables.

6. Soundness

Each propagation rule Φ is proved formally correct in [12] by using the standard technique of abstract interpretation:
namely, by letting ins be a bytecode instruction, Φ a propagation rule and I ∈ Aτ , we have proved the soundness of Φ by
showing that

ins
(
γτ (I)

) ⊆ γτ

(
Φ(I)

)
i.e., that for each x ��F y ∈ Φ(I) we have a state σ ′ such that x ��F ′

σ ′ y ∧ F ⊆ F ′ and for each z �

��

F ∈ Φ(I) we have another

state σ ′′ such that z �

��

F ′
σ ′′ y ∧ F ⊆ F ′ . In [12] we have also proved the soundness of the whole analysis with respect to the

small-step operational semantics for Java bytecode previously explained.

Theorem 1 (Soundness). Let 〈bfirst(main) ‖ ξ〉 ⇒∗ 〈 ins
rest

→
→

b1· · ·
bm

‖ σ 〉 :: a be an execution of our operational semantics, from the first

bytecode instruction of the method main i.e., first(main) and an initial state ξ containing no reachability between variables. Suppose
that σ ∈ Στ and let I ins ∈ Aτ be the approximation on the actual unreachability and non-cyclicity w.r.t. a set of fields at the ACG node
corresponding to ins. Then, σ ∈ γτ (I ins).

7. Conclusion

We have introduced and formalized a provably sound constraint-based field-sensitive unreachability and non-cyclicity
analysis for Java bytecode. The work more similar to ours is the static analysis introduced in [2]. The main differences are
that we provide specific information about the set of fields that cannot be used for reachability or cyclicity and that we
deal directly with low-level Java bytecode, whereas they use a high-level language (pros and cons are explained in [5]).
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A conclusion of our investigation is that, in order to achieve a precise analysis for low-level code, we need finer domains
and pre-processed information deriving from other static analyses. In this analysis we do not see any advantage in the use
of a high-level representation instead of bytecode, since the main problem are field updates and the propagation of side
effects, that are equally difficult to analyze, for both low and high level languages. Our domain is a refinement of reachability
and non-cyclicity as introduced in [7] and [10], respectively; on the other hand, we exploit pre-processed information of
possible sharing (MSτ ), possible reachability (MRτ ) and definite aliasing (DAτ ) analyses, for better precision.

We still miss an implementation of the analysis, which is relatively complex because of the complexity of the abstract
domain. However, it would support evidence of its usefulness and practicability on real examples of programs.
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