
Theoretical Computer Science 388 (2007) 53–82
www.elsevier.com/locate/tcs

Optimality and condensing of information flow through
linear refinement

Fausto Spoto∗

Dipartimento di Informatica, Università di Verona, Strada le Grazie, 15, 37134 Verona, Italy

Received 2 August 2006; received in revised form 3 May 2007; accepted 7 May 2007

Communicated by R. Gorrieri

Abstract

Detecting information flows inside a program is useful to check non-interference or independence of program variables, an
important aspect of software security. In this paper we present a new abstract domain C expressing constancy of program variables.
We then apply Giacobazzi and Scozzari’s linear refinement to build a domain C → C which contains all input/output dependences
between the constancy of program variables. We show that C → C is optimal, in the sense that it cannot be further linearly
refined, and condensing, in the sense that a compositional, input-independent static analysis over C → C has the same precision
as a non-compositional, input-driven analysis. Moreover, we show that C → C has a natural representation in terms of Boolean
formulas, which is important since it allows one to use the efficient binary decision diagrams in its implementation. We then prove
that C → C coincides with Genaim, Giacobazzi and Mastroeni’s IF domain for information flows and with Amtoft and Banerjee’s
Independ domain for independence. This lets us extend to IF and Independ the properties that we proved for C → C: optimality,
condensing and representation in terms of Boolean formulas. As a secondary result, it lets us conclude that IF and Independ are
actually the same abstract domain, although completely different static analyses have been based on them.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Information flow; Linear refinement; Abstract interpretation; Static analysis

1. Introduction

Language-based security is recognised as an important aspect of modern programming languages design and
implementation [17]. One of its aspects is non-interference or independence, which determines the pairs of program
variables that do not affect each other’s values during the execution of a program. From non-interference it is then
possible to study the confinement of confidential information injected in the program through some input variables,
usually called high variables. The other variables are called low variables. The intuition here is that high variables
are allowed to contain information related to some secret, such as credit card codes or medical or industrial reserved
knowledge. This notion of confidentiality as non-interference has been introduced in [8]. It assumes that an attacker can
only observe low variables, so that confidential information injected from high variables must not affect the final value

∗ Tel.: +39 3204352527; fax: +39 0458027068.
E-mail address: fausto.spoto@univr.it.

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.05.004

http://www.elsevier.com/locate/tcs
mailto:fausto.spoto@univr.it
http://dx.doi.org/10.1016/j.tcs.2007.05.004

54 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

of low variables (i.e., their value at the end of the execution of a statement). For instance, in the statement y := x + 1
the initial value of y is non-interfering with the final value of y, while the initial value of x is interfering with the final
values of y and x itself, since the final value of y is the initial value of x plus 1 and the final value of x is exactly the
initial value of x. In this situation, it is normally required that if x is a high variable then also y is a high variable. It
is also admitted that x is low while y is high, but it is forbidden that y is low and x is high, because this would allow
information from a high variable to flow into a low variable. In the example above there is an explicit link between
the values of x and y. This is different from what happens in the statement if y = 0 then x := 4 else x := 5, where
the initial value of y is interfering with the final value of x while the initial value of x is non-interfering with the final
value of x. In this case, the link between y and x is implicit, in the sense that it is a consequence of the use of y in the
guard of a conditional whose branches affect the final value of x.

Non-interference or independence is frequently implemented over an information-flow analysis, often based on a
type system, which tracks the flows of information in a program [22,16,18,5,17,9]. From this set of flows it is then
possible to check non-interference of program variables. A more direct approach consists in tracking, explicitly, the
pairs of independent variables, as done in [1].

Information flows as well as pairs of independent variables in a program can be computed through Cousot and
Cousot’s abstract interpretation [6]. The idea underlying abstract interpretation is that of executing the program over
a description of the actual, concrete data. In our case this description should be somehow related to the high or low
security level of each variable. This description is called abstract domain. One such domain is called IF in this paper
and has been defined by Genaim, Giacobazzi and Mastroeni [9] to represent sets of flows in a program. Abstract
interpretation consists here in executing the program over the description of the concrete data as provided by IF.
Correctness states that if a program features a flow, then this flow must be included in the set of flows that the analysis
computes. The domain IF has been implemented by using Boolean formulas. This leads to an efficient analysis [10],
already implemented for the whole Java bytecode. The analysis uses the efficient binary decision diagrams [4] to
implement such formulas. These are data structures which represent Boolean functions in an efficient way, so that
logical operations over those functions can be performed quickly. Another abstract domain developed through abstract
interpretation, this time however modelling independence of pairs of variables, is the domain Independ of [3]. It is
used to decorate the program with Hoare-like assertions. Correctness means here that if two variables are deemed
independent by the analysis then they are actually independent in the program.

Both the analyses in [9] and [3] are compositional, in the sense that the analysis of a complex command is derived
from the analysis of its subcommands, in a bottom-up fashion. This is both elegant and efficient, since the analysis of
a piece of code which is called from many program points, such as a library function, can be performed just once and
then plugged in each calling context. This is sensible since both IF and Independ seem to enjoy some form of input-
independency. That is, the analysis of a piece of code can be performed only once, without any assumption on the
input provided to the program. Those input variables which contain confidential information can be specified after the
analysis is performed, when the result of the analysis of the piece of code is plugged into the calling contexts. An input-
driven analysis, instead, would require the input to be available before the analysis, which must then be re-executed,
in a top-down rather than bottom-up fashion, for each different input, so that it is not possible to analyse a library
independently from the applications that use it. It was not clear, up to now, if this input-independency was achieved
at the price of precision or not. If precision is not sacrified, then those abstract domains deserve the qualification of
condensing [12]. We exemplify these notions of compositionality, input-independency and condensing in Section 2.
We provide their formal definitions in Section 6.

In this paper we define a new abstract domain C which expresses sets of variables which are constant: their value
is the same whichever input is provided to the program. We then use Giacobazzi and Scozzari’s linear refinement [13]
to build a domain C → C which expresses propagation of constancy inside a computer program. We hence prove
that C → C cannot be further linearly refined, which means that C → C is optimal i.e., it contains all possible
dependences of constancy. Moreover, we prove that this also entails that C → C is condensing, by extending to
imperative programs a similar result already proved in [12] for logic programs. Then we show that there is a simple
normal form for the elements of C → C in terms of Boolean formulas. These results are then lifted to IF and
Independ by showing that they both coincide with C → C and hence with each other.

In conclusion, the contribution of this paper can be summarised as follows:

– we show that both IF and Independ are reformulations of a domain C → C for constancy propagation;

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 55

– we show that IF and Independ are actually the same domain, although they have been used in radically different
static analyses;

– we extend to imperative programs the result that abstract domains closed by linear refinement are condensing, so
that an input-indendent static analysis and an input-driven one coincide;

– we show that both IF and Independ are condensing and optimal w.r.t. linear refinement;
– we show that both IF and Independ can be represented in terms of Boolean formulas, which is interesting in view

of an implementation based on the efficient binary decision diagrams [4].

The rest of this paper is organised as follows. Section 2 discusses, informally, the notions of compositionality,
input-independency and condensing. Section 3 presents the preliminaries, the abstract interpretation notions used
in the paper and the domain C for constancy. Section 4 formalises the abstract domain IF which expresses sets of
information flows. Section 5 defines the abstract domain Independ which expresses sets of pairs of independent
variables. Section 6 defines concrete and abstract non-compositional (operational) and compositional (denotational)
semantics for imperative programs and shows that they coincide for abstract domains which satisfy the condensing
property. Section 7 introduces the linear refinement technique and shows that if an abstract domain is closed by linear
refinement then it is condensing. Section 8 proves that the linear refinement C → C of C is closed w.r.t. further linear
refinements and is hence optimal and condensing. Section 9 provides a representation of the elements of C → C in
terms of Boolean formulas. Section 10 proves that IF coincides with C → C and hence inherits its properties of being
optimal and condensing and has a representation in terms of Boolean formulas. Section 11 proves that Independ
coincides with C → C, and hence with IF, so that it enjoys the properties of being optimal and condensing and has a
representation in terms of Boolean formulas. Section 12 presents related work and concludes.

A preliminary and partial version of this paper appeared in [21].

2. Compositionality, input-independency and condensing

In this section we discuss the notions of compositionality, input-independency and condensing.
Consider the following program:

void main() {
float h1 := readHighFloat();
float l1 := readLowFloat();
float l2 := readLowFloat();
int h2 := hashcode(h1,l1);
printInt(hashcode(l1,l2));

}

int hashcode(float f1, float f2) {
return ((int)f1 + (int)f2) mod 100;

}

The function main reads three floating point numbers from the keyboard. We assume that the high read is performed
without presenting any feedback to the screen, as if a password were entered. Then main computes two hashcodes of
pairs of floating point numbers and prints the second hashcode. We assume that h1 and h2 are high, secret variables,
so that for instance they are stored inside a memory which is not accessible from the external environment; variables
l1 and l2 are instead low, so that their value can be safely read from the external environmnent, for instance by an
attacker. Also the message printed on the screen is accessible from the external environment. We can say that the
secret information contained in h1 is confined inside this program since that information, and any information derived
from it, does not flow into any low variable and is not printed on the screen.

If we had to type each variable with a fixed security level (high or low) then we can only type f1 as high since, in
the two successive calls to hashcode, the first parameter is first h1, high, and then l1, low. Thus the only consistent
choice is to assume high. But then the return value of hashcode can only be typed as high, since it is the result of
a computation which involves the high variable f1. As a consequence, the assignment to h2 inside main is legal but
printing on the screen a high value is recognised as illegal. It is obvious, however, that the information printed here on

56 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

the screen is not related to any high variable, so that this printing should be legal. The problem, here, is that typing a
library function (such as hashcode) with fixed security levels reduces the precision of the type system as soon as the
library function is called from many different contexts.

The previous problem has been solved in [9] and [3] by using compositional, input-independent typings (called
abstract denotations in [9]). For instance, in [9] the function hashcode gets typed with the set of information flows
f1 r, f2 r , where r is a pseudo-variable which stands for the result value of hashcode. Those flows state that
the result value of hashcode holds secret information if at least one between f1 and f2 holds secret information at
the beginning of the execution of the function hashcode. This typing can then be plugged (with suitable variable
renamings) into each calling context of hashcode inside main and the analysis of the latter can be performed
compositionally (or bottom-up) as the composition of the typings (abstract denotations) of each statement in main.
Since the typing of hashcode is now parametric, we are able to verify that the assignment to h2 is legal since that
variable takes there a high value (the parameter h1 is high); we can also verify that printing on the screen the result
value of the second call to hashcode is legal, since that second call yields a low value (both the parameters l1 and
l2 are low). In [3] the authors use parametric Hoare-like assertions instead of an abstract domain of information
flows. In any case, parametric typings mean that the analysis of functions such as hashcode is input-independent,
in the sense that no hypothesis is made about the input to the function: the result of the analysis must be parametric
w.r.t. that input, which is only provided later, when the analysis is plugged into each calling context. Moreover, these
parametric typings can be efficiently implemented through binary decision diagrams [4], which are data structures
which implement Boolean formulas and operations over Boolean formulas in an efficient way. For instance, the set
of flows f1 r, f2 r seen above can be represented by the Boolean formula (f1 ⇒ r) ∧ (f2 ⇒ r), implemented
efficiently as a binary decision diagram. This is the idea underlying the implementation in [10].

A compositional, input-independent analysis has been hence defined in [9] and [3] since it is more precise, elegant
and efficient than an analysis based on fixed types. It must be noted, however, that at least the same precision should
be attainable by executing the program, starting from the beginning of main, by using a type environment which binds
each variable to its current security level. For instance, we start the analysis of main from the empty type environment
[] and we proceed through the read statements yielding the type environment [h1 7→ high, l1 7→ low, l2 7→ low].
We now analyse the first call to hashcode by using the last type environment as a calling context. The result value is
then high and gets assigned to h2, yielding the type environment [h1 7→ high, h2 7→ high, l1 7→ low, l2 7→ low]. We
then analyse the second call to hashcode by using the last type environment as a calling context. We can conclude that
the result value of hashcode is low here, so that it is safe to print it on the screen. This other approach to the verification
of main needs, for more complex programs, some form of memoisation or caching in order to guarantee termination.
Moreover, it analyses hashcode twice, with two different calling contexts; it cannot be applied to hashcode alone,
but only to the whole program; it is not compositional. As a consequence, we think that this second approach, called
operational or top-down or input-driven, is less attractive than those in [9] and [3], called denotational or bottom-up
or input-independent.

The only motivation for the use of an input-driven analysis is that it can be, in principle, more precise than an
input-independent one. This happens when parametric typings are not able to express all the input/output dependences
featured by a program function. In terms of the theory of abstract domains developed in abstract interpretation, this
means that the set of parametric typings (the abstract domain) is not closed w.r.t. linear refinement, which is the
domain counterpart of input/output dependence [13]. It follows that for those domains which are instead closed w.r.t.
linear refinement, an input-driven analysis has exactly the same precision as an input-independent one (condensing
property), as proved in [12] for the case of logic programs; in Section 6 we extend this result to imperative programs.
The latter domains are hence considered optimal, in the sense that they cannot be further enriched with input/output
dependences. Up to now, there were no proofs of optimality and condensing for the parametric typings (the abstract
domains) used in [9] and [3]. This proof is one of the goals of this paper.

3. Preliminaries

3.1. Functions and ordered sets

We denote a total function by 7→ and a partial function by →. We denote the domain of a function f by dom(f).
We let [v1 7→ t1, . . . , vn 7→ tn] denote the function f where dom(f) = {v1, . . . , vn} and f (vi) = ti for i = 1, . . . , n.

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 57

Its update is f [w1 7→ d1, . . . , wm 7→ dm], where the domain may be enlarged. By f |s we denote the restriction of
f to s ⊆ dom(f). A poset is a set S with a reflexive, transitive and antisymmetric relation ≤. An upper (respectively,
lower) bound of S′

⊆ S is an element u ∈ S such that u′
≤ u (respectively, u′

≥ u) for every u′
∈ S′. A complete

lattice is a poset where least upper bounds (t) and greatest lower bounds (u) always exist. The cardinality of a set S
is denoted by #S.

3.2. Denotations and constancy

We model the state of an interpreter of a computer program at a given program point as a function from variables
to values. We consider integers as values, but any other domain of values would do.

Definition 1 (State). Let V be a finite set of variables (this will be assumed in the rest of the paper). A state over V
is a total function from V into integer values. The set of states over V is ΣV , where V is often omitted. �

Example 1. An example of state σ ∈ ΣV is such that σ(v) = 3 for each v ∈ V . �

In general, we write variables in italic such as v above. However, we write v when we want to refer to a variable in a
given program or command.

A denotational semantics associates a denotation to each piece of code i.e., a function from input states to output
states. Possible divergence is traditionally modelled by using partial functions as denotations. We prefer here to
use a distinguished constant undefined which states explicitly when a denotation is undefined. This simplifies some
definitions such as Definition 6 and some proofs.

Definition 2 (Denotation). A denotation over V is a partial function δ : ΣV → ΣV . The set of denotations is ∆V ,
where V is usually omitted. Let σ ∈ ΣV . If δ(σ) is not defined, then we let δ(σ) = undefined. If δ(σ) = undefined
then for every x ∈ V we define δ(σ)(x) = undefined. This lets us consider denotations as total maps from now on.
Denotations δ1 and δ2 are sequentially composed into δ1; δ2 by defining (δ1; δ2)(σ) = δ2(δ1(σ)) if δ1(σ) 6= undefined;
otherwise we let (δ1; δ2)(σ) = undefined. �

Denotations can be used to define both an operational and a denotational semantics for a program, as we will see in
Section 6.

Example 2. The denotation for the assignment y := x + 1 is δ1 such that δ1(σ) = σ [y 7→ σ(x) + 1] for all σ ∈ Σ .
That is, the successor of the input or initial value of x is stored in the output or final value of y. The other variables
are not modified. �

Example 3. The denotation of the assignment x := 4 is δ2 such that δ2(σ) = σ [x 7→ 4] for all σ ∈ Σ . That is, the
output value of x is constantly bound to 4. The other variables are not modified. �

Example 4. The denotation of

if y = 0 then x := 4 else while true do skip

is δ4, compositionally defined as

δ4(σ) =

{
δ2(σ) if σ(y) = 0
δ3(σ) if σ(y) 6= 0,

where δ2 is the denotation of x := 4 (Example 3) and δ3 is the denotation of while true do skip, which is always
undefined. �

Example 5. The denotation of

if y = 0 then x := 4 else x := 5

is δ5, compositionally defined as

δ5(σ) =

{
δ2(σ) if σ(y) = 0
δ6(σ) if σ(y) 6= 0,

58 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

where δ2 is the denotation of x := 4 (Example 3) and δ6 is the denotation of x := 5, that is δ6(σ) = σ [x 7→ 5]. We
conclude that

δ5(σ) =

{
σ [x 7→ 4] if σ(y) = 0
σ [x 7→ 5] if σ(y) 6= 0. �

Example 6. The denotation of x := 4; y := x + 1 is the functional composition δ2; δ1 (Examples 2 and 3) which is
such that

(δ2; δ1)(σ) = σ [x 7→ 4, y 7→ 5]

for every σ ∈ Σ . In general, ; is the semantical counterpart of the syntactical sequential composition of
commands. �

Constancy is a property of denotations. Namely, a variable v is constant in a denotation δ when δ always binds v

to the same value.

Definition 3 (Constancy). Let δ ∈ ∆. The set of variables which are constant in δ is

const(δ) =

{
v ∈ V

∣∣∣∣for all σ1, σ2 ∈ Σ
we have δ(σ1)(v) = δ(σ2)(v)

}
. �

Example 7 (Constancy). The denotation δ1 of Example 2 copies x+ 1 into y. Hence const(δ1) = ∅. The denotation
δ2 of Example 3 binds x to 4. Then const(δ2) = {x}. The denotation δ4 of Example 4 always binds x to 4 whenever it
is defined. However, it can also be undefined. For instance, when σ(y) = 1 we have δ(σ)(x) = undefined 6= 4. Hence
x 6∈ const(δ4). �

Constancy is closed w.r.t. composition of denotations.

Lemma 1 (Constancy is Closed by Composition). Let δ, δ ∈ ∆ and v ∈ V . If v ∈ const(δ) then v ∈ const(δ; δ).

Proof. Let σ1, σ2 ∈ ΣV . Since v ∈ const(δ), we have (δ; δ)(σ1)(v) = δ(δ(σ1))(v) = δ(δ(σ2))(v) = (δ; δ)(σ2)(v)

i.e., v ∈ const(δ; δ). �

3.3. Abstract domains and abstract interpretation. The abstract domain C

Let C be a complete lattice w.r.t. ≤, playing the role of the concrete domain of computation. For instance, in this
paper C will be the powerset ℘(∆) of the concrete denotations of Section 3.2, ordered by set-inclusion. Each element
of C is an abstract property. For instance, the set of concrete denotations which bind x to 4 is an element of ℘(∆)

expressing the property: “x holds 4 in the output of the denotation”. An abstract domain A is a collection of abstract
properties i.e., a subset of C . This is exemplified below for the case of an abstract domain C for constancy.

Definition 4 (The Abstract Domain C). Let us use ℘(∆V), ordered by set-inclusion, as concrete domain and let

v1 · · · vn = {δ ∈ ∆V | vi ∈ const(δ) for 1 ≤ i ≤ n}.

The abstract element v1 · · · vn is hence a notation or representation for a set of concrete denotations. This set does not
change by changing the ordering of the variables in v1 · · · vn. An abstract domain of ℘(∆) is

CV = {v1 · · · vn | {v1, . . . , vn} ⊆ V },

where V is usually omitted. Since CV is a subset of ℘(∆), it is ordered by set-inclusion. Equivalently, the
representations of its elements, written through the notation v1 · · · vn, are ordered by inverse inclusion of sets of
variables. The top element is represented by the empty set of variables, written as O to avoid confusion with ∅. The
abstract domain CV expresses the properties of being constant for a set of variables in a denotation. �

Example 8. From Example 7 we conclude that δ1 ∈ O and δ2 ∈ x. However, δ2 6∈ xy since y is not constant in δ2
(Example 3). �

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 59

Abstract interpretation theory [6] requires the abstract domain A to be meet-closed, which guarantees the existence
in A of a best approximation ρ(c) for each element of c ∈ C . That is, A must be a Moore family of C i.e., a complete
meet-sublattice of C (for any Y ⊆ A we have uY ∈ A). Note that A is not, in general, a complete sublattice of C,
since the join over A might be different from that over C . The function ρ is an upper closer operator:

– monotonic: for every c1, c2 ∈ C , if c1 ≤ c2 then ρ(c1) ≤ ρ(c2);
– expansive: for every c ∈ C we have ρ(c) ≥ c;
– idempotent: for every c ∈ C we have ρ(ρ(c)) = ρ(c).

It is also known as the abstraction function from C to A. It is induced by A as follows: for every c ∈ C we have

ρ(c) = u{a ∈ A | a ≥ c}.

Proposition 1 (C is an Abstract Domain). The set C of Definition 4 is closed w.r.t. intersection i.e., the u operation
on ℘(∆). Hence C deserves the name of abstract domain.

Proof. We have (v1 · · · vn) ∩ (w1 · · · wm) = x1 · · · xp, where

{x1, . . . , x p} = {x | x ∈ {v1, . . . , vn} or x ∈ {w1, . . . , wm}}. �

For any X ⊆ C, we denote byfX = {uI | I ⊆ X} the Moore closure of X i.e., the least Moore family of C containing
X . Hence the operation f constructs the smallest abstract domain which includes the set of properties X . An example
of use of f is in Definition 5.

Definition 5 (Constancy as a Moore Closure). We write the set of denotations where x is constant as

x = {δ ∈ ∆ | x ∈ const(δ)}.

The abstract domain of Definition 4 can be constructed as

CV = f{x | x ∈ V }.

We write the elements of C as v1 · · · vn, standing for ∩{vi | 1 ≤ i ≤ n}. If vs ⊆ V then by vs we mean
∩{v | v ∈ vs}. �

Once an abstract domain A is defined, abstract interpretation theory provides the abstract semantics induced by
each given concrete semantics. It is constructed from the concrete semantics by substituting each concrete operation
op over the concrete domain with the induced abstract operation opA

= ρ(op) over A (Section 6). For instance,
the composition operation ; is substituted by ;

A defined as λa1, a2.ρ(a1; a2). Hence, from a theoretical point of view,
given a concrete semantics, the abstract domain is an exhaustive definition of an abstract semantics for a programming
language, which can then be implemented and used for static analysis.

In Sections 4 and 5 we give two more examples of abstract domain, which formalise two already existing abstract
domains for information flow analysis.

4. The abstract domain IF

We present here an abstract domain for information flow analysis, originally defined in [9]. It expresses which
termination-sensitive flows [5,17] are allowed in a denotation. This domain, which we will call IF, has already
been used to implement an information-flow analysis for Java bytecode by using Boolean formulas to represent its
elements [10]. We will show in Section 10 that IF coincides with C → C. Hence Section 9 can be seen as a formal
justification of the use of Boolean formulas to represent the elements of IF.

A denotation δ features a flow from x to y if the input value of x can affect in δ the output value of y.

Definition 6 (Termination Sensitive Information-Flow). Let δ ∈ ∆ and x, y ∈ V . We say that δ features a termination
sensitive information flow from x to y if there exist σ1, σ2 ∈ Σ such that

1. σ1|V \x = σ2|V \x (σ1 and σ2 agree on variables different from x);
2. δ(σ1)(y) 6= δ(σ2)(y) (the input value of x affects the output value of y). �

60 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

Definition 6 entails that σ1(x) 6= σ2(x). Moreover, if exactly one between δ(σ1) and δ(σ2) is defined, then by
Definition 2 the condition δ(σ1)(y) 6= δ(σ2)(y) holds. This is why Definition 6 formalises termination-sensitive
information flows.

Example 9. The denotation δ1 of Example 2 is such that δ1(σ) = σ [y 7→ σ(x) + 1] for every σ ∈ Σ . Let σ1 and σ2
be such that σ1(v) = 0 for every v ∈ V , σ2(x) = 1 and σ2(v) = 0 for every v ∈ V \ x. We have σ1|V \x = σ2|V \x,
δ1(σ1) = σ1[y 7→ 1], δ1(σ2) = σ2[y 7→ 2] and hence δ1(σ1)(y) = 1 6= 2 = δ1(σ2)(y). Then δ1 features a flow
from x to y. Moreover, δ1(σ1)(x) = 0 and δ1(σ2)(x) = 1. Then δ1 features a flow from x to x. These are both explicit
flows [17] i.e., generated by copying input values into output values in a denotation. They are the only flows featured
by δ1. For instance, δ1 does not feature any flow from y to y, since for every σ1, σ2 ∈ Σ such that σ1|V \y = σ2|V \y

we have δ1(σ1)(y) = σ1(x) + 1 = σ2(x) + 1 = δ1(σ2)(y). �

Example 10. The denotation δ5 of Example 5 features a flow from y to x. Let σ1 and σ2 be such that σ1(v) = 0 for
every v ∈ V , σ2(v) = 0 for every v ∈ V \ y and σ2(y) = 1. We have σ1|V \y = σ2|V \y and δ5(σ1)(x) = 4 6= 5 =

δ5(σ2)(x). This flow is called implicit [17] since it arises from the conditional execution of program statements on
the basis of the initial value of some variables, in this case y. Note that if the assignment on the else branch of the
conditional statement in Example 5 were changed into x := 4 then δ5 would feature no flow from y to x. �

Example 11. The denotation δ4 of Example 4 is such that

δ4(σ) =

{
σ [x 7→ 4] if σ(y) = 0
undefined if σ(y) 6= 0.

It features a flow from y to x. Namely, take σ1 and σ2 such that σ1(v) = 0 for every v ∈ V , σ2(v) = 0 for every
v ∈ V \ y and σ2(y) = 1. We have σ1|V \y = σ2|V \y, δ4(σ1)(x) = 4 6= undefined = δ4(σ2)(x). Since we consider
termination-sensitive flows, the denotation δ4 actually features a flow from y to any variable v ∈ V , since the initial
value of y determines the termination of the conditional statement in Example 4. �

The abstract domain for information flow analysis is the powerset of the set of flows. Each abstract element expresses
which flows a denotation is allowed to feature.

Definition 7 (Abstract Domain IF). Let xi , yi ∈ V for i = 1, . . . , n. We define

x1 y1, . . . , xn yn =

δ ∈ ∆V

∣∣∣∣∣∣∣∣
if δ features a flow
from x to y then
there exists i such that
x ≡ xi and y ≡ yi

 .

The abstract domain for information flow analysis is

IFV =

{
x1 y1, . . . , xn yn

∣∣∣∣n ≥ 0 and xi , yi ∈ V
for every i = 1, . . . , n

}
where V is usually omitted. It is ordered by set-inclusion of denotations i.e., by inverse inclusion of sets of flows. �

Each element of IF is a set of denotations. In order to justify the name of abstract domain for IF, we must prove that
the set of its elements is closed by intersection.

Proposition 2 (IF is a Moore Family). The set IF is a Moore family of ℘(∆).

Proof. Let f i
= x i

1 yi
1, . . . , x i

ni yi
ni ∈ IF with I ⊆ N and i ∈ I . We prove that X = {x y | x y ∈ f i for all i ∈

N} (which belongs to IF) is their intersection. We have δ ∈ ∩i∈I f i if and only if δ ∈ f i for all i ∈ I , if and only if
whenever δ features a flow from x to y then x y ∈ f i for all i ∈ I , if and only if whenever δ features a flow from x
to y then x y ∈ X , if and only if δ ∈ X . �

Fig. 1 shows the abstract domain IF{x,y}. The top of the domain allows denotations to feature any flow, and hence
coincides with ∆.

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 61

x x
x y
y x
y y

kkkkkkkkkkkkkkkkkkkkkkkkkkkkk

<<
<<

<<

��
��

��

SSSSSSSSSSSSSSSSSSSSSSSSSSSSS

x y
y x
y y

BB
BB

BB

22
22

22
22

22
22

22

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

x x
x y
y y

||
||

||
BB

BB
BB

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

x x
y x
y y

||
||

||
BB

BB
BB

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

x x
x y
y x

||
||

||

��
��

��
��

��
��

��

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

x y
y y

��
��

��
��

��
��

��
�

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
x x
y y

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
x x
y x

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

66
66

66
66

66
66

66
66

y x
y y

sssssss
KKKKKKK

x y
y x

sssssss
KKKKKKK

x x
x y

sssssss

KKK
KKK

KK

y y y x x y x x

O

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

ooooooooo

OOOOOOOOO

ddddddddddddddddddddddddddddddd

Fig. 1. The abstract domain IF{x,y}.

Example 12. Assume V = {x, y}. The denotation δ1 of Example 2 belongs to x x, x y since it only features flows
from x to y and from x to x (Example 9). It also belongs to the upper bound x x, x y, y y. However, δ1 does not
belong to x x since δ1 features a flow from x to y (Example 9), not allowed in x x. �

5. The abstract domain Independ

We define here the abstract domain Independ for termination-sensitive independence of program variables [3],
originally defined in [2] in its termination-insensitive version. The elements of this domain are sets of pairs of
variables. A pair [o#i] represents the denotations where the final value of o is constrained to be independent from
the initial value of i .

Definition 8 (The Abstract Domain Independ). Let i, o ∈ V . We define

[o#i]V =

{
δ ∈ ∆V

∣∣∣∣for all σ1, σ2 ∈ ΣV such that σ1|V \i = σ2|V \i
we have δ(σ1)(o) = δ(σ2)(o)

}
.

The notation [o1#i1]V · · · [on#in]V stands for ∩ j=1,...,n[o j #i j]V . When n = 0, we write O for the empty intersection
i.e., ∆V . The abstract domain for independence of program variables is

IndependV = {[o1#i1]V · · · [on#in]V | n ≥ 0 and i, o ∈ V }.

The subscripts will be usually omitted. �

Note that the elements of IndependV are isomorphic to sets of independence pairs [o#i]V . They are ordered by
set-inclusion of denotations i.e., inverse inclusion of sets of independence pairs. Fig. 2 shows the abstract domain
Independ{x,y}.

Example 13. Consider denotation δ1 from Example 2. We have δ1 ∈ [x#y] since the final value of x is not affected
by the initial value of y. Formally, for every σ1, σ2 ∈ Σ such that σ1|V \y = σ2|V \y we have δ1(σ1)(x) =

σ1(x) = σ2(x) = δ1(σ2)(x). We also have δ1 ∈ [y#y] and δ1 ∈ [x#x], so that δ1 ∈ [x#x][x#y][y#y]. However,
we have δ1 6∈ [y#x] since the initial value of x can affect the final value of y: take σ1, σ2 ∈ Σ such that

62 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

O

iiiiiiiiiiiiiiiiiiiiiiii

AA
AA

AA
AA

A

}}
}}

}}
}}

}

UUUUUUUUUUUUUUUUUUUUUUUU

[x#x]

BB
BB

BB
BB

B

00
00

00
00

00
00

00
00

KKKKKKKKKKKKKKKKKKKKKKKKKKK [x#y]

||
||

||
||

|

BB
BB

BB
BB

B

KKKKKKKKKKKKKKKKKKKKKKKKKKK [y#x]

||
||

||
||

|

BB
BB

BB
BB

B

sssssssssssssssssssssssssss
[y#y]

||
||

||
||

|

��
��
��
��
��
��
��
��

sssssssssssssssssssssssssss

[x#x][x#y]

��
��
��
��
��
��
��
��

JJJJJJJJJJJJJJJJJJJJJJJJJJ [x#y][y#x]

tttttttttttttttttttttttttt

JJJJJJJJJJJJJJJJJJJJJJJJJJ [y#x][y#y]

tttttttttttttttttttttttttt

00
00

00
00

00
00

00
00

[x#x][y#x]

��
��

��
��

??
??

??
??

[x#x][y#y]

��
��

��
��

??
??

??
??

[x#y][y#y]

��
��

��
��

??
??

??
??

[x#x][x#y]

[y#x]

[x#x][y#x]

[y#y]

[x#x][x#y]

[y#y]

[x#y][y#x]

[y#y]

[x#x][x#y]

[y#x][y#y]

SSSSSSSSSSSSSSSSSSS

��������

<<<<<<<<

kkkkkkkkkkkkkkkkkkk

Fig. 2. The abstract domain Independ{x,y}.

σ1(v) = 0 for every v ∈ V , σ2(v) = 0 for every v ∈ V \ x and σ2(x) = 1. We have σ1|V \x = σ2|V \x but
δ1(σ1)(y) = σ1(x) + 1 = 1 6= 2 = σ2(x) + 1 = δ1(σ2)(y). �

Definition 8 formalises termination-sensitive independence since if δ terminates for some values of i and diverges
for others then δ 6∈ [o#i] for any o ∈ V . The notion of independence considered in [2] is instead termination-
insensitive i.e., only terminating computations are considered in order to prove independence. In [3] termination-
sensitive independence is split in two, by defining an abstract domain which expresses both termination-insensitive
independence of o w.r.t. i and independence of termination w.r.t. i .

6. Operational and denotational semantics. Condensing

In this section we define a generic input-driven, non-compositional operational and a generic input-independent,
compositional denotational semantics for imperative programs. Their concrete versions specify the behaviour of
a computer program as it is observed on a machine running that program. Their abstract versions mimick this
behaviour over an abstract domain, which approximates properties of the concrete behaviour. We show that our
abstract operational and denotational semantics have the same precision when the abstract domain satisfies a property
called condensing. In Section 7 we show that each abstract domain closed by linear refinement satisfies the condensing
property.

We start by defining the syntax of our imperative language.

Definition 9 (Command). A command is a portion of code whose execution modifies the state. The set of commands
is defined by the grammar:

com ::= if v then com else com

| com; com

| v0 := f(v1, . . . , vm)

| bc

that is, a command is either a conditional, a sequence of commands, a function call or a basic command. The set of
basic commands is left unspecified (it normally includes assignments to variables and to fields of objects). �

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 63

Definition 10 (Program). A program P is a set of function definitions

f(w1, . . . , wm) bodyf

where w1, . . . , wm are distinct variables and bodyf is a command. We assume that P is type-checked and that all
functions called in P are also defined in P . In the following, we assume that P is given. �

The syntax of our language is very abstract, in order to simplify the theoretical results, but it is not restrictive. In
particular, there are no loops: they must be simulated through recursive functions; local variables cannot be defined in
the body of a function: they must be included as dummy parameters, whose value at call time is irrelevant; a function
f returns the value which is stored, at the end of its execution, in the variable called f. At the same time, that syntax is
very general: it includes a generic set of basic commands. We assume that the semantics of each basic command bc is
specified by a set of denotations bc ⊆ ∆. A basic command can even be non-deterministic, in which case bc contains
more than one denotation. Also the notion of state for our language is completely generic. In our examples we will
always use maps from variables to values (Definition 1). However, one can also use more complex states including a
memory, which are useful if our language has basic commands for updates of fields of objects.

Example 14. Most imperative languages allow commands of the form y := x + 1 whose semantics y := x + 1 is {δ1},
where δ1 is the denotation of Example 2. �

We can now give semantics to a command in an operational and in a denotational way. In both cases we use three
operators over sets of denotations.

Definition 11 (Semantical Operators). We define three semantical operators over sets of denotations:

1. the point-wise extension ; of the sequential composition of denotations of Definition 2;
2. the union ∪ of sets of denotations;
3. the return from function operator. Given v0 ∈ V and f function name, we define it as the point-wise extension to

sets of denotations of

return f,v0λδ1.λδ2.λσ.δ1(σ)[v0 7→ δ2(σ)(f)].

It restores the state δ1(σ) of the caller but stores into v0 the return value δ2(σ)(f) of the callee. �

The following result will be useful in Section 6.4.

Lemma 2. Let δ0, δ1, δ2 ∈ ∆, f be a function name and v0 ∈ V . We have

δ0; return f,v0(δ1, δ2) = return f,v0((δ0; δ1), (δ0; δ2)).

Proof. Let σ ∈ Σ . We have

(δ0; return f,v0(δ1, δ2))(σ) = (δ0; λσ.δ1(σ)[v0 7→ δ2(σ)(f)])(σ)

= δ1(δ0(σ))[v0 7→ δ2(δ0(σ))(f)]

= (δ0; δ1)(σ)[v0 7→ (δ0; δ2)(σ)(f)]

= return f,v0((δ0; δ1), (δ0; δ2))(σ). �

6.1. Operational semantics

The operational semantics of a command c reflects its execution by an actual virtual machine for our language.
Hence it can be used for an implementation of that virtual machine. It is given as a total transition function:
〈di || c〉 ⇒ do with di , do ⊆ ∆. It means that if we have already run some code whose behaviour is described by the
denotations di and then continue with c, we get an overall run whose behaviour is described by the denotations do. By
taking di = {ι}, where ι is the identity denotation, this generalises the traditional operational semantics over states [23].

Definition 12 (Operational Semantics). The (big step) operational semantics for our language is a transition relation
⇒ from configurations to sets of denotations, where a configuration is a pair 〈c || d〉 of a command c and of a set of
denotations d ⊆ ∆. It is defined by the following transition rules:

64 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

〈bc || d0〉 ⇒ d0; bc

that is, the evaluation of a basic command uses the semantics of the basic command.

〈com1 || d0〉 ⇒ d1 〈com2 || d1〉 ⇒ d2

〈com1; com2 || d0〉 ⇒ d2

that is, the execution of a sequence of commands runs, sequentially, the first and then the second command.

〈com1 || d0; is truev〉 ⇒ d1 〈com2 || d0; is falsev〉 ⇒ d2

〈if v then com1 else com2 || d0〉 ⇒ d1 ∪ d2

that is, the execution of a conditional evaluates its condition and then selects the right branch to run through generic
is truev and is f alsev denotations.

〈bodyf || d0; callf(v1,...,vm)〉 ⇒ d1

〈v0 := f(v1, . . . , vm) || d0〉 ⇒ returnf,v0(d0, d1)

i.e., a function call creates a scope d0; callf (v1,...,vm) where the body of the function can run. At return time it stores
the return value of the function into v0. �

Example 15. The actual definition of is truev and is falsev is irrelevant in this paper. For states allowing Boolean
values, they are usually defined as

is truev = {δt } where δt = λσ.

{
σ if σ(v) = true
undefined otherwise

is falsev = {δ f } where δ f = λσ.

{
σ if σ(v) = false
undefined otherwise. �

Example 16. The actual definition of call is irrelevant in this paper. However, it can be interesting to see its usual
definition over the states of Definition 1. It is callf (v1,...,vm) = {δc} where

δc = λσ.σ [w1 7→ σ(v1), . . . , wm 7→ σ(vm)]

i.e., callf (v1,...,vm) renames variables v1, . . . , vm into w1, . . . , wm . �

6.2. Denotational semantics

Denotational semantics describes the behaviour of a command in terms of the behaviours of its components. Hence
it is compositional, a feature which is highly appreciated when it comes to specifying and implementing a static
analysis.

The denotational semantics of a command c is a set of denotations [[c]]I , where I is an interpretation providing the
semantics of the program functions.

Definition 13 (Denotation of a Command). Let I be an interpretation i.e., a collection I f1 , . . . , I fq of sets of
denotations, one for each function name fi in P , with 1 ≤ i ≤ q. The denotation of a command c in I is a set
of denotations [[c]]I defined as

[[bc]]I = bc

[[com1; com2]]I = [[com1]]I ; [[com2]]I

[[if v then com1 else com2]]I = (is truev; [[com1]]I) ∪ (is falsev; [[com2]]I)

[[v0 :=f(v1, . . . , vm)]]I = returnf,v0({ι}, (callf(v1,...,vm); If))

where ι is the identity denotation. �

Because of recursion, the denotational semantics is computed as a fixpoint computation.

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 65

Definition 14 (Denotational Semantics). Given a program P , the immediate consequence operator TP is the
transformer on interpretations defined as

(TP (I)) f = [[bodyf]]I for every function name f in P .

Its least fixpoint is the denotational semantics DP of P . �

6.3. Abstract semantics

Both our operational and denotational semantics work over sets of denotations. As a consequence, they are
already collecting semantics in the sense of [6]. Sets of denotations express properties of denotations. They can
be substituted with an abstract domain A: each element of A stands for a set of denotations. We get an (operational or
denotational) correct abstract semantics which approximates the properties expressed by A. They use the best possible
approximations over A of the semantical operators of Definition 11 (Section 3.3):

;
A

= λa1, a2 ∈ A.ρ(a1; a2)

∪
A

= λa1, a2 ∈ A.ρ(a1 ∪ a2)

returnA
f,v0

= λa1, a2 ∈ A.ρ(return f,v0(a1, a2)).

Definition 15 (Abstract Operational Semantics). Given an abstract domain A approximating sets of denotations, with
the induced upper closure operator (abstraction function) ρ mapping sets of denotations into their best approximation
inside A, the (big step) abstract operational semantics for our language is a transition relation ⇒

A from abstract
configurations to A, where an abstract configuration is a pair 〈c || a〉 of a command c and of an element a ∈ A. It is
defined by the following transition rules:

〈bc || a0〉 ⇒A ρ(a0; bc)

〈com1 || ρ(a0; is truev)〉 ⇒
A a1 〈com2 || ρ(a0; is falsev)〉 ⇒

A a2

〈if v then com1 else com2 || a0〉 ⇒A a1 ∪A a2

〈com1 || a0〉 ⇒
A a1 〈com2 || a1〉 ⇒

A a2

〈com1; com2 || a0〉 ⇒A a2

〈bodyf || ρ(a0; callf(v1,...,vm))〉 ⇒
A a1

〈v0 := f(v1, . . . , vm) || a0〉 ⇒A returnA
f,v0

(a0, a1)
. �

It is important to note that the abstract operational semantics performs the abstractions through ρ as the computation
proceeds.

Definition 16 (Abstract Denotation of a Command). Let I be an abstract interpretation i.e., a collection I f1 , . . . , I fq

of elements of A, one for each function name fi in P , with 1 ≤ i ≤ q. The abstract denotation of a command c in I
is [[c]]A

I ∈ A, defined as

[[bc]]A
I = ρ(bc)

[[com1; com2]]
A
I = [[com1]]

A
I ;

A
[[com2]]

A
I

[[if v then com1 else com2]]
A
I = (ρ(is truev);A

[[com1]]
A
I) ∪

A (ρ(is falsev);
A

[[com1]]
A
I)

[[v0 := f(v1, . . . , vm)]]
A
I =returnA

f,v0
(ρ({ι}), (ρ(callf(v1,...,vm));

A If))

where ι is the identity denotation. �

The abstract immediate consequence operator T A
P and the abstract denotational semantics DA

P are defined similarly
to Definition 14. We observe that the abstract denotational semantics, for compositionality, abstracts the basic

66 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

denotations before composing them, which is the main difference w.r.t. the abstract operational semantics. Because of
this, the abstract operational semantics is in general more precise than the abstract denotational semantics.

Example 17. Consider the abstract domain C of Definition 4. The abstract operational semantics of the command
v := 2; w := v from the top approximation O correctly captures the fact that at its end both variables v and w are
constant. This is because ρ(O; v := 2) = v and ρ(v; w := v) = wv, so that

〈v := 2 || O〉 ⇒
C v 〈w := v || v〉 ⇒

C vw
〈v := 2; w := v || O〉 ⇒C vw

.

However, the abstract denotational semantics of the same command is much more imprecise, since

[[v := 2; w := v]]CI = [[v := 2]]CI ;
C

[[w := v]]CI

= ρ(v := 2);C ρ(w := v)

= v;
C O = O.

The explanation of this imprecision is that the abstract domain C is not able to express the dependency between the
constancy of v and that of w which is featured by w := v, nor the fact that w := v does not modify the constancy of
v. �

6.4. The condensing property

The condensing property formalises the fact that a concrete element and its abstraction convey exactly the same
abstract information w.r.t. composition.

Definition 17 (Condensing Property). Let ℘(∆) be our concrete domain, A be an abstract domain with induced
abstraction function ρ. If for every d1, d2 ∈ ℘(∆) we have

ρ(ρ(d1); d2) = ρ(ρ(d1); ρ(d2)) = ρ(d1; ρ(d2))

then A enjoys the condensing property or is condensing. �

Definition 17 is called weak-completeness in [12]. In Theorem 1 we show that it entails that our abstract operational
and denotational semantics have the same precision. We need some lemmas to that purpose. The following one lifts
to ;

A the commutativity of ;.

Lemma 3. If A is a condensing abstract domain then ;
A is commutative.

Proof. Let a1, a2, a3 ∈ A. We have

a1;
A (a2;

A a3) = ρ(a1; ρ(a2; a3))

(Definition 17) = ρ(a1; (a2; a3))

(; is commutative) = ρ((a1; a2); a3)

(Definition 17) = ρ(ρ(a1; a2); a3) = (a1;
A a2);

A a3. �

The following lemma states that ;
A distributes over ∪

A.

Lemma 4. Let A be a condensing abstract domain and a0; a1, a2 ∈ A. We have

a0;
A (a1 ∪

A a2) = (a0;
A a1) ∪

A (a0;
A a2).

Proof. We have

a0;
A (a1 ∪

A a2) = ρ(a0; ρ(a1 ∪ a2))

(Definition 17) = ρ(a0; (a1 ∪ a2))

(; distributes over ∪) = ρ((a0; a1) ∪ (a0; a2))

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 67

By expansivity and monotonicity of ρ we have ρ((a0; a1) ∪ (a0; a2)) ⊆ ρ(ρ(a0; a1) ∪ ρ(a0; a2)). Moreover,
by monotonicity we have ρ(a0; a1) ⊆ ρ((a0; a1) ∪ (a0; a2)) and ρ(a0; a2) ⊆ ρ((a0; a1) ∪ (a0; a2)) so that
ρ(a0; a1) ∪ ρ(a0; a2) ⊆ ρ((a0; a1) ∪ (a0; a2)). Then ρ(ρ(a0; a1) ∪ ρ(a0; a2)) ⊆ ρ(ρ((a0; a1) ∪ (a0; a2))) and
by idempotency ρ(ρ(a0; a1) ∪ ρ(a0; a2))⊆ ρ((a0; a1) ∪ (a0; a2)). In conclusion

ρ((a0; a1) ∪ (a0; a2)) = ρ(ρ(a0; a1) ∪ ρ(a0; a2))

= (a0;
A a1) ∪

A (a0;
A a2). �

Lemma 5 states that ;
A distributes over returnA. It requires that A is compatible with return.

Definition 18 (Compatibility with Return). Let A be an abstract domain. We say that A is compatible with return if
for every function name f in P , v0 ∈ V and d1, d2 ⊆ ∆ we have

ρ
(
return f,v0(ρ(d1), ρ(d2))

)
= ρ(return f,v0(d1, d2)). �

Lemma 5. Let A be a condensing abstract domain compatible with return, a0; a1, a2 ∈ A, f be a function name in
P and v0 ∈ V . We have

a0;
A (returnA

f,v0
(a1, a2)) = returnA

f,v0
((a0;

A a1), (a0;
A a2)).

Proof. We have

a0;
A (returnA

f,v0
(a1, a2)) = ρ(a0; ρ(return f,v0(a1, a2)))

(Definition 17) = ρ(a0; return f,v0(a1, a2))

(Lemma 2) = ρ(return f,v0((a0; a1), (a0; a2)))

(Definition 18) = ρ(return f,v0(ρ(a0; a1), ρ(a0; a2)))

= returnA
f,v0

((a0;
A a1), (a0;

A a2)). �

We can now prove the main result of this section. It says that, for a condensing abstract domain compatible with
return, the abstract operational (input-driven) and the abstract denotational (input-independent) semantics have the
same precision.

Theorem 1 (Equivalence of the Abstract Operational and Denotational Semantics). Given a condensing abstract
domain A compatible with return, a0, a ∈ A and a command c, we have 〈c || a0〉 ⇒

A a if and only if a0;
A

[[c]]A
DA

P
= a.

Proof. Since both ⇒
A and λc′.[[c′

]]
A
DA

P
are total maps, it is enough to prove that if 〈c || a0〉 ⇒

A a then a0;
A

[[c]]A
DA

P
=

a. Let then 〈c || a0〉 ⇒
A a. We proceed by rule induction on the derivation of 〈c || a0〉 ⇒

A a (Definition 15). If c = bc
then

a0;
A

[[bc]]A
DA

P
= a0;

A ρ(bc)

= ρ(a0; ρ(bc))

(Definition 17) = ρ(a0; bc) = a.

If c = com1; com2 we have 〈com1 || a0〉 ⇒
A a1 and 〈com2 || a1〉 ⇒

A a and by the inductive hypothesis
a0;

A
[[com1]]

A
DA

P
= a1 and a1;

A
[[com2]]

A
DA

P
= a. Hence

a0;
A ([[com1; com2]]

A
DA

P
) = a0;

A ([[com1]]
A
DA

P
;

A
[[com2]]

A
DA

P
)

(Lemma 3) = (a0;
A

[[com1]]
A
DA

P
);A

[[com2]]
A
DA

P

= a1;
A

[[com2]]
A
DA

P
= a.

68 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

If c = if v then com1 else com2 then 〈com1 || ρ(a0; is truev)〉 ⇒
A a1, 〈com2 || ρ(a0; is falsev)〉 ⇒

A a2 and a =

a1 ∪
A a2. By the inductive hypothesis we have ρ(a0; is truev);A

[[com1]]
A
DA

P
= a1 and ρ(a0; is falsev);

A
[[com2]]

A
DA

P
=

a2. Then

a0;
A

[[if v then com1 else com2]]
A
DA

P

= a0;
A

(
(ρ(is truev);A

[[com1]]
A
DA

P
)∪A

(ρ(is falsev);
A

[[com2]]
A
DA

P
)

)

(Lemma 4) =

(
(a0;

A ρ(is truev);A
[[com1]]

A
DA

P
)∪A

(a0;
A ρ(is falsev);

A
[[com2]]

A
DA

P
)

)

=

(
(ρ(a0; ρ(is truev));A

[[com1]]
A
DA

P
)∪A

(ρ(a0; ρ(is falsev));
A

[[com2]]
A
DA

P
)

)

(Definition 17) =

(
(ρ(a0; is truev);A

[[com1]]
A
DA

P
)∪A

(ρ(a0; is falsev);
A

[[com2]]
A
DA

P
)

)
= a1 ∪

A a2 = a.

If c = (v0 := f(v1, . . . , vm)) let ca = callf(v1,...,vm). We know that 〈bodyf || ρ(a0; ca)〉 ⇒
A a1 and a =

returnf,v0(a0, a1). By the inductive hypothesis we have ρ(a0; ca);A
[[bodyf]]

A
DA

P
= a1. Since DA

P is the least fixpoint

of T A
P then (DA

P)f = [[bodyf]]
A
DA

P
and ρ(a0; ca);A (DA

P)f = a1. Hence

a0;
A

[[v0 := f(v1, . . . , vm)]]
A
DA

P

= a0;
A returnA

f,v0

(
ρ({ι}), (ρ(ca);A (DA

P)f)
)

(Lemma 5) = returnf,v0((a0;
A ρ({ι})), (a0;

A ρ(ca);A (DA
P)f))

= returnf,v0(ρ(a0; ρ({ι})), (ρ(a0; ρ(ca));A (DA
P)f))

(Definition 17) = returnf,v0(ρ(a0; {ι}), (ρ(a0; ca);A (DA
P)f))

= returnf,v0(ρ(a0), (ρ(a0; ca);A (DA
P)f))

= returnf,v0(a0, a1) = a. �

Section 7 introduces the linear refinement of abstract domains and links the closure under linear refinement with the
condensing property and the compatibility with return.

7. Linear refinement

The definition of an appropriate abstract domain for a static analysis is not easy in general. Although a basic
abstract domain A can be immediately constructed (f) from the abstract properties one wants to model, there is no
guarantee that the induced abstract semantics is precise enough to be useful. The intuition and experience of the
abstract domain designer helps in determing what A is missing in order to improve its precision. To that goal, there
are some methodological techniques which refine A to get a more precise domain.

Cousot and Cousot’s reduced product [7] allows one to refine two abstract domains A1 and A2 into an abstract
domain A1 u A2 = f(A1 ∪ A2) which expresses the conjunction of the properties expressed by A1 and A2.

Giacobazzi and Scozzari’s linear refinement [13] is another domain refinement operator. It allows one to enrich an
abstract domain with information relative to the propagation of the abstract properties before and after the application
of a concrete operator �. It requires the concrete domain C to be a quantale w.r.t. � i.e.,

1. C must be a complete lattice;
2. � : C × C → C must be (in general partial and) associative;

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 69

3. for any a ∈ C and {bi }i∈I ⊆ C with I ⊆ N we must have a � (ti∈I bi) = ti∈I {a � bi } and (ti∈I bi) � a =

ti∈I {bi � a}.

For instance, the complete lattice ℘(∆), ordered by set-inclusion, is a quantale w.r.t. the composition operator ;

extended to sets of denotations as d1; d2 = {δ1; δ2 | δ1 ∈ d1 and δ2 ∈ d2}.
Let a, b ∈ C. The abstract property a →

� b which transforms every element of a into an element of b is

a →
� b =

⊔
{c ∈ C | if a � c is defined then a � c ≤ b}.

It is the set of concrete elements whose composition through � with a concrete element in a is undefined or is an
element in b.

Definition 19 (Linear Refinement [13]). The (forward) linear refinement of an abstract domain A1 ⊆ C w.r.t. another
abstract domain A2 ⊆ C is the abstract domain

A1 →
� A2 = f{a →

� b | a ∈ A1 and b ∈ A2}.

That is, A1 →
� A2 collects all possible arrows between elements of A1 and elements of A2. �

It is immediate to verify that →
� is argument-wise monotonic.

We can instantiate →
� over the quantale 〈℘(∆), ; 〉. The intuition under the choice of ; for � is that the

denotational semantics of an imperative program is defined by composing smaller denotations to form larger ones
(Section 6). Hence we must refine the composition operation if we want to improve the precision of an abstraction
of ℘(∆). We provide below an explicit definition for →

;, stating that d1 →
; d2 is the set of denotations whose

composition with a denotation in d1 is a denotation in d2.

Proposition 3 (Explicit Definition of →
;). Let d1, d2 ⊆ ∆. Then

d1 →
; d2 = {δ ∈ ∆ | for every δ ∈ d1 we have δ; δ ∈ d2}.

Proof.

d1 →
; d2 =

⋃
{d ∈ ℘(∆) | if d1; d is defined then d1; d ⊆ d2}

=

⋃
{d ∈ ℘(∆) | d1; d ⊆ d2}

=

⋃
{d ∈ ℘(∆) | {δ; δ | δ ∈ d1 and δ ∈ d} ⊆ d2}

= {δ ∈ ∆ | for every δ ∈ d1 we have δ; δ ∈ d2}. �

Example 18. Consider the abstract domain C of Definition 4 and its elements x and y. The denotation δ1 of Example 2
belongs to x →

; y since δ1 stores the input value of x plus 1 in the output value of y, so if x is constant in δ1’s input
then y is constant in δ1’s output. �

The following result states the behaviour of →
; when its right-hand side is the intersection of some properties of

denotations.

Proposition 4. Given d ∈ ℘(∆), I ⊆ N and {di }i∈I ⊆ ℘(∆), we have d →
; (∩i∈I di) = ∩i∈I (d →

; di).

Proof. We have

d →
;

(⋂
i∈I

di

)
=

{
δ ∈ ∆

∣∣∣∣∣for every δ ∈ d we have δ; δ ∈

⋂
i∈I

di

}
=

⋂
i∈I

{
δ ∈ ∆

∣∣for every δ ∈ d we have δ; δ ∈ di
}

=

⋂
i∈I

(d →
; di). �

70 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

From now on, we will omit ; in →
;.

We prove now that any abstract domain A of ℘(∆), closed by linear refinement, is condensing. The intuition is
that in that case A embeds all possible dependences propagating the abstract property under composition, so that a
concrete element c and its abstraction ρ(c) over A are equivalent w.r.t. composition (Definition 17).

Theorem 2. Let ℘(∆) be the concrete domain and A be an abstract domain such that A = A → A. Then A is
condensing.

Proof. We prove the condensing property of Definition 17. Let ρ be the abstraction map induced by A, which since
A = A → A corresponds to the abstraction map induced by A → A. By expansivity and monotonicity of ρ we have

ρ(ρ(d1); d2) ⊆ ρ(ρ(d1); ρ(d2)) ⊇ ρ(d1; ρ(d2)).

If we prove that for every a ∈ A such that a ⊇ ρ(d1); d2 we have a ⊇ ρ(d1); ρ(d2) we conclude that
ρ(ρ(d1); d2) = ∩{a ∈ A | a ⊇ ρ(d1); d2} ⊇ ∩{a ∈ A | a ⊇ ρ(d1); ρ(d2)} = ρ(ρ(d1); ρ(d2)). Similarly,
if we prove that for every a ∈ A such that a ⊇ d1; ρ(d2) we have a ⊇ ρ(d1); ρ(d2) we conclude that
ρ(d1; ρ(d2)) = ∩{a ∈ A | a ⊇ d1; ρ(d2)} ⊇ ∩{a ∈ A | a ⊇ ρ(d1); ρ(d2)} = ρ(ρ(d1); ρ(d2)). Hence we
conclude that the condensing property holds:

ρ(ρ(d1); d2) = ρ(ρ(d1); ρ(d2)) = ρ(d1; ρ(d2)).

Let us prove those results then.

– Let a ∈ A be such that ρ(d1); d2 ⊆ a. Then d2 ⊆ ρ(d1) → a and since ρ(d1) → a ∈ A → A = A, we have
ρ(d2) ⊆ ρ(d1) → a i.e., ρ(d1); ρ(d2) ⊆ a.

– Let a ∈ A be such that d1; ρ(d2) ⊆ a. The sets of denotations d1 and ρ(d1) have the same abstract properties
i.e., by definition of ρ, for every a′

∈ A we have a′
⊇ d1 if and only if a′

⊇ ρ(d1). Since ρ(d2) belongs to
A → A it has the form (a1

1 → a1
2) ∩ · · · ∩ (aq

1 → aq
2) with ai

1, ai
2 ∈ A for every i = 1, . . . , q. We conclude that

d1; ρ(d2) ⊆ a entails that a ∈ {ai
2 | 1 ≤ i ≤ q and d1 ⊆ ai

1} = {ai
2 | 1 ≤ i ≤ q and ρ(d1) ⊆ ai

1} and hence
ρ(d1); ρ(d2) ⊆ a. �

Theorem 1 requires compatibility with return to conclude that a condensing abstract domain induces abstract
operational semantics and abstract denotational semantics of the same precision. The following result shows that,
under certain conditions, if a domain is compatible with return then also its linear refinement is compatible with
return.

Proposition 5. Let A be an abstract domain compatible with return. If A ⊆ A → A and A → A is condensing then
A → A is compatible with return.

Proof. Let a1 → a2 ∈ A → A, with a1, a2 ∈ A, f be a function name in P , v0 ∈ V and d1, d2 ⊆ ∆. Let ρ be the
abstraction map induced by A and ρ→ the abstraction map induced by A → A. We have

a1 → a2 ⊇ return f,v0(ρ
→(d1), ρ

→(d2))

iff a2 ⊇ a1; return f,v0(ρ
→(d1), ρ

→(d2))

(Lemma 2) iff a2 ⊇ return f,v0((a1; ρ→(d1)), (a1; ρ→(d2)))

(∗) iff a2 ⊇ return f,v0((a1; d1), (a1; d2))

(Lemma 2) iff a2 ⊇ a1; return f,v0(d1, d2)

iff a1 → a2 ⊇ return f,v0(d1, d2)

F. Spoto / Theoretical Computer Science 388 (2007) 53–82 71

where (∗) follows since, by expansivity and monotonicity of ρ→, return f,v0((a1; ρ→(d1)), (a1; ρ→(d2))) ⊇

return f,v0((a1; d1), (a1; d2)); conversely,

a2 ⊇ return f,v0((a1; d1), (a1; d2))

⇒ ρ(a2) ⊇ ρ(return f,v0((a1; d1), (a1; d2)))

(A is compatible) ⇒ a2 ⊇ ρ(return f,v0(ρ(a1; d1), ρ(a1; d2)))

(∗∗) ⇒ a2 ⊇ return f,v0(ρ
→(a1; d1), ρ

→(a1; d2))

(A → A condens.) ⇒ a2 ⊇ return f,v0(ρ
→(a1; ρ→(d1)), ρ

→(a1; ρ→(d2)))

(ρ→ is expansive) ⇒ a2 ⊇ return f,v0((a1; ρ→(d1)), (a1; ρ→(d2)))

where (∗∗) follows since A ⊆ A → A entails that ρ(d) ⊇ ρ→(d) for every d ⊆ ∆.
Every element of A → A has the form (a1

1 → a1
2) ∩ · · · ∩ (aq

1 → aq
2), so that

(a1
1 → a1

2) ∩ · · · ∩ (aq
1 → aq

2) ⊇ return f,v0(ρ
→(d1), ρ

→(d2))

iff ai
1 → ai

2 ⊇ return f,v0(ρ
→(d1), ρ

→(d2)) for every 1 ≤ i ≤ q

iff ai
1 → ai

2 ⊇ return f,v0(d1, d2) for every 1 ≤ i ≤ q

iff (a1
1 → a1

2) ∩ · · · ∩ (aq
1 → aq

2) ⊇ return f,v0(d1, d2).

We conclude that

ρ→(return f,v0(ρ
→(d1), ρ

→(d2)))

= ∩{a ∈ A → A | a ⊇ return f,v0(ρ
→(d1), ρ

→(d2))}

= ∩{a ∈ A → A | a ⊇ return f,v0(d1, d2)}

= ρ→(return f,v0(d1, d2)). �

8. The linear refinement C → C is optimal and condensing

Definition 4 gives a basic domain C for constancy which models the set of variables which are constant in the output
of a denotation. If we linearly refine C into C → C, we obtain a new abstract domain for constancy propagation.

Example 19. The denotation δ1 of Example 2 is such that by keeping x constant in the input variable y is constant in
the output. Hence δ1 ∈ x → y. The denotation δ4 of Example 4 is such that δ4 ∈ y → x since if y is constant in the
input of δ4 then x is also constant in its output (if y is chosen in such a way to make δ4 undefined, the value of x in
the output of δ4 is always undefined). The denotation δ5 of Example 5 is such that δ5 ∈ y → x. This is because by
keeping y constant in the input of δ5 variable x is constant in its output. Note that δ5 6∈ O → x since by leaving y free
in the input of δ5 then variable x can have both values 4 and 5 in its output, so that it is not constant. �

Lemma 6. Let v ∈ V . We have O → v = v.

Proof. Let δ ∈ O → v and ι be the identity denotation, which is such that ι(σ) = σ for every σ ∈ Σ . We have
ι ∈ ∆ = O, so that ι; δ = δ ∈ v. Conversely, let δ ∈ v. Constancy is closed by composition (Lemma 1), so δ; δ ∈ v
for every δ ∈ ∆ = O. Hence δ ∈ O → v. �

The domain C → C is shown in Fig. 3 for the case when V = {x, y}. The element x stands for O → x. There
are no arrows with more than one variable on the right since by Proposition 4 we can always factorise L → xy into
(L → x) ∩ (L → y). Moreover, there are no arrows with more than one variable on the left since otherwise, for the
case V = {x, y}, we could only have xy → x and xy → y which are both tautological arrows and hence equivalent
to the top ∆{x,y} (if the initial values of all variables are constant then the final value of each variable can only be
constant). Note that for larger V we would have non-tautological arrows such as xy → x and xy → z.

We prove now that C → C is strictly more expressive than C i.e., that it contains all the abstract properties
expressed by C.

72 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

∆{x,y}

jjjjjjjjjjjjjjjjjjjjjjjjj

??
??

??
??

??

��
��

��
��

��
�

TTTTTTTTTTTTTTTTTTTTTTTTT

y→x

@@
@@

@@
@@

@@
@

//
//

//
//

//
//

//
//

//
/

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ x→x

~~
~~

~~
~~

~~
~

@@
@@

@@
@@

@@
@

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ y→y

~~
~~

~~
~~

~~
~

@@
@@

@@
@@

@@
@

ttttttttttttttttttttttttttttttt
x→y

~~
~~

~~
~~

~~
~

��
��
��
��
��
��
��
��
��
�

ttttttttttttttttttttttttttttttt

x

��
��
��
��
��
��
��
��
��
�

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ (x→x)∩(y→y)

ttttttttttttttttttttttttttttttt

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
y

tttttttttttttttttttttttttttttttt

//
//

//
//

//
//

//
//

//
/

(y→x)∩(y→y)

~~
~~

~~
~~

~~

@@
@@

@@
@@

@@
(x→y)∩(y→x)

~~
~~

~~
~~

~~

@@
@@

@@
@@

@@
(x→x)∩(x→y)

~~
~~

~~
~~

~~

@@
@@

@@
@@

@@

x∩(y→y) y∩(y→x) x∩(x→y) y∩(x→x)

x∩y

UUUUUUUUUUUUUUUUUUUUUUUUU

~~~~~~~~~~~

@@@@@@@@@@@

iiiiiiiiiiiiiiiiiiiiiiiii

Fig. 3. The abstract domain C{x,y} → C{x,y}.

Proposition 6 (C → C is More Expressive than C). We have C ⊆ C → C. If #V ≥ 2 the inclusion is strict. If
#V = 1 we have C = C → C.

Proof. Since O ∈ C then for every v ∈ V we have O → v ∈ C → C. By Lemma 6 we have that O → v = v so that
v ∈ C → C, that is, C ⊆ C → C.

Assume that #V ≥ 2. To prove the strict inclusion, let x, y ∈ V , x 6≡ y. Let ι be the identity denotation. Since no
variable is constant in ι, we have ι ∈ O and ι 6∈ c for all c ∈ C \ {O}. We have ι ∈ x → x. This is because for all δ ∈ x
we have δ; ι = δ ∈ x. To prove that C ⊂ C → C it is then enough to show that x → x 6= O. Consider δ such that
δ(σ ) = σ [x 7→ σ(y)]. We have δ ∈ O but δ 6∈ x → x, since if we take δ ∈ x such that δ(σ ) = σ [x 7→ 0] we have
δ; δ = δ 6∈ x (no variable is constant in δ).

If #V = 1 then v → v = O → O = v → O = O and O → v = v (Lemma 6). Hence C → C = {O, O → v} =

{O, v} = C. �

We show now that, if we linearly refine C → C, we end up with C → C itself. Hence C → C contains already all
possible dependences between constancy of variables and in this sense it is optimal [12]. To prove this result we need
three technical lemmas.

Lemma 7. Let vs1, vs2 ⊆ V , σ1, σ2 ∈ ΣV be such that σ1|vs1 = σ2|vs1 and δ ∈ vs1 → vs2. Then δ(σ1)|vs2 = δ(σ2)|vs2 .

Proof. Define δ′ such that δ′(σ ) = σ [z → σ1(z) | z ∈ vs1] for all σ ∈ ΣV . We have δ′(σ1) = σ1 and δ′(σ2) = σ2.
For all σ ′

1, σ
′

2 ∈ ΣV and z ∈ vs1 we have δ′(σ ′

1)(z) = σ1(z) = δ′(σ ′

2)(z) so that δ′
∈ vs1. Since δ ∈ vs1 → vs2, we

have δ′
; δ ∈ vs2 and hence δ(σ1)|vs2 = δ(δ′(σ1))|vs2 = δ(δ′(σ2))|vs2 = δ(σ2)|vs2 . �

The second lemma states that two arrows with the same right hand side are equivalent to one arrow.

Lemma 8. Let vs1, vs2 ⊆ V , vs = vs1 ∩ vs2 and y ∈ V . We have

(vs1 → y) ∩ (vs2 → y) = vs → y.

Proof. Let δ ∈ vs → y. We prove that δ ∈ (vs1 → y) ∩ (vs2 → y). Let hence δ ∈ vs1. Since vs1 ⊇ vs we have
vs1 ⊆ vs. Then δ ∈ vs that is δ; δ ∈ y so that δ ∈ vs1 → y. It can be proved symmetrically that δ ∈ vs2 → y. Then
δ ∈ (vs1 → y) ∩ (vs2 → y).



F. Spoto / Theoretical Computer Science 388 (2007) 53–82 73

Conversely, let δ ∈ (vs1 → y) ∩ (vs2 → y). We prove that δ ∈ vs → y.
We first prove the case when vs = ∅, which amounts to proving that δ ∈ y. Let σ1, σ2 ∈ ΣV be arbitrary. Define

σ ′

1 = σ1[v 7→ σ2(v) | v ∈ vs2]. We have σ ′

1|vs2 = σ2|vs2 . Moreover, since vs1 ∩ vs2 = ∅, we have σ1|vs1 = σ ′

1|vs1 .
From the choice of δ and by Lemma 7 we conclude that δ(σ1)(y) = δ(σ ′

1)(y) = δ(σ2)(y). Since σ1 and σ2 are
arbitrary, we have δ ∈ y.

Assume now that vs 6= ∅. Assume by contradiction that δ 6∈ vs → y. Then there is δ ∈ vs such that
δ; δ 6∈ y, that is there are σ1, σ2 ∈ Σ such that δ(δ(σ1))(y) 6= δ(δ(σ2))(y). From δ ∈ vs and vs 6= ∅ we
must have that δ is always undefined or it is total (Definition 3). But δ cannot be always undefined, since this
would entail that δ(δ(σ1))(y) = undefined = δ(δ(σ2))(y), which is a contradiction. We conclude that δ is total.
We can hence define δ1(σ ) = δ(σ )[v 7→ δ(σ2)(v) | v ∈ vs2 \ vs]. By construction, δ and δ1 coincide on vs1
so that, from δ ∈ vs1 → y, we conclude that δ(δ(σ1))(y) = δ(δ1(σ1))(y) and δ(δ(σ2))(y) = δ(δ1(σ2))(y).
Let us further define δ2(σ ) = δ1(σ )[v 7→ δ(σ1)(v) | v ∈ vs1 \ vs]. By construction, δ1 and δ2 coincide on
vs2 so that, from δ ∈ vs2 → y, we have δ(δ1(σ1))(y) = δ(δ2(σ1))(y) and δ(δ1(σ2))(y) = δ(δ2(σ2))(y). By
construction, we have δ2 ∈ vs1 ∪ vs2. From the choice of δ we have δ(δ2(σ1))(y) = δ(δ2(σ2))(y). In conclusion
we have δ(δ(σ1))(y) = δ(δ1(σ1))(y) = δ(δ2(σ1))(y) = δ(δ2(σ2)))(y) = δ(δ1(σ2))(y) = δ(δ(σ2))(y), which is a
contradiction. We conclude that δ ∈ vs → y. �

The third technical lemma shows that it is possible to write an element of (C → C) → (C → C) as an equivalent
element of C → C.

Lemma 9. Let vs2 ⊂ V , z ∈ V , I ⊂ N, vsi
1 ⊆ V and yi

∈ V for every i ∈ I . Let the yi be distinct and hence I be
finite. Let L = {yi

| i ∈ I and vsi
1 ⊆ vs2}. We have⋂

i∈I

(vsi
1 → yi) → (vs2 → z) = L → z.

Proof. Let δ ∈ L → z. We prove that δ ∈ ∩i (vsi
1 → yi) → (vs2 → z). Let hence δ1 ∈ ∩i (vsi

1 → yi) and δ2 ∈ vs2.
We have to prove that δ2; δ1; δ ∈ z. From δ2 ∈ vs2 and since δ1 ∈ ∩i (vsi

1 → yi) and vsi
1 ⊆ vs2 for every yi

∈ L , we
have δ2; δ1 ∈ L. By the choice of δ we have δ2; δ1; δ ∈ z, as desired.

Let conversely δ ∈ ∩i (vsi
1 → yi) → (vs2 → z). We prove that δ ∈ L → z. Let hence δ ∈ L and assume by

contradiction that there are σ1, σ2 ∈ ΣV such that (δ; δ)(σ1)(z) 6= (δ; δ)(σ2)(z), that is δ(δ(σ1))(z) 6= δ(δ(σ2))(z).
Let Y = {yi

| i ∈ I } and let us define

δ2(σ )(v) =


0 if v ∈ vs2

1 if v 6∈ vs2 and σ = σ1

2 if v 6∈ vs2 and σ 6= σ1

δ1(σ )(v) =



δ(σ )(v) if v ∈ L
δ(σ1)(v) if v 6∈ L , v = yi for some i

and σ(w) = 1 for all w ∈ vsi
1 \ vs2

δ(σ2)(v) if v 6∈ L , v = yi for some i
and σ(w) 6= 1 for some w ∈ vsi

1 \ vs2

δ(σ1)(v) if v 6∈ Y and σ(w) = 1 for all w 6∈ vs2

δ(σ2)(v) if v 6∈ Y and σ(w) 6= 1 for some w 6∈ vs2.

The idea underlying these definitions is that δ2 makes the variables in vs2 constant while the other variables are
constrained to 1 or 2 depending on the parameter σ , so that we can distinguish when δ2 is applied to σ1 or to σ2.
This distinction is possible since in the hypotheses of this lemma we have vs2 ⊂ V , so that there is at least a variable
which is not in vs2. The definition of δ1 is such that δ1 makes the variables in L constant, since δ ∈ L. Moreover, the
variables v = yi

∈ Y \ L are bound to δ(σ1)(v) if there is a variable in vsi
1 \ vs2 which is bound to 1, and to δ(σ2)(v)

otherwise. Note that if v = yi
∈ Y \ L then vsi

1 \ vs2 6= ∅. The variables not in Y are treated similarly, by looking at
the variables which are not in vs2. As a consequence of these definitions, we have:



74 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

δ2 ∈ vs2: this is because δ2 constantly binds to 0 the variables in vs2;

δ1 ∈ ∩i (vsi
1 → yi): let δ

′
∈ vsi

1 and σ ′
∈ Σ . If yi

∈ L then we have that δ1(δ
′
(σ ′))(yi ) = δ(δ

′
(σ ′))(yi ) which

is a constant by definition of δ; if yi
6∈ L then δ1(δ

′
(σ ′))(yi ) = δ(σ1)(yi ), constantly, or δ1(δ

′
(σ ′))(yi ) =

δ(σ2)(yi ), constantly. In all cases we conclude that δ1(δ
′
(σ ′)) ∈ yi so that δ1 ∈ vsi

1 → yi. Since this is true
for every i , we have δ1 ∈ ∩i (vsi

1 → yi);

δ1(δ2(σ1)) = δ(σ1): Let v ∈ V . If v ∈ L we have δ1(δ2(σ1))(v) = δ(δ2(σ1))(v) = δ(σ1)(v) since δ ∈ L. If v 6∈ L
and v = yi for some i , since δ2(σ1)(w) = 1 for all w 6∈ vs2, we have δ1(δ2(σ1))(v) = δ(σ1)(v). For
the same reason, when v 6∈ Y , then δ1(δ2(σ1))(v) = δ(σ1)(v). In conclusion, for every v ∈ V we have
δ1(δ2(σ1))(v) = δ(σ1)(v);

δ1(δ2(σ2)) = δ(σ2): symmetrically to the case above.

As a consequence, by the choice of δ we have δ2; δ1; δ ∈ z so that

δ(δ(σ1))(z) = δ(δ1(δ2(σ1)))(z) = δ(δ1(δ2(σ2)))(z) = δ(δ(σ2))(z)

which contradicts the choice of σ1 and σ2. We conclude that δ; δ ∈ z that is δ ∈ L → z, as desired. �

It is easy now to prove that C → C is closed w.r.t. linear refinement.

Theorem 3 (C → C is Closed w.r.t. Linear Refinement). We have (C → C) → (C → C) = C → C.

Proof. We prove first that C → C ⊆ (C → C) → (C → C). Let y1
· · · yn

→ z ∈ C → C. If we prove that
y1

· · · yn
→ z ∈ (C → C) → (C → C) we have this first inclusion by Proposition 4 and since both C → C and

(C → C) → (C → C) are Moore families. But this is true since we can choose vs2 = vsi
1 = ∅ for all i = 1, . . . , n

and from Lemma 9 we conclude that

y1
· · · yn

→ z =

n⋂
i=0

(O → yi ) → (O → z) ∈ (C → C) → (C → C).

We prove now the converse inclusion, that is (C → C) → (C → C) ⊆ C → C. Let y1, . . . , ym, z ∈ V ,
vs1

1, . . . , vsm
1 , vs2 ⊆ V and consider ∩

m
i=0(vsi

1 → yi) → (vs2 → z) ∈ (C → C) → (C → C). If we prove
that it belongs to C → C then we have the thesis by Proposition 4 and since both C → C and (C → C) → (C → C)

are Moore families. But this is true when vs2 = V , since in such a case vs2 → z = O and ∩i (vsi
1 → yi) → (vs2 →

z) = ∩i (vsi
1 → yi) → O = O ∈ C → C. If instead vs2 ⊂ V , the thesis follows by Lemma 9. �

Theorem 3 entails that C → C enjoys the condensing property (Theorem 2). In order to conclude that the abstract
denotational semantics over C → C has the same precision as the abstract operational semantics over C → C, we
still have to prove that C → C is compatible with return (Theorem 1).

Proposition 7. The abstract domain C of Definition 5 is compatible with return.

Proof. Let v, v0 ∈ V , f be a function name in P and d1, d2 ⊆ ∆. We have

v ⊇ return f,v0(ρ(d1), ρ(d2))

iff for all δ ∈ return f,v0(ρ(d1), ρ(d2)) we have v ∈ const(δ)

iff v 6≡ v0 and for all δ1 ∈ ρ(d1) we have v ∈ const(δ1)

or v ≡ v0 and for all δ2 ∈ ρ(d2) we have f ∈ const(δ2)

iff (v 6≡ v0 and v ⊇ ρ(d1)) or (v ≡ v0 and f ⊇ ρ(d2))

(∗) iff (v 6≡ v0 and v ⊇ d1) or (v ≡ v0 and f ⊇ d2)

iff v ⊇ return f,v0(d1, d2)



F. Spoto / Theoretical Computer Science 388 (2007) 53–82 75

where (∗) follows from the fact that v ⊇ ρ(d1) entails v ⊇ d1 by expansivity of ρ; conversely, v ⊇ d1 entails, by
monotonicity of ρ, that ρ(v) ⊇ ρ(d1) which, by idempotency of ρ, entails that v ⊇ ρ(d1). The same proof holds for
f ⊇ d2. Since every element a ∈ C is such that a = v1 ∩ · · · ∩ vk (Definition 5), we conclude that

a ⊇ return f,v0(ρ(d1), ρ(d2))

iff for every 1 ≤ i ≤ k we have vi ⊇ return f,v0(ρ(d1), ρ(d2))

iff for every 1 ≤ i ≤ k we have vi ⊇ return f,v0(d1, d2)

iff a ⊇ return f,v0(d1, d2).

As a consequence:

ρ(return f,v0(ρ(d1), ρ(d2))) = ∩{a | a ⊇ return f,v0(ρ(d1), ρ(d2))}

= ∩{a | a ⊇ return f,v0(d1, d2)}

= ρ(return f,v0(d1, d2)). �

Theorem 4 (C → C is Condensing). The abstract domain C → C is condensing and compatible with return.
Moreover, the abstract denotational semantics (input-independent) over C → C has the same precision as the abstract
operational semantics (input-driven) over C → C.

Proof. By Theorems 2 and 3 we conclude that C → C is condensing. By Propositions 7, 6 and 5 we conclude that
C → C is compatible with return. By Theorem 1 we conclude that the abstract denotational semantics over C → C
has the same precision as the abstract operational semantics over C → C. �

Example 20. We have seen in Example 17 that the abstract operational semantics over C can be more precise than
the abstract denotational semantics over C. If we consider C → C instead, the two semantics have the same precision.
Namely, assuming V = {v, w}, we still have ρ(O; v := 2) = v and ρ(v, w := v) = vw. Hence we have

〈v := 2 || O〉 ⇒
C→C v 〈w := v || v〉 ⇒

C→C vw
〈v := 2; w := v || O〉 ⇒C→C vw

.

The abstract denotational semantics of the same command yields the same result this time:

[[v := 2; w := v]]C→C
I = [[v := 2]]C→C

I ;
C→C

[[w := v]]C→C
I

= ρ(v := 2);C→C ρ(w := v)

= (v ∩ (w → w)) ;
C→C (v → vw) = vw. �

The conclusion of this section is that we have defined an abstract domain C → C for constancy propagation as the
linear refinement of a basic domain C which expresses constancy of program variables. The domain C → C enjoys
desirable properties such as optimality and condensing. We now provide a representation of the elements of C → C
in terms of Boolean formulas, which can be efficiently implemented through binary decision diagrams [4].

9. A logical representation for C → C

We show here that Boolean formulas can be used to represent the elements of C → C. This will be achieved by
defining a notion of concretisation of a Boolean formula into a set of denotations. All elements of C → C are sets of
denotations and will be the concretisation of appropriate Boolean formulas.

Since the elements of C → C express dependences between constancy of variables in the input of a denotation and
constancy of variables in its output, we need to distinguish such variables. Hence we write v̌ for the variable v in the
input of a denotation, and v̂ for the same variable in the output of a denotation, as in [9].

Definition 20 (Input and Output Variables). Let vs ⊆ V . We define v̌s = {v̌ | v ∈ vs} and v̂s = {v̂ | v ∈ vs}. Let
vs ⊆ {v̌ | v ∈ V } ∪ {v̂ | v ∈ V }. We use the notation ∧vs = ∧{v | v ∈ vs}. �



76 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

Definition 21 (Denotational Formulas). The denotational formulas over V are the Boolean (propositional) formulas
over the variables V̌ ∪ V̂ . A model of a denotation formula φ is a set M ⊆ V̌ ∪ V̂ such that M |= φ, where

M |= true

M |= v if and only if v ∈ M

M |= φ1 ∧ φ2 if and only if M |= φ1 and M |= φ2

M |= φ1 ∧ φ2 if and only if M |= φ1 or M |= φ2

M |= φ1 ⇒ φ2 if and only if M 6|= φ1 or M |= φ2.

Two denotational formulas φ1 and φ2 are equivalent if and only if they have the same models. From now on, we
consider denotational formulas modulo logical equivalence. �

Example 21. Given V = {x, y}, denotational formulas over V are x̂ ∧ (y̌ ⇒ ŷ) as well as x̂ ∧ (ŷ ⇒ y̌). The formula
x̂ ∧ (y̌ ⇒ ŷ) is equivalent (and hence the same as) (y̌ ⇒ ŷ) ∧ x̂ . �

We specify now the meaning or concretisation of a denotational formula φ. It is the set of denotations whose behaviour
w.r.t. constancy is consistent with the propositional models of φ.

Definition 22 (Concretisation of a Denotational Formula). The concretisation of a denotational formula φ is

γ (φ) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ; δ) |= φ}. �

Example 22. Assume that V = {x, y}. The denotation δ2 of Example 3 is such that δ2(σ ) = σ [x 7→ 4] for every
σ ∈ Σ . Given δ ∈ ∆, by Lemma 1 we have ˇconst(δ)∪ ˆconst(δ; δ2) ⊇ ˆconst(δ2) = {x̂}. Moreover, if y̌ ∈ ˇconst(δ) then
ŷ ∈ ˆconst(δ; δ2). Hence ˇconst(δ)∪ ˆconst(δ; δ2) is a model of x̂∧(y̌ ⇒ ŷ) for all δ ∈ ∆, that is δ2 ∈ γ (x̂∧(y̌ ⇒ ŷ)). �

We prove that logical ∧ is the abstraction of the intersection of sets of denotations.

Lemma 10 (Concretisation of ∧). Let φ1, φ2 be denotational formulas. Then γ (φ1 ∧ φ2) = γ (φ1) ∩ γ (φ2).

Proof.

γ (φ1 ∧ φ2) =

{
δ ∈ ∆

∣∣∣∣for all δ ∈ ∆ we have
ˇconst(δ) ∪ ˆconst(δ; δ) |= (φ1 ∧ φ2)

}

=

δ ∈ ∆

∣∣∣∣∣∣
for all δ ∈ ∆ we have

ˇconst(δ) ∪ ˆconst(δ; δ) |= φ1
and ˇconst(δ) ∪ ˆconst(δ; δ) |= φ2


=

{
δ ∈ ∆

∣∣∣∣for all δ ∈ ∆ we have
ˇconst(δ) ∪ ˆconst(δ; δ) |= φ1

}
∩

{
δ ∈ ∆

∣∣∣∣for all δ ∈ ∆ we have
ˇconst(δ) ∪ ˆconst(δ; δ) |= φ2

}
= γ (φ1) ∩ γ (φ2). �

Example 23. By Lemma 10, γ (x̂ ∧ (y̌ ⇒ ŷ)) = γ (x̂) ∩ γ (y̌ ⇒ ŷ). �

The concretisation of a formula which is just an output variable is the property expressing the constancy of that
variable.

Lemma 11 (Concretisation of x̂). Let x ∈ V . We have γ (x̂) = x.

Proof.

γ (x̂) = {δ ∈ ∆ | for all δ ∈ ∆ we have ˇconst(δ) ∪ ˆconst(δ; δ) |= x̂}

= {δ ∈ ∆ | for all δ ∈ ∆ we have x ∈ const(δ; δ)}

= {δ ∈ ∆ | x ∈ const(δ)} = x,



F. Spoto / Theoretical Computer Science 388 (2007) 53–82 77

since if x ∈ const(δ; δ) for all δ ∈ ∆ then x ∈ const(δ) since we can choose δ = ι, the identity denotation. Conversely,
if x ∈ const(δ) then by Lemma 1 we have x ∈ const(δ; δ). �

Example 24. By Lemma 11, γ (x̂) ∩ γ (y̌ ⇒ ŷ) = x ∩ γ (y̌ ⇒ ŷ). �

Logical implication corresponds to linear refinement.

Lemma 12 (Concretisation of ⇒). Let X = {x1, . . . , xn}, X ⊆ V and y ∈ V . Then γ (∧X̌ ⇒ ŷ) = γ (∧X̂) → γ (ŷ).

Proof.

γ (∧X̌ ⇒ ŷ) =

{
δ ∈ ∆

∣∣∣∣for all δ ∈ ∆ we have
ˇconst(δ) ∪ ˆconst(δ; δ) |= ∧X̌ ⇒ ŷ

}

=

δ ∈ ∆

∣∣∣∣∣∣
for all δ ∈ ∆
(xi ∈ const(δ) for all i such that 1 ≤ i ≤ n)

entails y ∈ const(δ; δ)


(Lemma 11) =

δ ∈ ∆

∣∣∣∣∣∣
for all δ ∈ ∆
(δ ∈ γ (x̂i ) for all i such that 1 ≤ i ≤ n)

entails δ; δ ∈ γ (ŷ)


(Lemma 10) = {δ ∈ ∆ | for all δ ∈ γ (∧X̂) we have δ; δ ∈ γ (ŷ)}

= γ (∧X̂) → γ (ŷ). �

Example 25. By Lemma 12, x ∩ γ (y̌ ⇒ ŷ) = x ∩ (γ (ŷ) → γ (ŷ)), which by Lemma 11 is equal to x ∩ (y → y). �

The previous lemmas give us a normal form, in terms of denotational formulas, for the elements of C → C.

Theorem 5 (Normal Form for C → C). The domain C → C is isomorphic to the set of denotational formulas of the
form ∧(∧v̌s ⇒ ∧ŵs) with vs, ws ⊆ V .

Proof. Any element of C → C is the intersection of arrows of the form vs → ws with vs = {v1, . . . , vn} ⊆ V and
ws = {w1, . . . , wm} ⊆ V . If we prove that each arrow can be represented by (i.e., it is the concretisation of) a formula
∧v̌s ⇒ ∧ŵs we have the thesis by Lemma 10. We have

vs → ws =

m⋂
i=1

(vs → wi)

=

m⋂
i=1

((v1 ∩ · · · ∩ vn) → wi)

(Lemma 11) =

m⋂
i=1

((γ (v̂1) ∩ · · · ∩ γ (v̂n)) → γ (ŵi ))

(Lemma 10) =

m⋂
i=1

(γ (v̂1 ∧ · · · ∧ v̂n) → γ (ŵi ))

(Lemma 12) =

m⋂
i=1

(γ ((v̌1 ∧ · · · ∧ v̌n) ⇒ ŵi ))

(Lemma 10) = γ

(
m∧

i=1

(
(v̌1 ∧ · · · ∧ v̌n) ⇒ ŵi

))
= γ (∧v̌s ⇒ ∧ŵs). �

Example 26. Examples 23, 25 and 24 show that x̂ ∧ (y̌ ⇒ ŷ) is a representation, in normal form, of x ∩ (y → y).
Note that x̂ = ∧∅ ⇒ x̂ . �

Fig. 4 shows the Boolean representation of C{x,y} → C{x,y}.



78 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

true

jjjjjjjjjjjjjjjjjjjjjjj

CC
CC

CC
CC

CC

{{
{{

{{
{{

{{

TTTTTTTTTTTTTTTTTTTTTTT

y̌⇒x̂

<<
<<

<<
<<

<

..
..

..
..

..
..

..
..

..

IIIIIIIIIIIIIIIIIIIIIIIIIIII x̌⇒x̂

��
��

��
��

��

BB
BB

BB
BB

BB

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ y̌⇒ŷ

||
||

||
||

||

<<
<<

<<
<<

<

ttttttttttttttttttttttttttttt
x̌⇒ŷ

��
��

��
��

�

��
��
��
��
��
��
��
��
�

uuuuuuuuuuuuuuuuuuuuuuuuuuuu

x̂

��
��
��
��
��
��
��
��
��

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ (x̌⇒x̂)∧(y̌⇒ŷ)

uuuuuuuuuuuuuuuuuuuuuuuuuuuu

IIIIIIIIIIIIIIIIIIIIIIIIIIII ŷ

tttttttttttttttttttttttttttttt

..
..

..
..

..
..

..
..

..

y̌⇒(x̂∧ŷ)

��
��

��
��

�

<<
<<

<<
<<

< (x̌⇒ŷ)∧(y̌⇒x̂)

||
||

||
||

||

BB
BB

BB
BB

BB
x̌⇒(x̂∧ŷ)

��
��

��
��

�

<<
<<

<<
<<

<

x̂∧(y̌⇒ŷ) ŷ∧(y̌⇒x̂) x̂∧(x̌⇒ŷ) ŷ∧(x̌⇒x̂)

x̂∧ŷ

TTTTTTTTTTTTTTTTTTTTTT

||||||||||

BBBBBBBBBB

jjjjjjjjjjjjjjjjjjjjjj

Fig. 4. The representation of C{x,y} → C{x,y} in terms of denotational formulas.

10. The domain IF coincides with C → C

In this section we prove that IF and C → C are the same abstract domain i.e., that they express exactly the same
properties of concrete denotations.

We start with a technical lemma which states that if a denotation does not feature any flow from a set of variables
V \ S into a given variable y, then y’s value in the output of the denotation depends only on the input values of the
variables in S.

Lemma 13. Let y ∈ V , S ⊆ V , δ ∈ ∆, which does not feature any flow v y with v ∈ V \ S, and σ1, σ2 ∈ Σ . Then
σ1|S = σ2|S entails δ(σ1)(y) = δ(σ2)(y).

Proof. Let V \ S = {v1, . . . , vn}. Define σ 0
1 = σ1, σ 0

2 = σ2 and σ i
1 = σ i−1

1 [vi 7→ max(σ1(vi ), σ2(vi )],
σ i

2 = σ i−1
2 [vi 7→ max(σ1(vi ), σ2(vi )] for 1 ≤ i ≤ n. Note that either σ i

1 = σ i−1
1 or they differ at vi ∈ V \ S

only. The same holds between σ i
2 and σ i−1

2 . Since δ does not feature any flow vi y, in both cases we have
δ(σ i

1)(y) = δ(σ i−1
1 )(y) and δ(σ i

2)(y) = δ(σ i−1
2 )(y). Moreover, σ n

1 = σ n
2 . Hence δ(σ1)(y) = δ(σ 0

1 )(y) = δ(σ 1
1 )(y) =

· · · = δ(σ n
1 )(y) = δ(σ n

2 )(y) = · · · = δ(σ 1
2 )(y) = δ(σ 0

2 )(y) = δ(σ2)(y). �

We prove now that IF ⊆ C → C, by implementing each element of IF through an element of C → C.

Lemma 14. Let f = x1 y1, . . . , xn yn ∈ IF. We have

f = ∩{S(y) → y | y ∈ V and S(y) = {xi | xi y ∈ f }}.

Proof. Let δ ∈ x1 y1, . . . , xn yn . We prove that δ ∈ S(y) → y for each y ∈ V . Let δ ∈ S(y) and σ1, σ2 ∈ Σ .
We have δ(σ1)|S(y) = δ(σ2)|S(y). Moreover, δ does not feature any flow v y with v 6∈ S(y). By Lemma 13 we have
(δ; δ)(σ1)(y) = δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ; δ)(σ2)(y) i.e., δ; δ ∈ y.

Conversely, assume that δ ∈ S(y) → y for every y ∈ V . We show that if δ features a flow v w then v ≡ xi and
w ≡ yi for some 1 ≤ i ≤ n.

w ∈ {y1, . . . , yn}. Let by contradiction w 6∈ {y1, . . . , yn}. There exist σ1, σ2 ∈ Σ such that σ1|V \v = σ2|V \v and
δ(σ1)(w) 6= δ(σ2)(w). Since S(w) = ∅, we have δ ∈ O → w = w. Then δ(σ1)(w) = δ(σ2)(w), a
contradiction.



F. Spoto / Theoretical Computer Science 388 (2007) 53–82 79

v ∈ {xi | xi w ∈ f }. Let by contradiction v 6∈ {xi | xi w ∈ f } i.e., v 6∈ S(w). There exist σ1, σ2 ∈ Σ such
that σ1|V \v = σ2|V \v and δ(σ1)(w) 6= δ(σ2)(w). Let δ be such that δ(σ ) = σ1[v 7→ σ(v)]. We have
δ(σ1) = σ1, δ(σ2) = σ2. Moreover, we have δ ∈ S(w) since v 6∈ S(w). We conclude that δ; δ ∈ w.
But (δ; δ)(σ1)(w) = δ(δ(σ1))(w) = δ(σ1)(w) 6= δ(σ2)(w) = δ(δ(σ2))(w) = (δ; δ)(σ2)(w), which is a
contradiction. �

Example 27. Consider the abstract element y y over V = {x, y}. We have S(x) = ∅ and S(y) = {y}. Then
y y = (O → x) ∩ (y → y) = x ∩ (y → y). �

We prove now that C → C ⊆ IF. We first show that each single arrow in C → C belongs to IF (Lemma 15) and
then lift this result to arbitrary elements of C → C (Theorem 6).

Lemma 15. Let x1, . . . , xn, y ∈ V . We have

x1 · · · xn → y = {v w | v ∈ V and w ∈ V \ y}

∪ {v y | v ∈ {x1, . . . , xn}}.

Proof. Let δ ∈ x1 · · · xn → y. Assume that δ features a flow v w. If w 6≡ y then v w ∈ {v w | v ∈ V and w ∈

V \ y}. Assume then w ≡ y. We must prove that v ∈ {x1, . . . , xn}. Let by contradiction v 6∈ {x1, . . . , xn}. There
are σ1, σ2 ∈ Σ such that σ1|V \v = σ2|V \v and δ(σ1)(y) 6= δ(σ2)(y). Let δ(σ ) = σ1[v 7→ σ(v)]. We have
δ(σ1) = σ1 and δ(σ2) = σ2. Moreover, since v 6∈ {x1, . . . , xn}, we have δ ∈ x1 · · · xn. Then δ; δ ∈ y. But
(δ; δ)(σ1)(y) = δ(δ(σ1))(y) = δ(σ1)(y) 6= δ(σ2)(y) = δ(δ(σ2))(y) = (δ; δ)(σ2)(y), which is a contradiction.

Conversely, let δ feature flows in {v w | v ∈ V and w ∈ V \ y} ∪ {v y | v ∈ {x1, . . . , xn}} only. Let
δ ∈ x1 · · · xn. We must prove that δ; δ ∈ y. Given σ1, σ2 ∈ Σ , we have δ(σ1)|{x1,...,xn} = δ(σ2)|{x1,...,xn} since
δ ∈ x1 · · · xn. Moreover, δ does not feature any flow from any v ∈ V \ {x1, . . . , xn} to y. By Lemma 13 we
have (δ; δ)(σ1)(y) = δ(δ(σ1))(y) = δ(δ(σ2))(y) = (δ; δ)(σ2)(y). Since σ1 and σ2 are arbitrary, we conclude that
δ; δ ∈ y. �

Example 28. Consider the abstract element x ∩ (y → y) over V = {x, y}. By Lemma 15 we have x = O → x =

{v w | v ∈ V and w ∈ V \ x} ∪ {v x | v ∈ ∅} = {x y, y y} ∪ ∅ = {x y, y y}. By the same lemma,
y → y = {v w | v ∈ V and w ∈ V \ y} ∪ {v y | v ∈ {y}} = {x x, y x} ∪ {y y} = {x x, y x, y y}. The
intersection of x and y → y is then {y y}. This is the converse of Example 27. �

We can now prove that the domain IF for information flow analysis is the linear refinement of the basic domain for
constancy.

Theorem 6 (IF and C → C Coincide). We have

IF = C → C.

Proof. By Lemma 14 we conclude that IF ⊆ C → C. Conversely every element of C → C is the intersection
of arrows of the form vs → vs′. We can assume that vs′ is a single variable, since vs → (vs1 ∩ vs2) = (vs →

vs1) ∩ (vs → vs2) (Proposition 4). By Lemma 15 and since IF is closed by intersection (Proposition 2) we conclude
that C → C ⊆ IF. �

As a consequence, one can pass from Fig. 1 to Fig. 3 by using Lemma 14 (as in Example 27) and from Fig. 3 to Fig. 1
by using Lemma 15 (as in Example 28).

Since IF = C → C, we can extend to IF the results already proved for C → C.

Proposition 8 (Optimality, Condensing and Boolean Representation of IF). The domain IF is closed by linear
refinement and is hence optimal and condensing. Its elements can be represented through Boolean formulas.

Proof. By Theorems 6, 3 and 5. �

By Theorems 6 and 5 we conclude that the elements of IF{x,y}, shown in Fig. 1, are each represented by the
corresponding Boolean formula in Fig. 4.



80 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

Example 29. Consider V = {x, y} and y y ∈ IFV . In Example 27 we have seen that y y = x ∩ (y → y).
In Example 26 we have seen that x ∩ (y → y), and hence also y y, is represented by the Boolean formula
x̂ ∧ (y̌ ⇒ ŷ). �

11. The domain Independ coincides with C → C

We prove here that the domain Independ of Definition 8 coincides with the linear refinement C → C and hence
with IF (Section 10).

We first show that independence can be expressed in terms of constancy propagation.

Lemma 16. Let i, o ∈ V . We have

[o#i] = V \ i → o.

Proof. Let δ ∈ V \ i → o. We want to prove that δ ∈ [o#i]. Let hence σ1, σ2 be such that σ1|V \i = σ2|V \i . We have
to prove that δ(σ1)(o) = δ(σ2)(o). To that purpose, define δ such that δ(σ ) = σ1|V \i [i 7→ σ(i)] for every σ ∈ Σ . We
have δ ∈ V \ i so that δ; δ ∈ o. This entails that δ(σ1)(o) = δ(δ(σ1))(o) = δ(δ(σ2))(o) = δ(σ2)(o), as desired.

Let conversely δ ∈ [o#i]. We want to prove that δ ∈ V \ i → o. Let hence δ ∈ V \ i. We have to prove that δ; δ ∈ o.
To that purpose, let σ1, σ2 ∈ Σ . We have δ(σ1)|V \i = δ(σ2)|V \i . Hence (δ; δ)(σ1)(o) = δ(δ(σ1))(o) = δ(δ(σ2))(o) =

(δ; δ)(σ2)(o), as desired. �

This is enough to conclude that Independ and C → C are included in one another and hence coincide.

Lemma 17. Let [o1#i1] · · · [on#in] ∈ Independ. We have

[o1#i1] · · · [on#in] =

n⋂
j=1

(
V \ ij → oj

)
∈ C → C

and hence Independ ⊆ C → C.

Proof. By Lemma 16 and since C → C is a Moore family. �

Example 30. Consider V = {x, y} and [x#x][x#y][y#x] ∈ Independ. By Lemma 17 we have

[x#x][x#y][y#x] = (y → x) ∩ (x → x) ∩ (y → y)

(Lemma 8) = (∅ → x) ∩ (y → y)

= x ∩ (y → y).

By Example 27 we also conclude that [x#x][x#y][y#x] = x ∩ (y → y) = y y. �

Lemma 18. Let w1 · · · wn → v ∈ C → C. We have

w1 · · · wn → v = [v#i1] · · · [v#in]

where {i1, . . . , in} = V \ {w1 · · · wn}. Moreover, we have C → C ⊆ Independ.

Proof. By Lemma 8 we have

w1 · · · wn → v =

⋂
w∈V \{w1···wn}

(V \ w → v)

(Lemma 17) = [v#i1] · · · [v#in].

Since w1 · · · wn → v1 · · · vm = ∩i=1,...,m(w1 · · · wn → vi) and since both C → C and Independ are Moore families,
hence closed by intersection, the above proof that any arrow w1 · · · wn → v ∈ C → C belongs to Independ lets us
conclude that C → C ⊆ Independ. �

Example 31. Consider V = {x, y} and x = O → x ∈ C → C. By Lemma 18, by letting {i1, i2} = V \ ∅ = {x, y}

we have O → x = [x#x][x#y]. Consider now y → y ∈ C → C. By Lemma 18, by letting {i1} = V \ {y} = {x} we
have y → y = [y#x]. We conclude that x ∩ (y → y) = [x#x][x#y][y#x] (this is the converse of Example 30). By
Example 27 we also conclude that x ∩ (y → y) = [x#x][x#y][y#x] = y y. �



F. Spoto / Theoretical Computer Science 388 (2007) 53–82 81

Theorem 7 (Independ and C → C Coincide). We have

Independ = C → C.

Proof. By Lemmas 17 and 18. �

As a consequence, one can pass from Fig. 2 to Fig. 3 by using Lemma 17 (as in Example 30) and from Fig. 3 to Fig. 2
by using Lemma 18 (as in Example 31).

Since Independ = C → C, we can extend to Independ the results already proved for C → C.

Proposition 9 (Optimality, Condensing and Boolean Representation of Independ). The domain Independ is closed
by linear refinement and is hence optimal and condensing. Its elements can be represented through Boolean formulas.

Proof. By Theorems 7, 3 and 5. �

By Theorems 7 and 5 we conclude that the elements of Independ{x,y}, shown in Fig. 2, are each represented by the
corresponding Boolean formula in Fig. 4.

Example 32. Consider V = {x, y} and [x#x][x#y][y#x] ∈ IndependV . In Example 30 we have seen that
[x#x][x#y][y#x] = x∩ (y → y) and in Example 26 that x∩ (y → y), and hence also [x#x][x#y][y#x], is represented
by the Boolean formula x̂ ∧ (y̌ ⇒ ŷ). �

12. Discussion

We have used linear refinement [13] to reconstruct two existing domains: IF for information flow analysis (defined
in [9] and implemented through Boolean formulas in [10]) and Independ for variable independence analysis (defined
in [3]). This has allowed us to prove that they are optimal and condensing. Moreover, this gives them an efficient
representation in terms of Boolean formulas. This result has been achieved by defining a new abstract domain C
which expresses constancy of variables and by refining C into its linear refinement C → C. The latter has been shown
to enjoy optimality, to be condensing and representable in terms of Boolean formulas. Finally, C → C has been shown
to coincide with both IF and Independ. As a secondary result, this also proves that IF and Independ coincide.

The equivalence of IF and Independ does not entail that the analysis in [9] is equivalent to that in [3]. While
the former is based on abstract compilation of the program into a Boolean formula [14], the latter uses a Hoare-like
approach based on weakest preconditions and strongest postconditions. Those techniques are very different in the way
they use the information expressed by the abstract domain. However, our result entails that whatever one can do with
IF, one can also do it with Independ, and vice versa.

A recent work [15] presents formal properties of a family of flow-sensitive type systems for information flow
analysis. The main result is that a universal type system exists and that it is the dual of a termination insensitive
version of the Independ domain of [3]. However, there is no proof of optimality in the sense that we use the term in
this paper: the abstract domain is closed by linear refinement and hence contains all possible dependences between
abstract properties of the input (namely, constancy in the input) and abstract properties of the output. Moreover, [15]
gives no proof of the condensing property. Our results in this paper allows one to implement an information flow
analysis based on the efficient binary decision diagrams. This has been actually achieved in [10]. This is not the
case for [15] which, as far as we know, has never been implemented and has only been defined for a simple while
language. Furthermore, note that we consider termination sensitive information flows, so that a formal comparison
with [15] is not easy.

The way we have reconstructed complex domains from simpler ones has many similarities with the reconstruction
through linear refinement of abstract domains for groundness analysis of logic programs [19]. In particular, constancy
is the imperative counterpart of groundness in logic programming. There, however, two iterations of linear refinement
(only one here) are needed to reach an abstract domain which is closed w.r.t. further refinements. There might also
be relations with strictness analysis of functional programs, which has also been proved to enjoy some optimality
property [20]. There, optimality means that precision cannot be improved as long as constant symbols are abstracted
away. It is enlightening to observe that the same abstraction is used in groundness analysis of logic programs, where
all functor symbols are abstracted away. In information flow analysis, values are abstracted away, and only their
constancy is observed. These similarities might not be casual. We are not saying however that such results from logic



82 F. Spoto / Theoretical Computer Science 388 (2007) 53–82

and functional programming can be useful for information flow analysis of imperative programs. The languages and
the abstract properties are very different. The similarity is only in the way we have reconstructed complex abstract
domains from simpler ones, by using linear refinement.

Our notion of constancy for a variable v coincides with the definition of agreement for v among different runs given
in [1]. The relation between constancy propagation and independence is hence already recognised in [1], although no
proof of optimality or condensing is provided there. Moreover, we also link constancy to information flows and we
use the elegant technique of linear refinement to build independency from constancy.

We are confident that our work can be generalised to declassified forms of non-interference (or, equivalently, to
declassified forms of information flows or of variable independence), such as abstract non-interference [11]. One
should consider a declassified form of constancy as the basic domain to refine. Declassified constancy means that a
variable is always bound to a given abstract value, as specified by the declassification criterion, rather than to a given
concrete value. This amounts to modifying Definition 3 by using an abstract notion of equality between δ(σ1)(v) and
δ(σ2)(v). For instance, this equality might only observe the parity or the sign of concrete values. The generalisation
of our work to abstract non-interference is however completely out of the scope of this paper.

References

[1] T. Amtoft, S. Bandhakavi, A. Banerjee, A logic for information flow in object-oriented programs, in: Proc. of 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’06, Charleston, South Carolina, USA, January 2006, pp. 91–102.

[2] T. Amtoft, A. Banerjee, Information flow analysis in logical form, in: R. Giacobazzi (Ed.), Proc. of Static Analysis Symposium, SAS’04,
in: Lecture Notes in Computer Science, vol. 3148, Springer-Verlag, 2004, pp. 100–115.

[3] T. Amtoft, A. Banerjee, A logic for information flow analysis with an application to forward slicing of simple imperative programs, Science
of Computer Programming 64 (1) (2007) 3–28.

[4] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers 35 (8) (1986) 677–691.
[5] D. Clark, C. Hankin, S. Hunt, Information flow for algol-like languages, Computer Languages and Security 28 (1) (2002) 3–28. April.
[6] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of

fixpoints, in: Proc. of the 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’77, 1977, pp. 238–252.
[7] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proc. of the 6th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’79, 1979, pp. 269–282.
[8] D. Denning, P. Denning, Certification of programs for secure information flow, Communications of the ACM 20 (7) (1977) 504–513.
[9] S. Genaim, R. Giacobazzi, I. Mastroeni, Modeling secure information flow with Boolean functions, in: P. Ryan (Ed.), ACM SIGPLAN and

GI FoMSESS Workshop on Issues in the Theory of Security, April 2004, pp. 55–66.
[10] S. Genaim, F. Spoto, Information flow analysis for Java Bytecode, in: R. Cousot (Ed.), Proc. of the Sixth International Conference on

Verification, Model Checking and Abstract Interpretation, VMCAI’05, in: Lecture Notes in Computer Science, vol. 3385, Paris, France,
January 2005, pp. 346–362.

[11] R. Giacobazzi, I. Mastroeni, Abstract non-interference: Parameterizing non-interference by abstract interpretation, in: Proc. of the 31st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’04, Venice, Italy, January 2004, pp. 186–197.

[12] R. Giacobazzi, F. Ranzato, F. Scozzari, Making abstract domains condensing, ACM Transactions on Computational Logic (ACM-TOCL) 6
(1) (2005) 33–60.

[13] R. Giacobazzi, F. Scozzari, A logical model for relational abstract domains, ACM Transactions on Programming Languages and Systems
(ACM TOPLAS) 20 (5) (1998) 1067–1109.

[14] M. Hermenegildo, W. Warren, S.K. Debray, Global flow analysis as a practical compilation tool, Journal of Logic Programming 13 (2–3)
(1992) 349–366.

[15] S. Hunt, D. Sands, On flow-sensitive security types, in: Proc. of 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’06, Charleston, South Carolina, USA, January 2006, pp. 79–90.

[16] P. Ørbæk, J. Palsberg, Trust in the λ-calculus, Journal of Functional Programming 7 (6) (1997) 557–591.
[17] A. Sabelfeld, A.C. Myers, Language-based information-flow security, IEEE Journal on Selected Areas in Communications 21 (1) (2003)

5–19.
[18] A. Sabelfeld, D. Sands, A PER model of secure information flow in sequential programs, Higher-Order and Symbolic Computation 14 (1)

(2001) 59–91.
[19] S. Scozzari, Logical optimality of groundness analysis, Theoretical Computer Science 277 (1–2) (2002) 149–184.
[20] M.C. Sekar, P. Mishra, I.V. Ramakrishnan, On the power and limitation of strictness analysis based on abstract interpretation, in: Proc. of the

18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’91, Orlando, Florida, January 1991, pp. 37–48.
[21] F. Spoto, Information flow is linear refinement of constancy, in: Proc. of the International Colloquium on Theoretical Aspects of Computing,

ICTAC’05, October 2005, Hanoi, Vietnam, in: Lecture Notes in Computer Science, vol. 3722, pp. 351–365.
[22] D. Volpano, G. Smith, C. Irvine, A sound type system for secure flow analysis, Journal of Computer Security 4 (2–3) (1996) 167–187.
[23] G. Winskel, The Formal Semantics of Programming Languages, The MIT Press, 1993.


	Optimality and condensing of information flow through linear refinement
	Introduction
	Compositionality, input-independency and condensing
	Preliminaries
	Functions and ordered sets
	Denotations and constancy
	Abstract domains and abstract interpretation. The abstract domain C

	The abstract domain IF
	The abstract domain Independ
	Operational and denotational semantics. Condensing
	Operational semantics
	Denotational semantics
	Abstract semantics
	The condensing property

	Linear refinement
	The linear refinement CC is optimal and condensing
	A logical representation for CC
	The domain IF coincides with CC
	The domain Independ coincides with CC
	Discussion
	References


