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FRAMEWORK AND AIMS 

Forensic science is a discipline that combines the knowledge of chemistry, biology, pharmacology, 

statistics, mathematics, physics, and medicine, among others. Statistics is used for different types 

of analysis regarding the certainty of results, regressions, predictions, and probabilities. Mathematics 

and physics are used, for instance, in the determination of bullet trajectories or calculating the 

likelihood of one fingerprint belonging to one person or another. Medicine is applied in the autopsy 

room to determine the time and cause of death, and any other queries related to the body that doctors 

and scientists might need for parallel studies. Chemistry is extensively used in forensic science. 

From the use of infrared (IR) and nuclear magnetic resonance (NMR) for structural characterisation 

of drugs, to the use of chromatographic techniques coupled with mass detection for the elucidation 

of metabolic pathways, or identification and determination of drugs in several biological matrices. 

Also, to establish the elemental composition of gunshot residue (GSR) for identifying the firearm 

used to shoot a person and the distance of the shooter, techniques such as scanning electron 

microscope (SEM) with energy dispersive X-ray spectroscopy (SEM-EDS) are used. 

Spectrophotometry is another important technique that is used, for example, to determine the 

concentration of compounds, such as poisons, dissolved in other liquids. In the area of arson, gas 

chromatography coupled with mass detection (GC-MS/MS) is used, for instance, for the analysis 

and identification of volatile liquids that might have been used as accelerants in arson cases. 

Moreover, techniques such as surface-enhanced Raman spectroscopy (SERS) can be used for the 

identification of explosives from crime scenes debris. In the discipline of environmental forensics, 

techniques such as X-Ray diffraction and ion mobility spectrometry (IMS) can be used for the 

characterisation of soil samples in order to compare them with a soil sample from a cadaver. 

Moreover, IMS is currently used in airport security for the detection of explosives. Entomology and 

botany, two biological disciplines, are also heavily used in forensic science. For example, through 

the study of insects, bugs, plants, and trees, the time of death could be established, as well as the 

discovery of clandestine graveyards. And last but not least, identification of the victim through DNA 

or fingerprints. Forensic science truly is a highly multidisciplinary field. 

This is only a glimpse of all that forensic science encompasses as a discipline. Currently, all areas 

of forensic science require the attention of scientists for improvement, and this doctoral thesis was 

focused on two of them. The first is the estimation of the time of death, which is extremely important 

when bodies are disposed and hidden, where the main methodologies for the estimation of the time 

of death are only useful up to 48 hours. The second one is related to the emerging threat of a new 

type of illicit drugs called novel psychoactive substances (NPS) and the aim is two-fold: metabolic 

pathway elucidation, which is relevant for toxicological risk assessment in order to develop drug 

screening procedures for the detection of drugs and their metabolites in blood or urine and to 

correctly administer an antidote; and the development and validation of a new method for the 
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determination of NPS in hair, which is relevant when some other biological matrices might not be 

available or might not give the necessary information. 

Given all the aforementioned considerations and the emphasis on the multidisciplinary nature of 

forensic science, the aims of the present doctoral thesis are 3-fold: 

 Validation of a capillary electrophoresis (CE) method for the determination of ammonium in 

vitreous humour. Furthermore, to explore the use of potassium and ammonium in vitreous 

humour with different statistical analyses in order to improve the estimation of the post-

mortem interval (PMI) 

 Metabolic pathway elucidation of 5F-APINAC (adamantan-1-yl 1-(5-fluoropentyl)-1H-

indazole- 3-carboxylate), a synthetic cannabinoid which is one of the emerging NPS 

 Development and validation of a fast and sensitive method for the screening of 13 new 

synthetic cannabinoids in human hair  
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CAPILLARY ELECTROPHORESIS (CE) APPLIED TO FORENSIC 

SCIENCE 

1. CAPILLARY ELECTROPHORESIS 

Capillary electrophoresis (CE) is an analytical technique that separates charged molecules in small 

sample volumes quickly and efficiently. Separations take place inside a small capillary due to the 

ion’s differences in electrophoretic mobilities in an electrophoretic environment. Historically, the first 

trial for electrophoretic separation took place in 1886 when Lodge tried to migrate a H+ in a tube of 

phenolphthalein “jelly”. Due to continuous research in chromatography and electrophoresis, the 

technique has evolved to its present form [1]. 

 

Figure 1. Capillary electrophoresis instrumental set-up 

The instrumental set-up is depicted in Figure 1. It generally consists of a capillary (where the 

separation takes place) that goes through the optical centre of a detector; two electrodes made of 

platinum, the anode and cathode; an autosampler; a high voltage power supply; and two buffer 

reservoirs to submerge the electrodes and capillary. For separation to take place, the capillary is 

filled with the buffer solution, then the sample is injected, and voltage is applied. This causes 

electroendosmotic and electrophoretic movements which result in the sample moving towards the 

cathode passing through the detector [2].  

The most used capillaries are fused silica with an external polyamide coating to protect them and 

with internal diameters between 20-100 µm. On the inner wall silanol groups are present. One of the 

main advantages of the CE is that only very little sample is injected (to the order of nL) due to small 

volume of the capillary column and this represents a great advantage particularly when dealing with 

low amount of samples, such as in vitreous humour analysis [3]. 
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1.1 FUNDAMENTALS 

1.1.1 ELECTROPHORESIS AND ELECTROOSMOTIC FLOW 

The electrophoresis movement is the process by which ions move from one electrode to the other 

due to the applied voltage. The ion’s mobility (migration rate) is ruled by the number of ionic charges 

and its size (Eq.(1)). 

(1)                 µ𝐸 = (
𝑞

6𝛱
) 𝜂𝑟 

where µ𝐸  is electrophoretic mobility, 𝑞 is number of charges, 𝜂 is solution viscosity, and 𝑟 is the 

radius of the ion. Therefore, when separating a mixture of ions, the larger ones with less charge will 

be the slowest to reach the detector, whereas the smaller, highly charged ions will be the first ones 

to be detected. As an example, if two ions have the same number of charges, the bigger ion will 

move slower than the small one [2]. 

Another phenomenon caused by the application of high voltage into the capillary is electroosmotic 

flow (EOF). When the acidic silanol groups inside the capillary come in contact with the buffer 

solution, they are ionised and EOF is created, driving the solute towards the detector (Eq.(2)).  

(2)                µ𝐸𝑂𝐹 =
ԑ𝜁

𝜂
 

where µ𝐸𝑂𝐹 is EOF mobility, ԑ is the buffer dielectric constant,  𝜁 is the charge on the surface of the 

capillary (zeta potential), and 𝜂 is solution viscosity.  

A 

 

B 

 

Figure 2. 2A: Schematic diagram of capillary surface and of EOF generation. 2B: Migration of 

analyte in the presence of EOF. The migration velocity of a given species can be expressed as a 

vector sum of  the EOF(µ𝐸𝑂𝐹) and the electrophoretic mobility (µ𝐸) of the solute (adapted from [3]). 

When the separation buffer’s pH is higher than 4, the silanol groups start to be ionised, leading to 

the formation of a negatively charged layer. In order to maintain electroneutrality, a cation layer is 

formed, and when voltage is applied, they migrate towards the cathode generating an EOF (Figure 

2). 
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The main parameter affecting the level of EOF is the pH of the electrolyte. At high pH (above 9), the 

EOF is strong because the silanol groups are fully ionised, whereas at low pH (below 4), the EOF is 

weak because they are barely ionised. The overall migration time of an ion (apparent mobility µ𝐴) is 

a sum of the EOF (µ𝐸𝑂𝐹) and the electrophoretic mobility (µ𝐸) of the solute (Eq.(3)) [2],[3]. 

(3)                 µ𝐴 = µ𝐸 + µ𝐸𝑂𝐹  

1.1.2 SAMPLE INJECTION 

There are three mechanisms for introducing the sample: electrokinetic, gravity, and hydrodynamic. 

All three involve the application of a force to inject the sample in the capillary while it is immersed in 

the sample solution.  

In electrokinetic injection, both the capillary and electrode are placed in the sample vial. It is based 

on the application of a high voltage at the tip of the capillary causing solute ions to enter by EOF and 

electrophoretic migration. With this method a greater number of ions enter the capillary which is an 

advantage when trying to quantify trace levels of small ions, but it can also be disadvantageous since 

it can cause sample bias effects (more mobile species are injected in larger quantities).  

Meanwhile, gravity injection is based on mechanically raising the capillary above the height of the 

detector electrolyte vial.  

Finally, the hydrodynamic method is based on a pressure differential. While the capillary is immersed 

in the sample solution, a pressure difference is applied either in the form of vacuum or positive 

pressure. In order to ensure sample injection reproducibility, maintaining a constant temperature is 

needed [1,2]. 

1.1.3 PEAK EFFICIENCY 

One mayor advantage of CE is the minimisation of band broadening effects, which represent a major 

issue in HPLC and conventional electrophoresis. Sample dispersion along the capillary is minimised 

due to the  EOF flow dynamics in comparison with the  laminar flow of  pump systems; convection 

related band broadening (typical in conventional electrophoresis) is reduced  because the heat 

generated due to the voltage application is dissipated through the capillary walls (Joule heating); and 

post-separation broadening is eliminated due to on-column detection [2]. 

1.2 ANALYTICAL CONDITIONS 

1.3 SEPARATION TECHNIQUES 

As mentioned before, the separation in CE takes place due to electric charge differences in the ions 

of interest. It may seem that CE is only suitable for ionic molecules, however, by including proper 

additives into the background electrolyte it is possible to convert non-ionic analytes into charged 
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species, thus allowing for their separation in CE. The five most common CE separation modes are 

explained below. 

1.3.1 CAPILLARY ZONE ELECTROPHORESIS (CZE) 

CZE is the most common separation technique. In this technique, separation is achieved through 

the solutes’ migration in the buffer inside the capillary, which depends on their own electric mobility. 

The main factors affecting separation are: pH, conductivity, temperature, ionic strength of the 

solution, presence of additives and length of the capillary. UV detection can be done indirectly or 

directly, with indirect detection offering higher sensitivity for some compounds. For indirect detection 

of cations, such as ammonium, a strong absorbing molecule like imidazole can be used as a UV 

absorbent. In addition, chelating agents such as crown ethers can be added to the background 

electrolyte to improve separation since they can interact with the ions [3]. 

1.3.2 MICELLAR ELECTROKINETIC CHROMATOGRAPHY (MEKC) 

Aiming to tackle a serious limitation of CE, which is the necessity of the substance to be charged, 

MECK was created allowing neutral and charged analytes to be separated. This is achieved through 

the use of micellar solutions of ionic surfactants. An ionic surfactant solution with a concentration 

higher than its critical micelle concentration (CMC) is added to the buffer so that micelles are formed. 

The surfactant added can be either cationic or anionic. If a cationic surfactant is added, the EOF 

migrates towards the positive electrode (anode) and the micelle migrates to the negative electrode 

(cathode). If the surfactant added is anionic, the micelle migrates to the positive electrode by 

electrophoresis and the EOF flows toward the negative electrode due to the negative charge of the 

capillary surface [2].  

1.3.3 CAPILLARY GEL ELECTROPHORESIS (CGE) 

In CGE, the analytes migrate through polymer networks (acting as sieves) at different speeds 

depending on their molecular sizes. CGE possesses a number of potential advantages such as the 

prevention of analyte adsorption in the capillary walls, minimisation of solute diffusion, and 

elimination of electroosmosis. Altogether, these increase column resolution in short columns and 

can be a highly sensitive method if used with laser-induced fluorescence detectors. The most widely 

used capillaries are polyacrylamide and agarose filled capillaries [1,3].  

1.3.4 CAPILLARY ISOTACHOPHORESIS (CITP) 

In this technique, a leading electrolyte is added to the background buffer. First, a large volume of 

sample dissolved in the leading electrolyte is injected into the column. Then, the injection end of the 

capillary is submerged in a solution containing a terminating electrolyte and then voltage is applied 

during a set amount of time in order to focus the sample in bands (analyte zones) which are 

continuously formed. Finally, the capillary is submerged in the support buffer solution and voltage is 
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applied to separate the sample by standard CE separation. The separated zones can be detected 

by using a potential gradient or a conductivity detector [2,3].  

1.3.5 CAPILLARY ELECTROCHROMATOGRAPHY (CEC) 

Capillary electrochromatography was developed as a hybrid between chromatography and 

electrophoresis. In CEC, a chromatographic stationary phase is introduced in an electrophoretic 

environment either as a film in the walls of the capillary or as a packed bed. In this technique, neutral 

species will be separated without the necessity for any additives, whereas ionic species will be 

superimposed on the electrophoretic separation [2]. 

1.4 FORENSIC APPLICATIONS OF CE 

CE has gained popularity in the forensic field due to its clear advantages, such as minimal sample 

injection, speed, high mass sensitivity, low consumption of solvents, low cost, and its suitability to 

be coupled with mass detection. Substances analysed with CE techniques vary from DNA fragments 

to inorganic ions [4]. Some examples of its broad applicability in this field are discussed.  

In the area of illicit drugs, Porpiglia et al.[5], used CZE for the chiral determination of ketamine and 

norketamine (its major metabolite) in hair. They used cyclodextrins and electrokinetic injection. 

Airado-Rodríguez et al.[4], developed a method for the analysis of lysergic acid diethylamide and its 

C-8 isomer in hair samples with CZE. Evans et al.[6], used a portable CE instrument to determine 

the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs: 

methylone and para-methoxymethamphetamine. Gottardo et al.[7], developed a CE-ESI-TOF 

method for the determination of illicit and controlled drugs in blood using CZE and electrokinetic 

injection. Concerning fire arms debris analysis, Northdrop et al.[8], used MECK for the separation 

and identification of organic gunshot residue and explosive constituents. Erol et al.[9], determined 

amounts of nitrite and nitrate in gunshot residue by CZE. Regarding forensic toxicology, Tagliaro et 

al.[10], developed and validated a new method for the determination of potassium in vitreous humour 

and its use as an estimator of the post-mortem interval (PMI) with CZE. Furthermore, the 

determination of Carbohydrate-Deficient Transferrin (CDT), which is a marker of alcohol abuse, is 

one of the major applications of CZE. A lot of research has been done by the research group of F. 

Tagliaro on the determination of CDT with CZE with improvements in sample treatment and cost-

effectiveness in comparison with HPLC determination [11–14]. Regarding counterfeit investigations 

of documents, ink and dyes can be analysed by MECK. CE replaced HPLC due to its very good 

performance distinguishing between water-soluble inks that contain ionic dyestuffs. Inks coming from 

different manufacturers and different countries give different patterns in the electropherograms [15]. 

CE can also be applied to investigations of clandestine laboratories. Hauser et al.[16], developed 

and validated a CE method for the quantification of ammonium, chloride, sodium, sulphate and 

formate ions, which are present in clandestine production of amphetamine. Wright et al.[17], recently 
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developed a CE with laser-induced fluorescence detection methodology for the fast and reliable 

analysis of sexual assault kits (SAKs). 

Further applications include analysis of forensic DNA with multicapillary electrophoresis with 

fluorescent detection and analysis of ions and small molecules for investigations in intentional 

poisoning (cyanide) or fire and arson investigations [18].  
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2. STATISTICS AND CHEMOMETRICS IN FORENSIC SCIENCE 

In forensic science, where the results of the examination of complicated evidence must lead to 

unbiased verdicts in legal proceedings, it is of high importance to correctly identify and assess 

samples. To do so, analytical methods such as liquid and gas chromatography or capillary 

electrophoresis are used in combination with statistical analysis. For instance, in clinical chemistry, 

many analytes can be determined in a sample of vitreous humour, blood, or urine yielding 

multivariate data for one specimen. Hence, some samples might produce more complex data than 

others which requires more sophisticated statistical methods. To overcome such difficulty, advanced 

chemometric methods can deal with complex and large datasets. By definition, chemometrics 

“extract the maximum valuable information from the dataset by using the best measurement 

techniques/ optimal procedures and acquires most of the chemical information from the sample data. 

It correlates quality parameters or physical properties of the data”. Indeed, chemometrics, or 

multivariate statistics, extracts the information from spectra obtained by analytical methods and it 

analyses the data through chemical pattern recognition. This supervised pattern recognition method 

constructs a model based on information of known samples and uses the model to further predict 

unknown samples. For each sample, there are two groups of variables: predictors and response. 

Finding a relationship between these two variables is key to obtain information from unknown 

samples. There are different types of analysis to apply, such as k-nearest neighbour (kNN), partial-

least-squares discriminant analysis (PLS-DA) and artificial neural networks (ANN) [19,20].  

2.1 ARTIFICIAL NEURAL NETWORKS (ANNS) 

ANNs is a genetic algorithm, an attempt to make a computer model of the brain. The algorithm works 

by processing a selection of initial data then generating an output that is tested for its accuracy. This 

process undergoes multiple iterations until an acceptable outcome is produced. Once the data is in 

the system, ANNs imitate the neurons in the brain (Figure 3) trying to figure out the relationships 

within the data. Through the dendrites, neurons receive input signals and send them out through the 

axon, and release neurotransmitters to pass them on to other neurons. If the strength of the inputs 

is not enough to overcome a threshold value, a signal is not produced in the axon. Similarly, ANNs 

have layers of interlinked artificial neurons (nodes), akin to processors that work in parallel. The 

measured data is given to the input layer, and through a series of mathematical operations in the 

hidden layers, the output is generated. In more detail, the network is interactively trained with a set 

of data.  

In the current project, using the peak information of the analytes and the known post-mortem interval 

(PMI), the network will predict a PMI for each sample and compare it to the known PMI. Any 

differences between the known PMI and the network’s output will be used to adjust the internal 

parameters (in the hidden layer). This process will continue until the required degree of accuracy is 

achieved, which is evaluated with a test set. The network can be over-fitted if one forgets the fact 
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that the test and training sets will differ to some degree. If the network is over-fitted, it will perform 

extremely well in the training set, not so well in the test set, and badly in the unknown samples. Thus, 

the aim of most networks is to perform some type of data modelling and they can do it in two ways: 

under supervised and unsupervised conditions. Supervised networks attempt to learn a relationship 

between data and a parameter, whereas unsupervised networks try to find natural clusters 

irrespective of external restrictions [19–21].  

The most important type of supervised learning networks is a feedforward multilayer perceptron or 

multilayer perceptron (MLP), shown in Figure 3 . The data flows forward and there is a defined input 

and output. As seen in Figure 3, the input data is fed to the nodes in the first hidden layer, which 

forms a weighted sum of the inputs and passes that sum through a non-linear transfer function, and 

the values are then sent to the nodes in the second hidden layer which then performs a similar 

operation, and the outputs are generated. In the end, the network output is the sum of its inputs [21]. 

The focus of the project will be in MLP, using it as a regression tool. 

Neural networks can be used for pattern recognition, modelling, classification, and multivariate data 

analysis (i.e. regression) purposes [22]. As it can be seen, ANNs are great tools for multivariate data 

analysis since they possess extremely good information processing features, as presented in Table 

1.  

Table 1. Advantages and limitations of ANNs 

Advantages Limitations 

 Generalisation: the application of the created 

model to untrained (or unknown) data 

 Learning adaptability: the network changes its 

structure in response to a shifting environment 

 It is not necessary to know the relationship 

between input and output data, the network 

learns that relationship through training 

 Better fitting of the data: the network decides 

the function that relates the input and output 

data, either linear or non-linear. It decides 

based on the amount of training received 

 Noise insensitivity: It can make accurate 

predictions in the case of measurement errors 

and uncertain data 

 High parallelism (nodes) implies fast 

processing 

 The quality of the network depends on the 

amount and quality of the input data. Large 

datasets are desirable since it provides more 

information for training and testing, leading to 

better final network quality 

 There is no way to estimate confidence 

intervals 

 The computing power depends on the 

complexity and abundance of the input data 
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Figure 3. Comparison between a neuron and ANNs. The ANN has two layers, with 4 nodes each 

and several inputs and outputs. Adapted from Bailer-Jones et al.[21]. 

Even keeping into consideration their limitations, ANNs still represent a powerful tool in many fields 

[19,22] 

2.1.1 NETWORK TRAINING 

It is important to point out that the network does not create a new regression, rather, it interpolates 

the training data to generalise a relationship between the input data and the target (known outputs). 

In order for the network to create accurate outputs, the weights (free parameters of the network) 

need to be set to fitting values and this is done by training the network. MLP progresses by 
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minimising the error function with regard to all the network weights. For each node h, the sum value 

is obtained, according to Eq. 4: 

(4) 𝑠𝑢𝑚ℎ =  ∑ 𝑥𝑓𝑤𝑓ℎ + 𝛾ℎ𝑓  

Where, 𝑤𝑓ℎ is the product of each connection weighting from node f to node h, 𝑥𝑓 is the input, and 𝛾ℎ 

is the bias value. This is later transformed with a transfer function (identity, sigmoid, hyperbolic 

tangent, and rectified linear unit) which is then used for the output. Since the aim of training is to 

minimise the error by changing the weights between layers, the back-propagation algorithm is used 

for this purpose, i.e. to adjust the weights according to error (E), Eq. 5: 

(5)          𝐸 =
1

2
∑ ∑(𝑦𝑝𝑓 − 𝑡𝑝𝑓)2

𝑓𝑝

 

Where 𝐸 is the error of the network, 𝑦 are the sum of the output values over p training pattern and f 

output nodes, and 𝑡𝑝𝑓 are the target values (desired output). Then, the error is minimised according 

to a function for weight optimisation (stochastic gradient descent, stochastic gradient descent-based 

optimiser and Broyden–Fletcher–Goldfarb–Shanno). This represents the learning process, which is 

iterative, and goes on until the network converges, i.e. the error reaches a minimum. As mentioned 

before, the aim of the network is to generalise an answer, not to memorise the training data (over-

fit). In order to solve this, a regularisation technique is used [21,23].  The most common technique 

used is regularisation by weight decay (denominated as alpha, α), which penalises large weights to 

prevent them from counting more than smaller weights. A larger weight might be mistaken as more 

important, which can lead to over-fitting [24]. 

2.1.1.1 ACTIVATION FUNCTIONS FOR THE HIDDEN LAYERS 

The activation function transforms 𝑠𝑢𝑚ℎ to determine the outputs. The activation functions for the 

hidden layer are: 

 Identity: 𝐹(𝑥) = 𝑥, it takes the arguments and returns them unchanged 

 Sigmoid: 𝐹(𝑥) =  
1

(1+𝑒−𝑥)
, it takes the arguments and transforms them in the range of (0,1) 

 Hyperbolic tangent: 𝐹(𝑥) = tanh (𝑥), it takes the arguments and transforms them in the range 

(-1,1) 

 Rectified linear unit: 𝐹(𝑥) = max (0, 𝑥), used for categorical variables. 

Conversely, the advantages of choosing one function over another is not yet understood. Hence, the 

way of knowing which function better suits the data is by trial and error [22,25]. 

2.1.1.2 SOLVERS FOR WEIGHT OPTIMISATION 

The error in Eq.5 is minimised using algorithms. There are three possibilities: 
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 Stochastic Gradient Descent (SGD). Using gradient descent for weight optimisation, the 

network stops once it reaches a minimum. However, this could be a local minimum and not 

a global one. An element called momentum (µ) is added to the weight updates, which is a 

parameter that allows to break from the local minima. Conversely, it might lead to slower 

convergence. Another element is the learning rate (η) which controls the weight’s update 

speed. If a small learning rate is selected, the search towards the global minimum will be 

slow but steady, and the network might take a very long time to converge. If the learning rate 

is high, the weight vector will vary greatly from one cycle to another and might cause the 

network to waver around the global minimum but never converge. Thus, during learning, it is 

key to observe the effects of learning rate and momentum. Gradient descent is the most 

frequently used solver due to ease of coding, but might not always be the most suitable option 

[22]. 

 Adam: Stochastic Gradient Descent-based optimiser, based on adaptive moment estimation. 

It combines the advantages of two extensions of the SGD algorithm and the little tuning 

needed by the hyperparameters. Based on how quickly the weights are changing, the 

parameters’ learning rates are adapted [26]. 

 Broyden–Fletcher–Goldfarb–Shanno (L-BFGS). Used for solving nonlinear optimisation 

problems. Instead of using a gradient descent direction, the best descent direction is used 

[27].  

2.1.2 SOFTWARE 

Several possibilities exist for the creation of ANNs. The easiest one is through the use of statistical 

software which has pre-installed ANN analysis, such as SPSS. The main advantage is the user-

friendly display when it comes to adjusting the settings of the networks and the analysis of the results. 

Conversely, not all parameters can be selected/unselected and it might not be updated with the 

latest developments in machine learning, which can be a major drawback. In addition, this statistical 

software uses fit-them-all basic settings which may not always suit the needs of the user [28]. 

Another option is MATLAB, a hybrid between a statistical program and pure coding, with cost being 

the main limitation [29]. Another possibility is Python [30]. Its main advantage is that it is open-source, 

and all additions, libraries, and extensions are free as well. In addition, it has great support and an 

online database for coders (Stackoverflow).  

2.1.3 APPLICATIONS OF ANNS IN FORENSIC SCIENCE 

In the forensic toxicology area, two studies combined the use of ANN with instrumental analytical 

methods. Bocaz-Beneventi et al.[23], optimised a CE method with ANN for the accurate 

determination of the post-mortem interval using the data from ammonium, potassium, and sodium 

as input variables, with PMI as the output. They used the TRAJAN programme, which is an ANN 

simulator, and the network was built for regression purposes. Butcher et al.[31], used GC-MS to 
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analyse larvae and a classification neural network to estimate the age of the larvae to help determine 

the PMI. Broséus et al.[32], used a neural network classifier to determine the ability of the ANN to 

classify different cannabis seeds. In the field of digital forensics, Rodríguez et al.[33], compared the 

performance of facial comparison software with experts to assess whether the use of software can 

aid experts in court. They used convolutional neural networks through open-source software. Del 

Espiritu et al.[34], used ANN for the identification of total and partial fingerprints. They built a 

classification ANN using SGD as a solver.  Grantham et al.[35], developed a new algorithm for use 

with classifier neural networks for helping with geolocation in a crime scene. Forensic anthropology 

is also a field with some ANN applications. For example, Hemalatha and Rajkumar [36], developed 

an approach for dental age estimation, and Prescher et al.[37], developed one for the 

characterisation of anthropological features of nose variability, with both using classifier neural 

networks. In fire investigations, Zong et al.[38], were able to identify soot sources analysed by GC-

MS using principal component analysis (PCA) and inputting the data to a classifier neural network. 

Casamento et al.[39], optimised a CE methodology with ANN for the separation of organic 

explosives. The pH and concentration of SDS were the input variables and the explosive’s mobility 

were the output variables. As it can be seen, the classification ANNs are more used in comparison 

with regression.  
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3. ESTIMATION OF THE POST-MORTEM INTERVAL (PMI) THROUGH THE 

DETECTION OF NH4
+ AND K+ IN VITREOUS HUMOUR WITH CE 

3.1 INTRODUCTION 

In modern forensic medicine, the estimation of time since death has been and still is one of the major 

open issues, making it one of the most attractive research subjects. In criminal investigation, the 

accurate estimation of the post-mortem interval (PMI), and consequently, of the time of death, often 

close to the time of the murder, helps to reduce the number of suspects, to support (or deny) the 

witnesses’ statements, and to verify the reported actions of the suspects of a crime. Because of the 

highest importance of an accurate estimation of the time of death by objective methods, a large body 

of literature has accumulated in the past decades, as witnessed by numerous scientific papers and 

reviews [40–45] and specific books [40,46].  

The determination of the PMI is traditionally based on the evaluation of post-mortem physical 

changes in the body, and more recently, on post-mortem chemistry. Post-mortem changes in the so-

called ‘early post-mortem period’ (usually defined as the time between death and the appearance of 

generalised putrefaction) comprise rigor mortis, lividities, body cooling, stomach emptying, and in 

some cases, the so-called supravital phenomena. This approach, however, has important flaws, 

including high inter-individual variability, and a time window of application limited to 24–48 hours 

since death. In particular, lividities and rigor mortis also suffer from subjectivity of recording, which 

largely depends on the experience of the forensic pathologist. Concerning body cooling, the 

environmental temperature, clothing, posture, shielding against the supporting surface, body 

temperature before death, body dimensions, etc. are all factors that influence the phenomenon and 

limit substantially its reliability in real cases [45]. As a matter of fact, notwithstanding a plethora of 

papers on the optimisation of this approach, the calculation of PMI based on body temperature still 

shows important limits in terms of accuracy [40]. Moreover, the equilibration of the body temperature 

with the environment is almost completed within the first 20 hours after death, which limits the time 

window of applicability of the method.  In relation to stomach emptying, the nature of the food, 

systemic or nervous shock, or stress and the continuation of digestion after death are all factors that 

make it a weak indicator. Moreover, the chronology of stomach emptying can be used to determine 

the time of death only if the time of the last ingestion of food is precisely known [40,45]. 

In contrast, post-mortem chemistry, known as thanatochemistry, is based on the analysis of the 

modifications of the concentrations of endogenous compounds, which are released, produced, or 

transformed in the body after death. Contrary to the approach based on body cooling, 

thanatochemistry allows for the estimation of the time of death for up to 100 hours and more [40]. 

Among the biological samples used so far, vitreous humour is, in principle, the most promising due 

to its isolation and protection from the environment and easy sampling when compared to blood or 
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cerebrospinal fluid [41]. Furthermore, it was found that vitreous humour, in most instances, is barely 

contaminated by external agents even in the late PMIs. Numerous post-mortem chemical 

compounds such as potassium, chloride, sodium, magnesium, calcium, phosphate, creatinine, 

lactate, and urea were investigated in the vitreous humour [42]. Among these different parameters, 

the most studied by far is potassium. Its concentration in the ocular fluid increases after death due 

to the passive release of intracellular potassium into the vitreous body (substantially an extracellular 

fluid), until the equilibrium between the extra and intracellular compartments is reached [40]. Since 

the early ‘60s until present, many studies have identified this increase as one of the main parameters 

for inferring the PMI [10,43,44,47,48]. However, discrepancies among researches have been 

reported when examining the linear relationship potassium-PMI with regard to the intercept and the 

slope of the regression lines, which have severely limited the practical application of the method [10]. 

These discrepancies can be attributed to several factors such as different causes of death, different 

storage conditions of the bodies, different modes of sample collection, but above all, to the different 

analytical techniques used by the authors, most of which were validated for clinical chemistry, but 

not for post-mortem chemistry [49].  

The analytical techniques applied to vitreous humour can be divided into two categories: non-

separation and separation methods. Non-separation methods include flame photometry and ion-

selective electrodes, whereas separation methods include ion chromatography (IC) and capillary 

electrophoresis (CE) [10,47,50]. Non-separation analytical techniques are widely accepted in the 

clinical environment for the analysis of serum and urine (mostly based on ion selective electrodes), 

but are more susceptible to interferences due to the matrix composition, as compared to separation 

techniques [48]. This limitation applies particularly to cadaveric fluids, the composition of which is 

typically non-standardised and affected by numerous variables, the most important of which is 

putrefaction. On the other hand, among separation techniques, capillary electrophoresis (CE) is 

known for its selectivity, low sample consumption, high efficiency, resolution, and speed. 

Furthermore, CE, lacking a packed column (as IC) which can easily be clogged or contaminated, 

can tolerate “dirty” samples, such as cadaveric fluids. In fact, CE was used for the analysis of 

potassium in vitreous humour with very encouraging results, allowing for the direct injection of diluted 

vitreous humour micro samples [10,48]. On the other hand, Zhou et al.[47], using low pressure IC 

fitted with a self-made conductivity detector, also reported promising results, but the application to 

real cases was limited to PMIs up to 27 hours. 

On the basis of the above considerations and personal experience with potassium analysis, CE was 

chosen in an attempt to study other ions in the vitreous humour, specifically ammonium. This ion, a 

typical product of post-mortem protein deamination, has long been almost neglected, probably due 

to the well-known problems for its analysis in clinical chemistry [51]. To the best of our knowledge, 

only a single paper appeared in 1978 reporting ammonium determination in the vitreous humour. 
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For this purpose, a colorimetric method was used based on Nessler's reagent. The results, although 

obtained with an outdated non-separation method, look quite promising [52].  

Taking into account the above-mentioned considerations, a CE method for the determination of 

ammonium in the vitreous humour has been developed and validated with the aim of providing a 

new and reliable tool for thanatochemical studies.  Further aims of the research were to carry out a 

preliminary investigation on the behaviour of ammonium concentrations in the vitreous humour of 

real cases, and given positive results, to further study its applicability and usefulness alone and in 

combination with potassium to achieve more reliable estimation, by thorough statistical analysis of 

the post-mortem interval, and consequently, of the time of death. In addition, the present work also 

includes a specific study aimed at verifying the consistency of the post-mortem increase of 

ammonium concentrations in the vitreous humour by comparing the results from the two eyes at the 

same time after death. 

3.2 MATERIALS AND METHODS 

3.2.1 CHEMICALS  

All chemicals were analytical-reagent grade. Imidazole (99% pure) was obtained from Sigma (St. 

Louis, MO, USA), 18-crown-6 ether (99% pure) and α-hydroxybutyric acid (HIBA) (99% pure) from 

Aldrich (Milan, Italy). Standard solutions of ammonium (NH4
+) and barium (Ba2+) were prepared from 

AnalaR salts (NH4Cl and BaCl2) (Merck, Darmstadt, Germany). The electrophoretic buffer pH was 

adjusted to the desired pH with glacial Acetic Acid (Merck, Germany). Ultrapure water (milliQ) was 

obtained using a water purification system Purelab Chorus (Elga Veolia, High Wycombe, UK). 

3.2.2 CE SYSTEM AND SOFTWARE 

All experiments were performed using a P/ACE MDQ Capillary Electrophoresis System (Beckman, 

Fullerton, CA, USA) equipped with a UV filter detector. The capillary was thermostated with a 

perfluorinated coolant flowing in the capillary cartridge. During all experiments, untreated fused-silica 

capillaries (75 μm I.D., 50 cm effective length; Beckman) were used with a detection window of 

200x100 μm. Beckman P/ACE Station (version 8.0) was used for instrument control, data acquisition, 

and processing. 

3.2.3 ELECTROPHORETIC CONDITIONS 

Electrophoretic separations were performed using a running buffer consisting of 6 mM HIBA, 5 mM 

18-crown-6 ether, and 5 mM imidazole adjusted to pH 4.5. Constant voltage runs were performed in 

all experiments by applying a voltage of 500 V/cm at 25ºC with a resulting current of about 18 μA. 

The separation took place at 25 kV for 4 minutes. To overcome the lack of optical absorbance of 

ammonium, the ions were detected using indirect UV detection at 214 nm. The analytes were 

injected at the anodic end of the capillary for 10 s at 0.5 psi. The capillary was conditioned every day 
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with a solution containing 1 M NaOH (20 min) followed by water (15 min) and finally with the running 

buffer (10 min). Between consecutive runs the capillary was washed with water (3 min) and then with 

the running buffer (2 min). Water blanks were routinely checked for contamination with trace amounts 

of cations. 

3.2.4 PREPARATION OF STANDARDS AND SAMPLES 

All solutions were prepared in polypropylene vials. A 100 mM stock solution of NH4
+ was prepared 

by dissolving adequate amount of NH4Cl in milliQ water. Ammonium working standard solution was 

prepared daily to the desired concentration by diluting with water. BaCl2 internal standard (IS) 

solution was prepared by dissolving the appropriately weighed amount to achieve a final 

concentration of 40 μg/mL.  

Vitreous humour samples were collected from a total of 38 medico-legal autopsies or external 

examination of corpses of violent or sudden deaths, in which the time of death was exactly known 

(Appendix I. 6.1.1 List of vitreous humour samples used for the study). The causes of death included 

mostly road accidents and other traumas. For the linear and polynomial approaches, samples with 

low PMIs were not considered. The vitreous humour samples were prepared by diluting 1:20 with 

the IS solution.  Samples were analysed in triplicate. Because of the lack of recent deaths at the time 

of the present work and considering only the preliminary application of the method to the study of 

real forensic cases, most of the samples analysed had been stored at -24ºC for several months (up 

to 5 months) before analysis. 

3.2.5 METHOD VALIDATION 

The analytical method presented was developed based on a previous study on the determination of 

potassium in vitreous humour [10], where a peak attributed to ammonium could only be identified, 

but never formally studied [47]. Therefore, the present work was conducted for the optimisation and 

validation of ammonium determination by considering the following parameters: precision, bias, 

linearity, sensitivity and selectivity.  

The optimization and validation of methods is a way to establish if they meet the analytical 

requirements for which they were designed. It evaluates the method’s capability to be used in a 

specific application. Method development and validation are intertwined since the method 

performance characteristics are also considered when a method is validated. Method validation is a 

necessity since many methods are used to make conclusions, for example how long a person has 

been dead. Therefore, it is of high importance to produce accurate results. The performance 

parameters evaluated in method optimization and validation for quantitative methods are as follow: 

bias (trueness), precision, limit of detection (LOD), limit of quantification (LOQ), working range 

(linearity) and selectivity [53]. Precision and bias studies can be carried out simultaneously since 

both should be assessed at three different concentration levels (low, middle and high) and be 
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evaluated for at least 3 days. Precision results are expressed by the analytical reproducibility 

(RSD%) and are an indication of how reproducible the results are in the same day on different runs 

and over time (5 days or more). The RSD values should be within ±15%. Bias is expressed with the 

analytical bias (%) and it is an indication of the error between the measured value and the true value. 

The values should be between ±15% for methods using biological matrices. The linearity is the range 

of analyte concentrations in which the method will be used. It is highly important to correctly establish 

the working limits of this linearity range, otherwise accurate results might not be obtained. The most 

common approach is a linear regression. LOD and LOQ are also evaluated parallel to linearity. LOD 

is the lowest concentration of analyte that can be measured with statistical certainty and the LOQ is 

the lowest concentration of analyte that can be quantified with a suitable level of trueness and 

precision. Selectivity indicates the ability of the method to correctly identify the analyte, in the 

presence of other compounds. There are several ways to evaluate it, but the relevant one for this 

work is using complexing agents [54,55].  

In CE, complexing agents are substances added in the electrolyte solution to shift migration times in 

the case of cations with similar electrophoretic mobilities. Lactic acid and crown ethers are two 

common examples. Specifically, crown ethers have been used successfully for the electrophoretic 

separation of NH4
+ and K+ [56–58]. The crown ether interacts with K+ and slows its migration time. 

The specific complexing mechanism is based on the relationship between the cavity size of the 

crown ether and the radius of the cations. Precisely, the 18-Crown-6 ether has a radius of 1.58 Å 

and the ionic radius of K+ is 1.58 Å, whereas the radius of NH4
+ is 1.51 Å. Therefore, potassium fits 

perfectly well inside the crown ether and its migration time is slowed allowing for a separation from 

the NH4
+ [56]. In this work, two complexing agents have been combined, namely HIBA and 18-

Crown-6 ether. In this case HIBA does not complex NH4
+ and K+  but modifies the mobility of Ba2+ 

[59]. For the present study, the constituents of the background electrolyte have been adapted from 

a previously developed CE methodology for the determination of K+ in vitreous humour [10]. 

3.2.6 STATISTICAL ANALYSIS 

To better tune the usefulness and accuracy of the present validated method, three different statistical 

methods were performed. Firstly, preliminary results were fitted to a linear method. Secondly, to 

increase correlation and accuracy of predictions, the logarithmic correlation was explored. Finally, to 

further improve PMI estimation, ANNs were performed in the final data (obtaining a multivariate 

statistical analysis). Linearity and logarithmic analysis were done using Microsoft Excel 2013 

software. The ANNs analysis was performed using Scikit-learn module (0.23.2) MLPRegressor [25] 

in Jupyter Notebook environment (version 6.0.3), from the Anaconda Navigator (anaconda3) [60]. 

Data was manipulated with Pandas and Numpy [25]. The code was written with Python 3.8.  
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3.3 RESULTS AND DISCUSSION 

The previously described procedures have been applied to the data. The most relevant results are 

discussed. 

3.3.1 PRECISION: INTRA- AND INTER-DAY STUDIES 

The intra-day precision was verified at three concentration levels (low, middle, and high). The 

standards were diluted 1:20 with IS. Seven injections were made for each concentration level. To 

calculate the inter-day precision, determinations were performed on three different non-consecutive 

days. In addition, the stability and reproducibility in authentic vitreous humour matrix was studied.  

Table 2. Reproducibility (RSD%) of the CZE analysis of ammonium in standard solutions (n=3) 

tested in three different days. 

Relative area RSD (%) Relative migration time RSD (%) 

 Intra-day 

Inter-day 

Intra-day 

Inter-day Concentration 
(mM) 

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3 

5 2.12 0.74 1.64 7.32 0.54 0.48 0.81 2.44 
1.25 8.28 3.53 5.82 11.43 0.56 0.46 0.20 3.99 
0.31 3.28 6.78 5.48 18.51 0.44 0.61 0.39 3.81 

Three real samples were selected and analysed over a period of 5 days with 5 injections per sample. 

In all the studies, the concentration of the NH4
+, as well as the migration time of this ion were recorded 

and statistically analysed in terms of Relative Standard Deviation (%RSD). The results of the Intra- 

and inter-day precision studies carried out on the ammonium standard solutions are summarised in 

Table 2, and those from real samples are presented in Table 3. From both the tables, the results 

show that in all cases, the analytical precision was acceptable, with %RSDs well below 20%, even 

in real biological samples. 

Table 3. Analytical reproducibility (RSD%) of CZE analysis of ammonium in vitreous humour (n=3) 

tested on five different days. 

 

 

 

 

 

Relative area RSD (%) 

 Intra-day Inter-day 

Sample number Day 1 Day 2 Day 3 Day 4 Day 5  

1 7.03 5.89 6.12 4.14 5.02 12.90 
2 8.40 2.91 6.50 7.52 4.62 4.40 

3 9.93 4.51 5.38 2.68 1.34 4.88 

Relative migration time RSD (%) 

1 1.70 0.28 0.49 0.57 0.16 1.04 

2 0.48 0.20 0.18 3.47 0.20 1.98 

3 0.57 0.64 0.99 1.26 0.78 1.64 
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3.3.2 BIAS 

Bias was calculated at three different concentrations (0.312, 1.25, and 5.0 mM). However, in order 

to also study the analytical bias in real matrix, a standard addition experiment was performed, by 

spiking known amounts of NH4
+ standard (15 and 10 mM) into real vitreous humour samples. Bias 

was calculated according to the formulas reported by the Scientific Woking Group for Forensic 

Toxicology (SWGTOX) [54]. The bias results from the spiking test were -1.24 % and 7.13 % for 15 

and 10 mM, respectively. Overall, the bias was fairly acceptable as shown in Table 4. 

Table 4. Analytical bias (%) of CZE analysis of ammonium in standard solutions (n=3) 

 

 

 

 

3.3.3 LINEARITY, LOD, AND LOQ 

For the linearity studies, 5 vials with increasing NH4
+ concentrations were measured at the following 

concentrations: 0.16, 0.31, 0.63, 1.25, 2.5, and 5.0 mM. Each concentration level was measured in 

duplicates. A calibration curve was obtained by plotting the relative peak area (NH4
+/IS) against the 

concentration of ammonium (Figure 4).  

 

Figure 4. Linear calibration curve obtained by plotting the relative peak area (NH4
+ /IS) against the 

concentration of NH4
+ (mM). 

The results were linearly correlated according to the equation y = (0.0357±0.0008 SD) x + 

(0.033±0.002 SD); r2 = 0.998 (y = relative peak area; x = concentration of NH4
+ in mM). The limit of 

detection (LOD) and the limit of quantification (LOQ) were determined to be 0.039 mM and 0.31 mM, 

respectively. 
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3.3.4 DISCUSSION OF THE PRELIMINARY STUDY (LINEAR APPROACH) 

Strangely enough, ammonium, a typical product of post-mortem protein deamination, has rarely 

been considered as a potentially useful indicator of the time elapsed since death. This can probably 

be justified by the known variability of putrefaction phenomena occurring in corpses, which are 

responsible for most of the release of ammonium. Also, ammonium analysis in clinical chemistry is 

generally seen as a very problematic issue, with a large uncertainty caused by pre-analytical and 

analytical problems [51,61]. These considerations are presumably due to a general lack of interest 

for the determination of this analyte in forensic pathology as well. However, vitreous humour is 

typically sterile and is well protected from the environment by the sclera and the cornea, and 

therefore, less susceptible to putrefaction. Therefore, in the field of forensic pathology, it appears to 

be a suitable analyte for the evaluation of a time-dependent post-mortem increase in ammonium 

concentration. 

For this purpose, in order to avoid possible interferences originating from a non-standardised matrix 

such as a forensic sample, a separation method was preferred. On the grounds of previous research 

[10], CE was chosen as the most suitable analytical technique. Because of the lack of UV 

absorbance of the ammonium ion and in order to avoid the use of a conductivity detector, indirect 

detection using imidazole as the UV absorbing additive was adopted. Moreover, in order to improve 

the separation between ammonium and potassium peaks, 18-crown ether was added to the 

background electrolyte as a complexing agent, selectively retarding the mobility of the different 

cations. The validation parameters, according to the SWGTOX criteria, have been fully satisfied [54] 

even when performing minimal sample pre-treatment (limited to a 1:20 dilution). Because of the 

selectivity of indirect detection, extremely clean electropherograms were obtained even with injection 

of biological samples without any pre-treatment, but instead diluted with the I.S. solution (Figure 5). 
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Figure 5. Typical electropherograms of human vitreous humour (Top: NH4
+ = 0.39; K+= 8.62; PMI= 

32 h; bottom: NH4
+ = 1.18; K+= 20.81; PMI= 99 h) 

3.3.4.1 APPLICATION TO REAL CASES 

A preliminary study to investigate an expected correlation between ammonium concentration in the 

vitreous humour and PMI was conducted on 14 subjects whose time since death was well known on 

the basis of circumstantial information. The results are shown in Figure 6.  This shows that 

ammonium concentrations are well correlated with the PMI (r2= 0.970).  
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Figure 6. Correlation between PMI (hours) and vitreous NH4
+ concentration (mM) determined in 14 

forensic deaths with known time since death. Equation y= (0.0132) x + (-0.012); r2 = 0.970, in which 

y = NH4
+ concentration (mM); x = PMI (hours). 

Finally, as already reported by Tagliaro et al. [10], under the reported analytical conditions, other 

ions are also detectable, including sodium and potassium [23]. This opportunity may offer the 

possibility of grounding PMI evaluations onto two substantially independent parameters, such as 

ammonium and potassium, with a high expected increase in accuracy and reliability. This preliminary 

approach shows a new and simple application of CE. The next step is to fully validate the method 

with more cases. 

3.3.5 DISCUSSION OF THE LOGARITHMIC APPROACH 

As the number of samples increased (from 14 to 33), the correlation of the NH4
+ concentration with 

the PMI was not as accurate as expected (Figure 7). Therefore, with a total of 33 forensic cases 

(Appendix I. 6.1.1 List of vitreous humour samples used for the study) a different statistical approach 

was explored. Since this approach was aimed at improving the correlation and the validation of the 

simultaneous determination of the two ions in post mortem cases, in a first step, calibration curves 

for ammonium and potassium were produced based on 33 medico-legal autopsies; the results are 

displayed in Figure 8 and Figure 9, respectively, showing a statistically significant relationship 

between both ions and PMI. The correlation is better described with polynomial equations as follows:  

Ammonium (NH4
+): y = 2x10-6x2 + 0.0127x + 0.1461 

Potassium (K+): y = -0.0005x2 + 0.2018x + 6.173 

The correlation coefficient for vitreous humour ammonium vs. PMI is r2= 0.70 and that for potassium 

is r2= 0.75, which is an improvement over the linear correlation (r2= 0.67, Figure 7) 
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Figure 7. Linear correlation of the concentration of ammonium against the PMI of 33 cases. 

Equation: y = 0.0131x + 0.1172, r2=0.67. 

 

Figure 8. Second degree polynomial correlation between PMI (hours) and vitreous NH4
+ 

concentration (mM) determined in 33 forensic cases with known time of death. Equation                          

y = 2x10-6x2 + 0.0127x + 0.1461; r2= 0.70 in which x = PMI (hours); and y = NH4
+ concentration (mM). 
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Figure 9. Correlation between PMI (hours) and vitreous K+ concentration (mM) determined in 33 

forensic cases with known time of death. Equation y= = -0.0005x2 + 0.2018x + 6.173; r2= 0.75 in 

which x = PMI (hours); and y = K+ concentration (mM). 

In a second step, an integrated use of these two parameters by using the average of potassium and 

ammonium concentrations was also tested, as shown in Figure 10. With the aim of balancing the 

weight of the two parameters in the calculation, the logarithm of the potassium concentration was 

used. This approach led to a small increase in the correlation coefficient (r2=0.74). 

 

Figure 10. Correlation between PMI (hours) and combined vitreous NH4
+ and K+ concentrations 

(mM) determined in 33 forensic cases with known time of death. Equation y= -0.00001x2 + 0.0106x 

+ 0.4799; r2= 0.74 in which x = PMI (hours); and y = NH4
+ and K+ concentrations combined. 

In order to calculate the experimental error during practical use of the method, each case was 

treated, one-by-one, as “unknown” and the theoretical PMI was calculated after having excluded its 

ion concentrations from the calibration curve. The theoretical PMIs were compared to the observed 
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values, and the differences recorded (Table 5, Table 6, Table 7). The average absolute error of 

estimation for potassium and ammonium was 17.8 hours (SD = 15.3) and 20.2 hours (SD = 15.6), 

respectively.  

Table 5. Estimation of error for potassium. The coefficients of the curve are denoted by a,b,c,               

(y = ax2 + bx + c). Estimated PMI is obtained as the solution to the quadratic equation. 

VH 
sample 

[K+] 
(mM) 

PMI 
(hours) 

a b c 
Estimated 

PMI 
(hours) 

Absolute 
error 

(hours) 

Relative 
error 

Error as 
% PMI 

1 15.28 77.1 -0.0006 0.2130 5.9396 51.3 -25.8 -0.34 -33.5 

2 14.03 47 -0.0005 0.2023 6.1764 43.5 -3.5 -0.08 -7.5 

3 12.30 21.5 -0.0005 0.2078 5.8904 33.6 12.1 0.56 56.1 

4 24.47 143 -0.0005 0.2030 6.1570 135.2 -7.8 -0.05 -5.4 

5 11.94 46 -0.0006 0.2044 6.2006 30.9 -15.1 -0.33 -32.9 

6 22.01 80.45 -0.0005 0.1904 6.4179 119.2 38.7 0.48 48.1 

7 4.67 17.45 -0.0005 0.1830 6.9891 -12.3 -29.7 -1.70 -170.3 

8 17.43 123.45 -0.0006 0.2093 5.9239 68.4 -55.1 -0.45 -44.6 

9 8.62 32 -0.0005 0.1986 6.4336 11.3 -20.7 -0.65 -64.6 

10 16.47 55 -0.0005 0.2000 6.1979 60.5 5.5 0.10 10.0 

11 14.95 43 -0.0005 0.2010 6.1465 50.0 7.0 0.16 16.4 

12 27.23 168.5 -0.0009 0.2412 5.3116 162.5 -6.0 -0.04 -3.6 

13 7.27 16.1 -0.0005 0.1930 6.5324 3.9 -12.2 -0.76 -76.0 

14 13.56 47.2 -0.0006 0.2029 6.1795 41.5 -5.7 -0.12 -12.2 

15 21.18 100.3 -0.0005 0.2008 6.1971 99.0 -1.3 -0.01 -1.3 

16 8.04 29 -0.0005 0.1967 6.4968 8.0 -21.0 -0.72 -72.4 

17 18.98 96.45 -0.0006 0.2072 6.0412 81.8 -14.6 -0.15 -15.1 

18 17.43 52.3 -0.0005 0.1978 6.1987 68.7 16.4 0.31 31.4 

19 23.66 99.45 -0.0005 0.1922 6.4117 142.8 43.3 0.44 43.6 

20 16.43 98.45 -0.0006 0.2165 5.8112 58.5 -39.9 -0.41 -40.5 

21 20.11 99.16 -0.0006 0.2041 6.1162 95.2 -3.9 -0.04 -4.0 

22 23.73 143.4 -0.0005 0.2016 6.1756 127.2 -16.2 -0.11 -11.3 

23 10.75 25 -0.0005 0.2015 6.1875 24.1 -0.9 -0.04 -3.7 

24 14.08 22.24 -0.0006 0.2120 5.6808 45.5 23.2 1.04 104.5 

25 10.66 23.35 -0.0005 0.2020 6.1643 23.6 0.3 0.01 1.1 

26 9.03 17.55 -0.0005 0.1998 6.2599 14.4 -3.2 -0.18 -18.1 

27 18.39 47.4 -0.0005 0.1968 6.1494 77.4 30.0 0.63 63.4 

28 15.86 47.4 -0.0005 0.2001 6.1652 56.4 9.0 0.19 19.0 

29 13.67 50.15 -0.0006 0.2037 6.1687 42.0 -8.1 -0.16 -16.2 

30 20.58 48.45 -0.0005 0.1935 6.1602 100.7 52.3 1.08 107.9 

31 5.74 6.55 -0.0005 0.1893 6.6474 -4.7 -11.3 -1.72 -172.3 

32 18.51 75.5 -0.0005 0.2010 6.1899 75.5 0.0 0.00 -0.1 

33 16.57 27.35 -0.0006 0.2110 5.6377 63.2 35.8 1.31 130.9 
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Table 6. Estimation of error for potassium. The coefficients of the curve are denoted by a,b,c,              

(y = ax2 + bx + c). Estimated PMI is obtained as the solution to the quadratic equation. 

VH 
sample 

[NH4
+] 

(mM) 
PMI 

(hours) 
a b c 

Estimated 
PMI 

(hours) 

Absolute 
error 

(hours) 

Relative 
error 

Error 
as % 
PMI 

1 0.99 77.1 -5.00E-07 0.0132 0.1356 65.2 -11.88 -0.15 -15.41 

2 1.01 47 5.00E-06 0.0123 0.1440 68.7 21.74 0.46 46.26 

3 0.51 21.5 1.00E-06 0.0129 0.1340 28.8 7.35 0.34 34.16 

4 1.36 143 2.00E-05 0.0115 0.1617 90.3 -52.71 -0.37 -36.86 

5 0.31 46 1.00E-06 0.0131 0.1510 12.1 -33.87 -0.74 -73.64 

6 1.49 80.45 9.00E-06 0.0115 0.1702 106.1 25.66 0.32 31.90 

7 0.31 17.45 4.00E-06 0.0124 0.1560 12.4 -5.08 -0.29 -29.11 

8 1.47 123.45 2.00E-06 0.0131 0.1330 100.2 -23.24 -0.19 -18.83 

9 0.39 32 3.00E-06 0.0125 0.1590 18.0 -13.99 -0.44 -43.73 

10 0.97 55 4.00E-06 0.0124 0.1487 64.7 9.74 0.18 17.72 

11 0.38 43 3.00E-07 0.0129 0.1537 17.6 -25.41 -0.59 -59.10 

12 2.29 168.5 1.00E-05 0.0117 0.1667 159.5 -9.01 -0.05 -5.35 

13 0.31 16.1 3.00E-06 0.0125 0.1535 12.5 -3.62 -0.22 -22.47 

14 0.60 47.2 1.00E-06 0.0129 0.1472 35.3 -11.87 -0.25 -25.15 

15 1.49 100.3 3.00E-06 0.0125 0.1502 104.2 3.89 0.04 3.88 

16 0.35 29 3.00E-06 0.0124 0.1614 15.2 -13.85 -0.48 -47.74 

17 1.38 96.45 2.00E-06 0.0127 0.1453 95.8 -0.67 -0.01 -0.70 

18 1.42 52.3 1.00E-05 0.0116 0.1532 100.5 48.20 0.92 92.16 

19 2.14 99.45 1.00E-05 0.0103 0.2057 162.2 62.79 0.63 63.14 

20 0.82 98.45 -8.00E-06 0.0147 0.0958 50.7 -47.79 -0.49 -48.54 

21 1.06 99.16 -4.00E-06 0.0139 0.1154 69.3 -29.82 -0.30 -30.07 

22 2.98 143.4 2.00E-05 0.0145 0.1207 161.3 17.90 0.12 12.49 

23 0.38 25 3.00E-06 0.0125 0.1559 17.9 -7.15 -0.29 -28.59 

24 0.31 22.24 4.00E-06 0.0123 0.1621 12.0 -10.26 -0.46 -46.14 

25 0.31 23.35 4.00E-06 0.0123 0.1630 11.9 -11.44 -0.49 -49.01 

26 0.31 17.55 4.00E-06 0.0124 0.1561 12.4 -5.19 -0.30 -29.56 

27 0.99 47.4 5.00E-06 0.0124 0.1447 66.4 18.99 0.40 40.07 

28 0.59 47.4 9.00E-07 0.0129 0.1472 34.2 -13.16 -0.28 -27.76 

29 0.56 50.15 1.00E-07 0.0130 0.1453 31.9 -18.26 -0.36 -36.41 

30 1.23 48.45 7.00E-06 0.0120 0.1451 86.1 37.64 0.78 77.68 

31 0.31 6.55 -6.00E-07 0.0133 0.1241 14.0 7.44 1.14 113.53 

32 0.91 75.5 -2.00E-06 0.0134 0.1315 58.6 -16.89 -0.22 -22.37 

33 1.02 27.35 -1.00E-06 0.0136 0.0929 68.5 41.16 1.51 150.51 
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Table 7. Estimation of error for the combined ammonium and potassium. The coefficients of the 

curve are denoted by a,b,c, (y = ax2 + bx + c). Estimated PMI is obtained as the solution to the 

quadratic equation. 

VH 
sample 

[NH4
+] + 

log[K+]   
(mM) 

PMI 
(hours) 

a b c 
Estimated 

PMI 
(hours) 

Absolute 
error 

(hours) 

Relative 
error 

Error as 
% PMI 

1 1.09 77.1 -2.00E-06 0.0092 0.5089 64.0 -13.13 -0.17 -17.03 

2 1.08 47 8.00E-07 0.0087 0.5146 64.6 17.61 0.37 37.46 

3 0.80 21.5 -2.00E-06 0.0091 0.5038 32.6 11.11 0.52 51.69 

4 1.38 143 4.00E-06 0.0087 0.5152 94.8 -48.21 -0.34 -33.71 

5 0.69 46 -2.00E-06 0.0091 0.5200 19.1 -26.85 -0.58 -58.38 

6 1.42 80.45 3.00E-06 0.0082 0.5308 104.1 23.68 0.29 29.43 

7 0.49 17.45 3.00E-06 0.0082 0.5460 -6.9 -24.34 -1.39 -139.47 

8 1.35 123.45 -2.00E-06 0.0093 0.5017 93.5 -29.97 -0.24 -24.28 

9 0.66 32 2.00E-08 0.0087 0.5271 15.3 -16.70 -0.52 -52.18 

10 1.09 55 8.00E-07 0.0087 0.5180 65.6 10.64 0.19 19.35 

11 0.78 43 -1.00E-06 0.0089 0.5197 29.1 -13.92 -0.32 -32.37 

12 1.86 168.5 8.00E-06 0.0078 0.5390 147.3 -21.24 -0.13 -12.61 

13 0.59 16.1 1.00E-06 0.0086 0.5291 6.6 -9.52 -0.59 -59.10 

14 0.87 47.2 -1.00E-06 0.0089 0.5170 39.4 -7.80 -0.17 -16.52 

15 1.41 100.3 -3.00E-07 0.0088 0.5171 101.6 1.29 0.01 1.28 

16 0.63 68 -8.00E-05 0.0087 0.5146 15.1 -52.92 -0.78 -77.82 

17 1.33 96.45 -1.00E-06 0.0090 0.5190 90.9 -5.51 -0.06 -5.72 

18 1.33 52.3 3.00E-06 0.0083 0.5132 95.2 42.91 0.82 82.05 

19 1.76 99.45 6.00E-06 0.0076 0.5477 143.0 43.53 0.44 43.77 

20 1.02 98.45 -7.00E-06 0.0101 0.4849 54.8 -43.60 -0.44 -44.29 

21 1.18 99.16 -4.00E-06 0.0096 0.4985 73.4 -25.75 -0.26 -25.97 

22 2.18 143.4 -5.00E-06 0.0091 0.5170 205.7 62.35 0.43 43.48 

23 0.71 25 -1.00E-07 0.0088 0.5199 21.1 -3.88 -0.16 -15.52 

24 0.73 22.24 -6.00E-07 0.0089 0.5142 24.2 1.97 0.09 8.85 

25 0.67 23.35 2.00E-07 0.0087 0.5231 16.7 -6.61 -0.28 -28.31 

26 0.63 17.55 3.00E-07 0.0087 0.5227 12.7 -4.90 -0.28 -27.89 

27 1.13 47.4 1.00E-06 0.0086 0.5144 70.7 23.29 0.49 49.13 

28 0.90 47.4 -7.00E-07 0.0089 0.5167 42.7 -4.73 -0.10 -9.99 

29 0.85 50.15 -1.00E-06 0.0090 0.5163 37.0 -13.16 -0.26 -26.23 

30 1.27 48.45 2.00E-06 0.0084 0.5144 88.3 39.85 0.82 82.25 

31 0.53 6.55 9.00E-07 0.0086 0.5268 0.9 -5.66 -0.86 -86.41 

32 1.09 75.5 -2.00E-06 0.0092 0.5101 63.8 -11.72 -0.16 -15.53 

33 1.12 27.35 -3.00E-06 0.0095 0.4797 68.9 41.51 1.52 151.78 

 

When the concentrations of both ions were combined, the average absolute error was 21.5 hours 

(SD = 16.5). The average relative error, expressed as percentage of the PMI (%PMI), was 44%, 

42%, and 43% for potassium, ammonium and the combined concentration of both, respectively. It is 
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clear that the relative errors decrease steadily in increasing PMIs, from about 200% in the first hours 

down to low percentages for PMIs above 100 hours (Figure 11). 

This approach confirms the time-dependent increase of the concentration of potassium in vitreous 

humour, but more importantly, also shows that ammonium has a potential as a marker of the time 

elapsed since death, confirming the preliminary findings obtained with the linear correlation. 

 

Figure 11. Estimation error (expressed as %PMI) with the PMI (hours) for potassium, ammonium, 

and the sum of the concentrations of both ions. 

The comparative study of the correlation of the two parameters with the PMI and of the possibility of 

their use to infer the time of death in real forensic cases demonstrates the superiority of potassium 

in comparison with ammonium. However, ammonium can complement potassium for the estimation 

of PMI, particularly when potassium concentrations in the vitreous humour could have been affected 

by confounding factors, e.g. ocular traumas or drug overdoses [62] or the PMI is higher than 100 

hours [40]. In fact, because of the different mechanisms involved in the post-mortem increase of both 

ions, carrying out of their determination in parallel can provide mutual corroboration in terms of the 

reliability of the estimated PMI’s.  

With regard to the error related to the determination, the data show that as the PMI increases, so 

does the relative accuracy of its estimation, as depicted in Figure 11. This confirms previous findings 

reporting the variability of PMI estimation for PMIs below 26 hours [40].  

The main limitation of this approach is still the small number of the cases investigated, justified by 

obvious difficulties in the selection of traumatic or sudden deaths with known PMIs. A second 

limitation is related to the error of the determination. As it can be seen in Figure 11, at early PMIs 

(up to 60 hours) the error expressed as the % of the PMI is very high. However, as outlined in the 

introduction, for the determination of short PMIs, there are other methodologies based on the 

evaluation of physical changes in the body occurring during the ‘early post-mortem period’.  
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3.3.5.1 APPLICATION TO REAL SAMPLES 

The logarithmic approach was applied to 11 unknown samples in which a PMI interval is known, and 

the results are shown in Table 8. The main limitation of this approach is the concentration limits. In 

the lower limit, PMIs smaller than 48 hours will not give high ion concentrations, and thus, cannot be 

taken into consideration for the statistical model. In the upper limit, concentrations higher than 3.87 

mM for NH4
+ and combined use (ammonium and potassium) do not give a solution to the second-

degree equation, and so, the PMI cannot be estimated. This limitation is later addressed and solved 

with the ANNs. Overall, there is a potential usefulness of ammonium determination in the vitreous 

humour, in addition to potassium, as an objective biochemical parameter to infer the PMI.  

Table 8. Estimation of the PMI of 5 unknown vitreous samples. The coefficients of the curve are 

denoted by a,b,c, (y = ax2 + bx + c); c’ = [K+] – c. The estimated PMI is obtained as the solution to 

the quadratic equation using c’. NS stands for No Solution to the second-degree equation. Green 

indicates that they fall within the PMI interval, and yellow, that they fall very close. 

VH 
code 

[K+] (mM) a b c c' 
Estimated PMI 

(prediction ± 15.3) 
Real PMI 

(hours.min) 

3 12.82 -0.0005 0.2018 6.17 -6.65 51.5 48-72 

7 6.34 -0.0005 0.2018 6.17 -0.17 16.1 12.3 

8 15.91 -0.0005 0.2018 6.17 -9.74 71.4 80 

15 9.62 -0.0005 0.2018 6.17 -3.45 33.2 PMI≥ 21.20 

25 11.98 -0.0005 0.2018 6.17 -5.81 46.5 42-50 

30 11.66 -0.0005 0.2018 6.17 -5.49 44.6 24-48 

46 9.44 -0.0005 0.2018 6.17 -3.27 32.2 24-29 

51 9.76 -0.0005 0.2018 6.17 -3.59 34.0 PMI< 24 

65 8.96 -0.0005 0.2018 6.17 -2.79 29.6 PMI≥ 30 

67 19.65 -0.0005 0.2018 6.17 -13.48 99.8 71.20-73.20 

        

VH 
code 

[NH4
+] (mM) a b c c' 

Estimated PMI 
(prediction ± 15.6) 

Real PMI 
(hours.min) 

3 0.92 2.00E-06 0.0127 0.1461 -0.77 44.8 48-72 

7 0.00 2.00E-06 0.0127 0.1461 0.15 0 12.3 

8 2.67 2.00E-06 0.0127 0.1461 -2.53 177.4 80 

15 0.44 2.00E-06 0.0127 0.1461 -0.30 7.7 PMI≥ 21.20 

25 0.36 2.00E-06 0.0127 0.1461 -0.22 32.6 42-50 

30 6.71 2.00E-06 0.0127 0.1461 -6.56 464.7 24-48 

46 0.22 2.00E-06 0.0127 0.1461 -0.07 21.0 24-29 

51 0.29 2.00E-06 0.0127 0.1461 -0.15 27.1 PMI< 24 

65 1.04 2.00E-06 0.0127 0.1461 -0.90 54.4 PMI≥ 30 

67 1.27 2.00E-06 0.0127 0.1461 -1.13 71.9 71.20-73.20 
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VH 
code 

[NH4
+] + 

log[K+]   
(mM) 

a b c c' 
Estimated PMI 

(prediction ± 16.5) 
Real PMI 

(hours.min) 

3 2.03 -1.00E-05 0.0106 0.4799 -1.55 158.4 48-72 

7 0.80 -1.00E-05 0.0106 0.4799 -0.32 14.8 12.3 

8 3.87 -1.00E-05 0.0106 0.4799 -3.39 NS 80 

15 1.43 -1.00E-05 0.0106 0.4799 -0.95 81.9 PMI≥ 21.20 

25 1.44 -1.00E-05 0.0106 0.4799 -0.96 83.6 42-50 

30 7.77 -1.00E-05 0.0106 0.4799 -7.29 NS 24-48 

46 1.19 -1.00E-05 0.0106 0.4799 -0.71 55.3 24-29 

51 1.28 -1.00E-05 0.0106 0.4799 -0.80 65.5 PMI< 24 

65 2.00 -1.00E-05 0.0106 0.4799 -1.52 154.1 PMI≥ 30 

67 2.57 -1.00E-05 0.0106 0.4799 -2.09 244.7 71.20-73.20 

 

3.3.6 DISCUSSION OF THE NEURAL NETWORKS APPROACH 

As mentioned in the introduction (2.1 Artificial Neural Networks (ANNs)), ANNs are a great 

multivariate analysis tool since it generalises, and therefore, it is not necessary to know the 

connection between input and output data and it deals well with measurement errors. Given all these 

advantages and the fact that the correlation and prediction of the previous regressions could be 

improved, in addition to the fact that lower PMIs could be used, this approach was explored. 

Input data considered ammonium and potassium concentrations and the sodium ratio (peak area of 

sodium/peak area IS), (total of three inputs); and PMI was the output. The accuracy of the training 

and test (r2 score) was the main metric used for the evaluation of the network. If accuracies were 

similar, the mean absolute error (MAE) was used as well. The r2 score was expected to be as close 

to 1 as possible, whereas the MAE must be as low as possible, expecting a higher error in the test 

set than in the training set (because the test set has less samples). The networks were built based 

on the different solvers for the weight optimisation: Adam, SGC, and LBFGS. For each solver, the 

different parameters were optimised and once the final network was tuned and validated, 11 

untrained samples (not used in the learning process of the network) were used to test it. 

Firstly, the train/test split must be decided, that is, to decide how many samples are used for training 

and how many for testing. Ideally, the samples in the training split should cover the entire domain of 

the problem, i.e. a wide selection of different PMIs. Hence the more samples in the training set, the 

better trained the network is. However, enough samples should be left to test the network [22]. A 

good compromise is a 75/25 split, 75% of samples are used for training and 25% for testing. With a 

total of 38 available samples (Appendix I. 6.1.1 List of vitreous humour samples used for the study), 

28 were used for training, and 10 for testing. Secondly, the data should be normalised, which was 

done through the MinMaxScaler of scikit-learn (Appendix I. 6.1.2 Train test split and data pre-

processing). Thirdly, the evaluation of the network with different solvers was carried out. 
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3.3.6.1 ADAM SOLVER 

3.3.6.1.1 Network training 

The code for the Adam solver can be found in Appendix I (6.1.3 Code for Adam solver). Several 

parameters were optimised. Table 9 summarises the optimisation results of different network 

parameters. The number of hidden layers was set to 1 because according to literature [24] more 

hidden layers are for larger and more complicated datasets. The first parameter to optimise was the 

number of nodes. For this parameter, the accuracy and the MAE must be taken into account [23]. 

The ideal number of nodes in the hidden layer is when the MAE is kept to the minimum value without 

losing accuracy. As seen in Figure 12, four nodes yielded the best accuracy and lowest error. 

Table 9. Parameter optimisation summary with the Adam solver. The names in cursive indicate the 

part of the code belonging to that parameter. The option highlighted in grey indicates the best value 

for the corresponding parameter. 

 

 

Number of nodes in hidden layer (hidden_layer_sizes) 

Accuracy of 
prediction (r2) 

1 2 3 4 5 6 7 8 8 10 

Training set 0 0 0 0.86 0.85 0.86 0.86 0.86 0.86 0.86 

MAE Training 32.1 32.1 32.1 11.4 11.5 11.5 11.4 11.4 11.4 11.4 

Test set 0 0 0 0.701 0.69 0.69 0.69 0.69 0.69 0.69 

MAE Test 45.7 45.7 45.7 21.7 21.8 21.8 22.1 22.1 22.1 22.1 

Activation function for the hidden layer 
(activation) 

Accuracy of 
prediction (r2) 

identity logistic tanh relu 

Training set 0.75 0.86 0.88 0.78 

Test set 0.82 0.70 0.67 0.80 

Regularisation factor (α) (alpha) 

Accuracy of 
prediction (r2) 

0.10 0.01 0.001 0.2 0.3 

Training set 0.86 0.87 0.88 0.85 0.00 

Test set 0.70 0.68 0.67 0.71 0.01 

Learning rate (learning_rate_init) 

Accuracy of 
prediction (r2) 

0.0001 0.001 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

Training set 0.00 0.86 0.86 0.82 0.00 0.00 0.00 0.00 0.00 0.00 

Test set 0.00 0.70 0.70 0.71 0.00 0.00 0.00 0.00 0.00 0.00 

Random seed in MLP regressor (random_state) 

Accuracy of 
prediction (r2) 

0 17 25 28 88 99 

Training set 0.86 0.86 0.86 0.86 0.86 0.86 

Test set 0.70 0.70 0.70 0.70 0.70 0.70 
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Figure 12. Number of nodes in the hidden layer against MAE for Adam solver 

The next parameter was the activation function, where the best option was the logistic activation 

function. The network was also tested with the identity activation function, but it yielded the worst 

accuracies towards the end. The regularisation factor and learning rate were optimised and the ones 

with higher accuracy in both tests were selected. Finally, the random state in the MLPRegressor was 

explored. Random seed randomly generates the weights, initialises the bias and shuffles the data in 

the Train/Test split. Effectively, different models can be obtained when using the exact parameters 

but different random seeds. This factor is highly important with smaller datasets, since if a model is 

robust, changing the random state should not greatly affect accuracy [24]. Six random numbers were 

tested and as seen from Table 9, the accuracy is still high for all case scenarios. Hence, the network 

is robust. The accuracy graphs and the error as a function of the PMI are shown in Figure 13. Much 

like with the logarithmic approach, the error (expressed as %PMI) is high at low PMIs and decreases 

with increasing PMIs. 
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Figure 13. Training and test graphs for the final network (r2
training = 0.86 and r2

test = 0.70). Estimation 

error (expressed as %PMI) with the PMI (hours) for the training and test samples. 

3.3.6.1.2 Validation 

Finally, the model was validated with two different methods (Code can be found in Appendix I. 6.1.3.6 

Validation). Validation is needed to see whether the network is over or under fitted, whether it 

generalises well, and to evaluate the model’s performance on untrained data. The first validation 

was performed through k-fold cross-validation. It is the most common method for validating neural 

networks. K stands for the number of folds or “divisions” of all data (training and testing). If k is 5, the 

data is divided in five folds, where four folds are used for training and one for testing; this allows for 

a different selection of random states in the Train/Test split. This process is repeated until all 5 folds 

have been used as testing. For each run, the accuracy of the network is measured with the r2 

parameter. For models that are not computationally costly, three to five different cross validation runs 

are recommended [63]. However, NNs are computationally costly, so only one run is performed. The 

value of k is selected to be 5, as recommended for moderately sized datasets.  

Table 10. Summary of the 5-fold validation process. 

Cross-validation score (5-fold) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean STD 

Accuracy of the 
network (r2) 

0.76 0.72 0.90 0.88 0.83 0.82 0.08 

A second validation was performed using the leave-one-out (LOO) method, using the MAE as the 

accuracy metric. LOO is used to test the model’s performance on untrained samples. It is a form of 

cross-validation where k equals the number of samples, which is this case is 38. For each fold (or 

run) it takes one sample out (used for testing), whereas the remaining 37 are used for training. 

Usually, this method is extremely computationally expensive, and it is not used in NNs unless a 

supercomputer can be used [64]. However, since the present network is smaller than usual, the LOO 

analysis was performed. Drawing from Table 10, the network generalises well since the accuracy is 
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very good in all five folds. In addition, the MAE is 18.5, which agrees with the optimisation process 

results where MAE is between 11 and 21 (Table 9). 

3.3.6.2 SGD SOLVER 

3.3.6.2.1 Network training 

The code for the SGD solver can be found in Appendix I. (6.1.4 Code for SGD solver). The results 

of the optimisation of parameters are found in Table 11. 

Based on Figure 14, two nodes were selected. The regularisation factor was chosen to be 0.01 even 

when the accuracy was very similar to 0.001 because a higher alpha means a simpler model. If the 

problem is not too complex, choosing a lower alpha might compromise generalisation [24]. 

Regarding momentum, values between 0.1-0.8 have similar accuracies. Since the momentum is the 

parameter that helps to break from the local minima, a high value increases the chances of missing 

the solution whereas a lower value might not be enough to break from the local minima [22]. As a 

compromise, 0.3 was chosen. Nesterov momentum is a different type of momentum, which 

guarantees a better convergence rate [65]. The two options were whether to activate (True) or 

deactivate (False); accuracy was better without the Nesterov momentum. 

 

Figure 14. Number of nodes in the hidden layer against MAE for SGD solver 

As seen in Table 11, the network looks promising, with accuracies similar to the one with the Adam 

solver. Therefore, it was validated similarly. The mean 5-fold cross-validation accuracy was -0.29, 

and thus, no further validation was performed, and this solver was discarded for the prediction of 

untrained samples. 
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Table 11. Parameter optimisation summary with the SGD solver. The names in cursive indicate the 

part of the code belonging to that parameter. The option highlighted in grey indicates the best value 

for the corresponding parameter. 

Number of nodes in hidden layer (hidden_layer_sizes) 

Accuracy of 
prediction (r2) 

1 2 3 4 5 6 7 8 8 10 

Training set 0.63 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MAE Training 19.2 13.8 32.3 32.3 32.3 32.3 32.3 32.3 32.3 32.3 

Test set 0.65 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MAE Test 28.1 23.1 45.7 45.7 45.7 45.7 45.7 45.7 45.7 45.7 

Activation function for the hidden layer (activation) 

Accuracy of 
prediction (r2) 

identity logistic tanh relu 

Training set 0.75 0.80 0.59 0.73 

Test set 0.82 0.71 0.68 0.76 

Regularisation factor (α) (alpha) 

Accuracy of 
prediction (r2) 

0.10 0.01 0.001 0.2 0.3 

Training set 0.75 0.75 0.75 0.75 0.75 

Test set 0.82 0.82 0.82 0.82 0.82 

Learning rate (learning_rate_init) 

Accuracy of 
prediction (r2) 

0.0001 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Training set 0.71 0.73 0.50 0.09 0 0 0 0 0 0 

Test set 0.76 0.81 0.62 0.18 0 0 0 0 0 0 

Momentum (momentum) 

Accuracy of 
prediction (r2) 

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Training set 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 

Test set 0.72 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.70 0.69 

Nesterovs momemtum 

Accuracy of 
prediction (r2) 

False TRUE 

Training set 0.82 0.79 

Test set 0.71 0.74 

Random seed in MLP regressor (random_state) 

Accuracy of 
prediction (r2) 

0 17 25 28 88 99 

Training set 0.82 0.82 0.82 0.82 0.82 0.82 

Test set 0.71 0.71 0.71 0.71 0.71 0.71 

 



42 
 

3.3.6.3 LBFGS SOLVER 

3.3.6.3.1 Network training 

The code for the LBFGS solver can be found in Appendix I. (6.1.5 Code for LBFGS). The results of 

the optimisation of parameters are found in Table 12. As seen in Figure 15, the optimal number of 

nodes was three. The activation function and the regularisation factor were identity and 0.001, 

respectively.  

Table 12. Parameter optimisation summary with the LBFGS solver. The names in cursive indicate 

the part of the code belonging to that parameter. The option highlighted in grey indicates the best 

value for the corresponding parameter. 

Number of nodes in hidden layer (hidden_layer_sizes) 

Accuracy of 

prediction (r2) 
1 2 3 4 5 6 7 8 9 10 

Training set 0.79 0.82 0.81 0.00 0.00 0.86 0.86 0.86 0.90 0.86 

MAE Training 13.6 12.1 12.7 32.2 32.2 11.4 11.4 11.4 10.6 11.4 

Test set 0.71 0.70 0.75 0.00 0.00 0.69 0.69 0.69 0.72 0.69 

MAE Test 23.2 22.2 20.4 45.7 45.7 22.0 22.0 22.0 21.2 22.0 

Activation function for the hidden layer 

(activation) 

Accuracy of 
prediction (r2) 

Identity Logistic tanh relu 

Training set 0.75 0.81 0.49 0.78 

Test set 0.82 0.75 0.40 0.80 

Regularisation factor (α) (alpha) 

Accuracy of 
prediction (r2) 

0.1 0.01 0.001 0.2 0.3 

Training set 0.81 0.83 0.88 0.82 0.82 

Test set 0.75 0.36 0.66 0.71 0.72 

Random seed in MLP regressor (random_state) 

Accuracy of 
prediction (r2) 

0 17 25 28 88 99 

Training set 0.81 0.79 0.79 0.82 0.79 0.82 

Test set 0.75 0.71 0.71 0.40 0.71 0.40 

As shown in Table 12, the change in random seed did not achieve very good results. Random seed 

28 and 99 had very low accuracies for the test set. In other words, the network does not generalise 

well, i.e., it is not robust enough. For that reason, this network was not further validated nor used for 

testing real unknown samples. 
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Figure 15. Number of nodes in the hidden layer against MAE for LBFGS solver 

3.3.6.4 APPLICATION TO REAL UNKNOWN SAMPLES 

Due to the low number of samples, only 11 untrained samples were left to validate the model (Code 

in Appendix I. 6.1.6) where some information about the PMI or its range was available. The 

predictions are summarised in Table 13. For the predictions, the Adam-solver-tuned network with 

seven different Train/Test splits was used. As seen from Table 13, the predictions are generally good 

except for samples 51 and 67. The incorrect predictions of these two samples might be due to the 

data set not covering a wider and more comprehensive PMI range. 

Table 13. Prediction of PMI for real unknown samples. The prediction results are given taking into 

account the standard deviation (the values rom column labelled as SD (n=7). Green indicates that 

they fall within the PMI range, and yellow that they fall close. 

Real unknown samples (untrained) 

VH sample PMI predicted with NN SD (n=7) Real PMI (hrs.min) 

3 51 7 48-72 

7 13 4 12.30 

8 71 9 80 

15 22.3 5 PMI≥ 21.20 

25 56 19 42-50 

30 31 19 24-48 

33 40 11 32 

46 29 4 24-29 

51 27 15 PMI< 24 

65 31 5 PMI≥ 30 

67 120 16 71.20-73.20 
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Hence, the main limitation of this study is the size of the dataset. In ANNs, the size of the data set is 

directly related to the capacity of the network to learn and generalise. In addition, the dataset should 

cover the widest possible range of PMIs [22]. In the present study, a total of 38 samples with known 

cause of death and PMI (7–168h) were used. In comparison, a study carried out by Bocaz-Beneventi 

et al.[23], with the same purpose but a total number of 72 samples and a slightly different network, 

achieved more accurate estimations. This extra 34 samples increased the accuracy of the network, 

and thus, the accuracy of predictions.  

3.3.7 DISCUSSION OF THE THREE APPROACHES 

With the linear and logarithmic approach, samples with small PMIs (lower than 48h) can skew the 

correlation. Hence, more accurate methods for estimating the time of death at lower intervals are 

used in these cases. Thus, these cases are usually not taken into account. However, with ANNs, all 

PMIs are valid. Since networks learn by iterative analysis, they are unbiased by small PMIs. In 

comparison with the logarithmic and linear approaches, ANNs are superior.  

Table 14. Summary of predictions of untrained samples with all three statistical approaches. Values 

highlighted in blue indicate the most accurate predictions for each sample. NS stands for No Solution 

to the second-degree equation. 

 
NH4

+ PMI 
predictions 
(hrs.min) 

 K+ PMI predictions 
(hrs.min) 

Combined 
use 

 

VH 
Real PMI 

(hrs) 
[NH4

+] 
(mM) 

linear logarithmic 
[K+] 

(mM) 
linear logarithmic logarithmic 

PMI 
predictions 

with NN 

3 48-72 0.92 70.6 44.8 12.82 37.5 51.5 158.4 51 

7 12.3 
bellow 
LOD 

0.0 -27.1 6.34 7.4 16.1 14.8 13 

8 80 2.67 203.3 177.4 15.91 51.9 71.4 NS 71.4 

15 PMI≥ 21.20 0.44 34.4 7.7 9.62 22.6 33.2 81.9 22.3 

25 42-50 0.36 28.4 32.6 11.98 33.6 46.5 83.6 56.0 

30 24-48 6.71 509.0 464.7 11.66 32.1 44.6 NS 31.0 

46 24-29 0.22 17.2 21.0 9.44 21.8 32.2 55.3 29.0 

51 PMI< 24 0.29 23.1 27.1 9.76 23.3 34.0 65.5 27.0 

65 PMI≥ 30 1.04 80.1 54.4 8.96 19.5 29.6 154.1 31.0 

67 
71.20-
73.20 

1.27 97.4 71.9 19.65 69.3 99.8 244.7 120.0 

Table 14 gathers the predictions of the three different approaches: linear, logarithmic and NN. For 

example, in VH 7, which has a small PMI, the best prediction was with the ANN. This proves that the 

network has learned small PMIs, and thus, there is no need to eliminate them. The incorrectly 

predicted samples VH 51 and 67 is due to the lack of additional samples with similar input data 

values, hindering the network from learning the different variations in combinations of potassium and 

ammonium concentrations and sodium ratio. The main limitation of the linear and polynomial models 
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is the removal of small PMIs. In addition, in the polynomial model, concentrations higher than 3.87 

for NH4
+ and combined use do not give a solution to the second-degree equation, so there is no 

estimated PMI. Regarding neural networks, their main limitation is the size of the data set. The more 

data available, the more information the network can learn allowing it to make more accurate 

predictions.  

3.3.8 AMMONIUM CONCENTRATION DIFFERENCES IN THE TWO EYES 

Another aim of the project was aimed at verifying the consistency of ion concentrations between the 

two eyes. A similar study was carried out by Tagliaro et al.[48] on potassium concentrations and 

reported no significant difference. 

The statistical difference between the ammonium concentrations in the two eyes of the same subject 

was evaluated in 20 forensic autopsies. The mean concentrations of NH4
+ ranged from 0.07 to 6.45 

mM with PMI’s varying from 31 up to 89 h. The differences in concentration between the two eyes 

were evaluated using a paired student’s t-test (α = 0.01). The findings suggest that no statistically 

significant differences exist (p value for two tails = 0.87). In addition, a good correlation was found 

between the two eyes, expressed by r2= 0.94. 

The present data show that there is also no substantial difference in the concentrations of ammonium 

between the two eyes. This evidence supports the hypothesis that there is an even progression of 

ammonium ion production in this body compartment.  

3.4 CONCLUSIONS 

In summary, the present method represents a new, simple application of CE in the forensic 

environment, where separation methods are precious for dealing with the complexity and variability 

of post-mortem biological matrices. An increase in ammonium concentration was observed up to 

168 hours after death, thus offering a new analytical tool for PMI evaluation that is useful for a much 

wider time span than that offered by potassium analysis (limited to about 90–100 hrs). After acquiring 

more real vitreous samples and further validating the method, ammonium analysis can become, “per 

se” or in combination with potassium, a powerful tool for unravelling one of the most challenging 

issues of forensic investigation, such as the accurate determination of the time of death. 

In conclusion, the findings support the potential usefulness of ammonium determination in vitreous 

humour, in addition to potassium, as an objective biochemical parameter for inferring the PMI, when 

combined with ANN multivariate statistical analysis. In addition, the present work shows the 

suitability of capillary electrophoresis for performing rapid simultaneous determinations.  



46 
 

3.5 FUTURE RESEARCH 

Future research should therefore concentrate on the acquisition of more vitreous humour samples 

with a wide range of different PMIs and further analysis to build a more reliable neural network that 

can be used in the analysis of real unknown samples. 
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LIQUID CHROMATOGRAPHY (LC) APPLIED TO FORENSIC SCIENCE 

1. LIQUID CHROMATOGRAPHY COUPLED WITH MASS SPECTROMETRY 

1.1 LIQUID CHROMATOGRAPHY (LC) 

Liquid chromatography (LC) is a widely used technique due to its accuracy, sensitivity, adaptability, 

possibility of automation, suitability for the separation of thermally fragile or non-volatile species, and 

its extensive applicability in industry and science. It allows for separating the components of a 

mixture on the bases of their distribution between a mobile phase, which is usually a solvent or a 

buffer, and a stationary phase containing small, packed particles. The differences type of interaction 

of the analytes with the two phases determines their separation [66]. 

A liquid chromatograph is constituted of four main parts: an inlet system, a high-pressure pump, a 

separation compartment and a detector. The inlet system allows the efficient introduction of the 

sample with minimal sample loss. Once the sample is introduced, it goes to the separation 

compartment where the column is located. Then, the samples are separated and go to the detector. 

Depending on which property of the analyte to focus on and the required sensitivity, there is a great 

variety of commercial detectors such as Ultraviolet-visible absorption (UV-Vis), also in the diode 

array (DAD) configuration, electrochemical, fluorescence, conductivity, Fourier transform infrared 

(FRTIR), and mass spectrometry (MS) [67,68]. According to the principle of separation, LC has 

different modes, such as normal phase, reverse phase, ion exchange, size exclusion, bio-affinity, 

and chirality [66]. The focus here will be on reverse phase separations. 

1.1.1 REVERSE PHASE CHROMATOGRAPHY 

Chromatographic separations take place in a chromatographic column. Columns are made of 

stainless steel with alumina or silica gel as a substrate and the stationary phase. In reverse phase, 

columns are packed with silica gel particles with their surfaces covered by alkyl groups bound to 

silanol (Si-OH) groups. Long alkyl chains (C18) bind stronger to low polarity organic molecules, 

whereas highly polar analytes pass through. Shorter alkyl columns (C8) have lower retention for low 

polarity analytes [69]. Nowadays, the ability to produce highly spherical, pure, and homogeneous 

silica particles has increased the reproducibility and resolution of analysis; and the high coverage of 

the stationary phase has led to improved retention times. The speed and efficiency of separation 

has improved in the past years, as well as their suitability for a greater range of analytical samples, 

due to the use of new stationary phases [68]. Usually, a guard (or pre-column) is placed before the 

analytical column in order to extend the life of the analytical column by protecting it from 

contaminants from the solvents and/or sample components that bind irreversibly to the stationary 

phase. Regarding the liquid phase, they have to be aqueous mixtures with methanol, acetonitrile, 

and additives as buffers [66].   
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1.1.2 ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY (UPLC) 

A column’s separation power increases with decreasing particle size which is unfortunately bound 

to a high pressure increase to allow enough flow rate. So far, a compromise was reached with a 

particle size of 5 µm. With the intention of shortening analysis time and increasing resolution, the 

column particle size was decreased below 2 µm, thus developing a new technique called Ultra 

Performance Liquid Chromatography (UPLC) or fast chromatography [70]. For flows of 0.5-1.0 

mL/min, the pressure can reach up to 1200 bar. Due to the fast analysis in UPLC, the detectors need 

to have a sufficiently high sampling rate to obtain enough data points for reproducible results. There 

are currently only three detectors in the market that meet the condition: DAD, UV/VIS, and MS [68]. 

1.2 MASS SPECTROMETRY (MS) 

The basic principle of mass spectrometry is the generation of ions, separation of these ions based 

on their mass-to-charge ratio (m/z), and detection based on their respective m/z abundance. A mass 

spectrometer consists of three parts: the ionization source, which generates the ions by electric field 

and thermally by impacting energetic electrons, ions, and neutral atoms of photons; the mass 

analyser which separates the ions by magnetic, electric, or field-free regions; and the detector [69]. 

The analyser must be kept under vacuum to allow a free path for the ions. A low vacuum has a 

positive effect in mass resolution (ability to separate close ions) and sensitivity [71]. 

1.2.1 LC–MS ION SOURCES 

Since LC is unable to provide unequivocal identification of different analytes in a mixture based only 

on retention times, coupling it with MS can really help the identification of species as they elute from 

the column. The mass spectrometer combines high selectivity with a universal detector. In addition, 

the obtained mass spectra are unequivocal proof of the identification of the unknown substance. 

Also, it increases the sensitivity of the analysis and reduces analysis time [66,72]. 

There is a wide variety of sources depending on the substances of interest. Examples of said sources 

are electrospray ionisation (ESI), atmospheric pressure photoionisation (APPI), and atmospheric 

pressure chemical photoionisation (APCI) are the most popular [69]. The focus of this thesis is 

directed towards ESI, IonBoosterTM (iB), and APCI. 

1.2.1.1 ESI, IB AND APCI  

ESI is a soft ionisation technique that takes place at atmospheric pressure. It transforms the ions 

from solution into the gas phase through the nebulisation of the liquid into highly charged aerosol 

droplets, dissolution of the charged droplets, and ionisation of the analyte. This process takes place 

by applying an electrical potential to a liquid in an electrospray needle (Figure 16). For ESI to work, 

the solvent containing the analyte needs to be volatile. As mentioned above, it starts the ionisation 

at atmospheric pressure, slowly reaching the high vacuum necessary for the mass analyser. With 
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this source, the analytes are ionised in solution. Generally, the best sensitivity is achieved using low 

flow rates. ESI is superior to APCI due to its broad range of analyte tolerance in terms of mass and 

polarity (Figure 17) [67,69]. 

ESI APCI 

  

Figure 16. Fundamental principles of ESI and APCI sources. The green arrows indicate how the 

heated drying gas moves inside the source. The small red spheres represent the sample. The black 

arrows indicate the part of the source named. The sample enters through the sample inlet, the 

analytes are ionised and go to the mass analyser through the glass capillary. Adapted from [73,74]. 

The iB was developed by Bruker Daltonics and can be defined as a high-temperature ESI source. It 

is heated in the spray zone and results in a highly efficient desolvation process when using flow rates 

higher than 200 µL/min. For this source, a sheath gas (nitrogen) must be used to prevent the thermal 

degradation of the analytes prior to the electrospray process. By increasing the ionisation efficiency, 

it lowers detection limits and enhances sensitivity. In comparison with ESI, it offers greater sensitivity 

under high flow rates [73,75]. 

APCI is also a soft ionisation technique where the analyte solution is nebulised by means of a 

pneumatic nebuliser. The aerosol is then vaporised in a heater chamber and analytes are ionised by 

solvent ions created in a corona discharge. Lastly, they go to the high vacuum of the mass analyser 

through a system of nozzles and skimmers and a drying gas (Figure 16). With this source, the 

analytes are ionised in the gas phase. In terms of technical conditions, APCI can be used with small 

amounts of non-volatile and volatile buffers and flow rates no higher than 2 mL/min. As a prerequisite, 

analytes should be thermally stable. APCI does not have the same potential as ESI but it allows the 

sensitive determination of analytes of moderate mass and polarity (Figure 17) [67,69,72]. 
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Figure 17. Comparison between ESI and APCI [69]. 

1.2.2 MASS ANALYSER 

A mass analyser separates the ions according to their m/z ratio. It can operate in two modes: Scan 

mode (SCAN), which monitors all the m/zs in the sample and Selected Ion Monitoring (SIM) which 

monitors a targeted ion. It operates under vacuum (as the detector) in order to allow the analyte ions 

to travel from one side to the other without being hindered by air molecules. Different types of mass 

analysers can be used depending on the accuracy and/or sensitivity desired. They are summarised 

in Table 15. High Resolution MS is able to separate ions that differ in mass by 0.0001 atomic mass 

units (amu), whereas low resolution ones are able to separate them when they differ by at least 1 

amu. In Multiple stage MS, both molecular and fragment ions are produced and detected; whereas 

in single step MS, only molecular ions are produced and detected [69,72]. 

Table 15. Different types of mass analysers. Adapted from [76]. 

Criterion   Mass analyser 

Low resolution MS Single step MS Quadrupole (Q) 

  Ion trap (IT) 

Low resolution MS Multiple step MS Triple quadrupole (QQQ) (MS/MS) 

  Ion trap (MSn) 

  Quadrupole Ion Trap (QTRAP) (MSn) 

High resolution MS Single step MS Time of flight (TOF) 

High resolution MS Multiple step MS Quadrupole TOF (QTOF) 

A quadruple (Q) is made of four parallel rode electrodes, with each pair of opposite rods held at the 

same potential composed of AC (alternating current) and DC (direct current). A resonant frequency 

is created for each m/z and only ions of a specific m/z pass through the quadrupole, whereas others 
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are discarded. If the resonant frequency is changed, a full mass range can be scanned. The 

quadrupole can be used in SIM mode: selection of a number of masses (high selectivity); or SCAN 

mode: an ion is only detected a fraction of the total scan, and the masses reach the detector 

sequentially (low sensitivity) [69]. 

An Ion Trap (IT) is made by two hyperbolic electrodes and a ring electrode. Radio frequency (RF) 

and DC potentials are applied between them. The ions are introduced and accumulated in the centre 

of the IT and then sequentially ejected to the detector due to the application of RF (mass SCAN). 

Only ions of a certain m/z will be ejected to the detector (those with stable trajectories), whereas 

unwanted ions will collide with the walls and will be discarded due to their unstable trajectories [69]. 

An MS/MS combination can also be achieved with an IonTrap (MSn) when a single ion trap serves 

as both the mass analyser and collision cell. Ions are accumulated, the precursor ion is isolated and 

specifically activated by using a specific fragmentation amplitude, and product ions are created. Then 

the fragments (product ions) are focused, ejected, and detected (Figure 18). A very interesting 

feature of this instrumentation is that only precursor ions are selected and excited in comparison with 

QTOF, where both precursor and fragment ions are selected and excited [74].   

 

Figure 18. Fundamentals of IonTrap in MSn mode [74]. 

It is possible to use to mass analysers in tandem (MS/MS) to create new operational possibilities 

where both of them can be used in SCAN or SIM mode. This is the case of the triple quadrupole 

configuration (QQQ) where the first (Q1) and last (Q3) quadrupole can scan masses sequentially or 

do SIM; while the second quadrupole (Q2), the one in the middle, acts as a “collision cell” where 

mass fragmentation occurs. It does not filter the ions, but rather accepts the ones coming from Q1 

and passes all ions formed by collision to Q3 [69,72].  

The QTRAP instrument is in the QQQ geometry, but one quadrupole can also trap and store ions. 

Here, Q3 is the hybrid quadrupole denoted as Linear Ion Trap (LIT), which means it can function as 



52 
 

one or the other. It offers the properties of QQQ, and in addition, the ones from the LIT, such as 

combinations of ion accumulation and scanning (enhanced sensitivity) and higher order tandem MS 

[69].  

The principles of the time of flight (TOF) analyser relies on the acceleration of the ions in an electric 

field until they reach the detector through a free vacuum path of known length. Speed is inversely 

proportional to the mass of the ion, so lighter ions will reach the detector earlier. It is key that the 

ions of all m/z coming from the source are transferred, simultaneously and instantaneously, into the 

mass analyser by means of a pulsed ion beam or by pulsing ion packages out of a continuous source. 

Since they offer high ion transmission, TOF analysers are highly sensitive [69]. 

The QTOF instrument is also in the QQQ geometry, but one quadrupole is replaced by an orthogonal 

TOF. Q1 is a mass analyser where the precursor ion of interest is selected, Q2 is the collision cell 

where the precursor ion undergoes fragmentation, and Q3 is a TOF analyser. As mentioned before, 

it is key that the ions are transferred, simultaneously and instantaneously, into the mass analyser. 

Therefore, after exiting the collision cell, the ions are focused into a parallel beam that enters the 

TOF. Hence, QTOF is very sensitive to the quality of the incoming ion beam. QTOF offers high mass 

resolution measurements, identification power, ability to record all ions in parallel without scanning, 

and increased selectivity which are important in forensic toxicology [72,77] 

1.2.3 DETECTOR 

The mass detector is crucial in the instrument. After the analytes are separated in the mass analyser 

based on the m/z, the detectors receive the current signal generated from the incident ions which is 

a reflection of the absolute or relative concentration of the analyte. It amplifies and registers the 

signal. A good detector is defined on the basis of low noise and cost, high collection efficiency and 

amplification, fast response time, reproducibility, long life, and long-term stability. Examples of some 

commercial detectors are high mass detection detectors, channel electron multipliers, Faraday cups, 

electron multipliers, scintillation counters, photographic plates, resistive anode encoder image 

detectors, conversion dynodes, helium leak detectors, and cryogenic detectors [78]. 

1.3 FORENSIC APPLICATIONS 

In forensic toxicology, LC-MS/MS has gained momentum in the field of drug screening and 

quantification. The main advantage is that the use of reference standards (sometimes expensive or 

hard to acquire) is not needed since accurate molecular weight information can be obtained with 

techniques such as high-resolution mass spectrometry (HRMS). This allows the unequivocal and 

robust determination of unknown substances present in different biological matrices (blood, urine, 

serum, hair, and vitreous humour). In order to reliably use tandem MS in a forensic field, a thorough 

assessment of ion suppression and interferences must be performed. The correct selection of the 

ions to be monitored must be appropriate and the mass spectrometer must be optimised for each 
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analyte. For the unequivocal identification of compounds, two or more ion transitions must be 

selected. Since it is vital to obtain structural information, the TOF is an optimal choice for such task, 

as well as for the identification of unknown substances in any of the biological matrices mentioned 

above [79]. In this field, LC-MS/MS has been used for the determination of drugs of abuse (DoA) 

and novel psychoactive substances (NPS) such as lysergic acid diethylamide, (LSD), cocaine and 

its metabolites, opiates, amphetamines, cannabinoids, synthetic cannabinoids, phenylcyclohexyl 

piperidine (PCP), and g-hydroxybutyrate (GHB) in biological samples [72]. LC-MS has also been 

applied to the determination of illicit drugs and its metabolites on serum samples of subjects driving 

under the influence (DUI) [80].  

LC-MS has also been used as a predictive tool for raw materials information in home-made synthesis 

of nitrate ester explosive erythritol tetranitrate (ETN) [81] and as a tool for the detection of explosives 

and quantification among different types of explosives [82]. Also, LC-MS has been used to test the 

prevalence of GSR in police cars [83]. Wastewater epidemiology is a discipline of forensic science 

which estimates drug consumption in an area or community through the analysis of drugs and its 

metabolites in wastewater, where LC-MS/MS is the technique of choice. For instance, in the study 

by Centazzo et al., [84], they analysed wastewater in different areas of New York with LC-QQQ, 

finding amphetamines, cocaine, opioids, and cannabis. In the field of trace chemicals analysis, such 

as chemical warfare agents, LC-MS is a very useful technique for the determination of the 

metabolites of sarin, sulphur mustard, and ethyl methylphosphonothioate in urine [85]. 

Finally, another important application of LC-MS(MS) is the elucidation of the metabolic pathways of 

NPS. NPS are chemical analogues or derivatives of classic illicit substances designed to produce 

effects similar to that of the illegal drugs they imitate [86]. Several metabolic pathways have recently 

been elucidated, such as 5F-AKB-48 [87], THJ-018 and THJ-2201 [87], FUBIMINA [87], and APINAC 

[88] done through LC-QTOF or orbitrap. 
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2. ELUCIDATION OF THE 5F- APINAC METABOLIC PATHWAY 

2.1 INTRODUCTION 

New psychoactive substances (NPS) or “designer drugs” are the trending drugs of today’s drug 

market. They are chemical derivatives or analogues of classic illicit substances designed to produce 

effects similar to that of illegal drugs [86]. The relentless modification of chemical structures by 

clandestine laboratories presents a challenge to legal processes, as they always manage to be one 

step ahead. In addition, it presents a threat to public health. Even small modifications in the chemical 

structures of these drugs can result in differences in biological activity and pharmacokinetic 

properties, and represent a challenge for identification [89]. Moreover, the psychoactive effects of 

terminally fluorinated analogues of synthetic cannabinoids (SCs) generally showed CB1 receptor 

potency higher than that of non-fluorinated analogues (~ 2–5 times), and thus, may have a higher 

impact on health risks [90]. There is also a need to develop highly sensitive and accurate analytical 

technologies for the identification and quantitation of metabolites associated with NPS [91]. 

Advances in laboratory methodologies and scientific international collaboration are needed to tackle 

this problem [92,93]. Elucidating the metabolic pathways of these new drugs is highly important for 

toxicological risk assessment in order to develop drug screening procedures for the detection of 

drugs and their metabolites in blood or urine [94].  Since drug concentrations in the body depend on 

metabolism, more information about it would help in the medical treatment of poisoning or 

intoxication cases. From an analytical perspective, knowing the fragmentation and specific product 

ions helps towards the faster elucidation of similar, but unknown related compounds. For instance, 

in distinguishing between different compounds of the same family of NPS such as synthetic 

cannabinoids (SC). Metabolic path elucidation is very relevant since NPS are fast appearing in the 

market and scientists are trying to identify and characterise them at the same rate in which they 

appear. This speedy appearance is due to the relentless modification of chemical structures by 

clandestine laboratories [95,96]. 

SCs were originally developed for research purposes, but rapidly turned out to be used as drugs of 

abuse, mostly as an alternative to cannabis. To achieve psychoactive effects, chemical additives are 

sprayed onto dried plant materials to be sold as a legal alternative to cannabis [97]. To avoid 

regulations, the products are labeled as “not for human consumption“. These substances have 

structural features similar to tetrahydrocannabinol (THC), which enables them to bind to CB1 and 

CB2 receptors, triggering cannabis-like effects (i.e., paranoia, sedation, anxiety, euphoria, and 

impaired sense of time as demonstrated in in vivo studies [98]). However, they are more powerful 

receptor agonists than THC, thereby increasing the intensity of psychosis, agitation, and 

sympathomimetic effects [99,100]. The clinical toxicity of SCs is partly similar to the one provoked 

by amphetamines [101,102]. Typical symptoms of SC consumption are: vomiting, hallucinations, 

tachycardia, excitement, hypertension, and drowsiness [99,102]. Poisonings with SCs usually 
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manifest brain edema due to hyponatremia, hypherthermia, seizures, and serotonin syndrome [103]. 

Usually, SC intake occurs by smoking using a cigarette or a cannabis pipe. They are extensively 

metabolised, and their main metabolites are hydroxyl or carboxyl derivatives of the aromatic ring or 

the N-alkyl chain. JWH-018 was the most popular first-generation SC [90], closely followed by 

second-generation SCs, such as AB-PINACA, AKB-48, and ADB-PINACA [93,104] 

Finally, the collaboration between countries in tracking trends in the illicit market is of paramount 

importance for tackling the NPS problem. The EU Early Warning System (EUEWS), set by the 

European Monitoring Center for Drugs and Drug Addiction (EMCDDA), has been internationally 

recognized for its capability to identify and respond to the emergence of NPS [105]. 

In the present work, a new SC,  5F-APINAC (adamantan-1-yl 1-(5-fluoropentyl)-1H-indazole- 3-

carboxylate) which is the fluorinated analogue of APINAC (adamantan-1-yl 1-pentyl-1H-indazole-3-

carboxylate) was studied [93]. The fluorine substitution at the 5-pentyl position of 

pentylindazole/pentylindole is a popular modification that enhances the drug’s stability, potency, and 

half-life [93,104]. APINAC and its metabolic reactions have already been characterised [88,106] 

Because one of the most common metabolic routes is defluorination, several metabolites of 5F-

APINAC are expected to be similar to those of APINAC. APINAC and 5F-APINAC are structurally 

similar to AKB-48 (APINACA) and 5F-AKB-48 (5F-APINACA) [87], respectively (Figure 19). The 

unequivocal identification of 5F-APINAC-associated metabolites as potential markers of its intake is 

Figure 19. Structures of APINAC, 5F-APINAC, AKB-48, and 5F-AKB-48 
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critical in the detection of suspected SC consumption [93]. To our knowledge, no data related to 5F-

APINAC metabolism has been reported. The aim of the present study was to investigate the 

metabolism of 5F-APINAC in human liver microsomes (HLMs) (in vitro study) and in a rat model (in 

vivo study) using liquid chromatography–ion trap mass spectrometry (LC–IT-MS) and liquid 

chromatography–quadrupole time- of-flight tandem mass spectrometry (LC–QTOF-MS/MS). 

2.2 MATERIALS AND METHODS 

2.2.1 REAGENTS 

Ultra-pure water was purchased from Biosolve (Valkenswaard, the Netherlands); diethyl ether and 

acetone from Medkhimprom (Moscow, Russia); acetonitrile from J.T. Baker (Deventer, the 

Netherlands); methanol and ethyl acetate from Merck (Darmstadt, Germany); β-glucuronidase from 

E. coli K12 (solution in 50% glycerol) from Roche Diagnostics (Mannheim, Germany); and 5F-

APINAC (purity ≥ 98%) from Cayman Chemical (Ann Arbor, MI, USA). All other chemicals used in 

this study were purchased from Sigma-Aldrich (St. Louis, MO, USA). Solid-phase extraction (SPE) 

was performed using Oasis HLB columns (60 mg × 3 mL; Waters, Milford, MA, USA). 

2.2.2 IN VITRO & IN VIVO STUDIES 

For the in vitro study, the incubation procedure was performed in accordance with the manufacturer’s 

protocol for Human Liver Microsomes (HLMs) [105]. For the in vivo study, urine from male Sprague–

Dawley rats was collected 3, 6, and 24 h after 5F-APINAC administration. Samples were stored at -

80°C until the analysis was performed. Both samples were prepared by an experienced pharmacist 

with experience in working with animals and in vitro studies. All animal procedures were approved 

by the Institutional Animal Care and Ethical Committee of the Research Center for Molecular 

Diagnostics and Therapy at Sechenov University, Moscow, in accordance with principles of good 

laboratory practice [OECD Principles on GLP. C (97)186 Final], following the European Union 

directive principles of laboratory animal care guidelines (2010/63/EU). 

2.2.3 PREPARATION OF RAT URINE SAMPLES 

The urine samples were divided into two aliquots. A 1 mL volume of 0.8 M phosphate buffer (pH 6.5) 

containing 30 μL β-glucuronidase was added to 0.5 mL of urine (first aliquot). After incubation at 

37°C for 60 min and pH adjustment (pH 2.0–2.5) using hydrochloric acid, the samples were extracted 

with 1 mL of ethyl acetate. For the second aliquot, the phosphate buffer did not contain β-

glucuronidase and the addition of the enzyme and incubation steps were omitted. Following the 

evaporation of the organic layer at 70°C in a solid-state heater, the residue was reconstituted in 100 

μL of MeOH/ H2O (1:1, v/v) for instrumental analyses. 



57 
 

2.2.4 TENTATIVE THEORETICAL METABOLIC PATHWAY  

Theoretical predictions of the possible metabolites were made based on the similarity of structure 

between APINAC and 5F-APINAC, AKB-48 (APINACA) and 5F-AKB-48 (5F-APINACA) [87], and 

the already elucidated metabolic pathway of APINAC [88]. With help of the ChemDraw Ultra software 

(Version 12.0, Cambridge Software) theoretical fragmentations of the metabolites were predicted. 

The theoretically predicted metabolites were also drawn, and using the fragmentation tool, different 

fragmentation possibilities were explored. Together with the formula and exact mass of the said 

fragments, all the theoretical proposals were compared with the experimental data. 

2.2.5 LC–IT–MS (TOXTYPER) ANALYSES 

The LC–IT–MS analyses were performed using ultra high-performance liquid chromatography 

(UHPLC) Dionex UltiMate 3000 (Thermo Scientific, Waltham, MA, USA) coupled with amaZon speed 

mass spectrometer (Bruker, Billerica, MA, USA). Chromatographic separation of the analytes was 

achieved on a Thermo Scientific Acclaim RSLC 120 C18 of 120Å column (100 × 2.1 mm, i.d., particle 

size 2.2 µm) (Thermo Scientific) guarded by a Vanguard BEH C18 column (20 × 2.1 mm. i.d.; 

Waters). The column temperature was set at 40°C and the autosampler at 8°C. Mobile phase A 

consisted of ultra-pure H2O with 2 mM ammonium formate, 1% acetonitrile, and 0.1% formic acid. 

Mobile phase B consisted of acetonitrile, 2 mM ammonium formate, 0.1% formic acid, and 1% H2O. 

The flow rate was set to 0.5 mL/min. Gradient elution was performed as follows: 0.0–1.0 min 1% B; 

1.0–8.0 min 1–95% B, linear; 8.0–9.0 min 95% B; 9.0–9.06 min 95–1% B, linear; 9.06–11 min 1% 

B. The total run time was 11 min. Electrospray ionisation (ESI) was performed using positive mode. 

Scan range was set at m/z 70–800. Data were collected in data-dependent MSn acquisition mode.  

2.2.6 LC–QTOF ANALYSES 

LC–QTOF experiments were performed for confirmation purposes on a Bruker Elute series of 

UHPLC coupled with quadrupole time-of-flight mass spectrometer UHR- QTOF (Ultra-high resolution 

QQ-time-of-flight) maXis impact (Bruker). Chromatographic separation of the analytes was achieved 

using an Intensity Solo 2 C18 1.8 µm, 100 × 2.1 mm column (BRU-18C182-100 μm; Bruker) and a 

1.7 µm ACQUITY UPLC BEH C18 pre-column (Waters). The column oven temperature was set at 

40°C and the autosampler’s at 4°C. Mobile phase A consisted of 1% methanol in H2O, 5 mM 

ammonium formate, and 0.01% formic acid. Mobile phase B consisted of methanol, 5 mM 

ammonium formate, and 0.01% formic acid. The flow rate was 0.2 mL/min. Gradient elution was 

performed as follows: 0.0–1.0 min 4% B; 1.0–6.0 min 50% B; 6.0–10.0 min 50–99.9% B; 10.0–10.05 

min 99.9–4% B; 10.05–14.0 min 4% B. Ionisation was performed using ESI-source operation in 

positive mode and mass scans ranged from m/z 30–1000. The ion source parameters were set as 

follows: capillary voltage 4500 V; N2 temperature (drying gas) 220°C; flow rate 8 L/min; collision 

energy 7.0 eV. The total run time of the analysis was 20 min. Metabolite search was based on the 
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exact masses of the precursor ions of putative compounds and on typical product ions in auto MS/MS 

and target MS/MS modes. 

2.3 RESULTS  

The appreciable metabolites were found up to 6 h after administration. No metabolites were found 

24 h after, which is in accordance with the extensive metabolism of SCs [104]. An overview of the 

proposed metabolic reactions associated with 5F-APINAC is presented in Figure 20. Extracted ion 

chromatograms for the metabolites associated with 5F-APINAC found in vitro and in vivo are 

presented in Appendix II Supplementary Figs. 1 and 2, respectively. 

2.3.1 LC–IT–MS AND LC–QTOF ANALYSES 

Fifteen 5F-APINAC-associated metabolites, including a phase II metabolite M8, were tentatively 

identified by LC–IT–MS and LC–QTOF–MS/MS following 5F-APINAC administration to rats (Figure 

21, Figure 22). The structures of the metabolites were predicted with high accuracy and later 

corroborated by studying the fragmentation pattern of the product ions. Table 16 shows the proposed 

biotransformations, retention time, m/z of precursor and product ions, molecular formulae, and the 

mass errors of the proposed metabolites. 5F-APINAC eluted at 13.3 min and all the metabolites 

eluted between 5.1 and 12.5 min. 5F-APINAC had a protonated molecular ion at m/z 385 with its 

consequent product ion at m/z 135, corresponding to an adamantyl ring residue generated by the 

cleavage of the ester group (Figure 21 a). Identified metabolites were results of carboxylation, 

hydroxylation, ester hydrolysis, oxidation, or glucuronidation. Hydroxylation was the most common 

biotransformation. Identified metabolites were: 1-adamantanol metabolites (M1–M6), oxidative 

defluorination metabolites (M10–M13), and N-pentylindazole-3-caboxylic acid metabolites (M7–M9). 
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Figure 20. Proposed metabolic pathways of 5F-APINAC. 
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Table 16. Metabolites associated with 5F-APINAC identified in in vivo and in vitro. 

Experiment Metabolite Biotransformation 
RT 

(min) 

Precursor 

ion (m/z) 

Calc. 

(m/z) 

Molecular 

formula 

Error 

(ppm) 

Product 

(m/z) 

Product ion 

formula 

Error 

(ppm) 

In vitro 

In vivo 
5F-APINAC    Parent compound 13.3 385.2285 385.2291 C23H30FN2O2

+ 4.4 135.1180 C10H15 4.4 

In vitro 

In vivo 
M1 Monohydroxylation 10.9 401.2244 401.2240 C23H30FN2O3

+ 1.0 

133.1019 

151.1125 

251.1197 

C10H13 

C10H15O 

C13H16FN2O2 

1.5 

1.32 

0.4 

In vitro 
M2 

 
Dihydroxylation 

9.1 

 

417.2185 

 
417.2190 C23H30FN2O4

+ 
-1.2 

 

133.1010 

151.1117 

249.1032 

267.1141 

C10H13 

C10H15O 

C10H13O 

C10H15O2 

-5.2 

-4.0 

-2.8 

-1.5 

In vitro 

In vivo 
M3 Dihydroxylation 9.7 417.2183 417.2190 C23H30FN2O4

+ -1.6 

131.0859 

149.0960 

167.1067 

233.1079 

251.1198 

C10H11 

C10H13O 

C10H15O2 

C13H14FN2O 

C13H16FN2O2 

-1.5 

-4.0 

0.0 

-4.7 

0.8 

In vitro 

In vivo 

M4.1 

M4.2 

M4.3 

Trihydroxylation 

6.8 

7.7 

8.2 

433.2137 

433.2130 

433.2134 

433.2139 C23H30FN2O5
+ 

-0.5 

-2.1 

-1.1 

131.0843 

149.0961 

167.1063 

249.1027 

267.1129 

C10H11 

C10H13O 

C10H15O2 

C13H14FN2O2 

C13H16FN2O3 

-1.5 

-3.3 

-2.4 

-4.8 

-3.7 

In vitro M5 
Monohydroxylation + 

oxidation 
8.9 415.2024 415.2033 C23H28FN2O4

+ -2.2 
133.1010 

151.1118 

C10H13 

C10H15O 

-5.3 

-3.3 

In vitro M6 
Dihydroxylation + 

oxidation 
7.6 431.1976 431.1976 C23H28FN2O5

+ 0.0 

147.0806

165.0918

267.1152 

C10H11O 

C10H13O2 

C13H14FN2O3 

-2.7 

4.8 

2.6 

In vitro 

In vivo 
M7 Ester hydrolysis 7.2 251.1188 251.1190 C13H16FN2O2

+ -0.8 

145.0396 

163.0502 

233.1087 

C8H5N2O 

C8H7N2O2 

C13H14FN2O 

0.0 

0.0 

-1.3 

In vivo M8 
Ester hydrolysis + 

glucuronidation 
5.6 427.1508 427.1511 C19H24FN2O8

+ -0.7 

145.0386 

233.1075 

251.1179

391.1290 

C8H5N2O 

C13H14FN2O 

C13H16FN2O2 

C19H20FN2O6 

-6.9 

-6.4 

-6.8 

-3.8 

In vivo M9 
Ester hydrolysis + 

monohydroxylation 
6.7 267.1137 267.1139 C13H16FN2O3

+ -0.7 

145.0390 

175.0499 

231.0923 

249.1028 

C8H5N2O 

C9H7N2O2 

C13H12FN2O 

C13H14N2O2F 

-8.3 

-4.6 

-4.8 

-4.4 

In vitro 

 
M10 

Defluorination + 

monohydroxylation 
12.5 383.2332 383.2329 C23H31N2O3

+ 0.8 135.1171 C10H15 -5.2 

In vitro M11 

Oxidative 

defluorination 

(aldehyde formation) 

+ monohydroxylation 

9.3 397.2124 397.2127 C23H29N2O4
+ -0.75 

133.1014

151.1117 

247.1094 

C10H13 

C10H15O 

C13H15N2O3 

-2.2 

-4.0 

-4.4 

In vitro 

In vivo 
M12 

Oxidative 

defluorination 

(carboxyl formation) 

+ monohydroxylation 

9.0 413.2071 413.2071 C23H29N2O5
+ 0.0 

133.1023

151.1125 

C10H13 

C10H15O 

4.5 

1.3 

In vitro 

In vivo 
M13 

Oxidative 

defluorination 

(carboxyl formation) 

dihydroxylation 

7.9 429.2016 429.2020 C23H29N2O6
+ -0.9 

131.0862 

149.0964 

167.1069 

245.0928 

C10H11 

C10H13O 

C10H15O2 

C13H13N2O3 

0.8 

-1.3 

1.2 

0.8 
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Figure 21. Product ion spectra of metabolites associated with 5F-APINAC recorded by LC–QTOF 

(part 1). The diamond shows the location of each protonated molecular ion of the metabolites. a 5F-

APINAC, b M1, c M2, d M3, e M4.1, f M5, g M6. 
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Figure 22. Product ion spectra of metabolites associated with 5F-APINAC recorded by LC–QTOF 

(part 2). a M7, b M8, c M9, d M10, e M11, f M12, g M13. 

2.3.2 HLM INCUBATION OF 5F-APINAC 

5F-APINAC was rapidly ester-hydrolysed when incubated with HLMs. It was fully converted after 3h 

of incubation. Utilisation of the NADPH-dependent system presumably resulted in the formation of 

11 active metabolites related to 5F-APINAC, formed predominately by hydroxylation and oxidation 

transformations. 
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2.3.3 METABOLIC PATHWAY 

Monohydroxylation 

M1 was found in the in vitro and in in vivo experiments up to 3h. It was proposed as a 

monohydroxylated metabolite. The protonated molecular ion was found at m/z 401 and eluted at 

10.9 min. The product ions at m/z 151 indicate that the monohydroxylation was on its adamantyl 

ring. The ion at m/z 133 indicates the loss of water from the adamantyl ring (Figure 21.b). 

Dihydroxylation 

M2 and M3 were proposed as dihydroxylated metabolites. The protonated molecular peak was found 

at m/z 417. M2 was only found in vitro, whereas M3 was found both in vitro and in vivo up to 6h after 

administration. Regarding M2, two product ions were found at m/z 151 and 133. This supports 

monohydroxylation occurring in the adamantyl ring and dehydration from the product ion at m/z 151. 

The ion at m/z 267 indicates the presence of the hydroxyl group on the N-fluoropentyl side chain, 

while m/z 249 corresponds to its dehydrated derivative (Figure 21.c). 

M3 product ion spectrum showed fragments at m/z 167, 149, and 131. The product ions support that 

two hydroxylations occurred in the adamantyl ring. The fragment at m/z 167 correspond to 

adamantanediol, and the product ions at m/z 149 and 131 indicate two consecutive dehydrations 

from the product ion at m/z 167. At the same time, the product ion at m/z 251 and the ion at m/z 233 

prove the absence of hydroxylation at N-fluoropentyl side chain (Figure 21.d). 

Trihydroxylation 

M4.1, M4.2, and M4.3 were proposed as the trihydroxylation metabolites. They were found both in 

vitro and in vivo up to 6h after administration. Their protonated molecular ions appeared at m/z 433, 

and their retention times were 6.8, 7.7 and 8.2 min, respectively (Appendix II Fig. S1). All metabolites 

had the same spectrum, which suggests that the hydroxylation on the N-fluoropentylindazole moiety 

chain occurs in three different places, and that the adamantyl moiety undergoes two hydroxylations. 

The product ions at m/z 267 and 167 may characterise the breakdown of the ester bond. The one at 

m/z 167 is thought to belong to adamantanediol, and the product ions at m/z 149 and 131 indicate 

two consecutive dehydrations from the product ion at m/z 167. The ion at m/z 267 is thought to 

belong to the 3-carboxy-1-(5-fluorohydroxypentyl)-1H-indazole. The ions at m/z 249 and 233 indicate 

two consecutive dehydrations from m/z 267 (Figure 21.e). 

Monohydroxylation and oxidation 

M5 was only found in vitro up to 3h after administration. It eluted at 8.9 min and had its protonated 

molecular ion at m/z 415. Its spectrum showed two product ions at m/z 151 and 133 belonging to 

the monohydroxylated adamantyl ring and its dehydration, respectively (Figure 21.f). 
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Dihydroxylation and oxidation 

M6 was found in vitro with a protonated molecular ion at m/z 431. This metabolite indicates the 

presence of carbonyl and hydroxyl groups at the adamantyl ring (m/z 165) and hydroxylation at the 

5-fluoropentyl side chain (m/z 267). Moreover, the ion at m/z 147 is related to dehydration from the 

ion at m/z 165 (Figure 21.g). 

Ester hydrolysis 

Because it has been reported that SCs containing an ester group (i.e.,  BB-22,  PB-22,  5F-PB-22,  

APINAC, and NM-2201) are extensively hydrolysed [107,108], 5F-APINAC was expected to undergo 

a similar process. M7 was found in the in vitro and in vivo experiments up to 6h after administration. 

Moreover, it was one of the principal metabolites found in rat urine. It eluted at 7.2 min, and its 

precursor ion was identified at m/z 251. The ion at m/z 233 corresponds to the dehydration of the 

protonated molecular M7, while m/z 163 and 145 are associated with the consistent loss of the pentyl 

side chain and dehydration, respectively. Natural loss of hydrogen fluoride at m/z 233 resulted in the 

formation of a product ion at m/z 213. At the same time, an ion at m/z 177 was formed by fluorine 

rearrangement [109] (Figure 22.a). 

Glucuronidation 

M8 was identified as a phase II metabolite in the in vivo study, which is a glucuronide conjugate. Its 

protonated molecular ion was found at m/z 427. M8 underwent several fragmentations in the ion 

source, which resulted in the appearance of product ion m/z 251 corresponding to the protonated 

molecule of M7. As reported by Savchuk et al. [88], this is a property common to phase II metabolites 

(ester of glucuronic acid). Further product ions were found at m/z 233, 213, 177 and 145, as 

described for M8. Another fragment with m/z 391 could be associated with two dehydrations of the 

M8 molecular ion (Figure 22.b). 

Ester hydrolysis followed by monohydroxylation 

M9 was identified only in the in vivo study up to 6h after administration. It eluted at 6.7 min and was 

identified from its protonated molecular ion at m/z 267. The product ion spectra contained ions at 

m/z 249, 231, 175, and 145. The product ion with the highest intensity at m/z 249 corresponds to the 

metabolite after dehydration. The fragment at m/z 231 was generated by dehydration from its 

precursor ion at m/z 249. The ion at m/z 175 strongly suggests a cleavage between the N-α and β 

carbons of the hydroxylated N-fluoropentyl group in this metabolite (Figure 22.c) 

Oxidative defluorination (hydroxyl formation) 

M10 was only found in vitro and had its protonated molecular ion at m/z 383. M10 was proposed as 

the metabolite after a loss of fluorine and the consecutive addition of a hydroxyl group. The 
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adamantyl cation at m/z 135 was the only fragment in the product ion spectra which suggests an 

unmodified adamantyl ring. Such a process has also been reported in 5F-AKB-48, XLR-11, and AM-

2201 [98] (Figure 22.d). 

Oxidative defluorination (aldehyde or carboxyl formation) and monohydroxylation 

M11 (only found in vitro) showed a protonated molecular ion at m/z 397 that was associated with 

consequent oxidation of a hydroxyl group to aldehyde and the addition of a hydroxyl group on the 

adamantyl ring (m/z 151). The fragment at m/z 133 corresponds to dehydration from m/z 151, and 

the ion at m/z 247 to the breakdown of the ester bond (Figure 22.e). 

M12 found in vitro and in vivo showed a protonated molecular ion at m/z 413, probably followed by 

oxidation to carboxyl group via the aldehyde (M11) and the addition of a hydroxyl group on the 

adamantyl ring (m/z 151). The fragment at m/z 133 corresponds to dehydration from m/z 151 (Figure 

22.f). 

Oxidative defluorination (carboxyl formation) and dihydroxylation 

M13 was found in vitro and in vivo up to 6h after administration and had its protonated molecular ion 

at m/z 429 which corresponds to the loss of fluorine followed by introduction of a carboxyl group and 

addition of two hydroxyl groups on the adamantyl ring. The fragment at m/z 167 is thought to be due 

to adamantanediol, and the ions at m/z 149 and 131 indicate two consecutive dehydrations from the 

product ion at m/z 167. The less intense fragment at m/z 245 could belong to the fragment appearing 

after cleavage of the ester bond (Figure 22.g). 

Metabolites found in negative ionisation mode 

M10 had two product ions corresponding to the indazole moiety (m/z 117) and the 1-fluoro-5-(1H-

indazol-1-yl)pentan-3-ol fragment (m/z 221). M7 had its protonated molecular ion at m/z 249. The 

fragment corresponding to indazole appear at m/z 117 and the fragment at m/z 205 is thought to 

belong to the C-C cleavage between the indazole moiety and the carboxyl group. M13 (m/z 427) had 

only one fragment in its product ion spectrum. It is suggested that m/z 327 is a consequence of C-N 

cleavage, detaching the carbon chain from the rest of the molecule. 

2.4 DISCUSSION 

Although the in vivo metabolism of 5F-APINAC in humans was not characterised, utilisation of in 

vitro models of HLMs together with in vivo experiments in rats is considered the first step for 

characterising the metabolism of new drugs. The non-fluoro counterpart APINAC (AKB57) is well 

known to have circulated and was first detected in smoking mixtures on the black market in South 

Korea [106]. In September 2016, a powdery substance (1.97 g, purity 72% investigated by high-

performance liquid chromatography) containing APINAC was confiscated in Saratov Region 
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(Russia) in the course of a police investigation [88]. However, to our knowledge, at the international 

level, APINAC is subjected to control only in the Republic of Belarus and Japan. 

As for the fluorinated analogue of APINAC, it is easily expected that the mode of drug action is 

enhanced, because the fluorine substitution at the 5-pentyl position of pentyl- 

indazoles/pentylindoles was reported to enhance the drug’s stability, potency, and half-life [93,104]. 

Because of the worldwide lack of regulation and the high potency of 5F-APINAC, it is probable that 

this drug will circulate widely. Thus, it is important to characterise the metabolism of 5F-APINAC. 

Due to the unavailability of authentic human urine specimens with 5F-APINAC and its metabolites, 

experiments with HLMs in vitro, and with rat urine in vivo collected 3, 6, and 24h after administration 

of 5F-APINAC were carried out instead. There are two papers describing the metabolism of APINAC, 

the non-fluoro counterpart of 5F-APINAC [88,107]. If the fluorine at the terminus of the pentyl side 

chain is intensively attacked for defluorination at the initial/early stage of metabolism, the metabolites 

of 5F-APINAC common to those of APINAC will appear. However, in contrast to our expectation, we 

found that M12 was the only metabolite common to both SCs. The metabolic profiles for 5F-AKB-48 

and AKB-48, the compounds analogous to 5F-APINAC and APINAC, respectively (Figure 19), were 

also studied by Vikingsson et al. [110]. They concluded that only a few identified metabolites were 

shared between AKB-48 and 5F-AKB-48. Therefore, it is easy to discriminate between 5F-APINAC 

and APINAC, and also between 5F-AKB-48 and AKB-48 by checking multiple metabolites for each 

SC. In addition, it should be pointed out that N-5-fluoropentylindazole-3-carboxylic acid (M7), which 

appeared as an abundant peak in both in vitro and in vivo experiments, is not a metabolite specific 

to 5F-APINAC, but can also be most probably produced from 5F-SDB-005, an indazole carboxylate 

SC with a 5-fluoropentyl side chain. 

Based on the experiments, the most prevalent metabolite, which will be easily detected in human 

urine, is M7. With this metabolite alone, it can be concluded that the SC has a 5-fluoropentyl side 

chain and is suggestive of the consumption of 5F-APINAC or 5F-SDB-005, although the use of a 

new/unknown 5-fluoropentylindazole carboxylate SC cannot be ruled out. In addition to M7, M4.1, 

or M13 having an adamantyl ring, it is essential to definitively prove 5F-APINAC consumption. 

2.5 CONCLUSION 

In the present study, 15 metabolites associated with the novel SC 5F-APINAC were described. 

Tentative identification of the metabolites was performed through in vitro incubation with HLMs and 

in vivo with rat urine after intravenous administration of the drug. The predominant metabolic 

reactions were ester hydrolysis remaining in both in vitro and in vivo experiments and resulting in 

the formation of M7 (5-fluoropentylindazole-3-carboxylic acid). Other metabolic transformations 

included mono-, di- and trihydroxylation of the adamantyl ring and N-fluoropentylindazole moiety, 

oxidation of the N-fluoropentyl side chain, oxidative loss of fluorine and glucuronidation, as well as 
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combinations thereof. The discovered metabolites may serve for future studies and are likely to be 

incorporated into routine analytical screening methods as urine markers of 5F-APINAC consumption. 

2.6 LIMITATIONS AND FUTURE RESEARCH 

The metabolism of 5-F APINAC was not characterised in humans. Utilisation of in vitro models of 

HLM together with in vivo experiments in rats is considered an optimal choice for characterising the 

metabolism of new drugs. However, in vitro incubation simulates the metabolic transformation only 

in the liver, whereas metabolism in rats may differ from humans. Rat models cannot fully replace 

controlled human studies. Although the experiments were not performed in humans, the use of the 

murine model presented the advantage of being able to study the metabolism of the drug in time 

series, which is difficult to conduct in humans due to ethical considerations. It is important to point 

out that the research was limited in terms of the lack of identification of the exact positions of the 

modifications. It was only possible to deduce whether a modification was located on the adamantyl 

group or on the pentylindazole moiety. Future studies should ideally include experiments based on 

analyses performed in specimens collected from humans.   
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3. DEVELOPMENT AND VALIDATION OF A NEW METHOD FOR THE 

DETERMINATION OF 13 SECOND-WAVE SYNTHETIC CANNABINOIDS IN 

HAIR 

3.1 INTRODUCTION 

Novel psychoactive substances (NPS) have been designed to mimic the psychoactive effects of 

common illicit drugs. However, their different chemical structures hinder their detection during 

standard toxicological screenings. The consumption of these psychoactive substances is known as 

a “legal high” since they escape current law restrictions. In recent years, the EMCDDA has reported 

an increased use of these substances throughout the European Union. The main concern is the 

increased psychoactive effects compared to classical drugs, which have life-threatening side effects. 

This increased potency is a result of the higher binding capacity of these NPS to CB1 and CB2 

receptors [111]. During the pandemic, the illicit drug market was disrupted but quickly recuperated, 

with an increase of sales in the dark markets once the restriction measures were relaxed.  Moreover, 

some health conditions linked to drug use together with drug sharing, such as a sharing a cannabis 

joint, is now a greater health risk than before [112]. 

Synthetic cannabinoids (SCs) are one type of NPS that mimic the effects of Δ9-Tetrahydrocannabinol 

(THC). SCs are in the top two substances being seized and the largest group of NPS being 

monitored, as per the latest report of the EMCDDA [112]. The first SC detected was JWH-018, the 

most popular first-generation SC, followed by the second-generation of SCs, such as ADB-PINACA, 

UR-144, 5F-PB-22, AB-FUBINACA, AKB-48 [93]. They do not contain cannabis but produce similar 

effects due to the binding to the CB1 and CB2 receptors. They are produced by spraying chemical 

additives on dried plant products and are sold as a legal alternative to cannabis [113]. They are 

available as incenses, tea, food additives, herbal mixtures, energy drinks, and scents [114]. Specific 

effects of SCs are hard to predict due to the lack of pharmacokinetic information. However, it is very 

well-known that all SCs are extensively metabolised [115]. Typical intoxication symptoms include 

vomiting, abdominal or flank pain, nausea, and hypertension. There is little clinical information, but 

acute kidney injury has been associated with SC use [93].  

On account of the fast emergence of new SCs where only a side chain is modified (large structural 

diversity) together with an increase in consumption of these herbal mixtures, there is a need to 

develop fast and high throughput analytical screening methods for their reliable detection. To date, 

SCs have been determined in several biological specimens such as serum, hair, urine, and blood 

[114–120]. The method of choice is liquid chromatography coupled with different types of mass 

detection, such as, QTOF, Qtrap, and QQQ [114–120]. Recently, Bruker developed a high 

throughput LC–MS system, called Toxtyper®, which operates as screening device using libraries 
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that contain more than 4000 compounds, including their main metabolites. These libraries are 

constantly updated with the emergent NPS substances [121]. 

As mentioned above, several biological specimens have potential to be used for the analysis of SCs. 

It is a well-known fact that keratin in the hair’s root contains several xenobiotics that are also present 

in blood and are protected from environmental factors as well as metabolism. Therefore, it seems 

highly suitable to use hair as the chosen specimen for the identification of SCs [114]. To the best of 

our knowledge, the only method which uses this technology for the toxicological screening of hair 

does not include synthetic cannabinoids [122]. 

The aim of the present work is the development and validation of a screening and semi-quantitative 

method for 13 second-wave SCs in hair based on liquid chromatography coupled with IonTrap (LC–

QIT–MS): (R)-5F-ADB, 5F-PB 22, 5Cl-AB-PINACA, 5F-AKB-48, 5F-APP-PICA (PX-1), 5F-APP-

PINACA (PX-2), 5F-CUMYL-PINACA, AB-CHMINACA, AB-FUBINACA, ADB-FUBINACA, MDMB-

CHMICA, MMB-2201, and UR-144. The method was applied to hair samples from subjects who have 

tested positive for one or several other illegal drugs. 

3.2 MATERIALS AND METHODS 

3.2.1 REAGENTS 

Standard solutions of (R)-5F-ADB, 5F-PB 22 ,5Cl-AB-PINACA, 5F-AKB48, 5F-APP-PICA (PX-1), 

5F-APP-PINACA (PX-2), 5F-CUMyL-PINACA, AB-CHMINACA, AB-FUBINACA, ADB-FUBINACA, 

MDMB-CHMICA, MMB-2201, and UR-144 were purchased from Comedical (Trento, Italy). Their 

structures, MRM transitions, and retention times are displayed in Table 17. D5-diazepam was 

purchased from Cayman chemicals (Michigan, US) and used as IS. 

Ammonium was provided by AnalaR in salt form (NH4Cl) (Merck, Darmstadt, Germany). Acetonitrile 

(ACN), methanol (MeOH), and 2-propanol for UHPLC were purchased from VWR Chemicals 

(Fontenay-Sous-Bois, France). 98% formic acid for LC–MS and Dichloromethane (CH2Cl2) for HPLC 

were obtained from Merck KGaA (Darmstadt, Germany). Absolute ethanol was provided by Carlo 

Erba Reagenti (Milan, Italy). Ultrapure water was obtained from an ELGA VEOLIA (Lane End, High 

Wycombe, UK) water purification system. 
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Table 17. Structure, MRM transitions and retention time (RT) of all SCs researched. 

Synthetic 

cannabinoid 

Precursor 

(m/z) 

Fragment 

(m/z) 

RT 

(min) 
Structure 

(R)-5F-ADB 378.2 318.2 4.13 

 

5F- PB 22 377.2 232.0 3.93 

 

5Cl- AB-

PINACA 
365.2 348.0 3.21 

 

5F-AKB-48 384.2 135.0 5.81 

 

5F-APP-PICA 

(PX-1) 
396.2 379.2 3.12 
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5F-APP-

PINACA (PX-

2) 

397.2 380.1 3.19 

 

5F-CUMyL-

PINACA 
368.2 250.2 4.30 

 

AB-

CHMINACA 
357.2 340.2 3.65 

 

AB-FUBINACA 369.2 352.1 3.12 

 

ADB-
FUBINACA 

383.2 366.1 3.16 
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MDMB-

CHMICA 
386.2 326.2 4.90 

 

MMB-2201 363.2 232.1 3.51 

 

UR-144 312.2 214.0 6.55 

 

 

3.2.2 INSTRUMENTATION 

Analysis were performed on a Toxtyper® LC/IT–MS system. The instrument consisted of an Elute 

UHPLC system coupled with amaZon speed® ion trap with three different sources: electrospray 

ionisation sources (ESI), atmospheric pressure chemical ionisation (APCI), and IonBoosterTM (iB) 

(Bruker Daltonics, Bremen, Germany). Nitrogen was used as a nebulising and drying gas. The 

source settings were optimised in order to achieve the highest and most reproducible signal of the 

analytes. 

Two analytical columns were used: Acclaim™ RSLC 120 C18 (2.1x100 mm, 2.2 μm, 120 Å) from 

Thermo Fisher (Idstein, Germany) and Kinetex C18 (2.1X100 mm, 2.6 μm, 100Å) from Phenomenex 

(California, US). The column oven was kept at 40ºC. Mobile phase A (aqueous) contained 1% ACN, 

0.1% formic acid and 2 mM ammonium formate. Mobile phase B (organic) contained 1% H2O, 0.1% 

formic acid and 2 mM ammonium formate. Gradient elution was performed as follows: 0-1 min: 20% 

B, 1-2.50 min: 20-60% B linear, 2.50-4 min: 60-65 %B linear, 4-5.50 min: 65% B, 5.50-8 min: 65-

99%, 8-10 min: 99%, 10-10.20 min: 99-20% B, 10.20-12 min: 20% B. The flow rate was 0.5 mL/min, 

and the injection volume was 5 µL. The MS was operated in AutoMSn from 70–800 amu.  



73 
 

The method already provided by the company was optimised with the different sources. SC 

identification was done through the Toxtyper® software based on retention time (RT), full scan MS, 

MS2, and MS3 using the synthetic cannabinoids spectral library. The acquired MSn spectra are 

compared against the library and a purity score is generated, which symbolises the degree of 

consistency between the library and the experimental spectrum. The purity has to be at least 700 for 

a positive identification and 1000 means 100% identity. In the present work, purity must be above 

850 and only a ΔRT= ±0.3 min was allowed for considering the SC identified by the Toxtyper® system. 

3.2.3 SOLUTIONS AND CALIBRATION CURVE PREPARATION 

For the stock solution, a mix with all SCs was prepared by diluting adequate volumes of the SC with 

MeOH to a concentration of 1 µg/mL. For the IS solution, d5-diazepam was diluted to 1 µg/mL with 

MeOH. Both solutions were stored at –20 °C. The hair calibration standards (3, 2, 1, 0.5, 0.3 ng/mg) 

were prepared by adding the adequate amount of SC and 50µL of IS solution (constant concentration 

of IS 1 ng/mg) to 50 mg of blank hair before extraction. 

3.2.4 HAIR SAMPLE PREPARATION 

The method was developed using blank hair samples. The samples were spiked with the mix of SCs 

and the IS at the desired concentration levels. In addition, 11 samples from real cases were used for 

the validation of the methodology. 

Sample preparation was adapted from Hutter et al.[116]. Briefly, 70 mg of blank hair were washed 

with dichloromethane for 5 minutes. They were left to dry for 10 minutes and afterwards they were 

cut and pulverised using the homogeniser instrument (Precellys® Evolution, Bertin instruments). 

Then, 50 mg of the blank hair was weighed in a glass vial and then extracted with 1,5 mL of EtOH 

for 3 hours in an ultrasonic bath. After extraction, the samples were centrifuged for 10 minutes. 

Successively, 1 mL of the solution was transferred to a glass vial and evaporated with N2 at room 

temperature. The dry residue was reconstituted in 100 µL of phases A/B 50/50 (v/v). 

3.2.5 METHOD VALIDATION 

Firstly, the suitability of the two available columns (1 and 2) for the successful and unequivocal 

separation of all 13 SCs was evaluated. Secondly, the three different available sources were 

evaluated based on the intensity of the signal for all 13 SCs. For each source, their MS parameters 

were optimised and then the intensities of the 13 SCs were compared for each optimised source. 

Thirdly, after selecting the column and source, the method was validated according to method 

validation guidelines suggested by Polettini [71] for the quantification of SCs in human hair samples. 

Validation samples were prepared by spiking blank hair with the IS and SC mixture prior to extraction. 

Selectivity was assessed by measuring three blank hair samples in triplicate. A calibration curve was 

evaluated by six replicate measurements for each point. Accuracy and precision studies were carried 

out by analysing three samples at high (2 ng/mg), middle (1 ng/mg), and low (0.5 ng/mg) 
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concentrations for five days with six replicates for each concentration point. LOD was determined as 

the lowest concentration at which the analyte could be identified with S/N ≥ 3. 

Matrix effects, process efficiency, and extraction recovery were assessed following the guidelines of 

Matuszewski [123]. The matrix effect (ME) is calculated as the ratio between the peak areas 

determined by the analysis of hair samples fortified with the SCs after extraction and the standards 

in mobile phase (50/50, v/v). The process efficiency (PE) is calculated as the ratio between the peak 

areas determined by the analysis of hair samples fortified with the SCs before extraction and the 

standards in mobile phase (50/50, v/v). The extraction recovery (R) was calculated as the ratio 

between the peak areas determined by the analysis of hair samples fortified with the SCs before 

extraction and the peak areas determined by the analysis of hair samples fortified with the SCs after 

extraction. 

3.2.6 REAL CASES 

Authentic hair samples were collected from subjects tested positive for one or more of the following 

illegal drugs: cocaine and its metabolites cocaethylene, benzoylecgonine and ecgonine methyl ester, 

codeine, amphetamines, MDMA, MDA, ketamine, nor-ketamine, morphine, methadone and its 

metabolite EDDP, heroine metabolite 6-MAM, dihydrocodeine (DHC). No information about the use 

of SC was available. The samples were prepared following the developed method. 

3.3 RESULTS AND DISCUSSION 

3.3.1 COMPARISON OF THE TWO COLUMNS 

Two columns were tested to evaluate their suitability for the best separation of all the SCs. In 

particular, the columns recommended by the equipment producer, Acclaim™ and Kinetex, where 

both evaluated (Column 1 and Column 2, respectively). They differ for particle sizes and pore sizes: 

2.2 µm (column 1) and 2.6 µm (column 2), and 120 Å (column 1) and 100 Å (column 2), respectively. 

As shown in Figure 23, with column 1, separation occurs in 8 minutes but between 3.35–3.70 min 

many analytes elute in overlapping peaks. In addition, some compounds such as 5F-ADB and 5F-

PB-22 show two peaks for the same compound. On the contrary, column 2 was the best choice since 

the separation takes place in a shorter time (7 minutes) and in column’s 2 cluster area, only six 

compounds elute and are clearly very well separated. Therefore, column 2 was selected as the best 

choice for method development and validation. 
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Figure 23. Comparison of column 1 (top) and column 2 (bottom) for the separation of 13 SCs. 

3.3.2 COMPARISON OF ESI, IB, AND APCI SOURCES 

In this study, three different sources were tested in order to evaluate their suitability for the analysis 

of SCs. In addition to the common ESI and APCI atmospheric pressure sources, ionBooster (iB) was 

tested. The IB is a heated ESI source in the spray zone which increases the desolvation process 

when using flows rates higher than 200 µL/min, resulting in improved detection limits. 
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The SCs were at a concentration of 200 ng/mL for all source tests. Information about the optimised 

parameters and the range of optimisation can be found in Table 18.  

Table 18. Source settings for the optimisation of all three sources with the SynnCann method. The 

values in bold are the optimised values, (N/A not applicable). 

 ESI iB APCI 

Capillary voltage (V) 
1000, 3000, 4500 1000, 3000, 4000 2000, 4000, 5500 

End of plate offset (V) 100, 500, 1000 300, 600, 900 1000, 2000, 3000 

Corona (nA) N/A. N/A 5000, 15000, 30000 

Charging volt N/A. 300, 600, 900 N/A 

Nebuliser (bar) 1, 3, 4 1, 3, 4 1, 3, 4 

Dry gas flow (L/min) 3, 7, 11 3, 7, 11 3, 7, 11 

Dry gas temp (ºC) 60, 100, 160 60, 100, 160 60, 100, 160 

Vaporiser temp (ºC) N/A 250, 350, 450 250, 350, 450 

 

The criteria followed for choosing the best source was highest intensity and if intensities were similar, 

the source with lowest CV (CV<20%) was chosen. As shown in Figure 24 the Ion Booster (iB) source 

is the most adequate for the analysis, with the signal almost double of that obtained with ESI. This 

is in accordance with literature where the iB source has been previously proposed for the successful 

detection of the first wave of SCs [120]. As shown in Figure 24, the ionisation source strongly 

influences the signal intensity.  

 

Figure 24. Influence of the ionization source on the signal intensities of the studied SCs. 

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

S
ig

n
a
l 
in

te
n

s
it

y

Ion Booster ESI APCI



77 
 

3.3.3 CALIBRATION, LLOQ, LOD, AND SELECTIVITY 

Selectivity was tested through the analysis of three different drug-free hair samples without IS. Blank 

samples did not reveal any interference with the MRM transition of the analytes.  

For all compounds, linearity was assessed in the range of 0.3-3 ng/mg. The limit of detection (LOD), 

expressed as S/N>3, was 0.0625 ng/mg for all the compounds except for 5Cl- AB-PINACA, 5F-APP-

PICA (PX-1), 5F-APP-PINACA (PX-2) and AB-CHMINACA for which LODs were 0.125 ng/mg. The 

lower limit of quantification (LLOQ), expressed as S/N>10, was 0.3 ng/mg for all compounds, except 

for 5Cl- AB-PINACA, for which the LLOQ is 0.5 ng/mg. The CVs in both LOD and LLOQ are all below 

20%. As depicted in Table 19, all compounds show very good correlation coefficients, being always 

higher than 0.97. 

Table 19. Validation figures obtained with Kinetex column and iB source: linearity curve, LOD and 

correlation coefficient. 

Synthetic cannabinoid 
LOD 

ng/mg 
Linearity curve (0.3-3 ng/mg) 

Correlation 

coefficient 

(r2) 

(R)-5F-ADB 0.0625 y = 1.358(±4.56)x– 1.097(±7.66) R² = 0.997 

5F- PB 22 0.0625 y = 4.518(±6.77)x – 6.836(±6.75) R² = 0.977 

5Cl- AB-PINACA 0.125 y = 4.137(±1.36)x + 7.285(±2.34) R² = 0.997 

5F-AKB-48 0.0625 y = 1.518(±9.76)x – 1.657(±1.66) R² = 0.988 

5F-APP-PICA (PX-1) 0.125 y = 1.018(±5.36)x – 1.67(±8.96) R² = 0.992 

5F-APP-PINACA (PX-2) 0.125 y = 1.008(±2.86)x- 9.086(±4.76) R² = 0.998 

5F-CUMyL-PINACA 0.0625 y = 2.608(±2.97)x – 1.507(±4.96) R² = 0.970 

AB-CHMINACA 0.125 y = 6.767(±3.66)- 4.926(±6.15) R² = 0.992 

AB-FUBINACA 0.0625 y = 6.757((±6.55)x + 1.676(±1.16) R² = 0.999 

ADB-FUBINACA 0.0625 y = 5.907(±6.25)x – 4.316(±1.05) R² = 0.999 

MDMB-CHMICA 0.0625 y = 2.738(±2.37)x – 4.07(±3.96) R² = 0.979 

MMB-2201 0.0625 y = 3.218(±2.57)x – 2.87(±4.36) R² = 0.982 

UR-144 0.0625 y = 2.438(±1.97)x – 3.07(±3.26) R² = 0.982 

 

3.3.4 PRECISION AND BIAS 

Precision and bias results are summarised in Table 20 and Table 21. Intra- and inter-day precision 

values for all synthetic cannabinoids are below 25%. Bias values for all analytes are below 20%.  
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Table 20. Summary of intra- and inter-day studies. 

 

 

 

 Intra-day precision (%RSD) 

Synthetic 
cannabinoid 

2 ng/mg (n=6) 1 ng/mg (n=6) 0.5 ng/mg (n=6) 

 Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

Day 
1 

Day 
2 

Day 
3 

Day 
4 

Day 
5 

R-5F-ADB 20.1 19.3 23.6 14.6 20.4 16.4 15.9 21.9 17.3 15.5 22.0 21.6 20.3 13.9 13.2 

5F- PB-22 7.1 15.8 12.7 15.6 17.5 13.9 9.7 15.2 6.7 11.3 18.3 15.1 11.6 16.6 20.5 

5Cl- AB-
PINACA 

12.6 16.0 13.3 12.6 15.8 5.1 12.6 18.5 4.5 9.9 13.2 19.4 12.3 23.3 19.4 

5F-AKB-48 15.5 21.3 21.7 15.4 3.3 13.7 11.4 15.7 16.3 10.1 22.2 24.4 12.3 16.5 24.3 

5F-APP-PICA 
(PX-1) 

3.0 14.3 13.6 14.8 19.8 13.8 15.2 11.3 11.7 20.4 10.8 6.5 11.1 5.3 3.0 

5F-APP-
PINACA (PX-2) 

14.6 4.2 6.6 25.0 19.9 7.8 15.6 14.1 19.3 17.9 8.4 21.4 19.2 23.0 21.3 

5F-CUMYL-
PINACA 

22.5 16.2 20.0 21.6 11.9 12.6 13.4 17.1 20.6 12.3 9.9 19.1 20.2 15.2 22.2 

AB-CHMINACA 17.8 19.9 23.5 21.5 14.0 12.1 18.3 11.9 12.2 18.1 12.5 20.5 20.9 21.8 19.3 

AB-FUBINACA 5.3 12.2 8.7 16.6 11.4 20.7 5.4 12.3 17.1 18.5 24.6 16.4 18.1 22.4 18.5 

ADB-
FUBINACA 

13.0 18.9 20.4 12.3 19.4 4.1 21.3 15.0 24.0 10.8 21.5 12.7 22.6 23.7 17.4 

MDMB-
CHMICA 

18.2 15.4 20.3 18.8 21.1 14.3 23.3 22.9 13.6 9.6 9.7 20.3 20.3 9.1 32.2 

MMB2201 11.0 10.4 8.1 18.4 16.7 21.7 17.0 17.7 9.9 9.9 19.6 11.5 10.4 5.3 44.1 

UR-144 14.0 21.2 13.0 22.2 10.9 16.6 19.3 15.5 16.6 12.2 19.1 17.0 23.5 21.0 15.1 

d5-Diazepam 14.0 11.6 9.9 9.5 8.6 14.0 15.4 8.0 47.5 9.2 17.8 11.1 22.2 5.6 14.0 

 Inter-day (5 days) 

Synthetic cannabinoid 2 ng/mg 1 ng/mg 0.5 ng/mg 

R-5F-ADB 
16.0 18.5 11.7 

5F- PB-22 3.0 11.9 12.7 

5Cl- AB-PINACA 23.4 24.4 13.8 

5F-AKB-48 11.2 3.6 13.5 

5F-APP-PICA (PX-1) 7.1 7.8 4.2 

5F-APP-PINACA (PX-2) 5.1 19.6 32.6 

5F-CUMYL-PINACA 20.7 15.0 2.6 

AB-CHMINACA 11.1 23.2 19.1 

AB-FUBINACA 1.1 13.7 9.6 

ADB-FUBINACA 13.4 13.2 12.7 

MDMB-CHMICA 17.1 21.1 11.7 

MMB2201 6.9 12.5 3.3 

UR-144 13.3 16.9 7.5 

d5-Diazepam 10.7 9.0 8.2 



79 
 

Table 21. Bias results for the three validation concentrations (n=6). 

Synthetic cannabinoid 
Bias (%) 

2 ng/mg 1 ng/mg 0.5 ng/mg 

R-5F-ADB 9.4 -7.9 16.3 

5F- PB-22 -20.8 -18.9 -19.9 

5Cl- AB-PINACA -16.5 16.0 19.6 

5F-AKB-48 -8.9 -9.3 -17.7 

5F-APP-PICA (PX-1) 8.0 13.3 19.4 

5F-APP-PINACA (PX-2) 5.0 19.8 9.0 

5F-CUMYL-PINACA -19.9 -0.5 18.6 

AB-CHMINACA 13.1 7.5 18.2 

AB-FUBINACA 19.3 17.9 5.2 

ADB-FUBINACA 6.5 20.0 18.0 

MDMB-CHMICA -19.7 -5.4 18.2 

MMB2201 19.8 13.6 17.3 

UR-144 -2.6 15.6 19.4 

 

3.3.5 MATRIX EFFECT 

Matrix effect (ME), process efficiency (PE) and recovery (R) results are summarised in Table 22. 

Matrix effects at 2 ng/mg ranged from 25 to 56%; at 1 ng/mg from 16 to 50%; and at the lowest point 

(0.5 ng/mg) from 14 to 45%. Process efficiency at the highest point (2 ng/mg) ranged from 19 to 

53%, at 1 ng/mg from 12 to 54%, and at the lowest point from 12 to 44%. Finally, recoveries at all 

concentrations were very good except for 5Cl-AB-PINACA at 0.5 ng/mg, which might be due to 

sampling error at said concentration. 

Table 22. Matrix effect, process efficiency, and recovery at three different concentrations: 2 ng/mg 

(high), 1 ng/mg (medium), and 0.5 ng/mg (low). 

 2 ng/mg 1 ng/mg 0.5 ng/mg 

Synthetic 
cannabinoid 

Matrix 
effect 
(%) 

Process 
efficiency 

(%) 

Recovery 
(%) 

Matrix 
effect 
(%) 

Process 
efficiency 

(%) 

Recovery 
(%) 

Matrix 
effect 
(%) 

Process 
efficiency 

(%) 

Recovery 
(%) 

(R)-5F-ADB 53.7 53.1 99.0 16.0 12.2 75.9 37.0 33.9 91.6 

5F-PB 22 25.2 19.4 77.1 17.7 14.5 81.9 14.3 13.7 96.3 

5Cl-AB-PINACA 44.3 27.6 62.2 40.1 37.3 93.2 44.5 11.8 26.5 

5F-AKB48 40.7 36.4 89.6 14.2 16.9 118.8 14.6 12.6 86.6 

5F-APP-PICA (PX-
1) 

48.4 33.4 69.1 42.3 42.4 100.3 32.3 34.1 105.6 

5F-APP-PINACA 
(PX-2) 

46.0 33.7 73.4 38.2 44.3 116.1 41.6 38.2 91.9 

5F-CUMYL-PINACA 40.2 26.5 66.0 31.2 28.2 90.5 21.4 21.2 99.2 

AB-CHMINACA 46.5 45.6 98.2 30.1 33.8 112.4 30.6 29.5 96.4 

AB-FUBINACA 56.1 51.1 91.1 49.6 50.2 101.2 39.0 33.3 85.5 

ADB-FUBINACA 39.1 31.7 81.1 26.5 28.8 108.8 27.0 40.1 148.8 

MDMB-CHMICA 36.3 33.2 91.5 29.0 27.3 94.2 20.8 12.7 60.9 

MMB-2201 34.0 28.7 84.4 32.1 31.0 96.6 45.4 44.7 98.5 

UR-144 32.1 19.1 59.4 34.1 54.9 160.8 35.9 20.3 56.6 
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3.3.6 AUTHENTIC HAIR SAMPLES 

Real hair samples from patients that have tested positive for other illegal drugs (Table 23) were 

analysed. No information was available regarding the intake of SC from the patients. However, all 

samples tested negative for SCs. 

Table 23. Real hair samples obtained from 11 patients that have been tested for illegal drugs. 

Hair sample Positive for 

1 Cocaine, Benzodiazepine 

2 Cocaine, Benzodiazepine, morphine 

3 Cocaine, Benzodiazepine 

4 Cocaine, Benzodiazepine, Codeine 

5 Cocaine, Benzodiazepine 

6 Cocaine, Benzodiazepine, methadone 

7 Cocaine, Benzodiazepine 

8 Cocaine, Benzodiazepine 

9 Cocaine, Benzodiazepine 

10 Cocaine, Benzodiazepine, morphine, methadone 

11 Cocaine, Benzodiazepine, morphine, methadone 

 

3.4 CONCLUSION 

The developed LC–IonTrap methodology proved suitable for the screening of 13 second-wave 

synthetic cannabinoids: (R)-5F-ADB, 5F-PB 22, 5Cl-AB-PINACA, 5F-AKB48, 5F-APP-PICA (PX-1), 

5F-APP-PINACA (PX-2), 5F-CUMYL-PINACA, AB-CHMINACA, AB-FUBINACA, ADB-FUBINACA, 

MDMB-CHMICA, MMB-2201, and UR-144 in human hair samples. The method has a simple and 

effective sample treatment and presents good selectivity, linearity precision, and bias. It is high 

throughput and can be easily updated with the appearance of new synthetic cannabinoids in the 

market. 
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4. ABBREVIATIONS 

Abbreviations are not given in alphabetical order but by order of appearance.  

IR Infrared 

NMR Nuclear Magnetic Resonance 

GSR Gun Shot Residue 

SEM-EDS Scanning Electron Microscope with energy dispersive X-ray spectroscopy 

GC-MS/MS Gas Chromatography coupled with mass detection 

SERS Surface-Enhanced Raman Spectroscopy 

IMS Ion Mobility Spectrometry 

DNA Deoxyribonucleic acid 

NPS New Psychoactive Substances 

CE Capillary Electrophoresis 

PMI/PMIs Post-mortem interval/ Post-mortem intervals 

µm Micrometers 

ηL Nanoliters 

EOF Electroosmotic Flow 

CZE Capillary zone electrophoresis 

MEKC Micellar electrokinetic chromatography 

CGE Capillary gel electrophoresis 

CITP Capillary isotachophoresis 

CEC Capillary electrochromatography 

CDT Carbohydrate-Deficient Transferrin 

kNN k-nearest neighbour 

PLS-DA Partial-least-squares discriminant analysis 

ANN Artificial Neural Networks 

MLP Multilayer perceptron 

SGD Stochastic Gradient Descent 

Adam Adam: Stochastic Gradient Descent-based optimiser, 

L-BFGS Broyden–Fletcher–Goldfarb–Shanno 

IC Ion Chromatography 

HIBA α-hydroxybutyric acid 

UV Ultra-violet 

mM Millimolar 

V/cm Volts per centimetre 

ºC Degrees centigrade 

μA Microamperes 
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kV Kilovolts 

nm Nanometres 

s Seconds 

psi Pounds per square inch 

M Molar 

NaOH Sodium hydroxide 

min Minutes 

IS Internal standard 

μg/mL Micrograms per millilitre 

RSD Relative Standard Deviation 

SWGTOX Scientific Woking Group for Forensic Toxicology 

LOD Limit of detection 

LOQ Limit of quantification 

SD Standard Deviation 

MAE Mean Absolute Error 

LC Liquid chromatography 

UV-Vis Ultraviolet-visible absorption 

DAD Diode Array 

FRTIR Fourier Transform Infrared 

MS Mass Spectrometry 

UPLC Ultra-Performance Liquid Chromatography 

m/z Mass-to-charge ratio 

ESI Electrospray Ionisation 

APPI Atmospheric Pressure Photoionisation 

APCI Atmospheric Pressure Chemical Photoionisation 

iB IonBoosterTM 

EI Electrical Ionisation 

CI Chemical Ionisation 

SCAN Scan mode 

SIM Selected Ion Monitoring 

amu Atomic mass units 

Q Quadrupole 

IT Ion Trap 

QQQ Triple quadrupole 

QTRAP Quadrupole Ion Trap 

TOF Time of flight 

QTOF Quadrupole TOF 
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AC Alternating current 

DC Direct current 

RF Radio Frequency 

LC-MS/MS Liquid chromatography coupled with tandem mass spectrometric detection 

SCs or SC Synthetic cannabinoids 

CB1 and CB2 Cannabinoid receptor type 1 and type 2 

THC Tetrahydrocannabinol 

EUEWS European Union Early Warning System 

EMCDDA European Monitoring Center for Drugs and Drug Addiction 

HLMs Human liver microsomes 

LC–QTOF-MS/MS 
Liquid chromatography–quadrupole time-of-flight tandem mass 

spectrometry 

μL Microlitres 

mL Millilitres 

v/v Volume per volume 

V Volts 

mL/min Millilitres per minute 

eV Electronvolts 

h Hours 

UHPLC Ultra-high-performance liquid chromatography 

mg Milligrams 

ng/mg Nanograms per milligram 
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6. APPENDICES 

6.1 APPENDIX I. NH4
+ IN VITREOUS HUMOUR 

6.1.1 LIST OF VITREOUS HUMOUR SAMPLES USED FOR THE STUDY 

Table 24. List of vitreous humour samples, their electrophoresis data and ion concentrations used 

in the PMI interval evaluation. PA stands for Peak Area, PH stands for Peak Height. 

Code PANH4
+ PHNH4

+ 
[NH4

+] 

mM 
PAK

+ PHK
+ 

[K+] 

mM 

PANH4
+ + 

PAK
+ 

PHNH4
+ + 

PHK
+ 

PAIS PHIS 
PMI 

(hours.mins) 

VH 1 1316 533 0.99 13700 6048 15.28 15016 6581 19326 6441 77.1 

VH 2 1410 539 1.01 13348 5693 14.03 14758 6232 20492 6762 47 

VH 3 1032 364 0.51 11677 4803 12.30 12709 5166 20399 6666 21.5 

VH 4 2495 602 1.36 34647 9937 24.47 37142 10539 30697 7615 143 

VH 5 1017 245 0.00 18775 5049 11.94 19792 5293 33774 8549 46 

VH 6 1915 719 1.49 22530 8433 22.01 24445 9152 22195 6397 87.15 

VH 7 929 400 0.03 6169 2800 4.67 7098 3201 27560 7293 17.15 

VH 8 2509 595 1.47 24187 9178 17.43 26696 9773 29554 7280 123.44 

VH 9 2757 583 1.20 42316 10580 25.11 45073 11164 36540 8362 143 

VH 10 727 391 0.39 6520 3631 8.62 7247 4023 16140 5615 32 

VH 11 1155 496 0.97 13131 5928 16.47 14286 6424 17202 5775 56.05 

VH 12 773 344 0.38 11576 5284 14.95 12348 5628 16686 5443 52 

VH 13 2172 788 2.29 23883 9210 27.23 26056 9999 19030 6188 168.5 

VH 14 787 291 0.00 8610 3494 7.27 9398 3785 25119 6854 16.1 

VH 15 1490 484 0.60 17338 6309 13.56 18828 6794 27512 7262 47.4 

VH 16 1780 578 1.49 20349 7574 21.18 22129 8152 20793 6636 100.3 

VH 17 1027 308 0.08 19201 6411 14.33 20228 6719 28896 6713 68 

VH 18 713 332 0.35 6028 2786 8.04 6741 3118 15855 5122 29 

VH 19 3768 1067 3.10 31437 10213 25.95 35205 11280 26275 7481 163.2 

VH 20 2299 703 1.38 24644 8483 18.98 26943 9186 28090 7709 96.45 

VH 21 2421 684 1.42 18290 7434 17.43 20711 8118 12409 7151 52.3 

VH 22 3825 901 2.14 43168 11870 23.66 46993 12771 35130 8535 99.45 

VH 23 1643 562 0.82 20230 7825 16.43 21873 8387 26578 7346 98.45 

VH 24 1699 594 1.06 22439 8786 20.11 24138 9380 24115 7128 99.16 

VH 25 4121 1198 2.98 32412 10812 23.73 36533 12011 29643 7717 144.23 

VH 26 1284 428 0.38 14012 5096 10.75 15296 5524 27918 7564 25 

VH 27 1087 345 0.14 19104 6643 14.08 20191 6989 29176 7117 46.24 

VH 28 908 378 0.04 13229 5610 10.66 14137 5988 26594 6908 23.35 

VH 29 654 272 0.00 10899 4687 9.03 11552 4958 25797 6920 17.55 

VH 30 1802 693 0.99 22586 9142 18.39 24388 9835 26533 7126 48.4 

VH 31 1482 578 0.59 20377 8492 15.86 21859 9070 27709 7276 48.4 

VH 32 1377 540 0.56 16614 7181 13.67 17990 7721 26173 6943 50.15 

VH 33 1198 409 0.24 22060 8668 16.33 23258 9077 29208 7605 71.15 

VH 34 1777 547 1.23 22563 7869 20.58 24340 8416 23416 6243 48.45 

VH 35 2015 804 2.27 14241 6392 17.37 16256 7195 17763 5273 38.3 

VH 36 416 157 0.00 7517 3023 5.74 7933 3180 27657 7184 6.55 
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VH 37 1371 564 0.91 18031 8036 18.51 19402 8600 21135 6326 75.5 

VH 38 978 446 1.02 14441 7205 17.58 15419 7651 19697 5753 27.35 

Pink samples were used for the preliminary linear approach together with two more (a total of 14) but those 

two were later removed for further analysis since they were overdoses. For the logarithmic approach all 

samples except the blue ones (a total of 33) were used. For the neural networks, the same samples as the 

logarithmic approach and the blue ones were used (total of 38). 

6.1.2 TRAIN TEST SPLIT AND DATA PRE-PROCESSING 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn import neighbors, datasets, preprocessing  

from sklearn.model_selection import train_test_split 

from sklearn.neural_network import MLPRegressor 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

 

vhdata = pd.read_csv('vhrawdata.csv') 

X = vhdata[['CNH4', 'CK', 'rNA']] 

y = vhdata['PMI'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)  

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X_train_norm = scaler.fit_transform(X_train) 

X_test_norm = scaler.transform(X_test) 

6.1.3 CODE FOR ADAM SOLVER 

6.1.3.1 NUMBER OF NODES IN THE HIDDEN LAYER 

for hn in [1,2,3,4,5,6,7,8,9,10]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,hn), activation = 'logistic',                   

ssssssssssssolver = 'adam', alpha = 0.1, max_iter=400000,random_state=0) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with {} nodes: {:.3f}'.format(hn,           

xxxx r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} nodes:{:.3f}'.format(hn, xxxx 

xxxxr2_score(y_test,y_test_prediction))) 

     

    print('Mean Absolute error Train (MSE) with {} nodes: {:.3f}'.format(hn, 

xxxx mean_absolute_error(y_train, y_train_prediction))) 

    print('Mean Absolute error Test (MAE) with {} nodes: {:.3f}'.format(hn, xxxx 

xxxxmean_absolute_error(y_test, y_test_prediction))) 

 

Training set prediction (R2 score) with 1 nodes: -0.000 

Test set prediction (R2 score) with 1 nodes:-0.010 

Mean Absolute error Train (MSE) with 1 nodes: 32.114 

Mean Absolute error Test (MSE) with 1 nodes: 45.678 

Training set prediction (R2 score) with 2 nodes: -0.000 

Test set prediction (R2 score) with 2 nodes:-0.010 

Mean Absolute error Train (MSE) with 2 nodes: 32.118 

Mean Absolute error Test (MSE) with 2 nodes: 45.678 

Training set prediction (R2 score) with 3 nodes: -0.000 

Test set prediction (R2 score) with 3 nodes:-0.010 
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Mean Absolute error Train (MSE) with 3 nodes: 32.123 

Mean Absolute error Test (MSE) with 3 nodes: 45.678 

Training set prediction (R2 score) with 4 nodes: 0.860 

Test set prediction (R2 score) with 4 nodes:0.701 

Mean Absolute error Train (MSE) with 4 nodes: 11.424 

Mean Absolute error Test (MSE) with 4 nodes: 21.667 

Training set prediction (R2 score) with 5 nodes: 0.859 

Test set prediction (R2 score) with 5 nodes:0.696 

Mean Absolute error Train (MSE) with 5 nodes: 11.458 

Mean Absolute error Test (MSE) with 5 nodes: 21.832 

Training set prediction (R2 score) with 6 nodes: 0.858 

Test set prediction (R2 score) with 6 nodes:0.694 

Mean Absolute error Train (MSE) with 6 nodes: 11.483 

Mean Absolute error Test (MSE) with 6 nodes: 21.911 

Training set prediction (R2 score) with 7 nodes: 0.857 

Test set prediction (R2 score) with 7 nodes:0.693 

Mean Absolute error Train (MSE) with 7 nodes: 11.446 

Mean Absolute error Test (MSE) with 7 nodes: 22.070 

Training set prediction (R2 score) with 8 nodes: 0.858 

Test set prediction (R2 score) with 8 nodes:0.693 

Mean Absolute error Train (MSE) with 8 nodes: 11.436 

Mean Absolute error Test (MSE) with 8 nodes: 22.072 

Training set prediction (R2 score) with 9 nodes: 0.856 

Test set prediction (R2 score) with 9 nodes:0.690 

Mean Absolute error Train (MSE) with 9 nodes: 11.449 

Mean Absolute error Test (MSE) with 9 nodes: 22.188 

Training set prediction (R2 score) with 10 nodes: 0.856 

Test set prediction (R2 score) with 10 nodes:0.690 

Mean Absolute error Train (MSE) with 10 nodes: 11.449 

Mean Absolute error Test (MSE) with 10 nodes: 22.189 

 

6.1.3.2  ACTIVATION FUNCTION 

for actfun in ['identity','logistic','tanh','relu']: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = actfun, solver 

xxxx= 'adam', alpha = 0.1, max_iter=400000, random_state=0) 

     

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with {} activation function: xxxx 

xxxx{:.3f}'.format(actfun, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} activation function: xxxx xxxx 

xxxx{:.3f}'.format(actfun, r2_score(y_test,y_test_prediction))) 

 

Training set prediction (R2 score) with identity activation function: 0.753 

Test set prediction (R2 score) with identity activation function:0.820 

Training set prediction (R2 score) with logistic activation function: 0.860 

Test set prediction (R2 score) with logistic activation function:0.701 

Training set prediction (R2 score) with tanh activation function: 0.879 

Test set prediction (R2 score) with tanh activation function:0.673 

Training set prediction (R2 score) with relu activation function: 0.776 

Test set prediction (R2 score) with relu activation function:0.803 

 

6.1.3.3  ALPHA VALUE 

for alphavalue in [0.1, 0.01, 0.001, 0.2, 0.3]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = 'logistic',   -

---------------------   solver = 'adam', alpha = alphavalue,   

xxxxxxxxxxxxxxxxxxxxxxlearning_rate_init=0.001, max_iter=400000, random_state=0) 
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    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with alpha= {}:{:.3f}'.format 

xxxx(alphavalue, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with alpha= {}:{:.3f}'.format 

xxxx(alphavalue, r2_score(y_test,y_test_prediction))) 

 

Training set prediction (R2 score) with alpha= 0.1 : 0.860 

Test set prediction (R2 score) with alpha= 0.1 :0.701 

Training set prediction (R2 score) with alpha= 0.01 : 0.874 

Test set prediction (R2 score) with alpha= 0.01 :0.678 

Training set prediction (R2 score) with alpha= 0.001 : 0.877 

Test set prediction (R2 score) with alpha= 0.001 :0.667 

Training set prediction (R2 score) with alpha= 0.2 : 0.850 

Test set prediction (R2 score) with alpha= 0.2 :0.711 

Training set prediction (R2 score) with alpha= 0.3 : -0.000 

Test set prediction (R2 score) with alpha= 0.3 :-0.010 

 

6.1.3.4 LEARNING RATE (DEFAULT=0.001) 

for lr in [0.0001,0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = 'logistic',   -

---------------------   solver = 'adam', alpha = 0.1,   

xxxxxxxxxxxxxxxxxxxxxxxxlearning_rate_init=lr, max_iter=400000, random_state=0)    

xxxxnnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with learning rate={}:{:.3f}'. 

xxxxformat (lr, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with learning rate={}:{:.3f}'.format 

xxxx(lr, r2_score(y_test,y_test_prediction))) 
 
Training set prediction (R2 score) with learning rate= 0.0001 : -0.000 

Test set prediction (R2 score) with learning rate= 0.0001 :-0.011 

Training set prediction (R2 score) with learning rate= 0.001 : 0.860 

Test set prediction (R2 score) with learning rate= 0.001 :0.701 

Training set prediction (R2 score) with learning rate= 0.01 : 0.861 

Test set prediction (R2 score) with learning rate= 0.01 :0.700 

Training set prediction (R2 score) with learning rate= 0.1 : 0.818 

Test set prediction (R2 score) with learning rate= 0.1 :0.712 

Training set prediction (R2 score) with learning rate= 0.2 : -0.000 

Test set prediction (R2 score) with learning rate= 0.2 :-0.008 

Training set prediction (R2 score) with learning rate= 0.3 : -0.001 

Test set prediction (R2 score) with learning rate= 0.3 :-0.004 

Training set prediction (R2 score) with learning rate= 0.4 : -0.009 

Test set prediction (R2 score) with learning rate= 0.4 :-0.000 

Training set prediction (R2 score) with learning rate= 0.5 : -0.023 

Test set prediction (R2 score) with learning rate= 0.5 :-0.001 

Training set prediction (R2 score) with learning rate= 0.6 : -0.042 

Test set prediction (R2 score) with learning rate= 0.6 :-0.006 

Training set prediction (R2 score) with learning rate= 0.7 : -0.060 

Test set prediction (R2 score) with learning rate= 0.7 :-0.012 

6.1.3.5  RANDOM SEED IN THE MLPREGRESSOR 

for numrs in [0,17,25,28,88,99]: 
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    nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = 'logistic',    

xxxxxxxxxxxxxxxxxxxxxxxxsolver = 'adam', alpha = 0.1, max_iter=400000, 

                        random_state= numrs) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with random state {} : {:.3f}'. 

xxxxformat(numrs, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with random state {} :{:.3f}'. 

xxxxformat(numrs, r2_score(y_test,y_test_prediction))) 

Training set prediction (R2 score) with random state 0 : 0.860 

Test set prediction (R2 score) with random state 0 :0.701 

Training set prediction (R2 score) with random state 17 : 0.860 

Test set prediction (R2 score) with random state 17 :0.701 

Training set prediction (R2 score) with random state 25 : 0.860 

Test set prediction (R2 score) with random state 25 :0.701 

Training set prediction (R2 score) with random state 28 : 0.860 

Test set prediction (R2 score) with random state 28 :0.700 

Training set prediction (R2 score) with random state 88 : 0.860 

Test set prediction (R2 score) with random state 88 :0.701 

Training set prediction (R2 score) with random state 99 : 0.860 

Test set prediction (R2 score) with random state 99 :0.701 

6.1.3.6  VALIDATION 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import LeaveOneOut 

 

from numpy import mean 

from numpy import std 

from numpy import absolute 

 

 

 

X = vhdata[['CNH4', 'CK', 'rNA']] 

y = vhdata['PMI'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=77*) 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X_train_norm = scaler.fit_transform(X_train) 

X_test_norm = scaler.transform(X_test) 

 

nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = 'logistic', solver 

= 'adam', alpha = 0.1, max_iter=400000, random_state= 0) 

 

nnvh.fit(X_train_norm, y_train) 

 

cv = KFold(n_splits=5, shuffle=True) 

scores = cross_val_score(nnvh, X, y, cv=cv, n_jobs=-1) 

 

print('Cross-validation score (5-fold): ', scores)) 

print('Accuracy: %.2f (%.2f)' % (mean(scores), std(scores))) 

 

cv = LeaveOneOut() 

# evaluate model 

scores = cross_val_score(nnvh, X, y, scoring='neg_mean_absolute_error', cv=cv, 

n_jobs=-1) 

# force positive 

scores = absolute(scores) 



100 
 

# report performance 

print('MAE: %.3f' % (mean(scores))) 

 

 

Cross-validation score (5-fold)): [0.75739 0.72023 0.9021909 0.88255 0.8

2953] 

Accuracy: 0.82 (0.08) 

MAE: 18.485 

 

6.1.3.7 FINAL NETWORK 

X = vhdata[['CNH4', 'CK', 'rNA']] 

y = vhdata['PMI'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X_train_norm = scaler.fit_transform(X_train) 

X_test_norm = scaler.transform(X_test) 

 

nnvh = MLPRegressor(hidden_layer_sizes = (1,4), activation = 'logistic', solver 

= 'adam', alpha = 0.1, max_iter=400000, random_state= 0) 

 

nnvh.fit(X_train_norm, y_train) 

 

y_train_prediction= nnvh.predict(X_train_norm) 

y_test_prediction= nnvh.predict(X_test_norm) 

 

plt.figure() 

plt.scatter(y_train,y_train_prediction, marker = 'o', color='grey') 

plt.xlabel('PMI expected (hrs)') 

plt.ylabel('PMI predicted (hrs)') 

plt.title('Correlation of PMI predicted by MLPregressor with the real PMI 

(Training set)') 

plt.show() 

print('Training set prediction (R2 score): 

{:.3f}'.format(r2_score(y_train,y_train_prediction))) 

print('Mean Squared error Train (MSE): 

{:.3f}'.format(mean_squared_error(y_train, y_train_prediction))) 

print('Mean Absolute error Train (MSE): 

{:.3f}'.format(mean_absolute_error(y_train, y_train_prediction))) 

 

plt.figure() 

plt.scatter(y_test,y_test_prediction, marker = 'o', color='blue') 

plt.xlabel('PMI expected (hrs)') 

plt.ylabel('PMI predicted (hrs)') 

plt.title('Correlation of PMI predicted by MLPregressor with the real PMI (Test 

set)') 

plt.show() 

print('Test set prediction (R2 score): 

{:.3f}'.format(r2_score(y_test,y_test_prediction))) 

print('Mean Squared error Test (MSE): {:.3f}'.format(mean_squared_error(y_test, 

y_test_prediction))) 

print('Mean Absolute error Test (MSE): 

{:.3f}'.format(mean_absolute_error(y_test, y_test_prediction))) 

 

plt.figure() 

plt.plot(nnvh.loss_curve_) 

plt.xlabel('Iterations') 

plt.ylabel('Loss') 

plt.show() 

print('Current loss : {:.2f}'.format(nnvh.loss_)) 
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##For getting the predictions of the Train/Test split## 

print('Train/Test predictions') 

 

for j in range(y_test_prediction.shape[0]):print('{} {}{}'.format 

xxx(y_test.index[j],y_test[y_test.index[j]],y_test_prediction[j])) 

for j in range(y_train_prediction.shape[0]):print('{} {} {}'.format 

xxx(y_train.index[j],y_train[y_train.index[j]],y_train_prediction[j])) 

 

 

 



102 
 

 

6.1.4 CODE FOR SGD SOLVER 

6.1.4.1 NUMBER OF NODES IN THE HIDDEN LAYER 

for hn in [1,2,3,4,5,6,7,8,9,10]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,hn), activation = 'logistic', 

dddddddddd              solver = 'sgd', alpha = 0.1, learning_rate= 'constant', 

                        learning_rate_init= 0.001, max_iter=400000,    

xxxxxxxxxxxxxxxxxxxxxxxxrandom_state=0, momentum= 0.3, nesterovs_momentum= 

xxxxxxxxxxxxxxxxxxxxxxxxFalse) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

          

    print('Training set prediction (R2 score) with {} nodes: {:.3f}'.format(hn, 

xxxxr2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} nodes:{:.3f}'.format(hn, 

xxxxr2_score(y_test,y_test_prediction))) 

     

    print('Mean Absolute error Train (MSE) with {} nodes: {:.3f}'.format(hn, 

xxxxmean_absolute_error(y_train, y_train_prediction))) 

    print('Mean Absolute error Test (MSE) with {} nodes: {:.3f}'.format(hn, 

xxxxmean_absolute_error(y_test, y_test_prediction))) 
Training set prediction (R2 score) with 1 nodes: 0.629 

Test set prediction (R2 score) with 1 nodes:0.648 

Mean Absolute error Train (MSE) with 1 nodes: 19.231 

Mean Absolute error Test (MSE) with 1 nodes: 28.079 

Training set prediction (R2 score) with 2 nodes: 0.796 

Test set prediction (R2 score) with 2 nodes:0.706 

Mean Absolute error Train (MSE) with 2 nodes: 13.842 

Mean Absolute error Test (MSE) with 2 nodes: 23.130 

Training set prediction (R2 score) with 3 nodes: 0.000 

Test set prediction (R2 score) with 3 nodes:-0.007 

Mean Absolute error Train (MSE) with 3 nodes: 32.258 

Mean Absolute error Test (MSE) with 3 nodes: 45.670 

Training set prediction (R2 score) with 4 nodes: -0.001 

Test set prediction (R2 score) with 4 nodes:-0.004 

Mean Absolute error Train (MSE) with 4 nodes: 32.484 

Mean Absolute error Test (MSE) with 4 nodes: 45.670 

Training set prediction (R2 score) with 5 nodes: -0.003 

Test set prediction (R2 score) with 5 nodes:-0.001 

Mean Absolute error Train (MSE) with 5 nodes: 32.745 

Mean Absolute error Test (MSE) with 5 nodes: 45.667 
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Training set prediction (R2 score) with 6 nodes: -0.008 

Test set prediction (R2 score) with 6 nodes:0.000 

Mean Absolute error Train (MSE) with 6 nodes: 33.107 

Mean Absolute error Test (MSE) with 6 nodes: 45.666 

Training set prediction (R2 score) with 7 nodes: -0.014 

Test set prediction (R2 score) with 7 nodes:0.001 

Mean Absolute error Train (MSE) with 7 nodes: 33.415 

Mean Absolute error Test (MSE) with 7 nodes: 45.664 

Training set prediction (R2 score) with 8 nodes: -0.020 

Test set prediction (R2 score) with 8 nodes:0.000 

Mean Absolute error Train (MSE) with 8 nodes: 33.752 

Mean Absolute error Test (MSE) with 8 nodes: 45.655 

Training set prediction (R2 score) with 9 nodes: -0.027 

Test set prediction (R2 score) with 9 nodes:-0.001 

Mean Absolute error Train (MSE) with 9 nodes: 34.112 

Mean Absolute error Test (MSE) with 9 nodes: 45.646 

Training set prediction (R2 score) with 10 nodes: -0.034 

Test set prediction (R2 score) with 10 nodes:-0.002 

Mean Absolute error Train (MSE) with 10 nodes: 34.392 

Mean Absolute error Test (MSE) with 10 nodes: 45.636 

 

6.1.4.2 ACTIVATION FUNCTION 

for actfun in ['identity','logistic','tanh','relu']: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = actfun, solver 

xxxxxxxxxxxxxxxxxxxxxxxx= 'sgd', alpha = 0.1, learning_rate= 'constant', 

                        learning_rate_init= 0.001, max_iter=400000, 

xxxxxxxxxxxxxxxxxxxxxxxxrandom_state=0, momentum= 0.3, nesterovs_momentum= 

xxxxxxxxxxxxxxxxxxxxxxxxFalse) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with {} activation function: 

xxxx{:.3f}'.format(actfun, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} activation 

xxxxfunction:{:.3f}'.format(actfun, r2_score(y_test,y_test_prediction))) 
 

Training set prediction (R2 score) with identity activation function: 0.753 

Test set prediction (R2 score) with identity activation function:0.820 

Training set prediction (R2 score) with logistic activation function: 0.796 

Test set prediction (R2 score) with logistic activation function:0.706 

Training set prediction (R2 score) with tanh activation function: 0.587 

Test set prediction (R2 score) with tanh activation function:0.680 

Training set prediction (R2 score) with relu activation function: 0.730 

Test set prediction (R2 score) with relu activation function:0.755 

 

6.1.4.3 ALPHA VALUE 

for alphavalue in [0.1, 0.01, 0.001, 0.2, 0.3]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = 'logistic', 

xxxxxxxxxxxxxxxxxxxxxxxxsolver = 'sgd', alpha = alphavalue, learning_rate= 

xxxxxxxxxxxxxxxxxxxxxxxx'constant', learning_rate_init= 0.001, max_iter=400000, 

xxxxxxxxxxxxxxxxxxxxxxxxrandom_state=0, momentum= 0.3, nesterovs_momentum= 

xxxxxxxxxxxxxxxxxxxxxxxxFalse) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 
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    print('Training set prediction (R2 score) with alpha= {} : 

xxxx{:.3f}'.format(alphavalue, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with alpha= {} 

xxxx:{:.3f}'.format(alphavalue, r2_score(y_test,y_test_prediction))) 
 

Training set prediction (R2 score) with alpha= 0.1 : 0.796 

Test set prediction (R2 score) with alpha= 0.1 :0.706 

Training set prediction (R2 score) with alpha= 0.01 : 0.794 

Test set prediction (R2 score) with alpha= 0.01 :0.740 

Training set prediction (R2 score) with alpha= 0.001 : 0.794 

Test set prediction (R2 score) with alpha= 0.001 :0.694 

Training set prediction (R2 score) with alpha= 0.2 : 0.797 

Test set prediction (R2 score) with alpha= 0.2 :0.742 

Training set prediction (R2 score) with alpha= 0.3 : 0.796 

Test set prediction (R2 score) with alpha= 0.3 :0.730 

 

6.1.4.4 LEARNING RATE 

for lr in [0.0001,0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = 'logistic', 

xxxxxxxxxxxxxxxxxxxxxxxxsolver = 'sgd', alpha = 0.01, learning_rate= 'constant', 

                        learning_rate_init= lr, max_iter=400000, 

xxxxxxxxxxxxxxxxxxxxxxxxrandom_state=0, momentum= 0.3, nesterovs_momentum= 

xxxxxxxxxxxxxxxxxxxxxxxxFalse) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with learning rate= {}:{:.3f}'. 

xxxxformat(lr, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with learning rate= {}:{:.3f}'. xxxx 

xxxxformat(lr, r2_score(y_test,y_test_prediction))) 
 

Training set prediction (R2 score) with learning rate= 0.0001 : 0.811 

Test set prediction (R2 score) with learning rate= 0.0001 :0.722 

Training set prediction (R2 score) with learning rate= 0.001 : 0.816 

Test set prediction (R2 score) with learning rate= 0.001 :0.712 

Training set prediction (R2 score) with learning rate= 0.01 : 0.498 

Test set prediction (R2 score) with learning rate= 0.01 :0.628 

Training set prediction (R2 score) with learning rate= 0.1 : 0.000 

Test set prediction (R2 score) with learning rate= 0.1 :-0.009 

Training set prediction (R2 score) with learning rate= 0.2 : 0.000 

Test set prediction (R2 score) with learning rate= 0.2 :-0.009 

Training set prediction (R2 score) with learning rate= 0.3 : -0.000 

Test set prediction (R2 score) with learning rate= 0.3 :-0.009 

Training set prediction (R2 score) with learning rate= 0.4 : -0.000 

Test set prediction (R2 score) with learning rate= 0.4 :-0.009 

Training set prediction (R2 score) with learning rate= 0.5 : -0.000 

Test set prediction (R2 score) with learning rate= 0.5 :-0.009 

Training set prediction (R2 score) with learning rate= 0.6 : -0.000 

Test set prediction (R2 score) with learning rate= 0.6 :-0.009 

Training set prediction (R2 score) with learning rate= 0.7 : -0.000 

Test set prediction (R2 score) with learning rate= 0.7 :-0.009 

 

6.1.4.5 MOMENTUM 

for m in [0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = 'logistic', 

xxxx xxxx xxxx xxxx xxx solver = 'sgd', alpha = 0.01, learning_rate= 'constant', 



105 
 

                         learning_rate_init= 0.001, max_iter=400000, xxxx xxxx 

xxxx xxxx xxxx xxxx xxxx random_state=0, momentum= m, nesterovs_momentum= False) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with momentum= {}:{:.3f}'. format 

xxxx(m, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with momentum={}:{:.3f}'.format     

xxxx(m,r2_score(y_test,y_test_prediction))) 

 
Training set prediction (R2 score) with momentum= 0.01 : 0.811 

Test set prediction (R2 score) with momentum= 0.01 :0.723 

Training set prediction (R2 score) with momentum= 0.1 : 0.813 

Test set prediction (R2 score) with momentum= 0.1 :0.718 

Training set prediction (R2 score) with momentum= 0.2 : 0.814 

Test set prediction (R2 score) with momentum= 0.2 :0.715 

Training set prediction (R2 score) with momentum= 0.3 : 0.816 

Test set prediction (R2 score) with momentum= 0.3 :0.712 

Training set prediction (R2 score) with momentum= 0.4 : 0.817 

Test set prediction (R2 score) with momentum= 0.4 :0.711 

Training set prediction (R2 score) with momentum= 0.5 : 0.818 

Test set prediction (R2 score) with momentum= 0.5 :0.708 

Training set prediction (R2 score) with momentum= 0.6 : 0.819 

Test set prediction (R2 score) with momentum= 0.6 :0.701 

Training set prediction (R2 score) with momentum= 0.7 : 0.820 

Test set prediction (R2 score) with momentum= 0.7 :0.698 

Training set prediction (R2 score) with momentum= 0.8 : 0.821 

Test set prediction (R2 score) with momentum= 0.8 :0.699 

Training set prediction (R2 score) with momentum= 0.9 : 0.821 

Test set prediction (R2 score) with momentum= 0.9 :0.687 

 

6.1.4.6 NESTEROVS MOMENTUM 

nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = 'logistic', solver 

= 'sgd', alpha = 0.01, learning_rate= 'constant', 

                    learning_rate_init= 0.001, max_iter=400000, random_state=0, 

nesterovs_momentum= True) 

nnvh.fit(X_train_norm, y_train) 

y_train_prediction= nnvh.predict(X_train_norm) 

y_test_prediction= nnvh.predict(X_test_norm) 

        

print('Training set prediction (R2 score) with nesterovs momentum : 

{:.3f}'.format(r2_score(y_train,y_train_prediction))) 

print('Test set prediction (R2 score) with nesterovs momentum 

:{:.3f}'.format(r2_score(y_test,y_test_prediction))) 

     

Training set prediction (R2 score) with nesterovs momentum : 0.794 

Test set prediction (R2 score) with nesterovs momentum :0.740 

6.1.4.7  RANDOM STATE MLPREGRESSOR 

for numrs in [0,17,25,28,88,99]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,2), activation = 'logistic',    

xxxx xxxx xxxx xxxx xxxxsolver = 'sgd', alpha = 0.01, learning_rate= 'constant', 

xxxx xxxx xxxx xxxx xxxxlearning_rate_init= 0.001, max_iter=400000, xxxx xxxx 

xxxx xxxx xxxx xxxx xxxxrandom_state=numrs, momentum= 0.4, nesterovs_momentum=  

False) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 
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    print('Training set prediction (R2 score) with random state {}:{:.3f}'. xxxx 

xxxxformat(numrs, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with random state {}:{:.3f}'. xxxx 

xxxxformat(numrs, r2_score(y_test,y_test_prediction))) 
 

 
Training set prediction (R2 score) with random state 0 : 0.816 

Test set prediction (R2 score) with random state 0 :0.712 

Training set prediction (R2 score) with random state 17 : 0.816 

Test set prediction (R2 score) with random state 17 :0.712 

Training set prediction (R2 score) with random state 25 : 0.816 

Test set prediction (R2 score) with random state 25 :0.712 

Training set prediction (R2 score) with random state 28 : 0.816 

Test set prediction (R2 score) with random state 28 :0.712 

Training set prediction (R2 score) with random state 88 : 0.816 

Test set prediction (R2 score) with random state 88 :0.712 

Training set prediction (R2 score) with random state 99 : 0.816 

Test set prediction (R2 score) with random state 99 :0.711 

6.1.5 CODE FOR LBFGS 

6.1.5.1 NUMBER OF NODES IN THE HIDDEN LAYER 

for hn in [1,2,3,4,5,6,7,8,9,10]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,hn), activation = 'logistic', 

xxxx                    solver = 'lbfgs', alpha = 0.1, max_iter=400000, 

                        random_state=0) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with {} nodes: {:.3f}'.format(hn, 

xxxxr2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} nodes:{:.3f}'.format(hn, xxxx 

xxxxr2_score(y_test,y_test_prediction))) 

    print('Mean Absolute error Train (MSE) with {} nodes: {:.3f}'.format(hn, 

xxxxmean_absolute_error(y_train, y_train_prediction))) 

    print('Mean Absolute error Test (MSE) with {} nodes: {:.3f}'.format(hn, xxxx 

xxxxmean_absolute_error(y_test, y_test_prediction))) 

     
Training set prediction (R2 score) with 1 nodes: 0.786 

Test set prediction (R2 score) with 1 nodes:0.710 

Mean Absolute error Train (MAE) with 1 nodes: 13.612 

Mean Absolute error Test (MAE) with 1 nodes: 23.232 

Training set prediction (R2 score) with 2 nodes: 0.822 

Test set prediction (R2 score) with 2 nodes:0.700 

Mean Absolute error Train (MAE) with 2 nodes: 12.138 

Mean Absolute error Test (MAE) with 2 nodes: 22.235 

Training set prediction (R2 score) with 3 nodes: 0.813 

Test set prediction (R2 score) with 3 nodes:0.747 

Mean Absolute error Train (MAE) with 3 nodes: 12.681 

Mean Absolute error Test (MAE) with 3 nodes: 20.407 

Training set prediction (R2 score) with 4 nodes: -0.000 

Test set prediction (R2 score) with 4 nodes:-0.009 

Mean Absolute error Train (MAE) with 4 nodes: 32.180 

Mean Absolute error Test (MAE) with 4 nodes: 45.678 

Training set prediction (R2 score) with 5 nodes: -0.000 

Test set prediction (R2 score) with 5 nodes:-0.009 

Mean Absolute error Train (MAE) with 5 nodes: 32.180 

Mean Absolute error Test (MAE) with 5 nodes: 45.678 
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Training set prediction (R2 score) with 6 nodes: 0.861 

Test set prediction (R2 score) with 6 nodes:0.692 

Mean Absolute error Train (MAE) with 6 nodes: 11.388 

Mean Absolute error Test (MAE) with 6 nodes: 21.968 

Training set prediction (R2 score) with 7 nodes: 0.861 

Test set prediction (R2 score) with 7 nodes:0.691 

Mean Absolute error Train (MAE) with 7 nodes: 11.390 

Mean Absolute error Test (MAE) with 7 nodes: 21.985 

Training set prediction (R2 score) with 8 nodes: 0.861 

Test set prediction (R2 score) with 8 nodes:0.692 

Mean Absolute error Train (MAE) with 8 nodes: 11.390 

Mean Absolute error Test (MAE) with 8 nodes: 21.978 

Training set prediction (R2 score) with 9 nodes: 0.896 

Test set prediction (R2 score) with 9 nodes:0.716 

Mean Absolute error Train (MAE) with 9 nodes: 10.576 

Mean Absolute error Test (MAE) with 9 nodes: 21.210 

Training set prediction (R2 score) with 10 nodes: 0.860 

Test set prediction (R2 score) with 10 nodes:0.690 

Mean Absolute error Train (MAE) with 10 nodes: 11.408 

Mean Absolute error Test (MAE) with 10 nodes: 22.013 

6.1.5.2 ACTIVATION FUNCTION 

for actfun in ['identity','logistic','tanh','relu']: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,3), activation = actfun, solver 

xxxx xxxx xxxx xxxx xxxx = 'lbfgs', alpha = 0.1, max_iter=400000, 

                        random_state=0) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with {} activation function: xxxx 

xxxx{:.3f}'. format(actfun, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with {} activation function:{:.3f}'. 

xxxxformat(actfun, r2_score(y_test,y_test_prediction))) 

     

 
Training set prediction (R2 score) with identity activation function: 0.753 

Test set prediction (R2 score) with identity activation function:0.820 

Training set prediction (R2 score) with logistic activation function: 0.813 

Test set prediction (R2 score) with logistic activation function:0.747 

Training set prediction (R2 score) with tanh activation function: 0.485 

Test set prediction (R2 score) with tanh activation function:0.398 

Training set prediction (R2 score) with relu activation function: 0.777 

Test set prediction (R2 score) with relu activation function:0.803 

6.1.5.3 ALPHA VALUE 

for alphavalue in [0.1, 0.01, 0.001, 0.2, 0.3]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,3), activation = 'logistic', 

xxxx xxxx xxxx xxxx xxxxsolver = 'lbfgs', alpha = alphavalue, max_iter=400000, 

                        random_state=0) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with alpha= {} : {:.3f}'. xxxx 

xxxxformat(alphavalue, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with alpha= {} :{:.3f}'. xxxx xxxx 

xxxxformat(alphavalue, r2_score(y_test,y_test_prediction))) 
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Training set prediction (R2 score) with alpha= 0.1 : 0.813 

Test set prediction (R2 score) with alpha= 0.1 :0.747 

Training set prediction (R2 score) with alpha= 0.01 : 0.828 

Test set prediction (R2 score) with alpha= 0.01 :0.358 

Training set prediction (R2 score) with alpha= 0.001 : 0.881 

Test set prediction (R2 score) with alpha= 0.001 :0.656 

Training set prediction (R2 score) with alpha= 0.2 : 0.819 

Test set prediction (R2 score) with alpha= 0.2 :0.710 

Training set prediction (R2 score) with alpha= 0.3 : 0.816 

Test set prediction (R2 score) with alpha= 0.3 :0.724 

 

6.1.5.4 RANDOM STATE MLPREGRESSOR  

for numrs in [0,17,25,28,88,99]: 

    nnvh = MLPRegressor(hidden_layer_sizes = (1,3), activation = 'logistic', 

xxxx xxxx xxxx xxxx xxxxsolver = 'lbfgs', alpha = 0.1, max_iter=400000, 

                        random_state= numrs) 

    nnvh.fit(X_train_norm, y_train) 

    y_train_prediction= nnvh.predict(X_train_norm) 

    y_test_prediction= nnvh.predict(X_test_norm) 

        

    print('Training set prediction (R2 score) with random state {} : {:.3f}'. 

xxxxformat(numrs, r2_score(y_train,y_train_prediction))) 

    print('Test set prediction (R2 score) with random state {} :{:.3f}'. xxxx 

xxxxformat(numrs, r2_score(y_test,y_test_prediction))) 

 

Training set prediction (R2 score) with random state 0 : 0.813 

Test set prediction (R2 score) with random state 0 :0.747 

Training set prediction (R2 score) with random state 17 : 0.785 

Test set prediction (R2 score) with random state 17 :0.710 

Training set prediction (R2 score) with random state 25 : 0.785 

Test set prediction (R2 score) with random state 25 :0.710 

Training set prediction (R2 score) with random state 28 : 0.824 

Test set prediction (R2 score) with random state 28 :0.403 

Training set prediction (R2 score) with random state 88 : 0.785 

Test set prediction (R2 score) with random state 88 :0.710 

Training set prediction (R2 score) with random state 99 : 0.824 

Test set prediction (R2 score) with random state 99 :0.402 

 

6.1.6 CODE FOR UNTRAINED REAL SAMPLE PREDICTIONS  

vhdatapred = pd.read_csv('vhrawdatapredictions5.csv')* 

X = vhdatapred[['PA NH4', 'PH NH4', 'PA K', 'PH K', 'PA NH4 + PA K', 'PH NH4 + 

PH K', 'PA IS', 'PH IS']] 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X_norm = scaler.fit_transform(X) 

 

y_prediction_pmi= nnvh.predict(X_norm) 

y_prediction_pmi= nnvh.predict(X_norm) 

for j in range(y_prediction_pmi.shape[0]): 

   print('{}'.format(y_prediction_pmi[j])) 
*The file with the inputs (X) 

For each random seed (1, 77, 34, 99, 70, 88, 100), this code is written afterwards to predict the 

untrained samples in each network.  
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6.2 APPENDIX II. ELUCIDATION OF THE 5F- APINAC METABOLIC PATHWAY 

6.2.1 EXTRACTED ION CHROMATOGRAMS FOR THE METABOLITES ASSOCIATED WITH 

5F-APINAC FOUND IN VITRO AND IN VIVO 

 

Supplementary Figure 1: Chromatograms for the metabolites associated to 5F-APINAC found in vitro 
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Supplementary Figure 2: Chromatograms for the metabolites associated to 5F-APINAC found in vivo. Panel 

A: 3 hours after drug administration. Panel B: 6 hours after drug administration 
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