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Abstract

In this paper we show that it is possible to estimate the backward error for
the approximation of the matrix exponential on-the-fly, without the need to
precompute in high precision quantities related to specific accuracies. In this
way, the scaling parameter s and the degree m of the truncated Taylor series
(the underlying method) are adapted to the input matrix and not to a class of
matrices sharing some spectral properties, such as with the classical backward
error analysis. The result is a very flexible method which can approximate the
matrix exponential at any desired accuracy. Moreover, the risk of overscaling,
that is the possibility to select a value s larger than necessary, is mitigated
by a new choice as the sum of two powers of two. Finally, several numerical
experiments in MATLAB with data in double and variable precision and with
different tolerances confirm that the method is accurate and often faster than
available good alternatives.

Keywords: Backward error estimate for the matrix exponential, overscaling,
multiple precision floating point computation, scaling and squaring algorithm,
Paterson–Stockmeyer evaluation scheme, truncated Taylor series, Krylov
methods

1. Introduction

Among all the ways to approximate the matrix exponential (see [1]), the
scaling and squaring algorithm applied to a basic method such as Padé ratio-
nal approximation is the most popular. An effective choice for the order of
approximation and the scaling parameter is possible thanks to the backward
error analysis introduced in [2] and successively refined in [3, 4]. The back-
ward error analysis needs some precomputation in high precision which have
to be performed once and for all for each kind of approximation and desired
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accuracy (usually only double precision). This precomputation can be done in
advanced since it overestimates the relative backward error in the worst case
scenario. As a result, one gets some general constraints for the magnitude of the
input matrices which guarantee a satisfying approximation. A SageMath code1

for performing the backward error analysis for a wide class of approximations
have been developed by the authors of the present manuscript together with
P. Kandolf.

The Padé rational approximation is not the only possible basic method. For
instance, in [5–9] the basic approximation has been replaced by a truncated
Taylor series, computed in an efficient way through the Paterson–Stockmeyer
scheme. In particular, the Taylor algorithms in [5, 6, 9] use a combination of
forward and backward relative error analysis, and [7] is based on a combination
of Taylor and Hermite matrix polynomials. Truncated Taylor series and other
polynomial approximations (see [10–12]) have been proposed for the action of
the exponential matrix to a vector, too.

In this paper, we use as a basic method the truncated Taylor series Tm

about 0. It is generally good practice to shift the matrix A by

µI =
trace(A)

n
I, A ∈ C

n×n

where I is the identity matrix. In this way, the eigenvalues of the resulting
matrix B = A − µI have zero sum and their convex hull includes the origin.
For the same reason, the quality of this approximation degrades when the norm
of B grows bigger, hence a scaling algorithm has to be taken into account. We
have to select a scaling parameter s such that the matrix power

eµ
(
Tm(s−1B)

)s
(1)

accurately approximates the matrix exponential of A for a given m.
The main novelty of this paper consists in determing the degree of approxi-

mation m and the scaling parameter s by an on-the-fly estimate of the backward
error ∆B in the identity

eµ
(
Tm(s−1B)

)s
= exp(A+∆B)

without any precomputation. The neat advantage of this approach is that we
get in general a sharper overestimate of the backward error, which is based on
the input matrix itself and cannot be larger than the worst case. This approach
is by far more flexible, since it allows the user to ask for any accuracy and not
only precomputed ones.

In Section 2 the choice of m is narrowed down to values with specific prop-
erties that make them particularly cheap to use when it comes to evaluating
the approximation. These values stem from a cost analysis of the Paterson–
Stockmeyer evaluation scheme for polynomials. In Section 3 we take care of the

1Available at https://bitbucket.org/expleja/expbea.
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choice of the candidate scaling parameter s. We employ few values ‖Bj‖1/j in
order to estimate the spectral radius of B and thus determine s in an original
manner. Furthermore, we explain how s can be chosen not only classically as a
power of two but also as the sum of two powers of two in order to reduce the
risk of overscaling. In Section 4 we show how to estimate the backward error
for the given input matrix A. Moreover, it is explained in details the algorithm
of selection of the parameters m and s. The objective is to grant the required
accuracy minimizing the cost in term of matrix products. A possible reduction
of the scaling parameter s is also discussed. In Section 6 we report the numerical
experiments we conducted and, finally, we draw the conclusions in Section 7.

2. Paterson–Stockmeyer evaluation scheme

The Taylor series for the exponential function is a convergent series, hence
the more the degree m at which we truncate is large the more accurate will be
the approximation (at least in exact arithmetic). For the matrix exponential,
the cost of evaluating powers of matrices has to be taken into account, too.
Therefore, our goal is to maximize the reachable interpolation degree m with
a given number MP of matrix products. The Horner evaluation scheme would
lead us to reach m with MP = m− 1 matrix products and so, for a given MP,
we would merely use m = MP + 1. By means of a regrouping of the terms
in the series, we can aim to better performances. For a given square matrix
X ∈ Cn×n, and z positive integer, we consider the rewriting

Tm(X) =

m∑

i=0

X i

i!
= I +

r∑

k=0

(Xz)kPk, r =
⌊m

z

⌋

where

Pk =







z∑

i=1

X i

(zk + i)!
, k = 0, 1, . . . , r − 1,

m−zk∑

i=1

X i

(zk + i)!
, k = r.

This is the Paterson–Stockmeyer evaluation scheme applied to Taylor truncated
series. It was used for degree m ≤ 30 in [6]. The first z − 1 powers X2, . . . , Xz

of X have to be computed and stored. A variant requiring only 3n2 storage,
independently of z, is reported in [13]. Then, the Pk matrices are iteratively
computed for k = r, r − 1, . . . , 0 and used in the Horner scheme in order to
assemble the final matrix polynomial

Tm(X) = (((XzPr + Pr−1)X
z + Pr−2)X

z + . . .+ P1)X
z + P0 + I.

Taking into account that Pr is the null matrix if z divides m, the total number
MP of matrix products needed to evaluate Tm(X) with this regrouping turns
out to be

MP = z +
⌈m

z

⌉

− 2.
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z = 1 z = 2 z = 3 z = 4 z = 5 z = 6
m = 1 0
m = 2 1 1
m = 3 2 2 2
m = 4 3 2 3 3
m = 5 4 3 3 4 4
m = 6 5 3 3 4 5 5
m = 7 6 4 4 4 5 6
m = 8 7 4 4 4 5 6
m = 9 8 5 4 5 5 6
m = 10 9 5 5 5 5 6
m = 11 10 6 5 5 6 6
m = 12 11 6 5 5 6 6
m = 13 12 7 6 6 6 7
m = 14 13 7 6 6 6 7
m = 15 14 8 6 6 6 7
m = 16 15 8 7 6 7 7
m = 17 16 9 7 7 7 7
m = 18 17 9 7 7 7 7
m = 19 18 10 8 7 7 8
m = 20 19 10 8 7 7 8
m = 21 20 11 8 8 8 8
m = 22 21 11 9 8 8 8
m = 23 22 12 9 8 8 8
m = 24 23 12 9 8 8 8
m = 25 24 13 10 9 8 9

Table 1: Paterson–Stockmeyer costs for combinations of m and z. The entry on the m-th row
and z-th column equals MP = z + ⌈m

z
⌉ − 2.

As an example, the costs relative to all the combinations of m and z for 1 ≤
m ≤ 25 and 1 ≤ z ≤ min(m, 6) are listed in Table 1. As it can be seen in the
table and already done in [6], it is possible to detect those values of m that
are maximal for a given number of products MP. These maxima are unique
but not uniquely determined: in case of two different values of z leading to the
same interpolation degree m at the same evaluation cost, we pick the larger for
reasons that will be clear in the next section. Finally, we notice that the values
of z of interest always correspond to ⌈√m⌉. Costs leading to maximal m and
z are highlighted in gray inside Table 1. The corresponding values for z and m
are given by

z =

⌈
MP

2

⌉

+ 1, m = (MP− z + 2)z. (2)

Notice indeed that this choice of m and z implies that m/z is an integer number.
It goes with it that these combinations of (m, z) are the ones that we set to be
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admissible. We will denote by (mMP, zMP) the pair requiring MP = zMP +
mMP/zMP − 2 matrix products. In the next sections we will introduce a greedy
algorithm for the selection of a proper pair among the admissible ones which
keeps MP as small as possible and guarantees a prescribed accuracy. Starting
with MP = 2, the algorithm will increase MP until it finds the wanted pair.
Only then, the corresponding Paterson–Stockmeyer scheme will be evaluated.

3. Scaling and shifting algorithm

As already mentioned, it is good practice (see [4, 10]) to shift the original
matrix A by

µI =
trace(A)

n
I. (3)

On the other hand, the computation in finite arithmetic of

eµ
(
Tm(s−1B)

)s
, B = A− µI

can be problematic if A has large negative eigenvalues, since it requires the ex-
plicit approximation of exp(A−µI). Such a quantity could overflow. Therefore,
in the practical implementation we apply the shifting strategy in the following
way

exp(A) ≈







eµ
(
Tm(s−1B)

)s
, if ℜ(µ) ≥ 0

(

eµ/sTm(s−1B)
)s

, otherwise.

The truncated Taylor series cannot be applied, in general, to the shifted
matrix B, whose norm can be arbitrarily large. In fact, the matrix has to be
scaled by s−1, s a positive integer. In this section we are going to describe how
to make a first selection of the scaling parameter s. Our strategy consists in
fixing a positive value ρmax such that we scale B if its spectral radius ρ(B) is
not smaller or equal to ρmax. Since ρ(B) is in general not available, we work
with an overestimate which we can update as soon as we have powers of B
available. The value ρmax depends uniquely on considerations of the user. The
default choice is 3.5 for data in double or higher precision and 6.3 for data in
single precision (see Remark 1). On the other hand, we have to be careful not
to pick s too large, or a phenomenon called overscaling will destructively kick
in, making the accuracy to drop. The overscaling phenomenon, first identified
in [14], can be simply illustrated by considering the two approximations 1 + x
and (1 + x/100)100 to ex for x = 2−27: in double precision, we have ex = 1+ x,
while ex − (1 + x/100)100 ≈ 7.1 · 10−15. Last but not least, we also desire the
scaling strategy to require few matrix products when it comes to recover the
wanted approximation from the scaled one.

Since the parameter zMP does not decrease while MP increases, at each step
of the greedy algorithm we compute, if needed, the new power of B, keeping
the previous ones. By means of them, we can derive information on the spectral
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radius of B. In fact, we can easily compute the vector ~ρ = (ρ1, ρ2, . . . , ρzMP
)

whose components are ρj = ‖Bj‖1/j. We know that

ρj ≥ ρ(B)

and, thanks to Gelfand’s formula,

lim
j→∞

ρj = ρ(B).

We choose the 1-norm in order to compute the values ρj . Therefore, the smallest
component of ~ρ, denoted by ~ρ is the best known overestimate of the spectral
radius of B. Then we have to pick s large enough to grant

ρ(s−1B) ≤ s−1~ρ = s−1 min
j=1,...,zMP

{‖Bj‖ 1
j } ≤ ρmax. (4)

Naturally, the larger is zMP, the smaller s may be chosen. This is the reason why
we picked z as the largest integer minimizing the cost of Paterson–Stockmeyer
scheme. We could hence select s as the smallest power of two for which the
inequality holds true. Doing so, we would face a minimal cost when it comes to
the powering part in (1). In fact, using the identity

exp

(
2A

s

)

= exp

(
A

s

)

exp

(
A

s

)

,

the recovering of the wanted approximation of exp(A) costs merely log2(s) ma-
trix products. This is the so called scaling and squaring algorithm. A weakness
of this approach is that the scaling parameter could still be larger than neces-
sary. Let us suppose in fact that, e.g., ~ρ = (2l + 1)ρmax. The choice of taking

s as a power of 2 would lead us to pick s = 2l+1, a number about double than
the necessary when l is large. Hence, the new idea is to determine the smallest
scaling parameter s as a sum of powers of two in such a way that

s−1~ρ = (2p + 2q)
−1

~ρ ≤ ρmax, (5)

with p ≥ 0 and q ∈ {−∞} ∪ [0, p), where we mean 2−∞ = 0. This possibly
leads to sensibly smaller scaling parameters in general: in the above example the
scaling parameter chosen in such a way would have been exactly 2l+20. For what
concerns the powering part, it is possible to recover the wanted approximation
of exp(A) using exactly the same number of matrix products required by the
single power of two choice. In fact, let 2l+1 be the smallest power of two such
that 2−(l+1)~ρ ≤ ρmax and 2p + 2q, with q as above, the smallest number in this

form such that (2p+2q)−1~ρ ≤ ρmax. If q = −∞, then p = l+1 and the squaring
procedure requires exactly p = l + 1 matrix products. Otherwise, 0 ≤ q < p,
p = l, and

exp

(
A

2p + 2q

)2p+2q

= exp

(
A

2p + 2q

)2q

exp

(
A

2p + 2q

)2p

= EqEp.
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The evaluation of the powering phase of Eq requires q matrix products and the
evaluation of Ep, taking into account that Eq has been already evaluated, costs
p − q matrix products. With the additional product between Eq and Ep, we
have p + 1 = l + 1 = ⌈log2(2p + 2q)⌉ matrix products. Once the parameter s
has been determined, we will indicate by (mMP, zMP, sMP) the candidate triple
of parameters to be used to approximate the matrix exponential.

4. Backward error analysis

We need now to equip with a tool that determines if the approximation
stemming from the choice of the scaling parameter s and the interpolation degree
m is accurate up to a certain tolerance tol. To do so, we employ the backward
error analysis tool introduced by [10] on Tm(s−1B)s. The idea is to suppose
that we are computing exactly the matrix exponential of a slightly perturbed
matrix. Now, since

eµ
(
Tm(s−1B)

)s
= eµ exp(B +∆B) = exp(A+∆B),

we consider ourselves satisfied whenever the relative backward error does not
exceed tol, that is

‖∆B‖ ≤ tol · ‖A‖. (6)

To this aim we can represent ∆B as a function of B by exploiting the relation

exp(B +∆B) = Tm(s−1B)s

= exp(B) exp(−B)Tm(s−1B)s

= exp
(
B + s log

(
exp

(
−s−1B

)
Tm(s−1B)

))

and by setting

hm+1(s
−1B) := log(exp

(
−s−1B

)
Tm(s−1B)) = s−1∆B. (7)

Let’s now investigate the relation between B and ∆B in more depth: for every
X in the set

Ω = {X ∈ C
n×n : ρ(exp(−X)Tm(X)− I) < 1})

the function hm+1(X) has the power series expansion

hm+1(X) =

∞∑

k=0

ck,mXk. (8)

In order to derive the coefficients ck,m, we exploit the equivalence

exp(−X)Tm(X) = exp(−X)(exp(X)−Rm(X)) = I − exp(−X)Rm(X)

where

Rm(X) =

∞∑

i=m+1

X i

i!
.
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We are able now to represent the backward error by means of the series

hm+1(X) = log(exp(−X)Tm(X)) =

= log(I − exp(−X)Rm(X)) = −
∞∑

j=1

(exp(−X)Rm(X))j

j
.

In the same way as it has been done in [9], it is possible now to obtain the series
representation of exp(−X)Rm(X) by convolving the coefficients of its factors.

In fact, one can check that

exp(−X)Rm(X) =
∞∑

p=1

(
p−1
∑

i=0

(−1)i

(m+ p− i)!i!

)

Xm+p =

=

∞∑

p=1

(−1)p−1

(p− 1)!m!(m+ p)
Xm+p =

∞∑

k=0

bk,mXk

where the coefficients bk,m are given by

bk,m =







0, if 0 ≤ k ≤ m,

(−1)k−m−1

(k −m− 1)!m!k!
, if k ≥ m+ 1

(9)

(see [9, formula (22)])2. Therefore, any positive power j of exp(−X)Rm(X) can
be expanded into a power series starting at degree j(m+ 1). Combining these
power series in order to expand the logarithm, we can obtain the coefficients ck,m
of (8) up to any degree. Let us stress that the first m+1 coefficients of the series
expansion of hm+1 are hence equal to 0 and bk,m = ck,m for k = 0, 1, . . . , 2m+1,
as already noticed in [9, formula (15)]. For those values of s such that

s−1B ∈ Ω, (10a)

by applying the triangular inequality we obtain

s−1‖∆B‖ =

∥
∥
∥
∥
∥

∞∑

k=m+1

ck,ms−kBk

∥
∥
∥
∥
∥
≤ ĥm+1,z(s

−1B)

where

ĥm+1,z(s
−1B) :=

∞∑

j=m/z

ǫj−m/z , ǫj−m/z :=

∥
∥
∥
∥
∥

(
s−zBz

)j
z∑

i=1

cjz+i,ms−iBi

∥
∥
∥
∥
∥
.

Such a representation for ĥm+1,z(s
−1B) holds true for any (m, z) such that z di-

vides m, hence in particular for any admissible pair. Therefore, requirement (6)
holds true as long as m is a positive integer large enough to achieve

ĥm+1,z(s
−1B) ≤ tol · s−1‖A‖. (10b)

2The closed form for the coefficients has been independently derived also in [15].
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Notice that due to triangular inequality we have the following chain of inequal-
ities

‖hm+1(s
−1B)‖ ≤ ĥm+1,z(s

−1B) ≤ ĥm+1,1(s
−1B) ≤ h̃m+1(‖s−1B‖) (11)

where

h̃m+1(x) :=

∞∑

k=m+1

|ck,m|xk

is the function to estimate the backward error commonly employed in the liter-
ature [2, 5, 7, 8, 10].

Remark 1. The classical backward error analysis [2] proceeds here by consid-
ering

‖∆B‖
‖B‖ =

‖hm+1(s
−1B)‖

‖s−1B‖ ≤ h̃m+1(s
−1‖B‖)

s−1‖B‖ (12)

and thus looking for the largest scalar parameter θm such that

h̃m+1(θm)

θm
≤ tol.

This computation is usually done in high precision arithmetic once and for all
(for each degree m and selected tolerances). For instance, for m = 30 and tol =
2−53, 2−24 we have θ30 ≈ 3.54, 6.32, respectively. We took an approximation of
these two values as default values ρmax, and our numerical experience indicates
that these are appropriate choices. Once the values θm have been computed,
the given matrix B = A − µI is properly scaled in such a way that ‖s−1B‖ =
s−1‖B‖ ≤ θm. The choice of the actual degree of approximation m and the
related value θm is usually based on the minimization of the computational
effort. The result is a scaling parameter s such that

‖∆B‖ ≤ tol · ‖B‖.

Since the shift strategy is applied in order to have ‖B‖ ≤ ‖A‖, such a result is
more stringent (and possibly requires more computational work) than (6).

As a final consideration, we remark that instead of ‖B‖ in the right hand side
of (12), it has been shown possible to use smaller values related to ρj = ‖Bj‖1/j ,
see, for instance, [3, Thm. 4.2], [6, Thm. 1], and [5, Thm. 1].

4.1. Backward error estimate

In order to verify both (10a) and (10b), we proceed in the following way.
We can rewrite Ω as

Ω = {X ∈ C
n×n : ρ(exp(−X)Rm(X)) < 1}.

Due to the following chain of inequalities

ρ(exp(−X)Rm(X)) ≤ ‖exp(−X)Rm(X)‖ ≤
∞∑

j=m/z

∥
∥
∥
∥
∥
(Xz)j

z∑

i=1

bjz+i,mX i

∥
∥
∥
∥
∥
,

9



if the right hand side is smaller than one for X = s−1B, then s−1B ∈ Ω. In
order to simplify the notation, we set

δj−m/z :=

∥
∥
∥
∥
∥
(s−zBz)j

z∑

i=1

bjz+i,ms−iBi

∥
∥
∥
∥
∥
, j = m/z,m/z + 1, . . . ,∞

in such a way that
∞∑

l=0

δl < 1 ⇒ s−1B ∈ Ω.

We can explicitly compute at a small cost the matrix summation inside δl, since
we stored the matrix powers B2, . . . , Bz. Then, by means of matrix-vector
products we can estimate δ0, δ1, . . . following the algorithm for 1-norm estimate
given in [16].

In order to rapidly decide whether or not the series on the right hand side
satisfies our requirement, we are going to make the following unique conjecture.
Namely, we assume that if the sequence {δl}l starts to decrease at a certain

point, then it decreases quite fast: if δl̄+1 ≤ δl̄, then δl̄+i+1 ≤ δl̄+i

2 for any
i ≥ 0. As a matter of fact, this is a mild assumption. In fact, in our numerical
experiments, the decay rate of the sequence {δl}l is much faster, as it is shown in
Figure 1. This implies the sequence {δl}l to enjoy the property of having each

0 1 2 3 4 5
10 -100

10 -80

10 -60

10 -40

10 -20

10 0

10 20

Figure 1: Comparison of the decay rate 2−l (crossed black line) and the normalized sequences
{δl/δ0}l for the matrices of size n = 512 from the test set described in Section 6.2.

term bigger than the sum of all the following whenever it starts to decrease. In
other words if δl̄ ≤ δl̄−1 then

δl̄ ≥
∞∑

l=l̄+1

δl.

10



Therefore, in order to check whether

∞∑

l=0

δl < 1

we proceed as follows: we sequentially evaluate δl until we encounter an integer
l⋆ which falls in one of the following cases:







δl⋆ ≤ δl⋆−1 and
l⋆∑

l=0

δl + δl⋆ < 1 ⇒ accept (m, z, s)

l⋆∑

l=0

δl ≥ 1 or l⋆ > m/z − 1 ⇒ reject (m, z, s)

Notice that we decided to produce a possibly false negative response whenever
l⋆ > m/z− 1. This is not likely to happen, in fact in our numerical experiments
the registered values of l⋆ were most times 1, very rarely 2.

On the other hand, setting m/z − 1 as a maximum value after which we
return a false negative allows us to simultaneously check (10a) and (10b). In
fact, as already noticed, bk,m = ck,m for k = 0, 1, . . . , 2m + 1, hence it follows
that ǫl = δl for l = 0, 1, . . . ,m/z − 1. Therefore, if we set as early termination
cases



























δl⋆ ≤ δl⋆−1 and
l⋆
∑

l=0

δl + δl⋆ < min{1, tol · s−1‖A‖} ⇒ accept (m, z, s)

l⋆
∑

l=0

δl ≥ min{1, tol · s−1‖A‖} or l⋆ > m/z − 1 ⇒ reject (m, z, s)

(13)

we verify at once both (10a) and (10b). As an additional confirm that the
assumption made is safe we refer to the accuracy tests in the numerical examples
of Section 6.

5. Approximation selection

Exploiting the above algorithm to decide whether or not a triple of param-
eters (m, z, s) is acceptable (that is, the approximation stemming from (m, z, s)
satisfies the first condition in (13)), we can greedily determine the optimal com-
bination for our purposes.

As previously stated, the starting point is the pair (m2, z2). Right after B
2

is computed, we can obtain the scaling parameter s = s2 just as we described
in Section 3. Now we check whether the triple (m2, z2, s2) satisfies the accuracy
criteria as described in Section 4. If not, we increase MP by 1. From that, it
will follow a new pair (m3, z3) from which it may follow a new, smaller, scaling
parameter s3. This is possible since, by increasing MP to 3, the optimization
index j in (4) can reach the value z3 = 3 and ~ρ can be smaller. We continue
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analogously until we find a MP such that the triple (mMP, zMP, sMP) is accept-
able. The computational cost of the algorithm, in terms of matrix products,
is

zMP +
mMP

zMP
− 2

︸ ︷︷ ︸

MP

+⌈log2(sMP)⌉. (14)

At this point, we would be ready to actually evaluate the approximation
of the matrix exponential by means of the Paterson–Stockmeyer evaluation
scheme. But before doing that, there is a possible last refinement to do in
order to increase the accuracy. As we mentioned in Section 3, the phenomenon
called overscaling can seriously compromises the overall accuracy. In order to
reduce the risk of incurring in such a phenomenon, one should always pick s as
small as possible. So, if s0MP := sMP is larger than one, we elaborated the follow-
ing strategy: once we obtain a satisfying triple of parameters (mMP, zMP, sMP),
we set i to 1 and check whether the triple (mMP, zMP, s

i
MP) with

siMP := 2⌈log2(s
i−1

MP
)⌉−1 < si−1

MP (15)

still grants our accuracy criteria. This is not an expensive check: in fact, all
the required powers of B are still available and their coefficients have simply
to be scaled by the powers of a different scaling parameter. Moreover, such
a refinement can only reduce the cost of the squaring phase of the algorithm,
without changing the cost MP. If the prescribed accuracy is still reached and
siMP > 1, then we try again to reduce the scaling parameter. By proceeding in

this way, we generate and test a sequence of triples {(mMP, zMP, s
j
MP)}j with

sjMP < sj−1
MP . If at a certain point siMP = 1 and the triple (mMP, zMP, 1) is ac-

ceptable, we proceed with the corresponding polynomial evaluation. Otherwise,
we stop as soon as we find a not acceptable triple (mMP, zMP, s

i
MP). In this case,

we estimate the backward error corresponding to the interpolation with param-
eters (mMP+1, zMP, s

i
MP). Such an evaluation does not require any additional

matrix power, but only different 1-norm estimates. In fact, we can estimate the
error as described in Section 4.1 since zMP divides mMP+1. If this new triple is
still not acceptable, we proceed with the polynomial evaluation corresponding
to (mMP, zMP, s

i−1
MP). Otherwise, the triple (mMP+1, zMP, s

i
MP) is acceptable and

we compute BzMP+1 and ~ρ = min{ρ1, ρ2, . . . , ρzMP+1
}, if zMP+1 > zMP (see Ta-

ble 1). Now, we could proceed with the polynomial evaluation associated to the
acceptable triple (mMP+1, zMP+1, s

0
MP+1), where s0MP+1 := siMP, but we restart

instead the scaling refinement process, taking into account the new ρzMP+1
. No-

tice that the overall cost associated to the triple (mMP, zMP, s
i−1
MP) is equivalent

to the one corresponding to (mMP+1, zMP+1, s
0
MP+1). In fact, the additional

cost associated to the pair (mMP+1, zMP+1) with respect to (mMP, zMP) is com-
pensated by the smaller cost due to the scaling s0MP+1 < si−1

MP . We finally sketch
in Algorithm 1 the steps for the selection of the final triple (m, z, s) associated
to the polynomial evaluation.

12



Algorithm 1 Scheme of the selection of an acceptable triple (m, z, s)

1: Compute B := A− µI, see formula (3), and ρ1 := ‖B‖1
2: Set MP := 1
3: while true do

4: Compute mMP+1 and zMP+1 according to formula (2)
5: if zMP+1 > zMP then

6: Compute BzMP+1 and ρzMP+1
:= ‖BzMP+1‖1/zMP+1

1

7: end if

8: Choose s0MP+1 according to formula (4)
9: Set MP := MP+ 1

10: if (mMP, zMP, s
0
MP) is acceptable (see formula (13)) then

11: Go to 14:
12: end if

13: end while

14: Set i := 1
15: while si−1

MP > 1 do

16: Compute siMP by taking the minimum arising from formulas (4) and (15)
17: if (mMP, zMP, s

i
MP) is acceptable (see formula (13)) then

18: Set i := i+ 1
19: Go to 33:
20: end if

21: Compute mMP+1 according to formula (2)
22: if (mMP+1, zMP, s

i
MP) is acceptable (see formula (13)) then

23: Set s0MP+1 := siMP

24: Compute zMP+1 according to formula (2)
25: if zMP+1 > zMP then

26: Compute BzMP+1 and ρzMP+1
:= ‖BzMP+1‖1/zMP+1

1

27: end if

28: Set i := 0 and MP := MP+ 1
29: Go to 33:
30: else

31: Go to 35:
32: end if

33: Continue
34: end while

35: Evaluate the polynomial according to (m, z, s) := (mMP, zMP, s
i
MP).

13



6. Numerical experiments

In this section we are going to test the validity of our algorithm. We will
first test the possibility to achieve an accuracy smaller than 2−53 (corresponding
to double precision), with no need for any precomputation. Moreover, we will
show that our new method is competitive with state of the art algorithms in
terms of computational performance.

6.1. Accuracy analysis

We start by showing the accuracy of the method (implemented in MATLAB

as exptayotf3, EXPonential TAYlor On-The-Fly) with respect to trusted ref-
erence solutions. Hence we select, similarly to what done in [5],

• fifty matrices of type V TDV , where V is a Hadamard matrix of dimension
n (as generated by the MATLAB command hadamard) normalized in
order to be orthogonal and D is a diagonal matrix with entries uniformly
randomly distributed in [−50, 50] + i[−50, 50],

• fifty matrices of type V T JV , where J is a block diagonal matrix made
of Jordan blocks. The (i + 1)-th Jordan block Ji+1 has dimension |Ji+1|
randomly chosen in {1, 2, . . . , n − |J1| − |J2| − . . . − |Ji|}. The diagonal
elements of different Jordan blocks are uniformly randomly distributed in
[−50, 50] + i[−50, 50].

The chosen dimensions are n = 16, n = 64 and n = 256, respectively. The
computations were carried out in Matlab R2017a using variable precision arith-
metic with 34 decimal digits (roughly corresponding to quadruple precision)
and requiring tolerance tol = 2−83 ≈ 10−25 to our algorithm. This is a sort
of intermediate accuracy between double and quadruple precision. This choice
allows to show the possibility of using the algorithm at any desired accuracy
and not only at the usual single or double precision (see [3, 5]). The refer-
ence solutions were computed with the same number of decimal digits by using
exp(V TDV ) = V T exp(D)V and exp(V T JV ) = V T exp(J)V . In Figure 2 we
report the achieved relative error in 1-norm for the three different dimensions.
The filled circles indicate the average errors, while the endpoints of the verti-
cal lines indicate the maximum errors among the set of 100 matrices for each
chosen dimension. From this experiment, we see that the method is able to
approximate the matrix exponential at high precision, without relying on any
precomputed thresholds. As such, this method could be employed as general
routine for the matrix exponential in any environment for multiple precision
floating point computations.

3Available at https://bitbucket.org/francoemarco/exptayotf
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Figure 2: Average and largest relative errors for three sets of matrices orthogonally similar to
diagonal or Jordan normal forms.

6.2. Performance and accuracy comparisons

As a second step to validate our algorithm, we proceed with a performance
comparison with its two main competitors based on the analysis of the backward
or forward error. They are expm (as implemented in Matlab R2017a), which
exploits a scaling and squaring Padé approximation [3] and exptaynsv34, which
is based on a scaling and squaring Taylor approximation [5]. Both routines are
the result of several successive refinements of the original algorithms. In fact,
the Padé approximation is used in expm at least since Matlab R14 (2004) and
was based on [17]. Then, it was improved by considering the backward error
analysis developed in [2] and refined some years later following the new ideas
introduced in [3]. On the other hand, exptaynsv3 is the result of successive
revisions [5, 9] of the original ideas in [6], in which the backward or forward
error analysis were used.

We run this comparison over the matrices coming from the Matrix Compu-
tation Toolbox [18], plus few random complex matrices. We decided to scale the
test matrices so that they have 1-norm not exceeding 512 for the double data
input and 64 for the single data input. This because some matrices from the test
set were having a 1-norm too big to have a representable exponential matrix.
In addition, by doing so, we kept the cost of the scaling and squaring phase
(that may be more or less common to all the tested algorithms for the majority
of matrices) from shadowing the differences in cost of the approximations. We

4Revised version: 2017/10/23, available at http://hipersc.blogs.upv.es/software/ .
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notice that the function expm treats differently particular instances of the input.
In fact, diagonal and Hermitian matrices are exponentiated following a Schur
algorithm. We decided then to discard those cases from our set of tests matrices,
in order to compare algorithms purely based on the backward or forward error
analysis. The final set comprises 38 matrices. We run all our tests on a quite
old machine with six AMD Phenom II X6 cores at 2.80 GHz and 8 GB of RAM.
Although the main operations are multi-threaded (matrix products for all the
algorithms and one matrix division only for expm), we limited Matlab to use a
single computational thread with the starting option -singleCompThread. In
this way, we obtained more reliable results in the measure of the computational
times. The tests were run for double data input asking for double precision 2−53

and comparing accuracy and elapsed computational times. For the comparison
to be fair, there are some details that we needed to sort out in advance.

• Both our competitor algorithms do not present a shifting strategy (al-
though, for instance, in [5, § 2] it is explicitly mentioned that steps for
preprocessing and postprocessing of the matrix to reduce the norm of
the matrix can be considered). One could think that the shift is in-
tended to be performed in advance, i.e., computing the exponential of A as
er exp(A−rI) for some scalar r. But, such a simple strategy can be harm-
ful. For example, consider the matrix A given by matrix(51,32)*2^30

from the Matrix Computational Toolbox. This matrix has eigenvalues
with large negative real part. The Matlab function expm applied to the
shifted matrix B = A − µI, µ = trace(A)/n, returns a matrix of NaNs.
This makes it impossible to recover the exact solution which, in double
precision arithmetic, is a matrix of zeros. Hence we are not performing
any external shifting strategy for our competitors.

On the other hand we are not going to transform every matrix from the
test set in a zero traced matrix just to avoid this issue. In fact, that would
be unfair toward our special backward error inequality (10b) that on the
right hand side takes in account not B = A − µI but A. As a trivial
example, consider any random valued matrix with small norm and big
trace, for instance randn(1024)*1e-10+eye(1024)*1e2. To compute the
exponential of this matrix we take averagely just a hundredth of the time
taken by our competitors. Anyway, we did not include such an extreme
example in our test set.

• We excluded from the test set matrix number 2, the Chebyshev spectral
differentiation matrix corresponding to gallery(’chebspec’). In fact,
the relative condition number κexp(A), see [4, § 3.1], for such a matrix A
is so large (about 1.4 · 109 at dimension n = 32) that it turns out to be
impossible for any routine to compute an accurate matrix exponential in
double precision.

We moreover tested exptayotf on double precision data asking for different pre-
cisions ranging from 2−202 to 2−10. The possibility for exptayotf to profitably
work with different data types and precisions is not shared by the competitors
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which were developed for double precision arithmetic and accuracy (although
expm works without any problem with single precision data).

6.2.1. Double precision data with tolerance set to 2−53

In these experiments, the reference solutions were computed with the expm

method using variable precision arithmetic with 34 decimal digits. All the three
methods take tol = 2−53 ≈ 10−16 as default tolerance. For each matrix in
the test set, the three algorithms were run 10 times and, after discarding the
best and the worst performance, the mean elapsed computational time t̄ and
the standard deviation σ were computed. In Figure 3 we reported the average
and largest forward relative errors in 1-norm (top) and the average and largest
computational times (bottom) of the three methods. The average relative error
committed by exptayotf is always smaller than the competitors. The expm

function is clearly the fastest up to dimension n = 128. From dimension n =
256, the three methods behave in the same way from the computational point
of view. As done in [4, § 10.5], we computed for the test sets of dimension
n = 16 and n = 512 the normwise relative errors in the Frobenius norm. The
results are summarized in Figure 4. The condition number of the problems
κexp(A) was computed by the Matrix Function Toolbox [19] function expm_cond.
The same data are displayed in Figure 5 as a performance profile: a point
(α, p) on a curve related to a method is the relative number of matrices in the
test set for which the corresponding error in the Frobenius norm is bounded
by α · tol. These figures confirm the previous observations. The new scaling
parameter possibly chosen as the sum of two powers of two (see Section 3)
showed slight improvements. For instance, when we force exptayotf to take
the scaling parameter as a single power of two at dimension n = 512, the average
relative error is 9.30 · 10−15 versus the value 8.58 · 10−15 obtained with our new
choice. The average computational cost was the same, about 0.7 seconds. We
summarize in Table 2 the computational efforts of the three methods measured
both in terms of the average number of matrix products MP for each test set
(now up to dimension n = 4096) and in terms of computational times. Besides
the average of the mean computational times t̄ for each test set, we report the
maximum relative standard deviation σ/t̄. A part from the smallest matrix
dimensions, for which the average t̄ is of the order or smaller than 0.01 seconds,
we see that the average t̄ is a reliable measure. For the largest matrix dimensions
(n ≥ 1024) we do not compute a reference solution, but can see in Table 2
that the on-the-fly backward error analysis of exptayotf is competitive with
the standard approaches. In fact, the method turns out to be faster than the
competitors. We observe that the two polynomial methods take about the same
number of matrix products MP. Despite for exptaynsv3 the average MP is
slightly smaller, exptayotf tends to be faster. This can be explained because
the on-the-fly error estimate usually requires a particularly small number of
matrix vector products. In fact, thanks to the typical behavior of the sequences
{δl}l (see Figure 1), we generally need very few calls to the 1-norm estimator
that we purposely implemented according to [16]. Finally we notice that for
the expm method the amount of matrix products is smaller than the polynomial
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Figure 3: Average and largest relative errors for the test cases described in Section 6.2,
tolerance tol set to 2−53 (top) and average and largest computational times (bottom).

methods. On the other hand, this method requires to perform a matrix division
MD which is slower than a matrix product, although it has the same complexity
with respect to the matrix size n.

6.2.2. Double precision data with tolerances different from 2−53

In this experiment we consider the same test set as above, but require an
accuracy corresponding to single precision. It is not possible to change the
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Figure 4: Normwise relative errors in Frobenius norm for the test cases described in Section 6.2,
tolerance tol set to 2−53. The solid line is κexp(A) · tol.

precision in the codes exptaysnv3 and expm, since the error analysis was done
in advance only for the precision 2−53. Figures 6 and 7 report the normwise
relative errors in the Frobenius norm for the test set of matrices of dimension
n = 16. We see that exptayotf performs in a stable way, with errors well below
the corresponding κexp(A) · tol. In Table 3 we see that the average relative error
in the 1-norm is always smaller than the prescribed tolerance for all the test
sets up to dimension n = 512. In Table 4 we reported the average number of
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Figure 5: Performance profiles for the test cases described in Section 6.2, tolerance tol set to
2−53.

matrix products and the average elapsed computational times, for the test sets
up to dimension n = 4096. We see that, if less accuracy is required, it is possible
to save up to 43% of the computational time (see the comparison for n = 512
between double and half precision).

In exptayotf it is possible to ask for a tolerance smaller than 2−53, even with
data in double precision. For instance, it is well known that the first column of
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n comput. effort exptayotf exptaynsv3 expm

16 average MP 9.47 9.71 7.63+MD
average t̄ 8.94e-04 9.65e-04 3.56e-04
max σ/t̄ 1.01e+00 1.19e+00 1.13e+00

32 average MP 10.26 10.24 8.13+MD
average t̄ 1.09e-03 1.12e-03 5.44e-04
max σ/t̄ 1.21e-01 5.09e-01 9.32e-02

64 average MP 10.55 10.47 8.53+MD
average t̄ 2.67e-03 2.66e-03 1.67e-03
max σ/t̄ 6.81e-02 2.64e-01 1.96e-01

128 average MP 10.87 10.82 8.89+MD
average t̄ 1.21e-02 1.19e-02 1.01e-02
max σ/t̄ 1.05e-01 8.53e-02 2.60e-02

256 average MP 11.29 11.18 9.45+MD
average t̄ 7.60e-02 8.09e-02 8.40e-02
max σ/t̄ 2.48e-02 2.35e-02 9.51e-02

512 average MP 11.84 11.76 9.92+MD
average t̄ 6.87e-01 7.26e-01 8.65e-01
max σ/t̄ 2.64e-02 2.34e-02 2.32e-02

1024 average MP 11.69 11.50 9.89+MD
average t̄ 4.83e+00 4.92e+00 5.92e+00
max σ/t̄ 1.07e-02 2.00e-02 1.54e-02

2048 average MP 11.42 11.36 9.83+MD
average t̄ 2.81e+01 3.00e+01 3.54e+01
max σ/t̄ 1.31e-02 1.19e-02 1.76e-02

4096 average MP 11.31 11.22 9.86+MD
average t̄ 2.17e+02 2.32e+02 2.68e+02
max σ/t̄ 4.21e-03 1.25e-03 1.12e-02

Table 2: Average number of matrix products MP, average mean elapsed time t̄ in seconds and
maximum relative standard deviation σ/t̄ for the test cases described in Section 6.2, tolerance
tol set to 2−53. MD indicates the matrix division in the Padé algorithm.

the matrix E defined by

E = (eij) = exp(Z), Z =










ξ1
1 ξ2

1 ξ3
. . .

. . .

1 ξn










are the divided differences of the interpolation polynomial of the exponential
function at the sequence of points {ξj}nj=1 (see [20]). Their accurate approx-
imation is a key point for the polynomial methods for the approximation of
the action of the matrix exponential (see [11]). In the trivial case in which
ξ1 = ξ2 = . . . = ξn = 0, the divided differences coincide with the inverse of the

21



0 5 10 15 20 25 30 35 40
10 -20

10 -15

10 -10

10 -5

10 0

10 5

Figure 6: Normwise relative errors in Frobenius norm of the algorithm exptayotf for the test
cases described in Section 6.2, tolerance tol set to 2−24. The solid line is κexp(A) · tol.
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Figure 7: Normwise relative errors in Frobenius norm of the algorithm exptayotf for the test
cases described in Section 6.2, tolerance tol set to 2−10. The solid line is κexp(A) · tol.

factorials of the first nonnegative integers (i.e., they are the Taylor coefficients).
In Table 5, for n = 31, we can see that the algorithm exptayotf is able to
compute in a accurate way those coefficients, provided that a sufficiently small
tolerance is prescribed. This is in general not possible with algorithms (such as
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relative error exptayotf exptayotf exptayotf

n 1-norm tol = 2−53 tol = 2−24 tol = 2−10

16 average 8.84e-16 4.88e-09 9.19e-04
max 1.21e-14 1.02e-07 1.33e-02

32 average 2.34e-15 2.40e-08 2.47e-04
max 3.17e-14 5.64e-07 4.88e-03

64 average 4.01e-15 1.49e-08 2.25e-04
max 8.15e-14 1.60e-07 4.97e-03

128 average 4.14e-15 1.16e-08 5.37e-04
max 6.27e-14 2.40e-07 4.97e-03

256 average 8.22e-15 1.80e-08 5.26e-04
max 1.21e-13 4.56e-07 4.97e-03

512 average 9.03e-15 2.90e-08 6.41e-04
max 1.08e-13 6.09e-07 4.97e-03

Table 3: Average and largest relative errors of the algorithm exptayotf for the test cases
described in Section 6.2, tolerances tol set to 2−53, 2−24, and 2−10.

expm and exptaynsv3) developed for the double precision.
Another interesting case is the computation of the exponential matrix for

the Hessenberg matrices arising in the Krylov method for the approximation of
exp(τA)v. In fact, we have

exp(τA)v ≈ βVn exp(τHn)e1

(see, for instance, [21, formula (4)]), where Hn = V T
n AVn is an Arnoldi fac-

torization with V T
n Vn = I and Hn a Hessenberg matrix of dimension n much

smaller than the dimension of A and β = ‖v‖2. The elements of the vector
exp(τHn)e1 can be seen as the coefficients of a linear combination of the or-
thonormal columns of Vn. If we consider the matrix A of dimension 256 which
discretizes the one-dimensional advection-diffusion operator ∂xx + ∂x with ho-
mogeneous Dirichlet boundary conditions (in MATLAB syntax)

m = 256;

h = 1 / (m + 1);

A = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / h ^ 2, 1, m)) + ...

toeplitz (sparse (1, 2, -1 / (2 * h), 1, m), ...

sparse (1, 2, 1 / (2 * h), 1, m));

and initial vector v

v = sin (pi * linspace (0, 1, m + 2)’);

v = v(2:m + 1);

and produce the Hessenberg matrix H41 by the standard Arnoldi process and
compute E = exp(τH41) for τ = 10−5, we obtain the results in Table 6. Once
again, it is possible to recover accurate coefficients only by asking for higher
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exptayotf exptayotf exptayotf

n comput. effort tol = 2−53 tol = 2−24 tol = 2−10

16 average MP 9.47 7.63 5.95
average t̄ 8.94e-04 8.33e-04 7.65e-04
max σ/t̄ 1.01e+00 1.02e+00 1.11e+00

32 average MP 10.26 8.16 6.58
average t̄ 1.09e-03 8.88e-04 7.86e-04
max σ/t̄ 1.21e-01 1.20e-01 2.80e-01

64 average MP 10.55 8.45 6.95
average t̄ 2.67e-03 2.11e-03 1.70e-03
max σ/t̄ 6.81e-02 5.73e-02 6.33e-02

128 average MP 10.87 8.84 7.08
average t̄ 1.21e-02 9.35e-03 7.59e-03
max σ/t̄ 1.05e-01 3.28e-02 4.09e-02

256 average MP 11.29 9.24 7.53
average t̄ 7.60e-02 5.85e-02 4.82e-02
max σ/t̄ 2.48e-02 2.73e-02 4.71e-02

512 average MP 11.84 9.76 8.05
average t̄ 6.87e-01 5.11e-01 3.91e-01
max σ/t̄ 2.64e-02 1.97e-02 1.65e-01

1024 average MP 11.69 9.53 7.72
average t̄ 4.83e+00 3.69e+00 2.81e+00
max σ/t̄ 1.07e-02 1.12e-02 1.68e-01

2048 average MP 11.42 9.33 7.69
average t̄ 2.81e+01 2.21e+01 1.81e+01
max σ/t̄ 1.31e-02 1.58e-02 1.81e-02

4096 average MP 11.31 9.28 7.61
average t̄ 2.17e+02 1.76e+02 1.40e+02
max σ/t̄ 4.21e-03 1.75e-02 6.69e-02

Table 4: Average number of matrix products MP, average mean elapsed time t̄ in seconds
and maximum relative standard deviation σ/t̄ of the algorithm exptayotf for the test cases
described in Section 6.2, tolerances tol set to 2−53, 2−24, and to 2−10.

precision than 2−53. Moreover, the computational cost was negligible with re-
spect to the computation of the reference solution by expm in variable precision
arithmetic with 34 decimal digits.

7. Conclusions

We have shown that it is possible to estimate on-the-fly the backward error
for the approximation of exponential of a given matrix A. By means of this
estimate, we can select the scaling parameter s and Taylor polynomial degree
m in order to reach any desired accuracy. This is confirmed by the results made
in variable precision arithmetic and reported in Figure 2. Moreover, for data
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n en,1, tol = 2−53 en,1, tol = 2−106

1 1.000000000000000e+00 1.000000000000000e+00
2 1.000000000000000e+00 1.000000000000000e+00
6 8.333333333333333e-03 8.333333333333333e-03
11 2.755731922398589e-07 2.755731922398589e-07
16 7.647163731819814e-13 7.647163731819814e-13
21 4.110317623312165e-19 4.110317623312165e-19
26 0.000000000000000e+00 6.446950284384474e-26
31 0.000000000000000e+00 3.769987628815907e-33

Table 5: Some divided differences of the exponential function at the points ξ1 = ξ2 = . . . =
ξn = 0 (first column of exp(Z)) computed by exptayotf.

n en,1, reference en,1, tol = 2−53 en,1, tol = 2−202

1 9.999013095670584e-01 9.999013095670580e-01 9.999013095670580e-01

2 3.115436398118472e-05 3.115436398118472e-05 3.115436398118472e-05

6 2.723279966591328e-09 2.723279966591318e-09 2.723279966591328e-09

11 9.034777099109725e-15 9.034777098536935e-15 9.034777099109728e-15

16 2.888709002783644e-21 2.888696660347384e-21 2.888709002783644e-21

21 1.864181126800604e-28 1.716726863031155e-28 1.864181126800605e-28

26 3.573156001812017e-36 0.000000000000000e+00 3.573156001812017e-36

31 2.577050509143562e-44 0.000000000000000e+00 2.577050509143563e-44

36 8.203346368054099e-53 0.000000000000000e+00 8.203346368054094e-53

41 1.292460535272054e-61 0.000000000000000e+00 1.292460535272055e-61

Table 6: Some entries in the first column of exp(τH41) computed by exptayotf.

in double precision, the resulting algorithm, named exptayotf, has proven to
be competitive both in terms of accuracy and computational time with two
state-of-the-art routines such as exptaynsv3 and the default expm available in
Matlab R2017a. In fact, from Figures 3–5 it appears clear that we are able
to always achieve the best average forward error on heterogeneous sets of 38
matrices. Such a result was possible thanks to our careful shifting strategy
and the new selection of the scaling parameter s among sums of powers of two,
instead of the classical choice of a single power of two. In terms of computational
times, for small matrix dimensions (n < 64), expm turned out to be by far
the fastest method. But, for higher dimensions, as clear from Figure 3 and
Table 2, exptayotf is revealed to have the smallest cost growth. For instance,
as reported in Table 2 for tolerance set to 2−53, exptayotf is slightly faster than
exptaynsv3, while reaches a speedup of 1.23 over expm for matrix dimension
n = 1024. If instead less accuracy is required, for instance a tolerance set to
2−10, the speedup over the double precision accuracy 2−53 for the same matrix
dimension is 1.76. The final result is an algorithm which is proven to be reliable
at any desired accuracy and faster than the competitors for medium to large
sized matrices.
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Revision of manuscript CAM-D-18-00207
On-the-fly backward error estimate for matrix exponential

approximation by Taylor algorithm

M. Caliari F. Zivcovich

Dear Prof. Wuytack,

Thank you very much for the reviewers’ reports and your help in the ref-
ereeing process. We also want to thank the three anonymous reviewers for
their very valuable suggestions to improve the presentation of our research.
We have prepared a revision of our manuscript, marking in blue the changes.
Since Reviewer #3 asked to removed some numerical experiments, we did
it and added at the end of section 6.2.2 a couple of new examples about
the possibility to use exptayotf with different precisions. We hope that the
current version is suitable for publication on the Journal of Computational
and Applied Mathematics.

Answer to Reviewer #2

Suggestions

• The code is now available at https://bitbucket.org/francoemarco/exptayotf/

Minor Comments

• We made clear the definition of δ.

• As written in the revised version in section 6.2, although the main op-
erations are multi-threaded (matrix products for all the algorithms and
one matrix division only for expm), we limited Matlab to use a single
computational thread with the starting option -singleCompThread.
In this way, we obtained more reliable results in the measure of the
computational times. Without such an option, we simply observed a
larger variance in the measure of the computational times (see Tables 2
and 4).

• The third reviewer made us notice that the comparisons reported in
the old Section 6.3 were not fair, since our competitor algorithms were
not designed for single precision data type. We now agree with this
position and we have decided to remove that section. Anyway, in the
revised version we used the algorithm expm (as it was in the old Section
6.3) in variable precision arithmetic with 34 decimal digits in Section
6.2.1.
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Major Comments

• We made publicly available the full algorithm, which is quite long
(about 350 lines). The kernel of our algorithm are the well known
Paterson–Stockmeyer scheme for the Taylor truncated series of the ex-
ponential function and the scaling and squaring algorithm. We believe
that it is not necessary to give in the paper the pseudocode of these
parts. Therefore, we reported at the end of Section 5 the algorithm
for the selection of the triple (m, z, s) which determines the polynomial
evaluation.

• We incorporated the normwise relative errors and the performance pro-
files for our test sets of matrices of dimension 16 and 512. When the
tolerance for the exptayotf method was set to 2−24 or 2−10, we in-
corporated the normwise relative errors for the test set of matrices of
dimension 16. In fact, being impossible to compute the condition num-
ber κexp(A) for matrices of dimension n = 512 (because of memory
requirements) and being not fair the comparison with the other meth-
ods, the normwise relative error plot would have been a meaningless
sequence of black circles.

Answer to Reviewer #3

Major comments

• The code is now available at https://bitbucket.org/francoemarco/exptayotf

• For the sake of clarity, we did not shorten this already short paragraph.
But clearly the coefficients were first derived in [9] and hence we made
sure that this merit is highlighted by means of explicit citations to the
corresponding formulas in [9].

• We were not able to theoretically justify the assumption on the decay of
the sequence {δl}l. Therefore, in the revised version of the manuscript
we computed the values of the sequence for the test set of matrices of
dimension n = 512 and displayed the results in Figure 1. Our numerical
tests seem to fully confirm the reasonableness of our assumption.

• The values ρj = ||Bj||
1/j
1 have been computed “exactly” with the func-

tion norm, since the matrix powers are available and necessary for the
final polynomial approximation. The values δl (beginning of page 10 of
the revised version), instead, are approximated by a function that we
implemented by following the algorithm in [16]. It is important for our
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purposes only to recover the magnitude of these values and not the full
precision.

• We can assure the reviewer that it was not our intention to perform
unfair comparisons. In fact, we even highlighted (end of page 16 of the
original manuscript) that the gain obtained by lowering the accuracy
requirements was not much. Anyway, we removed all comparisons in
precision different than double precision arithmetic. We emphasized
that our competitors were developed for double precision. We removed
the tests with data in single precision since quite uninformative without
terms of comparison. We added the normwise relative error figures for
exptayotf run with single and half precision, for the test set of matrices
of dimension n = 16 (Figures 6 and 7).

• We added the normwise relative error and performance profile figures
for the double precision results, for the lowest and the biggest matrix
sizes (Figures 4 and 5). For the latter, it was not possible to compute
the conditions numbers due to the excessive memory requirements.

• We run three methods over six test sets with about 40 matrices each.
We do not know how to report in a smart way the standard deviation
“for each matrix”. We did instead the following: for each method and
matrix, after discarding the best and the worst elapsed time measures,
we computed the standard deviation σ and the mean t̄. Then, we
reported in Tables 2 and 4 for each method the average of the mean
t̄ among all matrices of a given test set and the maximum relative
standard deviation σ/t̄ among all matrices of a given test set.

• We computed the number of matrix products and reported them in
Tables 2 and 4.

Minor comments

• We clarified that Taylors algorithms in [5,6,9] use a combination of
forward and backward error analysis.

• Here, and in other parts of the original manuscript, we wrongly refer-
enced to [7] instead of [6]. We fixed this.

• We made the choice of z clear below formula (3).

• The maximum m is not 25, it is written below Table 1 that we reported
“as an example” the costs up to m = 25.
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• The default values of ρmax are 3.5 for data in double or higher precision
and 6.3 for data in single precision. We clarified this choice.

• We fixed the notation about ρj .

• We defined ǫj−m/z.

• It is true that different values of αp(B) are used in the literature. Since
in our approach we do not make use of any αp(B), we decided to give a
more general overview of the classical backward analysis in Remark 1
and give precise references to the reader.

• We defined δj−m/z.

• We clarified the choice of ρmax.

• We tried to better explain the scaling refinement and added an algo-
rithm.

• We clarified the sentence about the equivalent costs.

• We repeated the experiment using variable precision arithmetic with 34
decimal digits and keeping the tolerance to 2−83 ≈ 10−25. We removed
from the plot the smallest errors, since confusing. In fact, it can happen
the some particular cases may result particularly accurate, but they do
not represent the general behavior. The average error is smaller than
the required tolerance, too. This phenomenon can be explained by
the overestimate of the actual backward error. This was true also in
the previous version the manuscript. In fact, even if we used only 25
decimal digits (corresponding to the required tolerance), Matlab uses a
rather large number of guard digits when working in variable precision
arithmetic.

• We described the specifics of the used machine in section 6.2. With
the option -singleCompThread we obtained more reliable measures of
computational times, without penalizing any method.

• We specified that [5,6,9] use the backward or the forward error analysis.

• We accepted the suggested sentence about the scaling of the matrices.

• We mentioned that in [5, § 2] the preprocessing and the postprocessing
were taken into account.
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• The reference results in Section 6.2.1 were recomputed by using expm

in variable precision arithmetic with 34 decimal digits, which roughly
corresponds to quadruple precision.

• We modified the sentence about the scaling parameter based on the
sum of two powers.

• Reference [12] has been submitted again to the same journal after a
major revision and it is still under revision.
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