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Abstract

We continue with the application of the linear model described in [2016WP22] to the
Italian soccer championship. We consider the simulation taking the data from the final
results of the 2016-2017 championship. We intend first to see if the model gives rise again to
some discrepancies with the official final results and we want to study the reasons for that.

The problem of ranking a set of elements, namely giving a “rank” to the elements of the
set, may arise in very different contexts and may be handled in some possible different ways,
depending on the ways these elements are set in competition the ones against the others. In
this working paper we deal with a so called even paired competition, where the pairings are
evenly matched: in a national soccer championship actually each team is paired with every
other team the same number of times.

A mathematically based ranking scheme can be easily defined in order to get the scores
for all the teams. The underlined structure of the model depends on the existence and
uniqueness of a particular eigenvalue of the preference matrix. At this point the Perron–
Frobenius theorem is involved. In the previous working paper [2016WP22] we showed how
in the ranking process some fundamental Linear Algebra concepts and results are important,
mainly the dominant eigenvalue and a corresponding eigenvector. The linear ranking model
was also applied to a first numerical simulation. This gave evidence of some discrepancies
between the actual final placements of teams and the ones provided by the model. We want
to go here into a more detailed study about this aspect.
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1 Introduction

In [1] we first showed how a linear scheme in the ranking process directly takes to some funda-
mental Linear Algebra concepts and results, mainly the eigenvalues and eigenvectors of linear
transformations and the Perron–Frobenius theorem. We applied also the linear ranking model
to a numerical simulation, taking the data from the Italian soccer championship 2015-2016.
Some interesting differences in the final ranking appeared, by comparing the actual placements
of the teams at the end of the contest with the mathematical scores provided to teams by the
theoretical model.

We want here to test if the same differences appear also in the soccer championship 2016-
2017.

The model is taken from the interesting in-depth analysis on general ranking methods in [2],
that was mainly concentrated on American football teams ranking. Within certain hypotheses
the ranking problem may be easily formulated as a linear eigenvalue problem. In [3,4] the
mathematical background for the linear approach was described, with reference both to the
football teams case and the web page ranking, in the original definition of PageRank algorithm
by Google. The linear mathematical approach involves some Linear Algebra notions and results.
Among these, the concepts of eigenvalues and eigenvectors of a square matrix are fundamental,
together with Perron–Frobenius theorem on the so called dominant eigenvalue.

We may generally describe a ranking problem as the need to assign a rank to the elements
of a certain finite set. As a consequence of the ranking process we can get an order relation on
the set, but the ranking scheme is a model for getting individual rankings to the elements, that
is stronger than just having the order relation. Ranking schemes can be applied on a variety
of situations, such as ranking soccer teams, or in general ranking teams or single individuals
of a certain sport, ranking web pages, area of interest of search engines, ranking customers
preferences, which marketing operators are interested in.

The aim of a mathematical ranking scheme may be to introduce some objectivity in the
definition of the rank itself. It must be pointed out anyway that it is impossible to remove all
the subjectivity, as in the process we have to give values to some parameters, and there is no a
completely impartial way to do that.

The reasons why Perron–Frobenius theorem fits well in some ranking problems are quite
straightforward and do apply more in general in each setting where a linear approach is taken
to get the ranking method. In [3] and [4], as mentioned, some notes on web pages ranking were
presented, by recalling that the original Google’s Pagerank algorithm adopts a linear model to
obtain such a ranking.

2 The linear ranking model

Let’s briefly recall the model that can be used to define the ranking method.
Suppose we have a contest, a competition, with a number N of participants. We want to

assign a score to the participants. We can do it in a sort of iterative steps. We may assume an
initial rank for all the participants.1

Then we may think to update the ranks (the scores) by means of the information we can get
from the results of the matches. This can be done each week taking the new last results or can
be done at the end taking all the results of the year.

1The initial rank could be given, think of this year major soccer league for example, by the “strength” a team
is supposed to have from its history. A team that won many previous championships is “strong”, while a team
that has passed to the major league from a secondary league is not.
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The non objective part of the process is not actually on the initial ranks, that could be
influenced by external and not updated information. The initial ranks will be modified anyway
by the process itself taking the fresh information. It is instead in how we decide to use the
results in the process. We could for example give the same “negative weight” to a team if it loses
a match, but we could conversely give a “parametric weight” for a defeat: if a weak team loses
against a strong team the weight could be small, while if a strong team loses against a weak
team the weight should be big. We could also state that a strong rival gives me some (positive)
score even if I lose not so badly the direct match with it. It is interesting to remark anyway that
the model itself is automatically going to take care of these aspects in some way.

Anyway it is reasonable to assume that the score is based on the interactions with other
participants and should depend on the outcome of the interaction and/or strength of its rivals.
In the soccer or other sport contests the interaction is of course the match, where we have a final
result saying who is the winner. In other contests, where there is no a real and direct interaction
among participants, it may be tricky to define the weights of interactions.

Let’s go into more mathematical details. We may define a vector of ranking values r, with
positive components rj , indicating the strength of the jth participant.2

The definition of the scores, that is the way in which we update the ranks after the results of
all the matches, is a crucial step in the model as, how it happens in general, it may completely
influence the model behaviour. By following [2], in the soccer case we may define a score for the
ith participant as

si =
1

ni

N
∑

j=1

aijrj , (1)

where N is the total number of participants in the contest, aij is a nonnegative number related
to the outcome of the game between participant i and participant j, and ni is the number of
games played by participant i. This last parameter may be dropped in a contest like the Italian
soccer championship. At the end all the teams must have played the same number of times. It
may be different in other competitions.

Remark. This is a quite general definition, that may be applied in some different situations.
We did not distinguish yet between even and uneven paired competitions. An even paired
competition is the one in which each team plays against all the others. It is the case of the
national Italian premier soccer league, where if there are N teams, each team plays 2(N − 1)
matches (home and away games) and there are 2(N − 1) · N2 = N(N − 1) matches in whole. An
uneven paired competition is the one in which each team does not play against all the others. It
is the case for example of the European Champions League, where the pairings are not evenly
matched. In this case the pairings are randomly chosen for the different phases of the event.
The definition in (1) may be applied to both even and uneven pairings: in the even case the
parameter ni may be discarded, as the number of games is the same for all the teams, while the
parameter may be important in the uneven case.

Remark. The linear structure of the scoring model is evident. The score of the ith team depends
on all the ranks of the other teams by means of coefficients that characterizes the interaction
between team i and other teams j. In the definition the division by ni can be seen as a sort
of normalization: it may be important in case some additional games are possible. But, apart

2Again, this can be an “initial guess”, an initial assignment of ranks given to teams, based on the previous
history. A natural question arises: how much important is this first assignment for the final result of the ranking
process? We shall come back to this later on.
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from this more technical aspect, the definition takes anyway to a classical linear model

si =

N
∑

j=1

aij
ni

rj =

N
∑

j=1

bijrj . (2)

Some remarks on the coefficients aij (or bij): they are related to interactions between partic-
ipants and they may take into account the different aspects of the specific field where we have
the ranking problem. In the soccer case a simple and straightforward possibility is to set aij = 1
if team i won the game against team j, aij =

1
2 if the game ended in a tie and aij = 0 if team i

lost the game against team j.3

Equation (2) may get a matrix form: if s is the N -vector of scores and r is the N -vector of
ranks, (2) is equivalent to

s = Ar (3)

where A is the square matrix of the coefficients aij (let’s take for simplicity ni = 1 for each i).
A is usually called preference matrix or transition matrix.

2.1 Eigenvalues of positive matrices

Let us recall some mathematical notions about eigenvalues and positive matrices.
Let A be an n× n matrix.4

Definition 1 A scalar λ and a vector x 6= 0 satisfying Ax = λx are called, respectively, an
eigenvalue and an eigenvector of A. The set σ(A) of eigenvalues is called the spectrum of
A.

We have the following characterization for the eigenvalues of a matrix:

λ ∈ σ(A) ⇔ A− λI is singular ⇔ det(A− λI) = 0.

In the following we indicate with R(A) the range (or the image space) of A, that is

R(A) =
{

Ax
∣

∣ x ∈ R
n
}

.

We indicate also with N(A) the nullspace (or the kernel) of A, that is

N(A) =
{

x
∣

∣ Ax = 0
}

.

Both R(A) and N(A) are subspaces of Rn.
If λ is an eigenvalue of the matrix A, then

{

x ∈ R
n
∣

∣ x 6= 0 ∧ x ∈ N(A− λI)
}

is the set of all the eigenvectors associated with λ. N(A−λI) is called the eigenspace associated
with λ.

3For mathematical reasons, that will be clear in the following, in order to apply the theory we have in mind, it
is necessary to have positive or at least nonnegative coefficients. This is why a loss takes zero and not a negative
number.

4In applications A is usually a real matrix, a matrix whose elements are real numbers. Nevertheless the
definitions are usually given in the more general field of complex numbers C. This is because the eigenvalues of
a real matrix are not guaranteed to be real in general. They are guaranteed to exist in the complex filed.

4



Definition 2 The number
ρ(A) = max

λ∈σ(A)
|λ|

is called the spectral radius of A.

It is a fundamental concept in Perron–Frobenius theory.

Remark. As λ might be complex, the absolute value has to be intended in the complex field
but, in any case, ρ(A) is real. The maximum exists because σ(A) is a finite set.

This is a very important definition, also in applications, because the precise knowledge of all
the eigenvalues is not required often, as many properties depend just on how large eigenvalues
are, and then the knowledge of an upper bound may be enough.

Remark. The spectral radius is not necessarily an eigenvalue of A.5

Definition 3 A vector v (a matrix A) with positive entries is said a positive vector (a positive
matrix). We write v > 0 (A > 0) to say that v is a positive vector (A is a positive matrix).

There are some important results on the spectral radius and the related eigenvalues of a
positive matrix. Some of these results are almost immediate, some others are deeper and deeper.
Perron’s theorem is usually presented as a summary of all of these. To have a summary of the
results that may be introductory to Perron’ theorem see [1].

With reference to the second remark before, if the spectral radius is not necessarily an
eigenvalue for a general matrix, it is indeed like that for a positive matrix.

Positive eigenpair If A is an n× n positive (real) matrix then

• ρ(A) ∈ σ(A).

• If Ax = ρ(A)x then A|x| = ρ(A)|x| and |x| > 0.

Remarks. The first item says that ρ(A) is an eigenvalue of A (it’s a positive one by definition).
The second item says that if x is an eigenvector associated with the eigenvalue ρ(A), then

also |x| is an eigenvector associated with the same eigenvalue6 and moreover it is a positive
eigenvector. It means, by the way, that all the eigenvectors associated with ρ(A) do not have null
components. These two results say then that a positive matrix has a positive (real) eigenvalue,
that is the spectral radius, and we have some positive eigenvectors associated to this eigenvalue.

Two other important aspects in the statement and meaning of Perron’s theorem are the
multiplicities of an eigenvalue.

Definition 4 If λ ∈ σ(A) =
{

λ1, λ2, . . . , λt

}

• the algebraic multiplicity of λ is the number of times it is repeated as a root of the char-
acteristic polynomial. In other words, alg mult(λi) = ai, i = 1, . . . , t, if and only if
(x−λ1)

a1 · · · (x−λt)
at = 0 is the characteristic equation for the matrix A. If alg mult(λ) =

1, λ is called a simple eigenvalue.

5The real matrix

(

0 −1
1 0

)

has eigenvalues ±i and then the spectral radius is 1, that is not an eigenvalue.

But, as an even simpler case, with real eigenvalues, we may consider the matrix

(

0 0
0 −1

)

, where the eigenvalues

are 0 and −1, and again the spectral radius is 1, that is not an eigenvalue.
6It is opportune to notice that this is true in this context, talking about ρ(A), while it is not true in general:

in other words, if λ is any eigenvalue and x is an eigenvector associated to λ, it is not true in general that |x| is
also an eigenvector of λ.
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• The geometric multiplicity of λ is dimN(A − λI). In other words, geo mult(λi) is the
maximal number of linearly independent eigenvectors associated with λ.

• Eigenvalues λ such that alg mult(λ) = geo mult(λ) are called semisimple eigenvalues of
the matrix A.

Remarks. For every matrix A and for each λ ∈ σ(A)

geo mult(λ) ≤ alg mult(λ).

It is well known that for the matrix to have fundamental properties it is important the two
multiplicities are equal or not.

A strong result can be proved about the algebraic multiplicity of the spectrum of a positive
matrix.

Multiplicities of ρ(A) If A is an n× n positive matrix then alg mult(ρ(A)) = 1, that is the
spectral radius of A is a simple eigenvalue of A.

Remark. The consequence is that

dimN(A− ρ(A)I) = geo mult(ρ(A)) = alg mult(ρ(A)) = 1,

that is the eigenspace associated to the spectral radius is a one-dimensional subspace of Rn.

Remark. By putting together the previous remark and the result in the Positive eigenpair step,
we get that the eigenspace N(A − ρ(A)I) can be spanned by some positive vector v. Then
there is a unique eigenvector p ∈ N(A − ρ(A)I) such that p > 0 and

∑

i pi = 1 (of course
p = v/‖v‖1). This eigenvector p is called the Perron vector for the positive matrix A. The
associated eigenvalue ρ(A) is called the Perron eigenvalue.

The set of results we just summarised is the core of Perron’s theorem. Further results can be
proved in association with these and sometimes they are part of the statement of the theorem.
We mention only one of these, a sort of uniqueness result: there are no nonnegative eigenvectors
for a positive matrix A other than the Perron vector p and its positive multiples. We give anyway
a condensed version of the main results in the following subsection.

2.2 Perron’s theorem

Perron’s theorem for positive matrices is usually presented as a collection of many results,
all related to the eigenvalue with the largest absolute value (also called leading eigenvalue).
The results were due to Oskar Perron (1907) and concerned just positive matrices. Later, as
already mentioned, Georg Frobenius (1912) found the extension to certain classes of nonnegative
matrices.

A statement of Perron’s theorem in a short form can be the following.

Theorem 1 (Perron’s theorem for a positive matrix) Let A be an n × n positive matrix
and let ρ(A) be the spectral radius of A. Then the following properties hold.

(i) ρ(A) ∈ σ(A). It is called the Perron eigenvalue.

(ii) alg mult(ρ(A)) = 1.

(iii) There exists an eigenvector x > 0 associated to ρ(A). The Perron eigenvector p is the
unique eigenvector such that p > 0 and ‖p‖1 = 1. The matrix does not have other positive
eigenvalues, except for positive multiples of p.
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(iv) ρ(A) is the only eigenvalue in the spectral circle of A.

Remark. An interesting property that relate the Perron eigenvector to the elements of the
matrix is the following.

• The Perron eigenvalue ρ(A) satisfies the inequalities

min
i

∑

j

aij ≤ ρ(A) ≤ max
i

∑

j

aij .

From a theoretical point of view the Perron eigenvalue of a positive matrix is important
for existence and uniqueness reasons. But it comes to be equally important in applications.
Moreover, there is a powerful numerical method for the computation of the Perron eigenvalue
based on the powers of the matrix A (the so called Power method).

In applications is usually non so easy to have matrices with all positive elements. Apart
from cases in which negative elements are necessary, it is more likely to have matrices with
nonnegative elements.

Definition 5 A vector v (a matrix A) with nonnegative entries is said a nonnegative vector (a
nonnegative matrix). We write v ≥ 0 (A ≥ 0) to say that v is a nonnegative vector (A is a
nonnegative matrix).

The obvious question is if Perron’s theorem holds with a nonnegative matrix and the answer
is no, not in all the various aspects of its thesis. Consider for example the real nonnegative
matrix

A =

(

0 1
1 0

)

.

The eigenvalues are λ1 = 1 and λ2 = −1, then the spectral radius is

ρ(A) = max
λ∈σ(A)

|λ| = max(λ1, λ2) = 1.

It is still true ρ(A) is an eigenvector of A, its algebraic multiplicity is 1, it has a positive
eigenvector associated to it, but it is not the only eigenvalue in the spectral circle, as −1 is also.

Frobenius did some studies with the aim of extending Perron’s theorem to nonnegative
matrices and he obtained very interesting results. Here is a very short formulation of the
main properties of a nonnegative matrix regarding positive eigenvalues and positive eigenvectors
associated to them.

Theorem 2 (Perron-Frobenius for nonnegative matrices) If the matrix A has nonnega-
tive entries, then there exist a positive eigenvalue ρ and an associated eigenvector r with non-
negative entries. Furthermore, if the matrix A is irreducible, then there exist a unique positive
eigenvalue ρ, simple and largest in absolute value. It has an eigenvector r with strictly positive
entries.
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2.3 A simulation from a real problem

-->spec(A)

ans =

10.276192

- 0.4969956 + 1.6054656i

- 0.4969956 - 1.6054656i

- 2.0886799

- 1.8317836 + 0.4743035i

- 1.8317836 - 0.4743035i

- 0.5974409 + 1.1216704i

- 0.5974409 - 1.1216704i

0.6489670 + 0.3703199i

0.6489670 - 0.3703199i

0.0370148 + 0.7519015i

0.0370148 - 0.7519015i

0.5334854

0.3652981

- 1.0657733 + 0.6807498i

- 1.0657733 - 0.6807498i

- 0.4404790 + 0.2368074i

- 0.4404790 - 0.2368074i

- 0.7966572 + 0.0649151i

- 0.7966572 - 0.0649151i

Here we want perform a realistic simulation, by taking the data
from the Italian soccer 2016-17 championship. We write the
transition matrix by setting a choice of “weights” in a classical
0/0.5/1 for the three possible results of the matches.

In the Italian soccer 2016-17 championship there are 20
teams. By setting the transition matrix A with

aij =











1 if team i defeats team j

0.5 if teams i and j tie the match

0 if team i looses against team j

we obtain the 20×20 matrix in appendix (section ...). By reading
the elements by row we have the results in the home matches
for the teams in the first column. By reading the elements by
column we have the results in the away matches for the teams
in the first row.

If we ask Scilab to compute the eigenvalues of the matrix
A, we get the solution here on the right. First of all it must be
pointed out that A is not a positive matrix. As mentioned pre-
viously in the more general theory about nonnegative matrices
and spectral radius, due to Frobenius, we know that in the case of an irreducible matrix the
main results of Perron’s theorem hold.

Our matrix A, that is nonnegative, is irreducible and it shows anyway an evident single real
eigenvalue with maximum absolute value. We may also notice, together with many pairs of
complex conjugate eigenvalues, there is a couple of small real positive eigenvalues.

r = R*eye(20,1)

r =

0.2807986

0.1420395

0.2168076

0.1435373

0.1340696

0.1141136

0.2879021

0.2144048

0.2471512

0.3631080

0.2364787

0.2513399

0.2833684

0.0947280

0.0889082

0.3153101

0.2149577

0.1543224

0.2425359

0.1898624

If we ask Scilab to compute the eigenspaces, associated
to the largest eigenvalue ρ(A) ≈ 10.276, we get the posi-
tive vector r here on the left as a normalized eigenvector.
This vector has just positive components, hence it satis-
fies the properties of the Perron eigenvector. Worthwhile
to say the Scilab output in this case is a normalized vector
in the 2-norm (‖r‖2 = 1).

By using the ∞-norm we get the alternative eigen-
vector here on the right, where we have divided the vec-
tor on the left by its largest component (‖r‖∞ = r10 =
0.3631080).

r = r/0.3631080

r =

0.7733197

0.3911769

0.5970885

0.3953021

0.3692280

0.3142689

0.7928827

0.5904712

0.6806547

1.0000001

0.6512627

0.6921905

0.7803971

0.2608810

0.2448533

0.8683646

0.5919937

0.4250042

0.6679443

0.5228813

Now we may compare the placements given by the ranking vector together with the actual
final placements we had at the end of the last championship. Remember that the official rules
of the Italian championship gives 3 points to the winning team, 1 point to both teams for a tie
and 0 points to the losing team.
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points rank

JUV 91 1
ROM 87 0.868
NAP 86 0.780
ATA 72 0.773
LAZ 70 0.651
MIL 63 0.692
INT 62 0.681
FIO 60 0.793
TOR 53 0.668
SAM 48 0.592
CAG 47 0.597
SAS 46 0.425
UDI 45 0.523
CHI 43 0.395
BOL 41 0.391
GEN 36 0.590
CRO 34 0.369
EMP 32 0.314
PAL 26 0.261
PES 18 0.245

Table 1: Comparison with 3/1/0 point mechanism

Here is the comparison in Table 1.
A first and evident aspect is that the in the ranking model sometimes the relative deviation

between the scores is not comparable with the the corresponding deviation of the final points.
The first clear case is between Napoli (NAP) and Atalanta (ATA) teams. In the model the
ordering is correct, but they are very near one to each other (1% of relative difference in the
scores), while in the final classification they have more than 15% of relative difference.

The opposite behaviour is clear between Atalanta and Lazio (LAZ). This time the relative
difference is higher in the model than in the final points.

The first misplacement in the ordering concerns the Lazio team. It has in the final classifica-
tion a much higher placement than it should have looking at the model. In terms of placement
it has four positions more that other teams, better placed in the model. In terms of final points
it has al least 17 points more.

Conversely, going down in the classification, the Genoa (GEN) team is very badly misplaced
with respect to the score it has in the model.

These are the two more interesting cases.
In [1] we tested if a different assignment of points could be important. The previous results

are obtained with the actual assignment mechanism: 3 points for a win and just 1 point for a
tie, while the matrix element setting is 1 for a win and the half for a tie. In this way it should
be evident that teams with many ties and not so many wins are not favourite in the final real
placement. In [1] we checked with a simulation of a real classification obtained by using the old
fashioned assignment of points: 2 points for a win, 1 point for a tie and no points for a loss.

The result was that, apart from some slight modifications with respect to the other point
assignment, the same misplacements we had before were still evident. The assignment rule of
points did not seem to be so important.

It is not easy to tackle the problem from a general point of view. Given 1 point for the win
and 0 points for the loss, if we set in the preference matrix α for the tie, there does not seem to
be a sort of linearity in α on the solution, the eigenvector. In fact the characteristic polynomial
that takes to the eigenvalues is not homogeneous in α.

We checked here with a simulation of a real classification obtained by using the old fashioned
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assignment of points: 2 points for a win, 1 point for a tie and no points for a loss.

In Table 2 there is the final classification we would have obtained together with the compar-
ison with the model.

points rank

JUV 62 1
NAP 60 0.780
ROM 59 0.868
ATA 51 0.773
LAZ 49 0.651
MIL 45 0.692
FIO 44 0.793
INT 43 0.681
TOR 40 0.668
SAM 36 0.592
SAS 33 0.425
UDI 33 0.523
CAG 33 0.597
CHI 31 0.395
BOL 30 0.391
GEN 27 0.590
CRO 25 0.369
EMP 24 0.314
PAL 20 0.261
PES 15 0.245

Table 2: Comparison with 2/1/0 point mechanism

There are some modifications with respect to the previous case. These modifications are
more important than the ones we had in [1]. It is interesting to observe that the placements
of Roma and Napoli teams are interchanged. This shows that the point mechanism may be
important.7 It does not seem there are reasons for the existence of a points ratio coherent
with the model, but this could be an interesting aspect to be studied. Anyway it is clear the
model gives a final ranking that can be different from the real one, obtained by the official point
mechanism. It is interesting to study if the linear model can be better that the official ranking
method.

In [1] we investigated to identify some possible reasons for the inconsistencies between the
model and the real life, by considering for example discrepancies among “home-points” and
“away-points” the teams have collected in the matches. This is actually an aspect that supporters
appreciate, as an away win is usually considered more valuable than a home win. In the same
way a home win against a low rank team is perhaps as valuable as a home tie against a high
rank team. But it is clear that this is just a subjective matter, as the point mechanism is not
intended to take into account this aspect (maybe it should?). The obvious question is then:
does the model does it? The answer is obviously no, it does not, as in the preference matrix the
coefficients for a win is just 1, no important if it is an away or a home win.

Apart from the interchanged positions of Roma and Napoli, we still have the evident mis-
placement of the Lazio team, that has again a much higher placement than it should have looking
at the model. The different points mechanism does not seem to be involved here.

Here the motivation could be related to the deeper aspects that make the difference in the
model. To understand this it is worthwhile to remember a computational method that can be
used to calculate eigenvalues and eigenvectors of a matrix, the so called power method.

7It is easy to realize that Roma team has a greater number of wins (28 against 26) but has also more lost
matches and less tied matches. It is clear that the points ratio between wins and ties may be very significant, in
some cases.

10



For the purpose of finding the leading eigenvalue of a matrix together with a corresponding
eigenvector a great variety of methods have been designed. Let’s consider a square n×n matrix
A having n linearly independent eigenvectors associated to the eigenvalues λ1, λ2, . . . , λn and
suppose

|λ1| > |λ2| ≥ . . . ≥ |λn|.

This means we are assuming that the dominant eigenvalue λ1 has algebraic multiplicity one.
Let’s call v1, v2, . . . , vn some corresponding eigenvectors. This means that

Avi = λiv
i, i = 1, 2, . . . , n.

The power method, starting from any arbitrarily chosen vector x(0), builds up a sequence of
vectors {x(k)} that converges to the eigenvector associated to the leading eigenvalue.

Suppose x(0) is an arbitrary vector in R
n. We may write x(0) as a linear combination of

v1, v2, . . . , vn that, because the hypothesis of linear independence, is a basis of Rn.

x(0) =
n
∑

i=1

αiv
i and suppose α1 6= 0.8

Starting from x(0) we may build up the sequence

x(1) = Ax(0) , x(2) = Ax(1) , . . . , x(k) = Ax(k−1) , . . .

The following result holds:

Theorem 3 For the sequence {x(k)}k∈N we have that

lim
k→∞

x
(k+1)
j

x
(k)
j

= λ1 and lim
k→∞

x(k)

x
(k)
j

= cv1. (4)

where j is an index for which x
(k)
j 6= 0, for every value of k.

In other words, apart from technicalities, if we are interested in finding the largest solution in
module of the equation Av = λv, together with a corresponding vector, we may use the sequence
defined by x(n) = Anx(0), starting from an arbitrary vector x(0) in R

n. If we see the equation
Av = λv with the meaning it has inside the ranking model, the power method means that we
start from any distribution of scores to the teams and we update the scores in a sequence of
steps, each time considering more and more hidden relations inside the preference matrix. The
method appears to be quite robust, because the solution is not affected by a possibly irrealistic
initial distribution of scores. The data on which the iterative method operates are just the ones
contained in the preference matrix, but they are not used just at a first level, as actually the
official points mechanism does. They are fully taken into account. To be explicit: a team gets
rank if it defeats a high rank team but also if it defeats a team that has defeated a high rank
team, and so on.

The discrepancies between the theoretical model and the actual results may be explained with
the remarks before. We may say that the linear model based on the leading Perron’s eigenvalue
could be a valuable one to understand the hidden aspects that the official points mechanism
does not consider. Hence it can be adopted at the end of the contest to get a better insight.

8The condition means that we don’t have to start from a point in the subspace spanned by the eigenvectors
v2, v3, . . . , vn. We need x(0) to have a component in the subspace spanned by v1.
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Of course, during the championship, there is the need to produce, week by week, the official
classification, by using a preference matrix that is quite sparse, at the beginning in particular.
This can be a problem for the method, as a sparse matrix is not likely to be irreducible.

This can be a matter for a further study: the applicability of the method for a weekly
definition of the ranking, in particular in the case where the transition matrix is not irreducible.
The first trivial way to overcome the difficulty seems to be the definition of a preference matrix
with positive elements (it means to give rank also in case of a defeat). Some simulations may
be worthwhile to see if this takes to some inconsistency of the method.

Another interesting aspect to study could be a more general one: the interrelations between
the preference matrix defined by the possible various rules and the properties of the matrix itself
in terms of reducibility and/or lackness of a positive eigenvector.
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Appendix

A All the results of the matches in the Italian premier league 2016-17

ATA BOL CAG CHI CRO EMP FIO GEN INT JUV LAZ MIL NAP PAL PES ROM SAM SAS TOR UDI
ATA 3−2 2−0 1−0 1−0 2−1 0−0 3−0 2−1 2−2 3−4 1−1 1−0 0−1 3−0 2−1 1−0 1−1 2−1 1−3
BOL 0−2 2−1 4−1 1−0 0−0 0−1 0−1 0−1 1−2 0−2 0−1 1−7 3−1 3−1 0−3 2−0 1−1 2−0 4−0
CAG 3−0 1−1 4−0 2−1 3−2 3−5 4−1 1−5 0−2 0−0 2−1 0−5 2−1 1−0 2−2 2−1 4−3 2−3 2−1
CHI 1−4 1−1 1−0 1−2 4−0 0−3 0−0 2−0 1−2 1−1 1−3 1−3 1−1 2−0 3−5 2−1 2−1 1−3 0−0
CRO 1−3 0−1 1−2 2−0 4−1 0−1 1−3 2−1 0−2 3−1 1−1 1−2 1−1 2−1 0−2 1−1 0−0 0−2 1−0
EMP 0−1 3−1 2−0 0−0 2−1 0−4 0−2 0−2 0−3 1−2 1−4 2−3 1−0 1−1 0−0 0−1 1−3 1−1 1−0
FIO 0−0 1−0 1−0 1−0 1−1 1−2 3−3 5−4 2−1 3−2 0−0 3−3 2−1 2−2 1−0 1−1 2−1 2−2 3−0
GEN 0−5 1−1 3−1 1−2 2−2 0−0 1−0 1−0 3−1 2−2 3−0 0−0 3−4 1−1 0−1 0−1 0−1 2−1 1−1
INT 7−1 1−1 1−2 3−1 3−0 2−0 4−2 2−0 2−1 3−0 2−2 0−1 1−1 3−0 1−3 1−2 1−2 2−1 5−2
JUV 3−1 3−0 4−0 2−0 3−0 2−0 2−1 4−0 1−0 2−0 2−1 2−1 4−1 3−0 1−0 4−1 3−1 1−1 2−1
LAZ 2−1 1−1 4−1 0−1 1−0 2−0 3−1 3−1 1−3 0−1 1−1 0−3 6−2 3−0 0−2 7−3 2−1 3−1 1−0
MIL 0−0 3−0 1−0 3−1 2−1 1−2 2−1 1−0 2−2 1−0 2−0 1−2 4−0 1−0 1−4 0−1 4−3 3−2 0−1
NAP 0−2 3−1 3−1 2−0 3−0 2−0 4−1 2−0 3−0 1−1 1−1 4−2 1−1 3−1 1−3 2−1 1−1 5−3 3−0
PAL 1−3 0−0 1−3 0−2 1−0 2−1 2−0 1−0 0−1 0−1 0−1 1−2 0−3 1−1 0−3 1−1 0−1 1−4 1−3
PES 0−1 0−3 1−1 0−2 0−1 0−4 1−2 5−0 1−2 0−2 2−6 1−1 2−2 2−0 1−4 1−1 1−3 0−0 1−3
ROM 1−1 3−0 1−0 3−1 4−0 2−0 4−0 3−2 2−1 3−1 1−3 1−0 1−2 4−1 3−2 3−2 3−1 4−1 4−0
SAM 2−1 3−1 1−1 1−1 1−2 0−0 2−2 2−1 1−0 0−1 1−2 0−1 2−4 1−1 3−1 3−2 3−2 2−0 0−0
SAS 0−3 0−1 6−2 1−3 2−1 3−0 2−2 2−0 0−1 0−2 1−2 0−1 2−2 4−1 0−3 1−3 2−1 0−0 1−0
TOR 1−1 5−1 5−1 2−1 1−1 0−0 2−1 1−0 2−2 1−3 2−2 2−2 0−5 3−1 5−3 3−1 1−1 5−3 2−2
UDI 1−1 1−0 2−1 1−2 2−0 2−0 2−2 3−0 1−2 1−1 0−3 2−1 1−2 4−1 3−1 0−1 1−1 1−2 2−2

Reading key : By reading by row you have the home results of the team in the first column,
while by reading by columns you have the away result of the team in the first row.
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