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Abstract. Vector Optimization Problems have been intensively investigated by carrying out

the analysis in the image space (namely, the space where the objective functions run) and several

interesting results have been achieved. Here, exploiting some of these results and taking into

account previous results, we present a scalarization method for Vector Optimization Problems.

All the vector optima are found starting from the scalar problem and varying a parameter in

the image space. In the special case of two objective functions, the method requires only one

parameter and some calculus advantage are obtained. If the objective functions are convex, the

method shrinks to a known one.
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1 Introduction

Several theoretical aspects of Vector Optimization - like optimality conditions, duality, penal-

ization - have been developed by exploiting a general scheme based on separation or alternative

theorems and by carrying out the analysis in the image space [5, 7]. Moreover, as collateral

result of this general approach, in [5, 7] it has been defined a scalarization method for Vector

Optimization Problems (for short, VOPs). Afterwards, the authors of [5, 7] got acquainted with

the existence of a previous analogous result [3, 4]. This latter result has been obtained by a way

which is straighter and simpler than the former; the proof of the former is more complicated be-

cause it is a by-product of a general scheme which aims to embrace several existing developments

and to stimulate new ones in the theory of VOPs and Vector Variational Inequalities.

In this paper, we start with the result of [5, 7], taking into account [3, 4], and we present a

scalarization approach for a VOP with two objective functions. In the convex case, this approach

recovers a known one, due to Benson [1, 2].

Since the main scope of the present paper is not the existence of extrema, in what follows

the assumptions on their existence will be understood.

Let the positive integers ℓ,m, n, k and the cone C ⊆ R
ℓ be given. In the sequel, it will be

assumed that C is convex, closed and pointed – so that it expresses a partial order – with apex

at the origin and with intC 6= ∅, namely with nonempty interior.

Consider the vector–valued functions f : Rn → R
ℓ, g : Rn → R

m, h : Rn → R
k and the

subset X ⊆ R
n. Let C0 := C \ {O}; we will consider the following vector minimization problem,

which is called generalized Pareto problem:

minC0f(x), x ∈ K := {x ∈ X : g(x) ≥ 0, h(x) = 0}, (1.1)

where minC0 denotes vector minimum with respect to the cone C0: x
0 ∈ K is a (global) vector

minimum point (for short, v.m.p.) of (1.1), iff

f(x0) 6≥C0 f(x) , ∀x ∈ K, (1.2)

where the inequality means f(x0) − f(x) /∈ C0. At C = R
ℓ
+, (1.1) becomes the classic Pareto

VOP.

Let 〈·, ·〉 denote the scalar product in R
ℓ and C∗ := {c∗ ∈ R

ℓ : 〈c, c∗〉 ≥ 0, ∀c ∈ C} be the

(positive) polar cone of C.
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2 Scalarization

Fix p ∈ intC∗ and introduce the following scalar problem:

min〈p, f(x)〉, x ∈ K ∩R(ξ), (2.1)

where ξ = (ξ1, . . . , ξℓ) ∈ f(X) ⊆ R
ℓ and R(ξ) := {x ∈ X : f(x) ∈ ξ − C}. For every ξ ∈ f(X),

let x0(ξ) be a minimum point (for short, m.p.) of (2.1).

Theorem 2.1. [3, 5, 7]. If x0(ξ) is a minimum point of (2.1) for any ξ ∈ f(X), then x0(ξ) is a

vector minimum point of (1.1). If x0 is a vector minimum point of (1.1), then x0 is a minimum

point of (2.1) for ξ = f(x0).

Consider the following ”fixed point” condition:

f(x0(ξ)) = ξ, ∀ξ ∈ f(X). (2.2)

As observed by Corley in [3], for any solution ξ to (2.2), x0(ξ) is a v.m.p. of (1.1) by the first part

of Theorem 2.1. The second part guarantees that all v.m.p.s of (1.1) are obtained, i.e. no v.m.p.

of (1.1) is excluded by condition (2.2). Moreover, condition (2.2) eliminates the redundancy

(i.e., the possibility that different values of ξ imply the same solution of (1.1)). The exclusion of

the redundancy by means of (2.2) is proved by the following reasoning: if, ab absurdo, ξ1 6= ξ2

implies x0(ξ1) = x0(ξ2), then we have f(x0(ξ1)) = f(x0(ξ2)) and hence, by (2.2), we obtain

ξ1 = ξ2.

Based on the previous results, it is possible to define a method in order to find all the v.m.p.s

of (1.1). Fix any p ∈ intC∗; p will remain fixed in the sequel. Then choose any ξ ∈ f(X) and

solve the (scalar) problem (2.1). We find a solution x0 (if any); x0 is a solution of (1.1) too. If

we want to give the possibility of running implicitly through the set of v.m.p.s – this happens,

for instance, when a given function must be optimized over the set of v.m.p.s of (1.1) – we have

to move ξ ∈ f(X) in (2.1) starting with ξ = ξ0 = f(x0) and maintaining a solution, say x0(ξ),

to (2.1). The above method is different from that of Corley, who in [3] proposed first to find the

solutions to (2.1) for all the values of parameter ξ, namely to find the function or multifunction

x0(ξ), and next to equate f(x0(ξ)) = ξ. In our proposal, (2.2) could be added to the parametric

solution of (2.1), if we want to eliminate the redundancy.
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3 The case of two objective functions

In this section we analyse the particular case ℓ = 2. The method described in the previous

section becomes simple since it is possible to handle only one parameter. In the convex case, it

will be compared with the method of Benson [1].

Consider problem (1.1) with ℓ = 2 and C = R
2
+ and define the problem

minf1(x), x ∈ K ∩ {x ∈ X : f2(x) ≤ ξ2} (3.1)

for each ξ2 ∈ Ξ, where Ξ is the set of all ξ2 ∈ f2(X) such that K ∩ {x ∈ X : f2(x) ≤ ξ2} 6= ∅.

Let ξ1(ξ2) := f1(x
0(ξ2)), where x0(ξ2) is a m.p. of (3.1). Fix any p ∈ intC∗ and for every ξ2 ∈ Ξ

consider the following problem

min[p1f1(x)) + p2f2(x)], x ∈ K ∩ {x ∈ X : f1(x) ≤ ξ1(ξ2)), f2(x) ≤ ξ2}. (3.2)

Since C = R
2
+, then p = (p1, p2) ∈ intC∗ is equivalent to p1 > 0, p2 > 0; in the sequel this

condition will be understood.

The following proposition shows the equivalence between (1.1) and problem (3.2) which

depends on the scalar parameter ξ2 ∈ Ξ.

Proposition 3.1. If x0(ξ2) is a minimum point of (3.2) for any ξ2 ∈ Ξ, then x0(ξ2) is a vector

minimum point of (1.1). If x0 is a vector minimum point of (1.1), then x0 is a minimum point

of (3.2) for ξ02 = f2(x
0).

Proof. Suppose that x0(ξ2) (for short, x0) be a m.p. of (3.2) for any ξ2 and set ξ1 := ξ1(ξ2).

Then x0 is a m.p. of (2.1) for (ξ1, ξ2) and hence, by Theorem 2.1, x0 is a vector minimum point

of (1.1).

To prove the second statement, let x0 be a v.m.p. of (1.1) and consider (3.2) for ξ02 = f2(x
0)

and ξ01 := ξ1(ξ
0
2). A feasible point x of (3.2) is such that f1(x) ≤ ξ1(ξ

0
2) = min

f2(x)≤ξ02

f1(x) and

f2(x) ≤ ξ02 = f2(x
0). Now, observe that, if x0 is a v.m.p. of (1.1), then x0 is a minimum point

of (3.1) with ξ2 = f2(x
0). In fact, if ab absurdo x0 is not a minimum point of (3.1), then there

exists x̂ such that f1(x̂) < f1(x
0) and f2(x̂) ≤ f2(x

0) and this contradicts the optimality of x0

for (1.1). Therefore we have that ξ1(ξ
0
2) = f1(x

0); hence a feasible point of (3.2) is such that

f1(x) ≤ f1(x
0) and f2(x) ≤ f2(x

0). Since x0 is a v.m.p. of (1.1), then x is a feasible point of

(3.2) iff f1(x) = f1(x
0) and f2(x) = f2(x

0) and this implies that the objective function of (3.2)

is constant for all feasible x. Since x0 is feasible, the proof is complete.
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Let mi := min
x∈K

fi(x), i = 1, 2, and M2 := min
x∈K

f1(x)=m1

f2(x); obviously, it is m2 ≤ M2 and hence

the interval I := [m2,M2] ⊂ Ξ is well defined.

Proposition 3.2. If x0 is a vector minimum point of (1.1), then ξ02 = f2(x
0) ≤ M2.

Proof. Let x0 be a v. m. p. of (1.1) and suppose, ab absurdo, that ξ02 = f2(x
0) > M2 :=

min
x∈K

f1(x)=m1

f2(x) = f2(x̃). Hence we have f1(x̃) = m1 ≤ f1(x
0) and f2(x̃) < f2(x

0), and this

contradicts the optimality of x0 to (1.1).

Proposition 3.1 shows that problem (1.1) can be solved by means of the parametric problem

(3.2) and Proposition 3.2 shows that it is enough that the parameter ξ2 runs in the interval

I := [m2,M2].

Moreover, let us observe that in (3.2) the inequality f1(x) ≤ ξ1(ξ2) can be equivalently

substituted with f1(x) = ξ1(ξ2), since ξ1(ξ2) is the minimum value of f1 on the set of points

x ∈ K such that f2(x) ≤ ξ2; hence problem (3.2) is equivalent to:

p1ξ1(ξ2) + min(p2f2(x)), x ∈ K ∩ {x ∈ X : f1(x) = ξ1(ξ2), f2(x) ≤ ξ2}. (3.3)

The above approach holds without any assumption on (1.1). Nevertheless, in some cases, we

can have some advantages in solving problem (3.3), like under the hypotheses of the following

proposition.

Proposition 3.3. Suppose that f1 and f2 be strictly concave functions on the convex set K.

The solution set of (3.1) equals the solution set of

minf1(x), x ∈ conv(K ∩ {x ∈ X : f2(x) ≤ ξ2}), (3.4)

where conv denotes the convex hull.

Proof. Since the feasible region S(ξ2) := K ∩ {x ∈ X : f2(x) ≤ ξ2} of (3.1) is strictly contained

in that of (3.4), it is enough to prove that, if x0 is a m.p. of (3.1), then ∀x ∈ convS(ξ2) \ S(ξ2),

it turns out f1(x) > f1(x
0). Ab absurdo, suppose that ∃x̃ ∈ convS(ξ2) \ S(ξ2) such that

f1(x
0) ≥ f1(x̃). Since x̃ ∈ convS(ξ2), then there exist x1, . . . , xr ∈ S(ξ2) and α1, . . . , αr > 0,

∑r
i=1 αi = 1, with r ≤ n+ 1 such that x̃ =

∑r
i=1 αix

i. From the strict concavity of f1 and the

optimality of x0, we have

f1(x
0) ≥ f1(x̃) = f1

(

r
∑

i=1

αix
i

)

>

r
∑

i=1

αif1(x
i) ≥

r
∑

i=1

αif1(x
0) = f1(x

0),

and this complete the proof.
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As a consequence of the previous result, if f1 and f2 are strictly concave and K is a polytope,

then the set of m.p. of (3.1) is finite and this could simplify the solution of (3.3).

At last, observe that, in the present case, the fixed point condition (2.2) reduces to:

f2(x
0(ξ1(ξ2), ξ2)) = ξ2. (3.5)

4 The convex case

In this section, it will proved that, if a convexity assumption is made for problem (1.1), then it

is enough to solve problem (3.1) to obtain all the v.m.p. of (1.1).

First of all, observe that, without any hypothesis, a m.p. of (3.2) is always a m.p. of (3.1).

This result is contained in the proof of Proposition 3.1, where it is shown that a v.m.p. of (1.1)

(that is equivalent to (3.2)) is a m.p. of (1.1); nevertheless, it can proved directly:

Proposition 4.1. If x0(ξ2) is a minimum point of (3.2) then x0(ξ2) is a minimum point of (3.1).

Proof. Let x0(ξ2) (for short, x0) be a m.p. of (3.2); then x0 is such that f1(x
0) ≤ ξ1(ξ2) =

min
f2(x)≤ξ2

f1(x) and f2(x
0) ≤ ξ2. Hence x0 is a feasible point of (1.1); moreover, since f1(x

0) ≤

min
f2(x)≤ξ2

f1(x), it turns out f1(x
0) = min

f2(x)≤ξ2
f1(x).

Proposition 4.2. Suppose that f1 and f2 are convex functions on the convex set K. In problem

(3.1) let ξ2 ∈ [m2,M2]; if x
0(ξ2) is a minimum point of (3.1), then x0(ξ2) is a minimum point of

(3.2).

Proof. Fix ξ2 ∈ [m2,M2] and let x0(ξ2) (for short, x
0) be a m.p. of (3.1). Ab absurdo, suppose

that x0 is not a m.p. of (3.2). Then there exists x̃ ∈ K such that

f1(x̃) ≤ ξ1(ξ2) = min
x∈K

f2(x)≤ξ2

f1(x) = f1(x
0), (4.1)

f2(x̃) ≤ ξ2, (4.2)

f1(x̃) + f2(x̃) < f1(x
0) + f2(x

0). (4.3)

Since from (4.1) we have f1(x̃) = f1(x
0), (4.3) implies

f2(x̃) < f2(x
0). (4.4)
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The optimality of x0 to (3.1) and the convexity of f1, f2 and K imply 1 [6] the existence of

θ0, λ0 ∈ R, θ0, λ0 ≥ 0 and (θ0, λ0) 6= (0, 0) such that

θ0(f1(x
0)− f1(x)) + λ0(ξ2 − f2(x)) ≤ 0 ∀x ∈ K;

or, equivalently, since λ0(ξ2 − f2(x
0)) = 0,

θ0f1(x
0)− λ0(ξ2 − f2(x

0)) ≤ θ0f1(x)− λ0(ξ2 − f2(x)) ∀x ∈ K. (4.5)

Firstly, suppose that λ0 > 0. Since f1(x̃) = f1(x
0) and f2(x̃) < f2(x

0), we have

θ0f1(x̃)− λ0(ξ2 − f2(x̃)) < θ0f1(x
0)− λ0(ξ2 − f2(x

0))

which contradicts (4.5). Suppose, now, that λ0 = 0 and hence θ0 > 0. From (4.5), we have

f1(x
0) ≤ f1(x) ∀x ∈ K, i.e., x0 minimizes f1 on the whole set K. The same is for x̃, because of

f1(x̃) = f1(x
0); hence f1(x̃) = f1(x

0) = m1. Moreover, the feasibility of x0 for (3.1) implies

f2(x
0) ≤ ξ2 ≤ M2 := min

x∈K
f1(x)=m1

f2(x);

therefore it is f2(x
0) ≤ f2(x) ∀x ∈ K such that f1(x) = m1. In particular, it turns out that

f2(x
0) ≤ f2(x̃) and this contradicts (4.4).

From Proposition 4.1 and Proposition 4.2 we have the following theorem that is exactly the

result of Benson:

Theorem 4.1. (Theorem 2.1 of [1]). Assume that f1 and f2 are convex functions on the convex

set K. Then x0 is a vector minimum point of (1.1) iff x0 is a minimum point of (3.1) for some

ξ2 ∈ [m2,M2].

Remark. Note that if we assume the strict convexity of f1 then we have the uniqueness of the

minimum point of (3.1) for every ξ2 ∈ I. This fact shortens the proof of Proposition 4.2 because

the uniqueness is contradicted by (4.1) and (4.2). Finally. observe that whatever condition on

(1.1) guaranteeing the linear separation of (3.1) in the image space permits to solve problem

(1.1) by means of (3.1) and this generalizes the result of Benson.

The following nonconvex example shows that may exist points which are solutions to (3.1)

for some ξ2 ∈ I, but not v.m.p.s of (1.1), so that, without convexity assumption, the sufficiency

of Theorem 4.1 (i.e., Proposition 4.2) does not hold.

1This property is called ”image linear separation”.
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Example 4.1. Let us consider in (1.1) the following positions: f1(x) = −x2 + 2x+ 3, f2(x) =

−1
3x

2 + 2x + 1, K = {x ∈ R : 0 ≤ x ≤ 3}; f1 and f2 are strictly concave functions. The

solution set is {0} ∪ (2, 3]. It turns out m1 = 0, m2 = 1, M2 = 4 and hence I = [1, 4]. For each

ξ2 ∈ [1, 4], problem (3.1) is min
x∈[0,3]

f2(x)≤ξ2

f1(x). If we choose ξ2 = 11
3 , the feasible region of (3.1) is

K = {x ∈ R : 0 ≤ x ≤ 2} and hence (3.1) assumes its minimum value at x = 0 and x = 2;

the latter is not a vector minimum point of (1.1). If we exchange the role of f1 and f2, we

obtain M1 = min
x∈[0,3]

f2(x)=m2

f1(x) = 3 and hence I = [0, 3]. For every ξ1 ∈ [0, 3], we have to solve the

problem min
x∈[0,3]

f1(x)≤ξ1

f2(x). When ξ1 runs in [0, 3), the interval (2, 3] of v.m.p. is obtained; if ξ1 = 3,

the problem becomes min
x∈{0}∪[2,3]

f2(x) and it assumes its minimum value at x = 0. Hence the

procedure finds exactly the solution set of the given problem; this proves that the arrangement

of f1 and f2 is not indifferent.
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