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In shape analysis and matching, it is often important to encode informa-
tion about the relation between a given point and other points on a shape,
namely its context. To this aim we propose a theoretically sound and efficient
approach for the simulation of a discrete time evolution process that runs
through all the possible paths between pairs of points on a surface repre-
sented as a triangle mesh in the discrete setting. We demonstrate how this
construction can be used to efficiently construct a multiscale point descriptor,
called Discrete time Evolution Process Descriptor, which robustly encodes the
structure of neighborhoods of a point across multiple scales. Our work is
similar in spirit to the methods based on diffusion geometry, and derived
signatures such as the HKS or the WKS, but provides information that is
complementary to these descriptors, and can be computed without solving
an eigenvalue problem. We demonstrate through extensive experimental
evaluation that our descriptor can be used to obtain accurate results in shape
matching in different scenarios. Our approach outperforms similar methods,
and is especially robust in the presence of large non-isometric deformations,
including missing parts.
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1 INTRODUCTION
Accurate shape matching plays an important role in shape anal-
ysis and geometry processing with many applications like object
animation [Sumner et al. 2005], object retrieval [Tangelder and
Veltkamp 2004] [Lian et al. 2013], model reconstruction from par-
tial views [Bernardini and Rushmeier 2002], and shape exploration
and co-segmentation [Huang et al. 2014], among many others. One
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prominent approach consists in defining a point descriptor or signa-
ture that captures the most notable characteristics of a given shape
from the “point of view” of the each point. Typically, such a de-
scriptor is constructed by considering a (possibly arbitrary large)
neighborhood of a point and encoding geometric properties of this
neighborhood in a robust and easily comparable way [Belongie et al.
2002; Frome et al. 2004; Johnson and Hebert 1999]. In this light sev-
eral strategies have been introduced to extract local information in
an efficient and theoretically sound fashion. For instance a popular
approach is based on the concept of diffusion geometry [Coifman
and Lafon 2006] for the description of 3D shapes [Aubry et al. 2011;
Bronstein and Bronstein 2011; Gebal et al. 2009; Sun et al. 2009]. The
main idea consists of characterizing the neighborhood of a given
point through an evolution process that measures how information
propagates on the manifold. For example, it is well-known that
heat tends to diffuse slower at points with positive curvature, and
faster at points with negative curvature (see, e.g., [Sun et al. 2009]).
Although very informative, diffusion-based methods are by their
nature global, and potentially sensitive to the non-isometric shape
deformations. Moreover, for computational reasons, such methods
are often based on an approximation of the spectral decomposition
of the shape.
In this paper we propose to encode the relation between points

by exploiting an alternative evolution paradigm. Rather than con-
sidering a continuous time evolution we introduce a special operator
that is applied iteratively on the surface. Our process operator is
designed to explicitly integrate information across the shape by
taking into account the relation of a given point to the rest of the
surface. In particular, our operator is specified by a function that
encodes the direct pairwise relations between surface points. Then,
the iterative procedure allows our method to explore also indirect (or
second-order) relations. This leads to a new discrete-time evolution
scheme to represent the gradual change of the “context” of the each
point. As an example when the relation function is defined by the
geodesic distance, our process operator encodes the set of paths
of gradually increasing lengths. Moreover, we effectively combine
the contribution of each evolution state to obtain a final score that
summarizes how a point is influenced by the rest of the shape after
an infinite number of steps. Key to our approach is an observation
that such multi-step computation can be done exactly and efficiently
in practice by solving a single linear system of equations without
requiring an approximation via a reduced spectral basis.

We show the benefits of this new framework by using it to derive
a novel point signature. We build our process operator by using the
geodesic distances as relation functions. Therefore, rather than con-
sidering only the shortest paths, which are known to be susceptible
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to noise, the iterative use of our operator captures the information
about all paths of arbitrary lengths between each pair of points.
Finally, we introduce a multi-scale strategy to capture information
from both small and large neighborhoods , by controlling the length
of the distance allowed in a single step. We demonstrate that our
descriptor, which we call Discrete time Evolution Process descriptor
(DEP), is highly discriminative and is more robust than other meth-
ods to several kinds of shape transformations such as non-isometric
deformations and missing parts.

Our approach closely resembles methods based on diffusion ge-
ometry [Aubry et al. 2011; Bronstein and Bronstein 2011; Coifman
and Lafon 2006; Gebal et al. 2009; Sun et al. 2009], especially in
its use of an infinite number of paths to characterize points and
their relations. Nevertheless, by basing our descriptor directly on
discrete time evolution and geodesic distances, rather than on the
differential operator such as the Laplace-Beltrami operator, we are
able to provide complementary information, with respect to ex-
isting diffusion-based signatures. Moreover, in contrast to these
approaches, our descriptor can be computed exactly, without trun-
cating an eigendecomposition.
We demonstrate the effectiveness of our method in matching

shapes across a wide range of challenging scenarios. For this, we
provide results on benchmarks with increasing level of complex-
ity and consider different matching strategies: i) based on a direct
comparison of point descriptors, and ii) based on functional map
[Ovsjanikov et al. 2012] framework. Our results outperform the
state-of-the-art and show that the information contained in our DEP
descriptor is alternative to the one captured by existing techniques.

Roadmap. The rest of the paper is organized as follows. We be-
gin in Section 2 by describing the related work and highlighting
connections with our method. Section 3 provides the mathematical
background of the proposed discrete time evolution process on sur-
faces. Connections to the continuous process are given in Section 4.
Then, in Section 5 we describe how to obtain a multiscale descriptor
from the discrete time evolution process and provide further insights
into the relation to similar work in Section 6. Section 7 presents a
wide range of experiments that explore the benefits of the obtained
descriptor in several scenarios. Finally Section 8 concludes the paper
with a discussion of limitations and future work.

2 RELATED WORK
In the past several decades a wide variety of point or shape descrip-
tors has been proposed in different research areas such as computer
graphics, computer vision and pattern recognition (see, e.g., [Bron-
stein et al. 2012] for a summary of some approaches). In this section
we focus on the work that is most closely related to ours.

Distance based methods. In the seminal paper [Osada et al. 2002],
the authors defined a signature as a probability distribution (i.e.,
shape distribution) sampled from a shape function that encodes the
geometric properties of the given object. As an example, authors
proposed the distribution of the Euclidean distances between pairs
of randomly selected points on the surface of a 3D model. Other
approaches exploit intrinsic properties of the shape by collecting
information from geodesic distances [Kimmel and Sethian 1998;

Mitchell et al. 1987; Surazhsky et al. 2005]. In [Hilaga et al. 2001] a
geodesic-based Multiresolutional Reeb Graph (MRG) is proposed to
effectively capture the topological properties of 3D objects. Simi-
larly, a pose invariant shape descriptor is introduced in [Gal et al.
2007] as a 2D histogram estimated from the local-diameter function
(i.e., the measure of the diameter of the 3D shape in the neighbor-
hood of each point on a surface, also known as Shape Diameter
Function [Shapira et al. 2008]), and the centricity function (i.e., the
average geodesic distance from one point to all other points on the
shape). In [Ion et al. 2011] the so-called eccentricity transform has
been introduced as the distribution of the lengths of the longest
geodesics on the 3D surface. Recently, Xin et al. [Xin et al. 2016]
introduced a new function called the intrinsic girth function (IGF),
which captures the shortest nonzero geodesic path starting and end-
ing at the same point, and have also described an efficient method
to compute the IGF on a triangular mesh. Finally, Carrière and
colleagues [Carrière et al. 2015] have introduced a multi-scale sig-
nature based on topological structure of the distribution of geodesic
geodesic distances centered at a given point.

Local descriptors. Other, non-distance based methods have been
employed to analyse local geometric properties of a shape and to
characterize each point on a shape. Important examples of point-
based signatures are the well-known spin images [Johnson and
Hebert 1999], and shape context [Belongie et al. 2002; Frome et al.
2004]. In particular, several methods have been proposed that con-
sider a multi-scale version of the local neighborhood of the given
point [Yang et al. 2006]. For instance in [Pottmann et al. 2009] a
multi-scale approach is employed for the computation of integral
invariant features [Manay et al. 2004]. In [Zaharescu et al. 2012] a
3D version of the well-known SIFT descriptor [Lowe 2004] is pro-
posed, while in [Tombari et al. 2010] the authors present signature
called SHOT . These descriptors describe the local shape structure
around a point starting from either the geodesic distances or the
distribution of normal directions.

Finally among the newermethods there is AnisotropicWindowed
Fourier Transform descriptors (AWFT) [Melzi et al. 2016]. Starting
from a collection of functions, the descriptors are obtained as a
weighted linear combination of the coefficients of the anisotropic
windowed Fourier transform.

Diffusion based methods. Another trend in shape analysis consists
of exploiting diffusion (e.g., heat diffusion) properties on geometric
shapes [Aubry et al. 2011; Bronstein and Bronstein 2011; Coifman
and Lafon 2006; Gebal et al. 2009; Sun et al. 2009]. The general
idea is to measure the propagation of information on 3D objects,
that can in some cases be interpreted as a random walk among
surface points [Bronstein and Bronstein 2011; Coifman and Lafon
2006]. This framework has led, in particular, to the well-known
Heat Kernel Signature (HKS) [Gebal et al. 2009; Sun et al. 2009],
which, roughly speaking encodes the amount of heat remaining at a
point after a certain amount of time. A similar approach is defined
for the so-calledWave Kernel Signature (WKS) [Aubry et al. 2011],
which captures the particle oscillations at different frequencies of
a dynamic system defined on a shape. Interestingly, in [Bronstein
and Bronstein 2011] the authors proposed a scheme that is able to
generalize all the previously diffusion-based approaches. All of these
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methods are based on the spectral decomposition of the Laplace
Beltrami operator onmanifold shapes. Recently, somework has been
proposed to avoid this need by introducing an alternative method
for the heat kernel computation [Patané 2014], at the expense of
additional computation time, when considering all points on the
shape.

Learning based methods. Generally speaking, methods based on
spectral geometry are invariant to isometric transformations but
are likely to fail when this hypothesis is violated. In order to address
this problem a class of methods has been introduced by exploit-
ing a learning by example approach [Boscaini et al. 2015; Corman
et al. 2014; Litman et al. 2014; Litman and Bronstein 2014]. In [Lit-
man and Bronstein 2014] the so-called optimal point descriptor is
proposed. In [Corman et al. 2014] a learning procedure has been
introduced within the functional map framework. In [Litman et al.
2014] authors proposed a learning strategy in the context of the
bag-of-word paradigm. Finally, [Boscaini et al. 2015] introduces a
matching method that exploits convolutional neural networks in
the spectral domain.

Connections with our work. Our work is related to diffusion
based methods in that it arises from an evolution process similarly
to the HKS and WKS which are respectively based on the evolution
process of the heat and the motion of the particles on the surface.
Our method exploits an alternative surface evolution paradigm and
defines a new path-based multi-scale point descriptor, by capturing
the paths of multiple lengths without the need to compute any
spectral decomposition. Rather than focusing on the infinitesimal
or differential characteristics of the shape (such as those defined by
the Laplace-Beltrami operator), we argue for encoding the “integral”
properties of points and their neighborhoods by considering the
relations across all the other points on the shape, and by simulating a
discrete-time evolution process. Ourmethod is highly discriminative
and it captures information that is alternative to the geometric
attributes obtained by other traditional diffusion-based approaches
. Even if our descriptor is built without employing any learning
strategy our results are stable and robust even when the hypothesis
of isometric transformation is violated.

3 DISCRETE TIME EVOLUTION PROCESS

We define an iterative process that evolves on the manifold and that
we observe at discrete and regular timestamps. Differently from the
diffusion-basedmethods, such asHKS orWKS, our evolution process
is not necessarily based on a differential equation that controls the
process behavior. Therefore, we do not need to know the evolution
law that explains this process, but the process itself is fully derived
from a generic pairwise relation function as described below.

3.1 Evolution process on manifold
Continuous shape. Let S be a smooth surface, and F(S,R) the

set of real functions defined on S . We introduce a function d that
represents a generic relation between each pair of surface points.

d : S × S −→ R

d : (x ,y) 7−→ d(x ,y) ∈ R s.t. d(x ,y) ≥ 0 ,

Starting from the relation d we then define a process, that evolves
in the discrete time setting and depends only on the underlying
geometry of the surface. This process is governed by the relation d
that represents how the each point x is “influenced” by every other
point y on the surface.
We fix a finite time interval ∆t ∈ R, with ∆t > 0, and divide the

= 0t t

∆ t ∆ t∆ t

0 1 t t t n = ∆ tn −12 n

Fig. 1. Time discretization used for the discrete time evolution process.

positive real line in a discrete collection of instants {t0 = 0, t1, t2, . . . ,
tl−1, tl , . . .}, where tl = l∆t as shown in Figure 1. Given an initial
state represented by a real function f0 ∈ F(S,R), we define the
desired process as follows:

f1(x) :=
∫
S
d(x ,y)f0(y)dµ(y), (1)

where f1 is the state after one time interval ∆t , and dµ is the infini-
tesimal area element. We assume that the process is homogeneous
and the evolution is the same at every time step. Thus, we can iterate
this operation by obtaining the state after a generic number l of
discrete intervals as:

fl (x) :=
∫
S
d(x ,y)fl−1(y)dµ(y). (2)

Using this relation, we introduce the process operator A that gives
us the state of the process after the discrete interval of time. There-
fore, we write:

A(f0) = f1 =

∫
S
d(·,y)f0(y)dµ(y) (3)

and iterating on l ∈ N we obtain:

fl = A(fl−1) = A(A(fl−2)) = . . . = A(A(· · · (A(f0))))︸                ︷︷                ︸
l−times

.

Finally, for every point x on S we define a scalar value that sums
up the contributions of the process from every discrete time tl with
l ∈ {0, . . . ,+∞}. Therefore, we introduce an evolution process score
s at a point x ∈ S as follows:

s(x) =
∞∑
l=0

fl (x) = f0(x) +
∞∑
l=1

∫
S
d(x ,y)fl−1(y)dµ(y). (4)

Discrete shape. In the discrete setting we represent S by a trian-
gular mesh M with N vertices V = {vi }Ni=1. We divide the surface
in barycells centered at every vertex vi of the mesh, and denote by
Ωi their areas. Note that in this case the set F(S,R) = RN and the
function d corresponds to a matrix D ∈ RN × RN where:

Di, j = d(vi ,vj ) ∈ R s.t. d(vi ,vj ) ≥ 0, ∀vi , vj ∈ V .
Following the discussion above, we can redefine the same evolution
process that we created in the continuous setting as follows. Given
an initial state f0 ∈ RN , our process is defined as

f1(vi ) :=
N∑
j=1

ΩjDi, j f0(vj ), (5)
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and f1 is the state after one interval ∆t . Here, the integral from
equation 1 is replaced by the weighted sum according to the local
areas. Then we can obtain the state after a generic number l of
discrete time intervals as:

fl (vi ) :=
N∑
j=1

ΩjDi, j fl−1(vj ). (6)

We build the diagonal matrix Ω = diaд(Ωi ), with the area Ωi of
the barycell centered in vi . Then we can adopt a matrix notation
to model the process. We denote by A the discrete process operator
defined by the N × N real matrix DΩ, more explicitly the element
(i, j) of the matrix A is A(i, j) = Ωjd(vi ,vj ). Now we can write the
discrete analogue of Eq. (3):

Af0 = f1 = DΩf0 =
N∑
j=1

ΩjD ·, j f0(vj ).

and iterating on l ∈ N we obtain:

fl = Afl−1 = A(A(fl−2)) = . . . = A(A(· · · (Af0)))︸             ︷︷             ︸
l−times

= Al f0,

where Al = (DΩ)l is the process operator for l steps. Finally, we
obtain our evolution process score via the discrete version of Eq.
(4):

s(vi ) =
∞∑
l=0

fl (vi ) = f0(vi ) +
∞∑
l=1

( N∑
j=1

Al (i, j)f0(vj )
)
. (7)

3.2 Analysis of Higher Order Relations
Here we discuss the meaning of the proposed evolution process in
terms of higher order relations between points that belong to the
surface. Note that while the process evolves our process operator Al

takes into account indirect links between the vertices. We consider
these indirect links as higher order relations.
More specifically, Equation (5) encodes the first-order relations

of vi and it can be rewritten as:

f1(vi ) :=
N∑
j=1

ai, j f0(vj ), (8)

where ai, j := A(i, j) represents how vertex vi is “influenced” by
vj on the discretized shape. Now we evaluate the behavior of the
process in the higher order relations. Let σ denote a generic subset
of l + 1 vertices

{
vσ (0), . . . ,vσ (l )

}
⊆ V , with possible repetitions.

We can define the contribution wσ of σ to the evolution process as:

wσ =

l−1∏
k=0

aσ (k ),σ (k+1) =
l−1∏
k=0

Ωσ (k+1)d(vσ (k ),vσ (k+1)), (9)

Let Pli, j denote the collection of all the subsets l +1 vertices, starting
with i (σ (0) = i) and ending with j (σ (l) = j). To account for all
subsets in Pli, j , and following standard linear algebra we compute:

Al (i, j) =
∑

σ ∈Pli, j

wσ (10)

Therefore, our process operator for l order Al (i, j) represents how
the vi is “influenced” by all l-order relations between vi and vj .

Moreover, for every initial state f0, we define the l-order evolution
state at vertex vi as:

fl (vi ) =
N∑
j=1

Al (i, j)f0(vj ), (11)

Intuitively fl (vi ) encodes the quantity of the state f0 “absorbed” in
vi from the l-order relations in the evolution process.

The evolution process score for each vertex of the mesh is defined
summing over l as: s(vi ) =

∑∞
l=0 fl (vi ), so it can be obtained as in

Equation 7. Now, to generalize the computation of this score we
introduce the score operator S as the geometric series of matrix A:

S =
∞∑
l=0

Al . (12)

Note, however, that since S increases exponentially with l , the infi-
nite summay diverge and so Smay not be well-defined. To overcome
this problem we employ a simple generating function strategy. Gen-
erating function regularization [Graham et al. 1994] is used to assign
a consistent value for the sum of a possibly divergent series. To this
end, we define the regularized score operator as:

Š =
∞∑
l=0

r lAl . (13)

where r is a scalar regularization parameter. In order to ensure the
convergence, we choose r so that |r | < 1

ρ(A) , where ρ(A) is
the spectral radius of A. Please see Appendix I for a more formal
argument. From an algebraic view, Š can be efficiently computed by
using the convergence property of the geometric power series of a
matrix [Hubbard and Hubbard 2001]:

Š = (I − rA)−1 (14)

Matrix Š encodes the information about the geometry between our
set of vertices, and the chosen relation function d . Finally, we can
obtain the evolution process scores for each vertex simply as:

š(vi ) = [(Šf0)](i), (15)

which can equivalently be computed by solving the linear system:
(I − rA)(š) = f0. This interpretation makes it clear that, for every
vertex vi the computed score š(i) is obtained by summing the con-
tributions of all the relations starting at vi , and evolving along the
surface under the conditions imposed by the process operator A,
for all time scales, going to infinity. Note that from the pairwise
relations encoded by D our evolution process allows to obtain and
incorporate higher-order information. All the components involved
in our framework are highlighted. In Section 5 we will give a deeper
analysis of these components.

4 CONNECTION TO CONTINUOUS PROCESS

Our discrete time evolution process is defined by

fl+1 = Afl .

Let us now suppose that exists a matrix B such that:

A = e∆tB .
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This assumption is far from trivial, and it is possible only for a
particular set of A. If we satisfy this condition, and focusing on
the limit case of ∆t → 0, we can consider the continuous process
associated to the following partial differential equation:

∂ f

∂t
= Bf .

It is well-known that for every initial state f0 the state of this con-
tinuous process at time t is defined as:

ft = etB f0 .

So we have that for every discrete time interval ∆t and for every
integer l :

fl∆t = el∆tB f0 = Al f0 ,

which corresponds to our discrete time evolution process. In the
same spirit we can obtain a connection between the integration over
all times of the continuous process and our evolution process score.
In the continuous notation we can compute the following equation:∫ ∞

0
fτdτ =

∫ ∞

0
eτB f0dτ = −B−1 f0 .

Now if we fix a time interval ∆t as we did in Section 3, we can
rewrite this integration at discrete times as:

∞∑
l=0

Al f0∆t = (I − A)−1 f0∆t .

Assuming A = e∆tB as above, for ∆t → 0 we have:

(I − A)−1 f0∆t = −(∆tB)−1 f0∆t = −B−1 f0 .

Therefore, if we consider our evolution process score š = (I −A)−1 f0
and forgetting ∆t (as multiplicative constant value) š corresponds
to the integration over all times of the continuous process.
This highlights how the continuous process is related to our

discrete time evolution process, and also how the score š is related
to the continuous process in this specific context.
Clearly this connection depends on a strong assumption, and holds
only for very specific relation functions d . One of the main goals
of our framework, however is to enable the use of a generic pair-
wise relation without limiting its choice in order to meet some
conditions. For this reason, we encode this relation via a discrete
process, which allows us to obtain a score, even when the evolution
is not governed by a continuous-time, diffusion-like procedure.

5 PROPOSED DESCRIPTOR

We investigate how the proposed evolution process described in Sec-
tion 3 can be exploited to define a new class of 3D point descriptors.
The choice of the components of the evolution process is crucial to
identify the encoded information. In particular, the main compo-
nents are i) the relation function, ii) the regularization parameter,
and iii) the starting state.

The relation function. The most important parameter is the re-
lation function D that in principle can be defined by any positive
two variables function. In practice, the characteristics of the chosen
relation function determine the kind of information that is spread
across the shape by the evolution process and therefore the effec-
tiveness of the derived descriptor highly depends on this choice. In

this context the most natural options are distance functions, ker-
nels or generic (dis-)similarity measures. In our work, we build
the process operator A using the geodesic distance G(vi ,vj ), i.e.,
the length of the shortest path on M between vertices vi and vj .
We motivate this choice by the fact that geodesic distances are, by
definition invariant under isometric transformations, and can be
used to capture the geometry of the shape effectively. Moreover, as
we demonstrate below, our discrete time evolution procedure that al-
lows to incorporate information across an infinite set of paths helps
to gain both informativeness and robustness against non-isometric
shape changes. More specifically, we define the matrix of vertex
relations D as:

D(i, j) = 1 − Ĝ(vi ,vj ),

where Ĝ(vi ,vj ) =
G(vi ,vj )
diam(M) is the normalized geodesic distance and

diam(M) is the diameter ofM, that is defined as the maximum of
the geodesic distances between every pair of vertices on the surface.
Therefore D(i, j) ∈ [0, 1], D(i, i) = 1,∀i , and the process operator
writes A = DΩ. This choice implies that each vertex absorbs more
information from its neighborhood, decreasing gradually the in-
fluence of vertices that are further away from it. Moreover, the
integration of the geodesic distance in our process operator leads
to higher order relation Al that is analogous to the l−order paths
between pairs of points. Therefore, the interpretation of the evolu-
tion process is more intuitive as the encoding of paths at multiple
lengths.

The regularization parameter. The second parameter that is im-
portant to fix is the regularization parameter. As mentioned in the
previous section, r must be smaller than 1

ρ(A) to ensure the conver-
gence of the regularized score operator defined in Equation 13. We
keep this choice as a free value r = c

ρ(A) parametrized by c ∈ (0, 1).
It is worth noting that c determines the speed of convergence: val-
ues close to 0 means fast convergence and vice versa1. In practice,
when the convergence is fast (slow) the influence of the highest
order relations is reduced (preserved). For instance if c is close to
1 the longest paths are just as relevant for the construction of the
descriptor as the shorter ones.

The starting state. A further important parameter to settle is the
starting state f0. The choice of this state also plays an important
role in controlling the kind of information that is encoded. The
options can be different and related to the specific application at
hand. In our work we are interested in evaluating how the evolution
process itself is able to encode the geometric information. Therefore
we would like to keep the contribution of the starting state neutral.
To this purpose, we choose a constant distribution on the surface as
the initial state: f0 = e, i.e., the constant function, encoded with a
vector with all the entries equal to 1.

5.1 Multi-scale Approach
Finally, in order to construct a multi-scale descriptor we can con-
sider a family of weighted operators Aδ , parameterized by a scalar
δ ∈ [0, 1]. We define the new matrix of vertex relations Dδ as:

Dδ (i, j) = 1 − Ĝδ (vi ,vj ),
1In Appendix II we provide a discussion of the behavior with r → 0.
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M
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∞
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Š

š
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M
compute Ω, Dδ , A

and fix r solve (I − rA)(š) = f0 š

Fig. 2. A visualization of the entire discrete evolution process pipeline. The
first row shows the pipeline that produces the discrete time evolution pro-
cess. Starting with a triangle mesh M we introduce a relation function d
and a scale parameter δ . The relation matrix Dδ and the area elements ma-
trix Ω are computed to obtain the evolution process operator A. Then, fixing
an initial state f0 we run our discrete time evolution process by highlighting
the involved discrete states. Finally, once a regularization parameter r is
selected, we employ our aggregation strategy to obtain the score operator Š
and the evolution process score š . The second row shows how the score š
can be computed in practice, by solving a linear system.

where Ĝδ (vi ,vj ) = Ĝ(vi ,vj ) if Ĝ(vi ,vj ) ≤ δ and 1 otherwise. Thus,
the new process operator becomes Aδ = DδΩ by only considering
geodesic balls of radius δ , which implies that in a single discrete
time step, the relation is limited to points at distance δ . Intuitively,
for small values of δ our matrix Aδ makes a vertex dependent on a
small neighborhood by capturing more local properties of the shape,
while for larger values of δ , Aδ exploits more global structures of
the shape. This way, the parameter δ can be interpreted as the speed
at which information is propagated across the shape in our discrete-
time evolution process. Note that this is somewhat in contrast with
diffusion-based methods, where all changes are completely global,
since, e.g., the classical heat equation implies that heat propagates
at infinite speed, which, in particular, is not compatible with the
special theory of relativity [Eckert and Drake 1987].

5.2 Discrete time Evolution Process descriptor
Once the main components of the evolution process are fixed and
the multi-scale paradigm is defined, we are ready to propose a new
shape descriptor. We fix a set of Q scale values

{
δ1, . . . ,δQ

}
such

that δ ∈ [0, 1]. For each choice of δ we construct an operator Aδ ,
and compute the score at scale δ . For this we solve the linear system:

(I − rδAδ )v = e

and let the score vector at scale δ be šδ = v. Here, as above, the
score of vertex i equals šδ (i).
This way we create our Discrete time Evolution Process (DEP)

descriptor, by assembling a vector of Q values to each vertex i :
DEP(i) =

[
š1(i), . . . , šQ (i)

]
.

In other words, for every vertex i we obtain a vector that represents
in each of its dimensions the sum of the discrete time evolution
process at vertex i , where the process performs steps of fixed
maximum length. In Figure 2 we represent the entire pipeline to

ALGORITHM 1: Computation of DEP Descriptors

Input: M the mesh,
{
δq

}Q
q=1 s.t δq ∈ [0, 1] .

Output: DEP the matrix of descriptors.
for i = 1 : n do

for j = 1 : n do
Compute Ω, diagonal matrix, with Ω(i, i) = Ωi area of the barycell
centered in vi ;

Compute Ĝ(vi , vj ), the normalized geodesic distance between vi
and vj ;
Ĝ(vi , vj ) =

G(vi ,vj )
diam(M) ;

end
end
for q = 1 : Q do

if Ĝ(vi , vj ) ≤ δq then
Ĝδq (vi , vj ) = Ĝ(vi , vj );

else
Ĝδq (vi , vj ) = 1;

end
Dδq (i, j) = 1 − Ĝδq (vi , vj ), ∀i, j ∈ {1, . . . , n };
Compute Aδq = Dδq Ω;
Compute rδq =

c
ρ (Aδq ) , with c ∈ (0, 1);

Solve the linear system (I − rδq Aδq )v = e;
šq = v;

end
matrix DEP =

[
š1, . . . , šQ

]
, s.t. the ith row, encodes the Discrete time

Evolution Process descriptor for the vertex i .

compute our evolution process score š starting from the pairwise
relations encoded by d and a set of parameters δ , f0 and r . The first
row explains the theoretical interpretation of our framework, while
second row illustrates how it is computed efficiently in practice.
For completeness, we summarize the construction of the Discrete
time Evolution Process descriptor in Algorithm 1. Figure 3 shows
the descriptors obtained using 16 different values of δ on a human
shape (from the KIDS dataset [Rodola et al. 2014]).

5.3 Contribution of higher order relations
In this section we analyze the importance of the higher order rela-
tions. Although the initial information (i.e., the geodesic distances)
is already informative, it is not sufficient to compete with meth-
ods that are able to encode multiple paths between a pair of points
such as spectral-based methods. Therefore, to disambiguate between
points having accidentally the same geodesic distance we allow our
evolution process to consider higher order paths. We compare the
performance of using just a 1-step score with the infinite path de-
scriptor on the toy-example in Figure 4. This shape is composed
of the lateral surfaces of two tetrahedra having the same equilat-
eral triangular bases. We can distinguish three types of points on
this shape, the blue the red and the cyan. The three red points on
the bases are considered the same because, thanks to the intrinsic
symmetry of this shape, they only differ by a rigid rotation. The
barycells associated to each vertex are shown with their value in the
figure on the left. The geodesic distances are plotted with dashed
lines in the other two figures. Table 1 shows the scores computed for
the 1-step and for Še on all points in the surface showed in Figure
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Fig. 3. Scores for multi-scale on a KIDS’s shape. The scores at ev-
ery vertex is plotted as a map on the shape, the values of δ are[ 1
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4. We can see that the 1-step score confuses the blue point with
the three red points. Conversely, when we let the evolution process
exploit paths with multiple steps, our Še scores is able to correctly
distinguishing between different types of point.
We can also obtain a theoretical bound on the robustness of our

approach against shape perturbations. Indeed if we have a matrix
of the linear systemM = (I − rδAδ ), and a perturbed matrixM ′ we
can give the following upper bound [Golub and Van Loan 2012]:

| |š ′δ − šδ | | ≤ O(κ(M)| |M ′ −M | |)| |šδ | |, (16)

where šδ and š ′δ are the solutions of the linear problem and the
perturbed problem respectively, and κ(M) is the condition number
of the matrix. This bound depends on the norm of the perturbation
| |M ′ −M | |. In practice we have observed that the condition number
is well-behaved. We performed an experimental evaluation on differ-
ent perturbed shapes from FAUST dataset. On average we obtained
κ(M) = 1.12, which supports our claim that the solutions with our
method are stable. Therefore, for small perturbations like in the case
of near-isometric shapes our method can ensure a reliable solution.
In order to emphasize the robustness of our method we analyze

the matching experiment reported in Figure 5. The same Duck shape
is shown on two meshes with different density. It is clear that the

0.55718

2.6158

2.4081

1.2458

2

3.031

2.8613

0.7429

Fig. 4. Toy-example. Three type of points are highlighted: blue, red, and
cyan. On the left the barycells associated to each vertex. Dashed lines are
the geodesic paths: the four geodesic paths from one of the red points in
the middle, and the four geodesic paths from the blue point on the right.

POINT COLOR 1-step DEP
Blue 0.5197 1.0643
Red 1 0.5197 1.0483
Red 2 0.5197 1.0483
Red 3 0.5197 1.0483
Cyan 0.3373 0.5912

Table 1. Values of descriptors at points in the toy example.

geodesic distance information contained in the operator matrix A
depends on the mesh structure that is used to discretize the mesh.
But thanks to the integration at all the surface the DEP descriptors
are more informative even in the presence of changes of the mesh
structure. In Figure 5, we illustrate this behavior. We show the 1-
step descriptors and our descriptors for some selected points on
the two Duck shapes. To emphasize the contribution of the evo-
lution process we evaluate two different relation functions. More
precisely, other than using the geodesic distance we introduce also
the diffusion distance [Coifman and Lafon 2006] to build the process
operator. Then a descriptor is defined as described in Section 5.2 (in
practice the geodesic distance is simply substituted by the diffusion
distance in the construction of the matrix D). Descriptors coming
from diffusion distance are shown on the left, while those defined
by the geodesic distance are shown on the right. In the 1-step case
we can see how all the descriptors are very similar if they come
from the same mesh independently from the kind of point that they
represent, and also that the light blue and the red one are very close
despite representing different points. Differently, when descriptors
are defined with our new diffusion process the matching is correct.
In particular, with our approach the performance is independent
from the change of the mesh. In regions with similar density (ends
of the wings) and in those with different density (belly) the proposed
approach provided reliable results. Note that this behavior is ob-
served for both the chosen relation functions. This suggests that the
contribution to obtain the correct matching is given by the proposed
evolution process when higher order relations are considered.

6 RELATION TO HEAT KERNEL SIGNATURE
As mentioned in Section 1 our approach is related to existing tech-
niques based on diffusion process and in particular with the Heat
Kernel Signature. Moreover, in addition to the relation between our
discrete time process and continuous diffusion described in Section
4 , another informative connection can be obtained by considering
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Fig. 5. Comparison between 1-step approach and our method using diffusion (left) and geodesic distances (right) for two points on the Duck shape with two
different meshes with 752 and 2497 vertices respectively.

the relation between the diffusion distance matrix [Coifman and
Lafon 2006] and the Heat Kernel Signature [Sun et al. 2009]. Namely,
as pointed out by Sun et al. [2009], for a fixed time parameter t :

HKSt (x) =
1

ΩM

∫
M

d2
t (x ,y)dy −

HM (t)
ΩM

+
2

ΩM
.

Note that the last two terms do not depend on the vertex, and
therefore, will not influence distances between descriptors, when
comparing vertices on the same shape. In other words, the Heat
Kernel Signature is closely related to the eccentricity of the squared
diffusion distance. This means that for an appropriate discretization
we can obtain:

HKSt = Df Ωe,

using a matrix Df properly constructed in the following way:

Df (x ,y) =
1

ΩM
d2
t (x ,y) +

1
ΩyN

( 2
ΩM

−
HM (t)

ΩM

)
,

where N is the number of vertices in the surface discretization,
and ΩM =

∑
∀j ∈V Ωy is the total area of the surface. This shows

how the HKS can be constructed marginalizing the rows of a ma-
trix which represents specific relations between pairs of points, as
proposed in our framework. The matrix Df contains the pairwise
relations between points on the surface encoded by the squared
diffusion distance d2

t . According to our framework, this can be con-
sidered as special relation function of a 1-step evolution process
defined by Ae, with A = Df Ω, which demonstrates a direct link
between our approach and the HKS. Moreover, even though the
diffusion distance is itself obtained by considering an infinite set
of paths, by incorporating it into our framework and considering a
discrete evolution process, we can obtain more reliable and stable
connections between surface points, which further highlights the
utility of our framework. Figure 6 shows the improvement of our
framework to the HKS descriptors. We select 16 time scales and
compute the respective 16 matrices Df . A 16-dimensional HKS de-
scriptor is computed for every selected vertex as the 1-step on the
matrix Df Ω (Figure 6 left). Then, on the same matrices we com-
pute the descriptors DEPhks related to our discrete time evolution
process framework (controlled by the relation function Df rather
than the geodesic distances, Figure 6 right). As can be seen, the
1-step descriptors on different points are not very discriminative.
In particular the blue point is confused with the green point. Con-
versely, with our method the behavior of DEPhks descriptors is
more coherent and the matching is correct.

HKS DEPhks

Fig. 6. Comparison between 1-step approach (that is equivalent to HKS) and
our discrete time evolution version up to infinite (DEPhks). In the middle
two human shapes from FAUST dataset with four vertices highlighted in
coloured balls. On the sides the 16-dimensional descriptors: HKS descriptors
(left) and DEPhks descriptors (right). Continuous lines refer to the shape
on the left, while dashed lines represent the shape on the right.

7 RESULTS
We have performed a wide range of experiments on several datasets
to demonstrate the utility of our DEP descriptor in two applica-
tion scenarios: i) point-to-point matching using nearest neighbor
search in descriptor space, ii) incorporating our approach into the
functional maps framework. In functional maps we also evaluate
how our score operator could improve the standard performances.
Furthermore from these results we analyze qualitatively the per-
formance of our descriptor in comparison with the widely used
HKS and WKS. Finally we explore the behavior of our descriptor in
different settings and varying the choice of parameters.

7.1 Point-to-Point Matching
In order to evaluate the ability of our DEP descriptor to associate
corresponding points of different shapes we consider the following
data sources:
FAUST [Bogo et al. 2014] is a recent dataset of scanned human

shapes in different poses. The dataset is challenging due to the sig-
nificant variability between different human subjects. Ground truth
point-wise correspondence between the shapes is available for all
points. All of these meshes have the same connectivity. We use
the whole FAUST dataset consisting of 100 shapes, 10 poses of 10
different subjects respectively, along with additional shapes that
have been edited by adding different types of noise: Gaussian noise,
heavy subsampling, voxelization noise, topological noise (glued fin-
gers and missing parts). In addition we perform a test also using the
real scans of humans, that are high resolution non-watertight mesh.
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Fig. 7. Performance evaluation on the pairs FAUST dataset, using all 100 shapes (left), allowing only matching between shapes of the same subject (middle)
and only between shapes from different subject (right). Comparison with 4 different descriptors. Next to the descriptor name, we show its dimensionality.
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Fig. 8. Performance evaluation on CAESAR dataset (left), KIDS dataset (middle) and on the pairs Elephant and Elephant subsampled, Elephant and Horse
subsampled, Alien and Robot, Homer and Alien, Boy and Baby and Man (7 shapes), Gorilla (5 shapes), and Woman (12 shapes) from MISC dataset (right).
Comparison with 4 different descriptors. Next to the descriptor name we shown its dimensionality.

These meshes are more noisy, without registration and without
ground truth correspondences available.

CAESAR is a human shapes dataset recovered from MPII Human
Shape [Pishchulin et al. 2015], a family of expressive 3D human body
shape models learned from CAESAR dataset [Robinette et al. 1999]
the largest commercially available dataset that contains 3D scans
of over 4500 subjects in a standard pose. We use a random selected
subset of 21 shapes from the CAESAR-fitted meshes collection in
which a template is fitted. For every shape we have around 6k
vertices with 1:1 ground-truth correspondence.

KIDS [Rodola et al. 2014] consists of a collection of 3D shapes
undergoing nearly-isometric and intraclass deformations. In this
dataset we find two different shape classes (kid and fat kid) in 16
different poses. The same poses are applied to both classes. The au-
thors provide all shapes with consistent triangulations using around
60k vertices consistently ordered giving the ground-truth correspon-
dence as the identity map. In our test we uniformly down sample
the given meshes with to approximately 6k vertices maintaining
the 1:1 ground-truth correspondence and we can not guarantee to
maintain the same connectivity for all the meshes.

MISC dataset is composed of pairs of highly non-isometric shapes
such as a horse and an elephant. Therefore, this dataset is particu-
larly challenging since the usual hypothesis of isometric relations
between shapes is totally violated. Manually generated ground truth

point-wise correspondences are available for a dense subset of points
in this dataset. See e.g., Figures 16 and 17 for examples of shapes
from this dataset. SHREC’11 Partial class benchmark [Boyer et al.
2011]. The class includes one full human shape (i.e., the null shape)
and 5 versions of its simulated transformations of pose deformation
with strong partiality. These meshes were resampled to around 6K
vertices. For every dataset we take all possible pairs of shapes. Then
we randomly select 1K vertices on one shape and we compute the
closest vertex in the descriptor space among all the vertices from
the second shape. For the MISC dataset, on the first shape we use
all the vertices for which the correct correspondence is given. We
evaluated the performance of our descriptor using the receiver oper-
ator characteristic (ROC). The ROC represents the performance in
the classification of positives and negatives pairs depending on a
discrimination threshold, related to their distance in the descriptor
space, measuring the true positive rates and true negative rates. This
kind of evaluation is particularly sensitive to instability in the de-
scriptor space, resulting in large relative distances between correct
matches.

We compared our method with the following descriptors:

• HKS [Sun et al. 2009] with 100 dimension.
• WKS [Aubry et al. 2011] with 100 dimension.
• SHOT [Tombari et al. 2010] with 320 dimension.
• AWFT [Melzi et al. 2016] with 100 dimension.
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Table 2. AUC of ROC curves

dataset HKS100 WKS100 SHOT320 AWFT100 DEP100

CAESAR 0.8069 0.9083 0.8034 0.9228 0.9762
KIDS 0.8210 0.8955 0.7279 0.8951 0.9449
MISC 0.6568 0.7227 0.6584 0.7513 0.8317
FAUST 0.8387 0.8736 0.7569 0.8946 0.9577
FAUST intra 0.9258 0.9176 0.7830 0.9163 0.9635
FAUST extra 0.8300 0.8692 0.7543 0.8924 0.9572
MEAN 0.8132 0.8645 0.7473 0.8788 0.9385

We use the code and settings available on-line. In order to be coher-
ent with other methods our proposed descriptor is estimated at 100
scales (DEP100). Note that HKS and WKS are the closest methods to
ours as described in Section 6. SHOT [Tombari et al. 2010] is a local
descriptor that encodes very different information with respect to
our method. AWFT [Melzi et al. 2016] also adopts a very different
approach to encode local information and it represents the state of
the art for point-to-point matching without the use of a learning
procedure. In Figure 7 we evaluate the performance of our DEP de-
scriptor, in comparison with the other methods. We perform three
different tests by varying the selected shapes: i) FAUST with all pairs
from the entire dataset of 100 shapes (Figure 7 left), ii) FAUST-intra
with only the pairs belonging to the same subject (Figure 7 middle),
and iii)FAUST-extra with only pairs from two different subjects (Fig-
ure 7 right). Our method outperforms the competitors in all these
settings. The greater improvement is achieved in the FAUST extra
where strong non-isometric deformations are observed. Therefore,
we claim that our descriptor is particularly effective in the case of
change of subjects for which the isometric relation is clearly vio-
lated. Figure 8 shows the pointwise matching evaluation on other
benchmarks: i) CAESAR (Figure 8 left), KIDS (Figure 8 middle), and
iii) MISC (Figure 8 right). In the human datasets (i.e., CESAR and
KIDS) the shapes are geometrically near-isometric although the
natural articulated motion of humans and the change of the subject
can lead to possibly significant geodesic distortions. These kinds of
distortion are not as strong as in FAUST. On these datasets DEP also
clearly outperforms all the competitors. In particular we exceed the
performance of AWFT, the most recent competitor in our analy-
sis. The curves on the right are obtained on the MISC dataset. On
this dataset the point-to-point matching is very difficult since the
shapes are not related by an isometric transformation, and therefore
methods that are very sensitive to non-isometric changes are likely
to fail. Moreover, in general the meshes have different resolution
and different connectivity. We evaluate the average performance
between all the pairs of shapes on the vertices for which the cor-
respondences are known. In this setting our method also clearly
outperforms all the other descriptors. As in the FAUST-extra in the
presence of more non-isometric deformations, that are character-
istic to the MISC dataset, the DEP descriptor increases its positive
gap with all the competitors. In order to give a numerical compari-
son of the performance, we report the AUC (area under the curve)
for every dataset in Table 2. Our DEP descriptor showed superior
performance over all the other methods across all the datasets with

improvements of at least 5% and on average around 6% In partic-
ular, our method is able to improve standard methods based on a
diffusion geometry like HKS and WKS by confirming the benefit of
our alternative evolution process. Moreover, our DEP descriptor is
preferable to AWFT that to the best of our knowledge represents
the state of the art of descriptors without learning.

7.2 Functional Maps
The experiments above suggest that our descriptor can identify
related points across different shapes. Below we show how our gen-
eral approach, which includes the discrete evolution process and
the derived DEP descriptor can be used to obtain entire maps across
shapes. For this, we use the so-called functional map framework
[Litany et al. 2016; Ovsjanikov et al. 2012, 2016; Pokrass et al. 2013;
Rodolà et al. 2016]. The key aspect of this approach is to phrase
the estimation of correspondences in the space of functions rather
than points, which can also be potentially enhanced using spectral
analysis. To estimate this map the authors suggested to exploit i)
functional and ii) commutativity constraints. A functional constraint
(i) is defined from a set of corresponding descriptors. The commuta-
tivity constraint (ii) is introduced by some commutative operator. In
the original setting i) is introduced by standard descriptors like HKS
andWKS and ii) is imposed by the Laplace-Beltrami Operator (LBO).
A detailed description can be found in Chapter 2 of [Ovsjanikov
et al. 2016].

The discrete time evolution process provides a new set of contin-
uous functions š , the score of our process for different selections
of parameters and a new shape operator Š. In the following experi-
ments we propose to inject our evolution process scheme into the
functional map framework by introducing our DEP descriptor for
the functional constraint, and by exploiting our regularized score
operator Š as a commutative operator.

Dataset and Evaluation. We choose to perform our tests on FAUST
because it is the largest datasets and it contains more isometric and
non-isometric variations. Moreover as we have done in the point
to point matching evaluation, we perform three different tests on
FAUST considering all the dataset, only the intra subject pairs and
finally restricting to pairs belonging to different subjects.

All the following evaluations are obtained by randomly selecting
10 pairs of shapes from the 100 available in the dataset and we plot
the average performances. The test on the entire dataset is obtained
with 10% of intra subject shapes and 90% of extra subject as happens
in the whole dataset. As in the original version we use a post process-
ing step to the obtained functional map based on a high-dimensional
ICP, which also results in a point-to-point map between shapes (see
[Ovsjanikov et al. 2012] for details). We evaluate the performance
using the correspondence quality characteristic [Kim et al. 2011], that
is the standard evaluation used for functional maps. These curves
show the percentage of nearest-neighbor matches that are at most
r -geodesically distant from the ground truth correspondence. Here,
we accept the symmetric images of ground truth correspondences,
and use the minimum between the distance from the matched point
to the ground truth and its symmetric image, as done in prior work
[Ovsjanikov et al. 2012].
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Fig. 9. Test varying the functional constraints functional maps framework. Visualization of the error rates given an unnormalized radius r , the percentage y of
the points that are mapped by the correspondence at a distance at most r from their ground-truth image.
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Fig. 10. Evaluation of a functional map on a pair of shapes from two different
subjects in the FAUST dataset, . In the middle the evaluation curves for
ground truth (GT) and the comparison between WKS and DEP are shown.
The colors on the left show points that are matched better (red) or worse
(blue) with DEP compared to WKS. On the right we show on the second
shape the transportations of a smooth function defined on the the first
shape, using GT, WKS or DEP.

Functional constraints. Starting from [Ovsjanikov et al. 2012]
many works have tried to explore the quality and the best method
for the selection of the descriptor constraints to be used in this
framework (See [Ovsjanikov et al. 2016] Chapter 2 for an overview).
In [Corman et al. 2014], for example, the authors compute optimal
descriptor weights by learning the contribution of each descriptor
for the estimation of the overall matching. In this experiment we
adopt a new approach proposed recently in [Nogneng and Ovs-
janikov 2017] that is based on the enhancement of the descriptor
preservation constraints. In [Nogneng and Ovsjanikov 2017] the
authors noticed that the original functional constraints [Ovsjanikov
et al. 2012] do not capture all of the information contained on a
given descriptor. Rather than only preserving the descriptor values,
as done before, they have demonstrated that by preserving function
products with descriptors leads to a significant improvement in map
quality, even in the presence of a few descriptor functions. More-
over, the authors show how the resulting new constraints can be
efficiently encoded via commutativity of the unknown map with
linear operators defined by the descriptors, which retains the overall
efficiency of the framework.

Note that in addition to the descriptors, in [Ovsjanikov et al. 2012]
and [Nogneng and Ovsjanikov 2017] authors proposed to add some
consistent segmentation of the shapes as functions to be preserved.
Here we prefer to use only descriptors in order to evaluate strictly
their contribution to the framework.

We consider HKS100, WKS100 and our DEP100, and from each
of these we select 6 equally spaced scales as input descriptors. Ex-
plicitly we use the first, the last and all the scales that are multiples
of 20, in order to represent all the features contained in the whole
collection. In Figure 9 we show the performance of the functional
maps framework using the three different descriptors in the three
different tests. As can be seen the best performance on FAUST is
obtained with DEP descriptors. In particular, on shapes for under-
going strong non-isometric deformations, our DEP descriptor (red
line) clearly outperforms the competitors. In the FAUST intra test,
where the isometry is preserved we note that the three descriptors
achieve the same results. This experiment confirms the utility of
our descriptor for the computation of shape matching within the
functional map framework. In Figure 10 we show some details for
particular pairs of non isometric shapes. We compute functional
maps from the female shape on the left to the male shape on the
right of this figure. In the middle we plot the evaluation curves. DEP
clearly outperforms WKS and is also very close to the ground truth
(GT) performance. On the shape on the left we plot the differences
between the error of the functional maps correspondences com-
puted with WKS or DEP in the following way. If FWKS and FDEP are
the functional maps computed using WKS and DEP respectively,
and GT is the ground truth map, then we can define the function д
at every vertex vi as:

д(vi ) = ∥(GT − FWKS)δvi ∥ − ∥(GT − FDEP)δvi ∥ ,

where δvi is the function equal 0 everywhere but equal to 1 invi . The
norm ∥(GT −F )δvi ∥ is a measure of the local error of transportation
for the functional map F in vi . Plotting this function д on the shape
we have that the Red area are the ones for which FDEP is more precise
while in Blue we can see where FWKS is better. More intense color
corresponds to greatest difference in performances. On the right
we can see on the second shape the transportations of a function
defined on the the first shape, using GT, WKS or DEP. Here, GT
corresponds to the original function defined on the first shape. In
comparison, the transported function using DEP is similar to GT,
unlike the one obtained using WKS.

Commutativity constraint. In Figure 11 we evaluate different com-
mutativity constraints. In order to give more emphasis to the con-
tribution of the operators, here we use the standard functional
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Fig. 11. Test varying the commutativity constraints functional maps framework. Visualization of the error rates given an unnormalized radius r , the percentage
y of the points that are mapped by the correspondence at a distance at most r from their ground-truth image.
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Fig. 12. Evaluation of a functional map on a pair of shapes from two different
subjects in the FAUST dataset. In the middle the evaluation curves for
ground truth (GT) and the comparison between LBO and LBO+DEP are
shown. The colors on the left show points that are matched better (red) or
worse (blue) with LBO+DEP. On the right we show on the second shape the
transportations of a smooth function defined on the the first shape, using
GT, LBO or LBO+DEP.

constraint and the standard set of preserved functions (HKS and
WKS), [Ovsjanikov et al. 2012], without any pre-computed segment
correspondences. We use i) our regularized score operator Š (DEP)
defined in Equation 13 ii) the Laplace Beltrami Operator (LBO) as
in the original version of functional map, and iii) the matrix of geo-
desic distances (DIS), as basic approach to introduce the geodesic
information in this framework, as proposed in[Aflalo et al. 2016].

We also compare the performance of each operator with the pairs
(LBO+DIS) and (LBO+DEP). This way we can see which operator
based on geodesic distances adds more information to the original
LBO. As can be seen while in the FAUST-intra test (Figure 11 middle)
the improvement given by adding DEP to LBO is not significant, the
gap between LBO and LBO+DEP clearly grows in the FAUST-extra
test (Figure 11 right). This result confirms that in the discrete time
evolution process framework also the operator Š is more stable with
respect to non-isometric deformation.
As can be seen in Figure 11 the performance using DEP alone

is very close to the standard performance using only LBO. When
DEP and LBO are integrated the performance is definitely improved.
Note also that the quality of the maps obtained with (LBO+DEP)
significantly exceeds (LBO+DIS), confirming that our evolution
process provides an effective approach to further improve the con-
tribution of geodesic distances in this framework. In Figure 12 we
show some details for a particular pair of non isometric shapes. This

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Koltun
HKS100
WKS100
SHOT320
AWFT100
DEP100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Koltun
HKS100
WKS100
SHOT320
AWFT100
DEP100

FAUST scans - intra FAUST scans - extra

co
rr
es
po

nd
en
ce
s

centimeters

co
rr
es
po

nd
en
ce
s

centimeters

Fig. 13. Cumulative error distribution on the FAUST real scan training
dataset. The results are an average on 50 pairs provided by [Chen and
Koltun 2015], 50 for intra-subject (left) and 50 for extra-subject (right). The
matching is computed via distances in the descriptor space. In black we
show the performance of [Chen and Koltun 2015] for reference.

figure contains the same analysis of Figure 10, but we compare LBO
and LBO+DEP in the Commutativity constraint. In the middle we
plot the evaluation curves. DEP clearly improves the results of LBO
and LBO+DEP is closer to the ground truth (GT) performance. On
the right we can see on the second shape, the transportations of a
function defined on the the first shape, using GT, LBO or LBO+DEP
respectively. These results show that adding DEP to LBO results in
maps that are significantly better than those obtained using LBO
alone and that are very close to GT.

7.3 Evaluation on Real Scans dataset
We evaluate the proposed method on the full real scans dataset
[Bogo et al. 2014] following the settings reported on [Chen and
Koltun 2015] . For this experiment to give a direct comparison with
[Chen and Koltun 2015] we evaluate our results using the correspon-
dence quality characteristic [Kim et al. 2011] with error measured
in centimeters. Figure 13 shows point to point matching results on
50 intra-subject and 50 extra-subject pairs. We compare our DEP100
descriptor with [Chen and Koltun 2015] and the 5 descriptors used
in the point-to-point matching section, i.e., i) HKS100, ii) WKS100,
iii) iv) SHOT320, and v) AWFT100. Note that as expected [Chen and
Koltun 2015] shows the best performance. These excellent results
were indeed obtained by using an extrinsic alignment of the shapes,
which is not used by the other methods. On the other hand, among
the pure descriptor-based methods, our DEP descriptor outperforms
all other alternatives and is comparable with most of the methods
evaluated in [Chen and Koltun 2015].
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Null Shape HKS WKS DEP

Fig. 14. Visualization of dissimilarity maps. Point selected on the man shape
in the first pose (left), and the dissimilarity maps on the man shape in a
different pose for HKS, WKS and our method respectively from left to right.

Null Shape HKS WKS DEP

Fig. 15. Visualization of dissimilarity maps. The selected point on the
Woman shape (left), and the dissimilarity maps on the Man shape for HKS,
WKS and our method respectively from left to right.

Null Shape HKS WKS DEP

Fig. 16. Visualization of dissimilarity maps. The selected point on the Robot
shape (left), and the dissimilarity maps on the Alien shape for HKS, WKS
and our method respectively from left to right.

7.4 Qualitative Evaluation
In order to obtain a visual evaluation of the proposed approach
we show the dissimilarity maps of some pairs of shapes for some
fixed points. For instance in Figure 14 we fix a point on the Male
shape in a first pose (the red ball), and show its dissimilarity (i.e., the
Euclidean distance on the descriptor space) with all the points on
the second pose of theMale shape. The minimum of the dissimilarity
for every descriptor is highlighted with a white ball. The distances

Null Shape HKS WKS DEP

Fig. 17. Visualization of dissimilarity maps. The selected point on the Horse
shape (left), and the dissimilarity maps on the Elephant shape for HKS,
WKS and our method respectively from left to right.

Null Shape HKS WKS DEP

Fig. 18. Visualization of dissimilarity maps. The selected point on the
scanned Woman shape (left), and the dissimilarity maps on the scanned
Man shape for HKS, WKS and our method respectively from left to right.
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Fig. 19. Visualization of the dissimilarity maps for shapes with different
kinds of noise. The vertex on the right knee of the clean shape on the left
is selected, and the dissimilarity maps on shapes with different kind of
noise are shown. In the first row for HKS, in the second row for WKS and
finally for our method. Respectively from left to right the original shape, an
isometric remeshing, two smoothed versions of the surface, a subsampled
mesh with 1000 vertices, topological noise (glued fingers) and the last three
are partial views or surfaces with missing parts.

grow under varying from cold colors (similarity) to warm colors
(no similarity). It is clear that both HKS and WKS methods are not
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DEPWKSHKSNull Shape

Fig. 20. Visualization of the dissimilarity maps for partial matching. The
selected points on the null shape, and the dissimilarity maps on different
partial models for HKS, WKS and our method respectively from left to right.

able to localize the selected point, and the white ball is far from the
target point. Conversely, our method gives more local result and
identifies the correct corresponding point.
Gradually losing the isometry property between the shapes the

robustness of our method is highlighted. This is shown in Figure
15 for Female and Male subjects from FAUST dataset, in Figure 16
for Robot and Alien from MISC, and in Figure 17 for Horse and
Elephant from MISC. In particular int the last pair the two shapes
are clearly non-isometric and their meshes are totally different in
the number of vertices and connections.

We perform the same test using a pair of real scans from FAUST
dataset to evaluate the robustness of the proposed method against
noise and missing parts. Real scans have more than 160K vertices
and the number of vertices is different for different scans. These
high-resolution, triangulated, non-watertight meshes present a lot
of challenging features. Also in this case our descriptor correctly
identifies a local region of points on the shape without spurious
areas as in the HKS and WKS results. A similar evaluation analysis

is shown in Figure 19 for testing the robustness of proposed descrip-
tor against strong subsampling and topological noise (i.e., glued
fingers and missing parts). This experiment is carried out on a small
collection of shapes from the FAUST dataset with different poses of
the same subject and different subjects with several kinds of noise
(see the caption of Figure 19 for an exhaustive list). We observe
that our DEP descriptor is robust to smoothing, subsampling and
topological noise and shows better localization and accuracy than
other methods. We also evaluate the robustness of our DEP for
partial and broken parts from the SHREC’11 benchmark. Note that
spectral methods such as HKS and WKS are known to be sensitive
to this kind of failure, since the Laplace operator changes its spectral
representation. Figure 20 shows the dissimilarity maps for some
selected points for different partial models. We note that HKS is
very sensitive to this kind of shape alteration and it highlighted in
general wrong areas. WKS performed clearly better but it resulted
in several ambiguous parts. Differently, our method is robust in all
the selected experiments.

7.5 Comparison of parameters choices in different settings
Finally, to highlight the flexibility of the proposed framework, we
evaluate the performance of point to point matching across a range
of parameter choices: i) different approaches to encode the geodesic
distance, ii) different relation functions, iii) different choice of reg-
ularization values. In Figure 21 we show a set of such evaluations
.

In order to access the role of geodesic distance and the importance
of higher order relations we consider five methods to encode the
information contained in the matrix D:

• Basic geodesic distance (D16).We use thematrixD introduced
in Section 5.2 as process operator and perform 1-step of our
evolution process with f0 = e. Note that in this case the
contribution of the areas Ω is not considered.

• 1-step (1-step16). As described in Section 5.3 we consider only
the first order relation (i.e., 1-step of the evolution process
with f0 = e).

• AverageGeodesic Distance (AGD16). According to themethod
introduced in [Hilaga et al. 2001], we compute the average
geodesic distances for every point at each scale as descriptor.
Note that in AGD the areas are considered and differently
from 1-step16 a more effective normalization method is in-
troduced (see [Hilaga et al. 2001] for more details).

• The 1−ring version of our method (DEP1ring). For every
vertex we compute the geodesic distances to each point in
the 1−ring (i.e., the length of the edge). Different scales of
this descriptor are then obtained using 16 different values of
the regularization parameter for r ∈ (0, 1).

• Our descriptor (DEP16). We evaluate our descriptor as de-
scribed in 5.2 with f0 = e. In this case the higher order rela-
tions are considered by evaluating the evolution process up
to infinite.

We fix 16 different scales δ ∈ [0, 1] in order to obtain for every
method a 16−dimensional descriptor as defined in Section 5.1, with
exception of the DEP1ring method. Figure 21 on the left shows
the performance of the considered approaches. As expected when
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Fig. 21. Performance evaluation on FAUST dataset (test for 10 different poses of 2 different subjects) in different settings. From left to right: comparison with
different methods to encode geodesic distances (left), comparison starting from different initial information matrices (middle), comparison starting from
different computations of geodesic distances and regularizations (right).

the geodesic distance is not combined with the areas (D16) the
performance are the worst. In the same way starting only from the 1
ring information the obtained descriptor does not performwell. This
construction is indeed strongly related to the mesh, and is not stable
under near-isometric or non-isometric deformations. Moreover, we
confirm with a more exhaustive evaluation the benefit of higher
order relations discussed in Section 5.3. In particular, our method
(DEP16) clearly outperforms both 1-step16 and AGD16.

As second setting we evaluate the evolution process by defining
different relation functions:

• Diffusion distance (DEPdiff16). The relation function is de-
fined as in Section 5 where the normalized diffusion distance
is used instead of the geodesic distance.

• HKS from diffusion distance (DEPhks16). The relation func-
tion is defined by the matrix Df as proposed in Section 6
where the HKS is derived from the diffusion distance.

• Relation from other descriptor 1 (DEP16wks16). In this case a
different approach is exploited. We compute a generic descrip-
tor for each vertex, namely the WKS. We define as relation
function the Euclidean distance on the descriptor space.

• Relation from other descriptor 2 (DEP100wks16). The same
as DEP16wks16 but the WKS descriptor is 100−dimensional
rather than 16−dimensional.

• Our descriptor (DEP16). The relation function is defined start-
ing from the geodesic distance as described in Section 5.

We fix 16 different scales δ ∈ [0, 1] in order to obtain for every
method a multi-scale descriptor with the same dimensionality. In
more details, in DEPdiff16 we fix a time value for each scale and
compute the descriptor using the normalization procedure described
in Section 5. For DEPhks16 we use the 16 matrices Df (using 16
different time scales). Finally DEP16wks16 and DEP100wks16 are
obtained as described in Section 5 where the normalized Euclidean
distance among descriptors is used instead of Ĝ. For all the consid-
ered relation functions we compute the evolution process and the
evolution score by obtaining different versions of the DEP descrip-
tor. To complete the evaluation we add in the comparison DEP100,
HKS16, WKS16, and WKS100. Figure 21 middle, shows the results.
As above, this test also highlights the importance of the higher order

relations captured using our discrete evolution process. In particu-
lar, it is interesting to observe how DEPhks16 (which employs our
evolution process on the same relation function that generates the
HKS at 1-step as explained in Section 6) clearly outperforms HKS16.
Moreover, even if WKS16 performs better than DEP16wks16 we ob-
serve that DEP100wks16 is comparable with WKS100 showing that
our DEP approach is able to obtain the same performance but with
a much lower dimensional descriptor (from 100- to 16-dimensional).
Overall, our DEP descriptor based on geodesic distance (DEP16)
achieves the best performance. Conversely, the use of diffusion dis-
tance (DEPdiff16) seems not convincing. From this test we conclude
that the best choice for the relation function is derived from the
geodesic distance as in our DEP descriptor, even if the other choices
have confirmed the effectiveness of our evolution process scheme.
Finally, we evaluate the dependence of the proposed method

on the regularization parameter. In Figure 21 on the right we com-
pute DEP descriptors with three different values of c ∈ (0, 1) in
the computation of the parameter r as described in Section 5. The
choice of c gives different weights to the paths with a large number
of steps (and vice versa). We evaluate c = 0.1, c = 0.5 and c = 0.9.
Note that the performances are very similar suggesting that the best
choice of c can be estimated with respect to the task at hand. In
general the choice c = 0.1 consistently gives good and stable perfor-
mance and therefore we fix this value throughout our experiments.
Finally, in Figure 21 on the right we also evaluate the performance
of our descriptor by computing the geodesic distance on surface
using different methods. Namely, we compare Dijkstra algorithm
(di) [Mitchell et al. 1987], fast marching (fm) [Kimmel and Sethian
1998] and exact geodesic (eg) [Surazhsky et al. 2005]. As can be
seen on the right of Figure 21, the performance is similar across
different choices, and for computational efficiency we use Dijkstra’s
algorithm in the following experiments.

7.6 Complexity
The complexity of our method is dominated by computing and stor-
ing the pairwise geodesic distance matrix G. In practice, we use
Dijkstra’s algorithm to approximate the geodesic distances on a
triangle mesh. By using a straightforward non-optimized implemen-
tation, our method required, on average, on a triangle mesh with
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around 7000 vertices, just over 10 minutes to compute the descrip-
tors of all points across a range of 100 scales and just over 1 minute
across a range of 16 scales, on a machine with 8GB of RAM using an
Intel 2,6 GHz Core i7 processor. HKS and WKS take a few seconds
on the same machine.

8 CONCLUSIONS
In this paper, we propose novel multiscale signature, namely the
Discrete time Evolution Process Descriptor (DEP) that is able to effec-
tively encode the structure of geodesic neighborhoods of a point
across multiple scales. This point descriptor is derived from a novel
paradigm for the simulation of a discrete time evolution process that
runs through all the possible geodesic paths between pairs of points
on surface. We have shown that our DEP descriptor outperformed
the state of the art in point-to-point matching on different scenarios.
We demonstrated that our work is similar in principle to methods
and signatures inspired by the concept of diffusion geometry, such
as the HKS or the WKS, but provides information that is alternative
to these descriptors.

In our framework the simulation of the discrete evolution process
is encoded by a new process operator for functions defined on
the surface. This operator is strongly dependent on the chosen
relation function between pairs of points. Our choice of geodesic
distance has been shown to be very effective in terms of matching
performance but it is still computationally expensive. In [Crane et al.
2013] an efficient alternative computation of geodesic distances was
proposed starting from the heat kernel. Adopting this method the
computation of our descriptor can be improved and we leave this
as future work. Moreover, the construction of the process operator
can be further investigated by exploiting different relation functions
that can be used as alternative to the geodesic distance. Finally, it
will be of interest to analyse the use of our process operator for
non-constant initial state to encode additional information such as
texture or color.

Appendix I
In this section we want to justify the correctness of the method
in terms of convergence. The value of r (used in the generating
function) can be determined by relying on linear algebra [Hubbard
and Hubbard 2001]. Lets consider {λ0, ..., λn−1} eigenvalues of the
matrix A, drawing from linear Algebra we can define the spectral
radius ρ(A) as:

ρ(A) = max
λi ∈{λ0, ...,λn−1 }

(
|λi |

)
.

For the theory of convergence of the geometric series of matrices
we have also that:

lim
l→∞

Al = 0 ⇐⇒ ρ(A) < 1 ⇐⇒
∞∑
l=0

Al = (I − A)−1.

Furthermore another theoretical result indicated as Gelfand’s for-
mula states that for every matrix norm we have:

ρ(A) = lim
k−→∞

| |Ak | |
1
k .

This formula leads directly to an upper bound for the spectral ra-
dius of the product of two matrices which commutes, given by the

product of the spectral radii of the two matrices, that is for each
pair of matrices A and B:

ρ(AB) ≤ ρ(A)ρ(B).
Starting from the definition of š(i), and from the following trivial
consideration

r lAl =
(
r l I

)
Al = [(r I)A]l ,

we can use Gelfand’s formula on r I and A and thus obtain:

ρ
(
(r I)A

)
≤ ρ(r I)ρ(A) = rρ(A), (17)

For the property of the spectral radius: liml→∞ (rA)l = 0 ⇐⇒
ρ(rA) < 1. Thus if we choose r such as 0 < r < 1

ρ(A) , then we have:

0 < ρ(rA) = ρ
(
(r I)A

)
≤ ρ(r I)ρ(A) = rρ(A) < 1

ρ(A)ρ(A) = 1 ,

that implies ρ(rA) < 1, and so that:

Š =
∞∑
l=0

(rA)l = (I − rA)−1.

This choice of r allows us to have convergence in the sum that
defines š(i).

Appendix II
This Section is dedicated to the limit case of r → 0. In our method
we compute our score v solving the following linear system:

(I − rA)v = e .

If we consider the exponential of the matrix −rA we have:

e−rA =
∞∑
k=0

(−r )k (A)k
k!

= I − rA +
r2A2

2
+ . . .

Now in the limit case of r → 0 we can approximate e−rA as

e−rA ≈ I − rA.

So we can write:
(I − rA)v ≈ e−rAv = e

and multiplying left and right sides for erA we obtain:

v = erAe .

From this point of view v is the state after a time r of a process
governed by erA. Generalizing this process for a initial state f at
time 0 we obtain the state at time r as:

fr = erA . f

Using the previous approximation (I − rA)v ≈ e−rAv = e we can
recover the partial differential equation that defines this process.

fr = erA f ≈ (I + rA)f = f + rAf

from which we have:
fr − f

r
= Af , and for r → 0, we get

∂ f

∂t
= Af .

So we can conclude that in the limit of r → 0 our score can be
computed as the first step of a different process for a time equal
to r . This is not very useful for our framework because it is only a
limit case and the connection with our method is given only for a
infinitesimal time interval.
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