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Abstract

We show existence and uniqueness results for nonlinear parabolic equations in noncylindrical
domains with possible jumps in the time variable.
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1 Introduction

In recent years there has been a renewed interest in problems related with partial differential equations
formulated in domains that change over time. This is partly due to the fact that a number of problems
in mathematical biology are naturally posed on growing domains (e.g. developing organisms or prolifer-
ating cells, see for instance [13, 22, 20]) or domains that evolve in some particular way. Such issues have
originated a wide amount of mathematical research, let us mention [29, 6, 14, 15]. To this we should
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add more classical engineering applications like fluids or gases in settings as channels or pipes with
confining walls that may be displaced, removed or brought in at will. A sample of different applications
of partial differential equations in evolving domains can be found in the recent survey paper [21]. In
fact, it is not hard to conjecture that new applications will involve equations in moving domains in the
future. Apart from that, partial differential equations posed on non-cylindrical domains are interesting
also from the purely mathematical point of view.

This has led to an outburst of works on this subject in the literature that added up to some classical
works [5, 23, 10, 33, 24, 12] to the extent that the number of current references is overwhelming. Let us
comment on this literature according to the approach, the assumptions on the evolution of the domain
where the equation is posed and the types of equations considered. Many authors used semigroup
methods to tackle these problems (see for instance [1, 27] and references therein), but other approaches
include adding a time viscosity [9], mapping the spacetime domain to a cylindrical domain [4] or use
De Giorgi’s minimizing movements [19, 7]. As regards time variations of the domain, it is customary to
impose some sort of continuity (for instance Lipschitz continuity [30], relaxed to Hölder continuity in [9]
and to absolute continuity in [28]), alternatively a monotonicity condition can be used (i.e. expanding
domains [19, 7]) or Reinfenberg-type domains can be considered [11]. Concerning the type of equations,
most of the works focus on parabolic equations which are assumed to be linear or in divergence form
(see however [8, 27, 9, 28] where also other operators are admitted).

In this paper we are interested in well-posedness of parabolic equations in divergence form, in
bounded domains that evolve in time. More precisely, we deal with the Cauchy–Dirichlet problem, in
a formulation that allows boundary conditions to depend on time.

Let us discuss what are the novelties of this work with respect to the already existing literature.
First, we introduce a simple approach to construct solutions, which consists in performing a time
slicing of the domain, and then solve a family of approximating equations in cylindrical domains. The
simplicity of this approach may allow to use it as a starting point for devising numerical methods for
this sort of problems. Despite its simplicity, we are not aware of other works where such a slicing
strategy is used. Our approach allows to deal with nonlinear equations, which include the parabolic
p-Laplacian as a particular case. Also, our slicing technique applies to quite general variations on
the domain over time: we only require them to be of bounded variation, allowing for sudden jumps
(expansions or contractions) of the domain. In particular, we do not impose any constraint on the
topology of the evolving domains, which may differ from that of the initial domain. We are also able
to prove uniqueness under some additional constraints on the domain (see Section 5).

To our best knowledge, this generality has not been previously achieved in the literature, except for
the case of purely expanding domains [7]. However, in [28] F. Paronetto proposes a different approach,
which can be extended to cover quite general operators and boundary conditions.

Possible extensions. Since our main goal is presenting a method to tackle parabolic equations in
moving domains, we did not focus on looking for the most general possible result. For instance, for the
sake of simplicity we chose to deal only with bounded initial data. We stress that our main idea is to
use a time slicing to approximate the original problem by a sequence of problems defined on cylindrical
domains. As we do not focus on any particular equation, we chose to use abstract Lions’ theory to
provide existence for the approximating problems. However, we could also use other theories as starting
point to provide existence of approximate solutions. If we are interested in a particular equation (the
p-Laplace equation, say) then we will likely be using specific existence results to set up our method,
and those will provide a much more accurate framework for the admisible set of initial conditions.

In that line of thought, the fact that our present formulation does not allow to deal with degenerate
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equations, such as the porous media equation and its variants, could appear as a drawback. Again, we
argue that suitable modifications of the method here proposed would allow to tackle these problems. In
fact, even sticking to Lions’ theory, porous media equation and related ones can be treated by making
use of the compactness results by Dubinskii [17], carefully adapting our arguments in order to cope
with that (see [25, Chapter I, 12]). We did not pursue this line here in order to keep the presentation
as simple as possible.

We also point out that we cannot deal with operators with linear growth such as the total variation
flow or the parabolic minimal surface equation (see [8] for some results in this direction in the one-
dimensional case). This is another challenging line to explore. Finally, following the same approach it
should be possible to consider similar evolution equations on manifolds evolving in time and/or nonlocal
operators (see [2, 3] and references therein).
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2 Standing assumptions and main results

Our purpose is to prove existence and uniqueness results for nonlinear parabolic equations with time
dependent coefficients in time dependent domains. More precisely, given an open set Ω̃ ⊂ [0, T ] × IRd
we shall consider the following problem:

ut(t, x) = div (A(t, x, u,∇u)) in Ω̃,

u(0, x) = u0(x) in Ω(0),

u(t, x) = ψ(t, x) in ∂lΩ̃ ∪ ∂−1Ω̃,

(2.1)

where we let νΩ̃ = (νt, νx) be the outer unit normal to ∂Ω̃, Ω(0) is the initial domain defined in
Assumption 2.2, and we set

∂±1Ω̃ := {(t, x) ∈ ∂Ω̃ : t > 0, νt = ±1},

∂lΩ̃ := {(t, x) ∈ ∂Ω̃ : |νt| < 1} = {(t, x) ∈ ∂Ω̃ : |νx| > 0}.

In order to establish existence and uniqueness of solutions, we shall make suitable assumptions on
the flux vector field A, on the data u0, ψ and on the domain Ω̃.

Assumption 2.1. The set Ω̃ ⊂ (0, T )× IRd is a bounded open set with Lipschitz boundary, and we let

Ω(t) := {x ∈ IRd : (t, x) ∈ Ω̃} t ∈ (0, T ).
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Note that Ω(t) is an open set, possibly empty, for all t ∈ (0, T ).

Notice that Ω(t) has Lipschitz boundary for a.e. t ∈ (0, T ), and there exist the limits

Ω(t±) := lim
s→t±

Ω(s) for all t ∈ [0, T ], (2.2)

where the limit is taken in the Hausdorff topology.

Assumption 2.2. The set Ω(0) := Ω(0+) is open and has Lipschitz boundary.

Next we describe our assumptions on the operator A. Let Q0 be an open set of IRd such that
∪t∈[0,T ]Ω(t) ⊂⊂ Q0 –where by ⊂⊂ we mean that the inclusion is compact– and let QT := (0, T )×Q0.
We shall denote by M(QT ) the space of all Radon measures on QT .

Assumption 2.3. The function A : QT × IR× IRd → IRd is a Carathéodory map satisfying

|A(t, x, z, ξ)| ≤ c|ξ|p−1 + b(t, x), c > 0, b ∈ Lp′(QT ), 1 < p <∞, 1
p + 1

p′ = 1, (2.3)

A(t, x, z, ξ) · ξ ≥ α|ξ|p − d(t, x), α > 0, d ∈ L1(QT ), (2.4)

(A(t, x, z, ξ)−A(t, x, z, ξ∗)) · (ξ − ξ∗) ≥ 0, (2.5)

for a.e. (t, x) ∈ QT , and for all z ∈ IR, ξ, ξ∗ ∈ IRd. Moreover, we assume that

|A(t, x, z, ξ)−A(s, y, w, ξ)| ≤ (ω(|t− s|+ |x− y|) + C|z − w|)|ξ|p−1, (2.6)

where ω is a modulus of continuity and C ≥ 0. We assume also that

A(t, x, z, 0) = 0 ∀z ∈ IR, a.e. (t, x) ∈ QT . (2.7)

Note that (2.5) and (2.7) imply that

A(t, x, z, ξ) · ξ ≥ 0, a.e. in QT , and for all z ∈ IR, ξ ∈ IRd. (2.8)

We will consider the problem (2.1) with initial and boundary conditions

u(0, x) = u0(x) ∈ L∞(Ω(0)), (2.9)

u(t, x) = ψ(t, x), (t, x) ∈ ∂lΩ̃ ∪ ∂−1Ω̃, t > 0. (2.10)

Assumption 2.4. We assume that

ψ ∈ C(QT ) ∩ Lp(0, T ;W 1,p
0 (Q0)), (2.11)

and
ψt ∈ L1(QT ) ∩ Lp′(0, T ;W−1,p′(Q0)). (2.12)

Let us now define the space after which we model the solutions of our problem.

Definition 2.5. Let V be the closure of C1
c (Ω̃) with respect to the norm

||v||V :=

(∫
Ω̃
|∇v|p dxdt

)1/p

, v ∈ C1
c (Ω̃).

Notice that functions in V do not necessarily have zero trace on ∂±1Ω̃ or on Ω(0).
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Our concept of solution will be the following:

Definition 2.6. We say that a function u ∈ L1(Ω̃) is a weak solution of (2.1) if the following statements
hold:

1. u− ψ ∈ V and A(t, x, u,∇u) ∈ Lp′(Ω̃).

2. ut ∈ V∗ (note that this implies that u has a trace on ∂±1Ω̃ and on Ω(0)).

3. u(0) = u0 a.e. on Ω(0) and u = ψ a.e. on every relatively open subset of ∂−1Ω̃.

4. The following integral formulation

−
∫ T

0

∫
Ω(t)

uφt dxdt−
∫

Ω(0)
u0φ(0) dx+

∫ T

0

∫
Ω(t)

A(t, x, u,∇u) · ∇φdxdt = 0 (2.13)

holds for all φ ∈ D([0, T )×Q0) with suppφ ⊂⊂ Ω̃.

Let us state the main existence result of this paper.

Theorem 2.7. Let Assumptions 2.1–2.4 be satisfied. Then there exists a weak solution of (2.1) in the
sense of Definition 2.6.

Following [28, Assumption H.2], we introduce an additional assumption on the domain which we
will need in the uniqueness proof.

Assumption 2.8. For every t0 ∈ [0, T ], there exist an open neighborhood U of t0 and a family of maps
G(·, t) : Ω(t0)→ Ω(t), with t ∈ U ∩ [0, T ], such that

– G(·, t) is a bijection for almost every t ∈ U ∩ [0, T ];

– G(·, t) is Lipschitz continuous with its inverse for every t ∈ U ∩ [0, T ];

– G(x, ·) and |∇G(x, ·)| are absolutely continuous for almost every x ∈ Ω(t0);

– |∇G(·, t)| ∈ L1(Ω(t0)) for every t ∈ U ∩ [0, T ] and ∂t|∇G| ∈ L1(Ω(t0)× (0, T )).

Note that this assumption does not allow ”jumps” of the sections Ω(t). However, we could work
in a more general framework in which the conditions in Assumption 2.8 break down for a finite set of
times; we comment on this in Remark 5.3 below.

Let us state now our uniqueness result.

Theorem 2.9. Let Assumptions 2.1–2.4 and 2.8 be satisfied. Then the solution of (2.1) is unique in
the class of weak solutions.

3 Construction of approximate solutions

Let us divide the interval [0, T ] into sub-intervals 0 = t0 < t1 < . . . < tN−1 < tN = T . The points ti
are chosen so that:

1. Ω(ti) has Lipschitz boundary for all i ∈ {0, . . . , N − 1},

2. (2.3)–(2.7) hold for a.e. x ∈ Ω(ti) and for all z ∈ IR, ξ ∈ IRd,
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3. ti are Lebesgue points of ψ(t) ∈ Lp(0, T ;W 1,p
0 (Q0)) and ψ(ti) ∈W 1,p(Q0),

4. ti are Lebesgue points of the map t ∈ [0, T ]→ A(t) ∈ L1(Q0× (−R,R)×B(0, R)) for any R > 0,
being B(0, R) the open ball centered at zero with radius R,

5. ∆ := maxk=0,...,N−1 |tk − tk+1| → 0 as N →∞.

Let Ik = [tk, tk+1). We iteratively solve the parabolic problem

ukt = div
(
A(tk, x, u

k,∇uk)
)
, t ∈ Ik, x ∈ Ω(tk)

uk(t, x) = ψ(t, x), t ∈ Ik, x ∈ ∂Ω(tk)

uk(tk, x) =


limt→tk− u

k−1(t, x), x ∈ Ω(tk) ∩ Ω(tk−1)

ψ(tk, x), x ∈ Ω(tk)\Ω(tk−1).

(3.1)

If t0 = 0 we let u0(0, x) = u0(x). Notice that the iterative initial condition for t = tk makes sense
thanks to the continuity properties of uk−1, see (3.5).

3.1 Study of the model problem on a time slice

Let Ω0 be an open bounded set in IRd with Lipschitz boundary. Let A(x, z, ξ) be such that (2.3)–(2.7)
hold a.e. in x ∈ Ω0 and for all z ∈ IR, ξ ∈ IRd. Let us consider the problem

ut = div (A(x, u,∇u)) t ∈ [0, T ], x ∈ Ω0,

u(t, x) = ψ(t, x) t ∈ [0, T ], x ∈ ∂Ω0,

u(0, x) = u0(x) x ∈ Ω0.

(3.2)

where ψ satisfies (2.11)–(2.12) and u0 ∈ L2(Ω0).

Definition 3.1. We say that a function u ∈ L1((0, T ) × Ω0) is a weak solution of (3.2) if u ∈
Lp(0, T ;W 1,p(Ω0)), A(x, u,∇u) ∈ Lp′((0, T )× Ω0)),

−
∫ T

0

∫
Ω0

uφt dxdt−
∫ T

0

∫
Ω0

u0φ(0) dx+

∫ T

0

∫
Ω0

A(x, u,∇u) · ∇φdxdt = 0 (3.3)

holds for all φ ∈ D([0, T )× Ω0), and

u(t)− ψ(t) ∈W 1,p
0 (Ω0) a.e. t ∈ (0, T ).

Note that, by (2.3), if u ∈ Lp(0, T ;W 1,p(Ω0)), then A(x, u,∇u) ∈ Lp′((0, T )× Ω0)).

Proposition 3.2. Problem (3.2) admits a unique weak solution in the sense of Definition 3.1.
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Proof. The proof is a standard application of the theory developed in [25, 26]; we include it for com-
pleteness. We consider the auxiliary problem

vt − div
(
Ã(t, x, v,∇v)

)
= −ψt t ∈ [0, T ], x ∈ Ω0,

v(t, x) = 0 t ∈ [0, T ], x ∈ ∂Ω0,

v(0, x) = u0(x)− ψ(0, x) x ∈ Ω0.

(3.4)

Here
Ã(t, x, z, ξ) := A(x, z + ψ(t, x), ξ +∇ψ(t, x)).

According to the notation in [25, 26], we let H = L2(Ω0),

B =


W 1,p

0 (Ω0) if p ≥ 2,

W 1,p
0 (Ω0) ∩ L2(Ω0) if 1 < p < 2,

and F = Lp(0, T ;B), so that B is dense in H and

−divÃ : F → F ′ = Lp
′
(0, T ;B′) and ψt ∈ F ′,

with

B′ =


W−1,p′(Ω0) if p ≥ 2,

W−1,p′(Ω0) + L2(Ω0) if 1 < p < 2.

Observe that, by our assumptions on A(x, z, ξ) and ψ, Ã(t, x, z, ξ) is a Leray-Lions operator (see [25, 26]).
Indeed, the monotonicity requirement is satisfied thanks to (2.5). The coercivity condition follows from
(2.4) and Poincare’s inequality in a standard way (lower order terms are estimated thanks to (2.3)).
Then thanks to Lions’ theory there exists some v ∈ F solving (3.4) in F ′. In fact, this solution verifies
that

v ∈ Lp(0, T, B) and vt ∈ Lp
′
(0, T ;B′).

Notice that v ∈ C(0, T ;L2(Ω0)) thanks to Lemma 3.3 below.
Let now u = v + ψ. Then u is a weak solution of (3.2) with initial condition u(0) = u0. Clearly

u ∈ Lp(0, T ;W 1,p(Ω0)), ut ∈ Lp
′
(0, T ;B′) and

u ∈ C(0, T ;L2(Ω0)). (3.5)

To prove uniqueness let u, v be two different solutions. Note that u− v ∈ F . If A does not depend
on u, we multiply the equation for (u− v)t by u− v and integrate by parts (see e.g. [31, Chapter III]).
Recalling (2.5) we have that

1

2

d

dt
(u− v, u− v)H = 〈(u− v)t, u− v〉W−1,p′ (Ω0)−W 1,p

0 (Ω0)

= 〈div(A(x,∇u)−A(x,∇v)), u− v〉
W−1,p′ (Ω0)−W 1,p

0 (Ω0)

= −〈A(x,∇u)−A(x,∇v),∇u−∇v〉Lp′ (Ω0)−Lp(Ω0)

≤ 0 .
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Hence ‖u− v‖2 is nonincreasing and uniqueness follows.
For the general case, consider δ > 0 and let

Tδ(s) =


s if − δ ≤ s ≤ δ,
−δ if s < −δ,
δ if s > δ.

Clearly Tδ(u − v) ∈ F and again after multiplication of the equation for (u − v)t by Tδ(u − v)/δ and
integration by parts we obtain that

1

2

d

dt
(u− v, Tδ(u− v)/δ)H = −1

δ
〈∇Tδ(u− v), A(x, u,∇u)−A(x, v,∇v)〉Lp(Ω0)−Lp′ (Ω0)

≤ −1

δ
〈(∇u−∇v)χ{|u−v|≤δ}, A(x, u,∇v)−A(x, v,∇v)〉Lp(Ω0)−Lp′ (Ω0).

Then, using (2.6) we get

1

2

d

dt
(u−v, Tδ(u−v)/δ)H ≤

C

δ

∫
{|u−v|≤δ}

|u−v||∇u−∇v||∇v|p−1 dx ≤ C
∫
{|u−v|≤δ}

|∇u−∇v||∇v|p−1 dx.

The term on the far right converges to zero when δ → 0, since the integrand is in L1(Ω0) and∇(u−v) = 0
a.e. where u − v = 0. As Tδ/δ(u − v) → sign(u − v), we get that ‖u − v‖1 is non-increasing, and we
conclude the proof.

The following continuity result is standard (see for instance [25, Ch. 2, Rem. 1.2] or [31]).

Lemma 3.3. Let V be a reflexive Banach space with dual V ′. Let H be a Hilbert space that we identify
with its dual. Assume that V ⊂ H ⊂ V ′ with the injection V ⊂ H being dense. Then, u ∈ Lp(0, T ;V )
together with ut ∈ Lp

′
(0, T ;V ′) imply that there is a representative of u which is continuous from [0, T ]

to H.

Since uk ∈ C(tk, tk+1;L2(Ω(tk))) we can define the traces

uk(tk+) := lim
t→tk+

uk(t) uk(tk+1−) := lim
t→tk+1−

uk(t),

where the limit is taken in L2(Ω(tk)).

3.2 The approximate solutions u∆

We now let
Ω∆ := {(t, x) : t ∈ [tk, tk+1), x ∈ Ω(tk), k = 0, . . . , N − 1}

= ∪k=1,...,N−1[tk, tk+1)× Ω(tk).

Notice that Ω∆ does not depend only on ∆ = maxk=0,...,N−1 |tk − tk+1|, but depends on the entire
sequence {tk}k.

Lemma 3.4. Ω∆ converges to Ω̃ in the Hausdorff sense. As a consequence χΩ∆ → χ
Ω̃

strongly in
L1(QT ) (hence in Lp(QT ) for all p <∞).

Proof. The Hausdorff convergence of Ω∆ to Ω̃ can be easily verified when Ω̃ is a polyhedron. The
claim follows by approximating a generic Ω̃ with Lipschitz boundary with polyhedra, in the topology
generated by the Hausdorff distance.

8



We now glue the solutions uk(t, x) of (3.1) together and define the approximate solutions

u∆(t, x) :=

N−1∑
k=0

χ[tk,tk+1)(t)u
k(t, x)χΩ(tk)(x), (3.6)

ũ∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)(u
k(t, x)χΩ(tk)(x) + ψ(t, x)χQ0\Ω(tk)(x)), (3.7)

for (t, x) ∈ QT . When we write uk(t, x)χΩ(tk)(x) in the above formulae we intend the function which

coincides with uk(t, x) in Ω(tk) and it is equal to zero outside Ω(tk).
In the sequel we shall prove the compactness of u∆ and ũ∆ as ∆→ 0.

3.3 Estimates on u∆

We now derive some estimates on the approximate solutions u∆ defined in (3.6).

Lemma 3.5. Assume that ‖ψ‖∞, ‖u0‖∞ ≤ C for some C > 0. Then ‖u∆‖L∞(Ω∆) ≤ C for any t > 0.

Proof. It is enough to prove the estimate in (0, t1)× Ω(0). Let [·]+ denote the positive part (resp. [·]−
the negative part) and let C ≥ ‖ψ‖∞. Then the pairing of [u− C]+ with u∆

t makes sense; multiplying
(3.2) by [u− C]+ and integrating by parts we get to

1

2

d

dt

∫
Ω(0)

([u∆(t)− C]+)2 dx =

∫
Ω(0)

[u∆ − C]+divA(0, x, u∆,∇u∆) dx

= −
∫

Ω(0)
A(0, x, u∆,∇u∆)∇([u∆ − C]+) dx.

There are no boundary terms present thanks to our choice of C. Note that∇([u∆−C]+) = χ{u∆>C}∇u∆,
so that we can use (2.8) to ensure that the time derivative above is nonpositive. Hence,∫

Ω(0)
([u∆(t)− C]+)2 dx ≤

∫
Ω(0)

([u0 − C]+)2 dx.

Thus, if u0 ≤ C then u∆(t) ≤ C too for any t ∈ [0, t1). This works in the same way for the time derivative
of the integral of ([u∆ + C]−)2, with inequalities reversed. If we now choose C = max{‖u0‖∞, ‖ψ‖∞},
we deduce that ‖u∆(t)‖∞ ≤ C.

Lemma 3.6. There holds
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|∇u∆(t)|p dxdt ≤ C,

for some constant C > 0 depending only on Ω̃, on ψ and on the structural constants in Assumption
2.3.

Proof. We fix k and notice that the pairing of u∆ − ψ with ukt on (tk, tk+1)×Ω(tk) makes sense. After
integration by parts we get

1

2

d

dt

∫
Ω(tk)

(u∆ − ψ)2 dx = −
∫

Ω(tk)
∇(u∆ − ψ)A(tk, x, u

∆,∇u∆) dx−
∫

Ω(tk)
(u∆ − ψ)ψt dx.
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Notice that the last term is well-defined thanks to our assumptions on ψ and to Lemma 3.5. Integrating
the former equality on [tk, tk+1], we obtain

1

2

∫
Ω(tk)

(u∆(tk+1)− ψ)2 dx =
1

2

∫
Ω(tk)

(u∆(tk)− ψ)2 dx−
∫ tk+1

tk

∫
Ω(tk)

(u∆ − ψ)ψt dxdt

+

∫ tk+1

tk

∫
Ω(tk)

∇ψA(tk, x, u
∆,∇u∆) dxdt−

∫ T

0

∫
Ω(tk)

∇u∆A(tk, x, u
∆,∇u∆) dxdt

=: I + II + III + IV.

Let us now control the last three terms. The second one can be easily estimated as

II ≤ 2C̄

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt, C̄ := max{‖ψ‖∞, ‖u0‖∞}.

Concerning the fourth term, using (2.4) we get

IV ≤ −
∫ tk+1

tk

∫
Ω(tk)

α|∇u∆|p dxdt+

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

In a similar way, using (2.3) we obtain

III ≤
∫ tk+1

tk

∫
Ω(tk)

c|∇ψ||∇u∆|p−1 dxdt+

∫ tk+1

tk

∫
Ω(tk)

|∇ψ|b(t, x) dxdt = A+B.

Let us estimate A and B. For that we use Young’s inequality with weights:

a b ≤ εpap

p
+

bp
′

p′εp′
, ε > 0, being p, p′ given by (2.3).

Then

B ≤ 1

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

1

p′
‖b‖p

Lp′ ([tk,tk+1]×Ω(tk))

and

A ≤ cεp

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

c

p′εp′
‖∇u∆‖pLp([tk,tk+1]×Ω(tk))

for any ε > 0. Let us choose ε so that c/(p′εp
′
) = α/2. Collecting all the estimates, we obtain

1

2

∫
Ω(tk)

(u∆(tk+1)− ψ)2 dx+
α

2

∫ tk+1

tk

∫
Ω(tk)

|∇u∆|p dxdt

≤ 1

2

∫
Ω(tk)

(u∆(tk)− ψ)2 dx+ 2C̄

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt+
cεp

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk))

+
1

p
‖∇ψ‖pLp([tk,tk+1]×Ω(tk)) +

1

p′
‖b‖p

Lp′ ([tk,tk+1]×Ω(tk))
+

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

10



By summing up the previous inequalities from k = 0 to k = N − 1, we get

1

2

∫
Ω(tN−1)

(u∆(tN )− ψ)2 dx+
α

2

N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|∇u∆(t)|p dxdt

≤ 1

2

∫
Ω(0)

(u∆(0)− ψ)2 dx+
1

p′

N−1∑
k=0

‖b‖p
Lp′ ([tk,tk+1]×Ω(tk))

+
1

p

(
1 + c

(
2c

αp′

) p
p′
)
N−1∑
k=0

‖∇ψ‖pLp([tk,tk+1]×Ω(tk))

+ 2C̄
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|ψt| dxdt+
N−1∑
k=0

∫ tk+1

tk

∫
Ω(tk)

|d(t, x)| dxdt.

On the aid of Lemma 3.5 the thesis follows.

Recalling the definition of ũ∆ and the assumptions on ψ, from Lemma 3.6 we obtain the following
result:

Corollary 3.7. There exists C > 0 depending only on Ω̃, on ψ and on the structural constants in
Assumption 2.3, such that

‖ũ∆‖Lp(0,T ;W 1,p(Q0)) ≤ C .

In particular, the sequence {ũ∆} is weakly relatively compact in Lp(0, T ;W 1,p(Q0)).

3.4 Time compactness of ũ∆

We now show a stronger compactness property of u∆. For this aim, we need the following result, proved
in [32].

Theorem 3.8. Let X,B, Y be three Banach spaces such that X ⊂ B ⊂ Y . Assume that X is compactly
embedded in B and

F is a bounded set in L1(0, T ;X), (3.8)

‖τhf − f‖L1(0,T−h;Y ) → 0 as h→ 0, uniformly for f ∈ F , (3.9)

where (τhf)(t) = f(t+ h) for h > 0. Then F is relatively compact in L1(0, T ;B).

Let

ψ∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)ψ(t, x)χQ0\Ω(tk)(x) = ψ(t, x)χQT \Ω∆(t, x),

so that we have ũ∆(t, x) = u∆(t, x) + ψ∆(t, x).

Lemma 3.9. Let 0 < k ≤ N be fixed. Then ukt (t)χΩ(tk) ∈ Lp
′
(tk, tk+1,W

−1,p′(Ω(tk))) and the following
estimate holds:

‖ukt (t)χΩ(tk)‖Lp′ (tk,tk+1,W−1,p′ (Ω(tk))) ≤ c‖u
∆‖p−1

Lp(tk,tk+1,W 1,p(Ω(tk)))
+ ‖b‖Lp(tk,tk+1,Lp′ (Ω(tk))).
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Proof. We show the estimate by duality. Define Bk := Lp(tk, tk+1,W
1,p
0 (Ω(tk))) and let φ ∈ Bk. We

compute

〈ukt (t)χΩ(tk), φ〉B′k−Bk
= −

∫ tk+1

tk

∫
Ω(tk)

A(tk, x, u
k,∇uk(t)) · ∇φdxdt.

Hence using (2.3)∣∣∣〈ukt χΩ(tk), φ〉B′k−Bk

∣∣∣ ≤ ∫ tk+1

tk

∫
Ω(tk)

(c|∇u∆(t)|p−1 + b(t, x))|∇φ|dxdt

≤
∫ tk+1

tk

(
c‖u∆(t)‖p−1

W 1,p(Ω(tk))
+ ‖b(t)‖Lp′ (Ω(tk))

)
‖φ‖

W 1,p
0 (Ω(tk))

dt.

The result follows.

Lemma 3.10. The sequence {ũ∆} is relatively compact in L1
loc(Ω̃).

Proof. We consider a cylinder C := [t1, t2]×K ⊂⊂ Ω̃. We want to apply Theorem 3.8 with f = ũ∆|C =
u∆|C , X = W 1,p(K), B = L1(K) and Y = W−1,p′(K) + L1(K). Here Y is a Banach space equipped
with the norm

‖y‖Y := inf{‖y1‖W−1,p′ (K) + ‖y2‖L1(K) : y1 + y2 = y}.

Then X ⊂ B ⊂ Y and X is compactly embedded in B.
Notice that, since C ⊂⊂ Ω̃, we have

ũ∆
t |C = u∆

t |C =
N−1∑
k=0

χ[tk,tk+1)(t)u
k
t (t, x)χΩ(tk)(x)|C for N large enough.

Estimate (3.8) directly follows from Lemma 3.5. In order to prove (3.9), we notice that (with a
slight abuse of notation)

ũ∆(t+ h)− ũ∆(t) =

∫ t+h

t
ũ∆
t (s) ds =

∫ t+h

t

N−1∑
k=0

χ[tk,tk+1)(t)u
k
t (s, x)χΩ(tk)(x) ds := u∆

1 (t, h).

We claim that ∫ t2−h

t1

‖u∆
1 (t, h)‖W−1,p′ (K) dt→ 0 as h→ 0+ (3.10)

uniformly in N ; this would imply (3.9). To prove it we sum up all the estimates coming from Lemma 3.9
for different values of k in order to cover the cylinder C. We obtain that there exist C̃ > 0 independent
of N and t ∈ [t1, t2] such that ‖u1(t, h)∆‖Y ≤ C̃h, which implies (3.10). Hence ũ∆ is strongly compact
in L1(C). Now any compact set in Ω̃ can be covered by a finite number of open cylinders. To conclude
we take a countable sequence of compact sets embedded in Ω̃ whose increasing union exhausts Ω̃ and
apply a diagonal procedure.

Corollary 3.11. There exists a subsequence of {ũ∆} which converges strongly in L1(QT ).

Proof. We can combine Lemma 3.10 with the uniform bound provided by Lemma 3.5 to use Lebesgue’s
dominated convergence theorem. Note that the functions are constantly equal to ψ outside Ω∆ and
that Lemma 3.4 applies.
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4 Existence of solutions

In this section we prove the existence of weak solutions of (2.1).

4.1 Convergence of the approximate solutions

Lemma 4.1. There are functions ũ, u such that the following statements hold (up to extracting a
subsequence) for N →∞:

1) ũ∆ ⇀ ũ weakly in Lp(0, T,W 1,p(Q0)) ∩ L∞(QT ),

2) ũ∆ → ũ in L1(QT ) and a.e. in QT ,

3) ψ∆ → ψχ
QT \Ω̃ in L1(QT ) and a.e. in QT ,

4) u∆ → u in L1(Ω̃),

5) ũ = u+ ψχ
QT \Ω̃ and u = ũχ

Ω̃
.

Proof. The first statement follows from Lemma 3.5 and Corollary 3.7. The second statement follows
from Corollary 3.11. To prove the third statement we write

‖ψ∆ − ψχ
QT \Ω̃‖L1(QT ) ≤ ‖ψ‖L∞(QT )‖χQT \Ω∆ − χQT \Ω̃‖L1(QT ) → 0

as N →∞, thanks to Lemma 3.4. It follows that

u∆ = ũ∆ − ψ∆ → u := ũ− ψχ
QT \Ω̃ in L1(Ω̃).

Since Ω∆ → Ω̃ by Lemma 3.4, we get that ũ∆ → ψ a.e. in QT \Ω̃, so that u is supported on Ω̃.

Recalling Lemma 3.5 it follows that, up to a subsequence, ũ∆ → ũ in Lp(QT ) and u∆ → u in Lp(Ω̃),
for all 1 ≤ p <∞.

We now discuss the convergence of the time derivatives.

Lemma 4.2. There exists Λ̃ ∈ D′(QT ) such that, up to extraction of a subsequence, ũ∆
t ⇀ Λ̃ in

D′(QT ). In fact, Λ̃ agrees as a distribution over QT with the time derivative (in distributional sense)
of the function ũ defined in Lemma 4.1. Moreover, given any cylinder C := (ta, tb) ×K ⊂⊂ Ω̃, there
holds that Λ̃|C ∈ Lp

′
(0, T ;W−1,p′(K)) and ũ∆

t |C ⇀ Λ̃|C in Lp
′
(0, T ;W−1,p′(K)).

Proof. Let us denote by 〈·, ·〉 the pairing between D′(QT ) and D(QT ). Given φ ∈ D(QT ), we compute

〈ũ∆
t , φ〉 = −〈ũ∆, φt〉 = −

∫ T

0

∫
Q0

ũ∆φt dxdt.

We may now use Corollary 3.11 to pass to the limit, so that

−
∫ T

0

∫
Q0

ũφt dxdt = lim
N→∞

〈ũ∆
t , φ〉 = 〈Λ̃, φ〉

up to a subsequence. This shows the first and second statements.
Our last statement is a consequence of Lemma 3.9, which provides uniform bounds on the time

derivative over cylinders contained in Ω̃ as in Lemma 3.10.
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Corollary 4.3. Let Σt1,t2 := [t1, t2]×K such that Σt1,t2 ∩ ∂Ω̃ = ∅. Then ũ ∈ C(t1, t2;L2(K)).

Proof. Let φ ∈ D(Σt1,t2). By previous considerations, we know that (φũ)t ∈ Lp
′
(t1, t2;W−1,p′(K)) and

also (φ ũ)(t) ∈ W 1,p
0 (K) for a.e. t1 < t < t2. Using Lemma 3.3 we deduce that φ ũ ∈ C(t1, t2;L2(K)).

Being φ and K arbitrary, the thesis follows.

Corollary 4.4. There holds that Λ̃|Ω̃ ∈ V
∗.

Proof. Let φ ∈ C1
c (Ω̃). Thanks to Lemma 3.9 we have that

|〈Λ̃, φ〉V∗−V | ≤ ||φ||V
(
c‖ũ‖p−1

Lp(0,T,W 1,p(Q0))
+ ‖b‖Lp(0,T,Lp′ (Q0))

)
.

Our claim follows by a duality argument.

4.2 Recovery of the limit equation

Our next aim is identifying the limit equation. Let us define

A∆(t, x) :=
N−1∑
k=0

χ[tk,tk+1)(t)A(tk, x, u
k,∇uk)χΩ(tk)(x).

Lemma 4.5. There exists a function Ā ∈ Lp′(QT )d such that A∆ ⇀ Ā in Lp
′
(QT )d as N →∞, up to

a subsequence. Moreover Ā is supported in Ω̃.

Proof. This follows directly from (2.3) and Lemma 3.6.

To identify Ā we will require a number of auxiliary results.

Lemma 4.6. Let φ be smooth and such that supp φ ⊂ Ω∆ ∩ Ω̃. Given τ > 0 we define

ρτ :=
1

τ

∫ t

t−τ
((φ(t)− φ(s))u(s) ds

(we set ρτ := 0 when the previous formula does not make sense), being u the function defined in Lemma
4.1. Then ρτ ∈ V for any τ > 0 and ρτ → 0 in V as τ → 0.

Proof. Since supp ρτ ⊂ Ω∆ ∩ Ω̃ for small τ , we can approximate ρτ in the norm of V by functions in
C1
c (Ω̃) convolving with a mollifying sequence, so that ρτ ∈ V.

Let now K ⊂ IRd be an open set such that K ⊂ Ω∆(t) a.e. t ∈ (ta, tb) for some values 0 ≤ ta < tb ≤
T . Thanks to [16, Ch. 2, Th. 9], we get that ρτ → 0 in Lp(ta, tb;W

1,p(K)) as τ → 0. Covering suppφ
with a finite collection of cylinders of the form (ta, tb)×K yields the desired result.

Lemma 4.7. Let φ be smooth and such that supp φ ⊂ Ω∆ ∩ Ω̃. Then

lim sup
N→∞

∫ T

0

∫
Ω∆(t)

A∆ · ∇u∆φdxdt ≤
∫ T

0

∫
Ω(t)

Ā · ∇uφ dxdt. (4.1)

14



Proof. Let τ > 0 and define

uτ (t) =
1

τ

∫ t

t−τ
u(s) ds.

By multiplying the equation for u∆ by (u∆ − uτ )φ and integrating by parts we get∫ T

0

∫
Ω∆(t)

(u∆ − uτ )u∆
t φdxdt =

∫ T

0

∫
Ω∆(t)

(
u∆ − uτ

)
divA∆φdxdt

= −
∫ T

0

∫
Ω∆(t)

A∆ · ∇u∆φdxdt−
∫ T

0

∫
Ω∆(t)

A∆ · ∇φu∆ dxdt

+

∫ T

0

∫
Ω∆(t)

A∆ · ∇uτφdxdt+

∫ T

0

∫
Ω∆(t)

A∆ · ∇φuτ dxdt := I + II + III + IV.

Let us elaborate on the left hand side of the previous equality. We compute∫ T

0

∫
Ω∆(t)

u∆u∆
t φdxdt =

∫ T

0

∫
Ω∆(t)

φ
∂

∂t

[
(u∆(t))2

2

]
dxdt

= −
∫ T

0

∫
Ω∆(t)

(u∆(t))2

2
φt dxdt→ −

∫ T

0

∫
Ω(t)

u2

2
φt dxdt

as N →∞, thanks to Lemma 4.1. Next, we have that

−
∫ T

0

∫
Ω∆(t)

uτu∆
t φdxdt = −

∫ T

0

∫
Ω∆(t)

u∆
t

φ

τ

∫ t

t−τ
u(s) ds dxdt

= −
∫ T

0

∫
Ω∆(t)

u∆
t

{
(φu)τ +

1

τ

∫ t

t−τ
((φ(t)− φ(s))u(s) ds

}
dxdt

=

∫ T

0

∫
Ω∆(t)

(φu)τt u
∆ dxdt−

∫ T

0

∫
Ω∆(t)

ρτu∆
t dxdt

=

∫ T

0

∫
Ω∆(t)

φ(t)u(t)− φ(t− τ)u(t− τ)

τ
u∆ dxdt−

∫ T

0

∫
Ω∆(t)

ρτu∆
t dxdt

=: A+B.

Thanks to our assumptions on φ we have that

B = −
∫ T

0

∫
Ω∆(t)

ρτ
N−1∑
k=0

χ[tk,tk+1)u
k
t χΩ(tk) dxdt

for τ small enough. We then pass to the limit in B by Lebesgue’s dominated convergence theorem.
Indeed, if τ is small enough Lemma 4.2 enables to get a.e. convergence of the integrand, domination
follows as the duality product is uniformly bounded. To deal with the limit of A as N →∞ we may use
Lemma 4.1(4) together with the fact that the incremental ratio is essentially bounded (after Lemma
3.5). Gathering all the previous and letting N →∞, we find that

−
∫ T

0

∫
Ω∆(t)

uτu∆
t φdxdt→

∫ T

0

∫
Ω(t)

φ(t)u(t)− φ(t− τ)u(t− τ)

τ
u dxdt−

∫
QT

ρτ Λ̃ dxdt,
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which is bounded from below by∫ T

0

∫
Ω(t)

φ(t)− φ(t− τ)

τ

u2(t)

2
dxdt−

∫
QT

ρτ Λ̃ dxdt.

Letting τ → 0+ and using Lemma 4.6, we obtain∫ T

0

∫
Ω(t)

φt
u2(t)

2
dxdt,

so that lim infτ→0+ lim infN→∞(I + II + II + IV ) ≥ 0.
We are now ready to compute the limit of I + II + III + IV when N →∞. First, we find out that

II → −
∫ T

0

∫
Ω(t)

Ā∇φu dxdt

using Lemmas 4.1(4) and 4.5. We also have

III →
∫ T

0

∫
Ω(t)

Ā∇uτφdxdt

as N → ∞ (clearly ∇uτ ∈ Lp(QT )d). Note that ∇uτ = (∇u)τ → ∇u in Lploc(Ω̃)d, as in the proof of
Lemma 4.6. Taking limit τ → 0, the above integral converges to∫ T

0

∫
Ω(t)

Ā∇uφ dxdt.

Finally, arguing as before we get that

IV →
∫ T

0

∫
Ω(t)

Ā∇φuτ dxdt

as N →∞, which converges to ∫ T

0

∫
Ω(t)

Ā∇φu dxdt

after taking the limit τ → 0. Hence

lim sup
N→∞

∫ T

0

∫
Ω(t)

A∆∇u∆φdxdt ≤
∫ T

0

∫
Ω(t)

Āφ∇u dxdt

and the result follows.

Lemma 4.8. There holds Ā(t, x) = A(t, x, u,∇u) a.e. in Ω̃.

Proof. We use Minty–Browder’s technique. Let 0 ≤ φ ∈ C1
0 (QT ) with suppφ ⊂ Ω∆ ∩ Ω̃, and let

g ∈ C1(QT ). Thanks to the monotonicity assumption (2.5), we have∫ T

0

N−1∑
k=1

∫
Ω(tk)

(A(tk, x, u
∆,∇u∆)−A(tk, x, u

∆,∇g))(∇u∆(t)−∇g)φdxdt ≥ 0.
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From Lemma 4.7 we get

lim sup
N→∞

∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇u∆)∇u∆φdxdt ≤

∫ T

0

∫
Ω(t)

Ā∇uφ dxdt.

We now show that∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇g)∇u∆φdxdt→

∫ T

0

∫
Ω(t)

A(t, x, u,∇g)∇uφ dxdt, (4.2)

as N →∞. Indeed, recalling (2.6) we have∣∣∣∣∣A(t, x, u,∇g)−
N−1∑
k=1

A(tk, x, u
∆,∇g)χ[tk,tk+1)

∣∣∣∣∣ ≤
N−1∑
k=1

χ[tk,tk+1)

(
w(|t− tk|)+C|u(t, x)−u∆(t, x)|

)
|∇g|p−1.

Note that the right-hand side above converges to zero a.e. in Ω̃ and also in Lp(Ω̃) for all p < ∞ as
N →∞. On the other hand, ∇u∆ ⇀ ∇u weakly in Lploc(Ω̃)d thanks to Lemma 4.1, which yields (4.2).
In a similar way we show that∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇g)∇g φ dxdt→

∫ T

0

∫
Ω(t)

A(t, x, u,∇g)∇g φ dxdt.

Finally we obtain that∫ T

0

N−1∑
k=1

∫
Ω(tk)

A(tk, x, u
∆,∇u∆)∇g φ dxdt→

∫ T

0

∫
Ω(t)

Ā∇g φ dxdt

thanks to Lemma 4.5. Summing up, we obtain∫ T

0

∫
Ω(t)

(Ā−A(t, x, u,∇g))(∇u(t)−∇g)φdxdt ≥ 0.

This implies that Ā = A(t, x, u,∇u) for a.e. (t, x) ∈ suppφ, by means of Minty–Browder’s method (see
for instance [18, Ch. 9.1]).

4.3 Recovery of boundary and initial conditions

Proposition 4.9. The function u defined in Lemma 4.1 is a weak solution of problem 2.1 in the sense
of Definition 2.6. Furthermore, u(t)→ u0 a.e. as t→ 0.

Proof. Let φ ∈ C∞0 (QT ) with suppφ ⊂ Ω∆ ∩ Ω̃. We fix a value of k ∈ {1, . . . , N − 1} and test the
approximating problem in [tk, t)× Ω(tk) with t < tk+1. That is,∫

Ω(tk)
u∆(t)φ(t) dx+

∫ t

tk

∫
Ω(tk)

A∆ · ∇φdxds

=

∫
Ω(tk)

u∆(tk)φ(tk) dx+

∫ t

tk

∫
Ω(tk)

u∆(s)φs dxds
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for any t ∈ [tk, tk+1). By adding these contributions from 0 to t ∈ (tj , tj+1], j ∈ {1, . . . , N − 1} we get∫
Ω∆(t)

u∆(t)φ(t) dx+

∫ t

0

∫
Ω∆(s)

A∆ · ∇φdxds

=

∫
Ω(0)

u0φ(0) dx+

∫ t

0

∫
Ω∆(s)

u∆(s)φs dxds (4.3)

+

j∑
k=1

(∫
Ω(tk)

u∆(tk+)φ(tk) dx−
∫

Ω(tk−1)
u∆(tk−)φ(tk) dx

)
.

Since suppφ ⊂ Ω∆, we also have∫
Ω(tk)

u∆(tk+)φ(tk) dx−
∫

Ω(tk−1)
u∆(tk−)φ(tk) dx

=

∫
Ω(tk)\Ω(tk−1)

ψ(tk)φ(tk) dx−
∫

Ω(tk−1)\Ω(tk)
u∆(tk−)φ(tk) dx = 0.

Thanks to Lemma 4.1(4), u∆ converges strongly to u in L1(suppφ). Hence we can pass to the limit in
(4.3) and obtain ∫

Ω(t)
u(t)φ(t) dx+

∫ t

0

∫
Ω(s)

A(t, x, u,∇u) · ∇φdxds

=

∫
Ω(0)

u0φ(0) dx+

∫ t

0

∫
Ω(s)

u(s)φs dxds

for a.e. 0 < t ≤ T , which holds for any φ ∈ C∞0 (QT ) with suppφ ⊂ Ω̃. This can be stated as

ut = divA(t, x, u,∇u) in D′(Ω̃).

Furthermore, since ũ ∈ Lp(0, T ;W 1,p(Q0)) and ũ = ψ a.e. QT \Ω̃, we get that u(t)− ψ(t) ∈W 1,p
0 (Ω(t))

for almost any t ∈ (0, T ). Hence we also recover the boundary conditions at ∂lΩ̃ in the limit.
Let us deal next with the initial condition. Note that for t small enough we have∫

Ω(t)
u(t)φ(t) dx =

∫
Ω(0)

u0φ(0) dx+ C(φ)t

for some C(φ) > 0. Here we use that we assume condition 4 on the time slicing (and specifically on
t0 = 0) as specified at the beginning of Section 3. Hence

lim
t→0

∫
Ω(t)

u(t)φ(t) dx =

∫
Ω(0)

u0φ(0) dx.

Now let K ⊂⊂ Ω(0) such that ũ ∈ C(0, t1, L
2(K)) for some t1 > 0 (which exists as Ω̃ is Lipschitz).

Then u(t) converges in L2(K) to some ū0 as t → 0. This limit ū0 must agree with the distributional
limit u0 over K. Hence u(t)→ u0 in L2

loc(Ω(0)) as t→ 0. In particular we get a.e. convergence to the

initial condition. Note that this works in the same way for any relatively open subset of ∂−1Ω̃.
Finally we justify that u − ψ ∈ V. Once we have shown that the boundary conditions on ∂lΩ̃ are

fulfilled, it is easy to construct a sequence ηn belonging to C1
c (Ω̃) and satisfying ‖(u−ψ)−ηn‖V → 0 as

n→∞. For instance, we may considerG ∈ C1(IR) such that |G(t)| ≤ |t|, G(t) = 0 if |t| ≤ 1 andG(t) = t
if |t| ≥ 2. We also consider ρn to be a standard mollifying sequence. Then ηn = G(nρn ∗ (u − ψ))/n
has the desired properties.
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The argument above also shows that, given a cylinder [t1, t2] × K ⊂⊂ Ω̃, the map t 7→ u|K is
L2-continuous in [t1, t2]. As a consequence, if we fix t > 0 then u(s) → u(t) as s → t a.e. in Ω(t). In
this sense, we can claim that t 7→ u(t) ∈ C(0, T, L2(Ω(t))).

5 Uniqueness of solutions

We start with a technical result which can been proved as in [28, Proposition 2.6].

Proposition 5.1. Let Assumptions 2.1–2.4 and 2.8 be satisfied. Then the following integration by
parts formula holds:∫ t2

t1

〈ut, v〉s + 〈vt, u〉s ds =

∫
Ω(t2−)

u(t2−)v(t2−) dx−
∫

Ω(t1+)
u(t1+)v(t1+) dx, (5.1)

for any 0 ≤ t1 < t2 ≤ T and any u, v ∈ V, where 〈·, ·〉t indicates the pairing between W−1,p′(Ω(t)) and
W 1,p

0 (Ω(t)).

Proof of Theorem 2.9. Let ũ1, ũ2 be two solutions of (2.1). Let ε > 0 and define

gε(x) :=

{
sign(x)

(
−5|x|4

16ε4
− 2|x|3

ε3
− 9|x|2

2ε2
+ 4|x|

ε

)
|x| < 2ε,

sign(x) |x| ≥ 2ε
∈ C2(IR),

which is a regularization of the sign function that converges pointwise as ε→ 0. Note also that we have
gε(ũ1 − ũ2) ∈ Lp(0, T,W 1,p

0 (Q0)). Besides, supp gε(ũ1 − ũ2) lies in the closure of Ω̃. Then, with a slight
abuse of notation, gε(ũ1 − ũ2) = gε(u1 − u2).

We pick {φn}n ∈ D(QT ) such that φn → gε(u1−u2) strongly in Lp(0, T,W 1,p
0 (Q0)) and supp φn ⊂ Ω̃.

Note that the pairing
〈(u1 − u2)t, φn〉V∗−V

makes sense and is bounded independently of n. Then we substitute φn in (2.13). On one hand, when
n→∞ we get ∫

Ω̃
φn(u1 − u2)t dxdt→

∫
Ω̃
gε(u1 − u2)(u1 − u2)t dxdt.

On the other hand, integrating by parts and using (2.3),∫
Ω̃
φn(u1 − u2)t dxdt = −

∫
Ω̃
∇φn (A(t, x, u1,∇u1)−A(t, x, u2,∇u2)) dxdt

→ −
∫

Ω̃
∇gε(u1 − u2) (A(t, x, u1,∇u1)−A(t, x, u2,∇u2)) dxdt asn→∞.

Thus, we have shown that

〈(u1 − u2)t, gε(u1 − u2)〉V∗−V = −
∫

Ω̃
g
′
ε(u1 − u2)∇(u1 − u2)[A(t, x, u1,∇u1)−A(t, x, u2,∇u2)] dxdt.

Using the fact that
[gε(u1 − u2)]t = g′ε(u1 − u2) · (u1 − u2)t in D′(Ω̃)
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and denoting

pε(x) :=


xg′ε(x) x ∈ (−2ε, 2ε)

0 |x| ≥ 2ε
∈ C1(IR)

we may argue as before to obtain that

〈[gε(u1 − u2)]t, u1 − u2〉V∗−V = −
∫

Ω̃
∇[pε(u1 − u2)][A(t, x, u1,∇u1)−A(t, x, u2,∇u2)] dxdt.

In such a way,
〈(u1 − u2)t, gε(u1 − u2)〉V∗−V + 〈[gε(u1 − u2)]t, u1 − u2〉V∗−V

= −
∫

Ω̃
∇(u1 − u2)[A(t, x, u1,∇u1)−A(t, x, u1,∇u2)]

{
g′ε(u1 − u2) + p′ε(u1 − u2)

}
dxdt

−
∫

Ω̃
∇(u1 − u2)[A(t, x, u1,∇u2)−A(t, x, u2,∇u2)]

{
2g′ε(u1 − u2) + (u1 − u2)g

′′
ε (u1 − u2)

}
dxdt

The first term above is less or equal than zero due to (2.5) and the fact that g′ε + p′ε ≥ 0, hence we can
neglect it. As regards the second term, we notice that there is some C > 0 such that

|g′ε(x)| ≤ C/ε, |xg′′ε (x)| ≤ C/ε ∀x ∈ −(2ε, 2ε).

Then we use (2.6) to write

II ≤ 2C

ε

∫
Ω̃
χ{|u1−u2|<2ε}|∇(u1 − u2)||∇u2|p−1|u1 − u2| dxdt

≤ 4C

∫ T

0

∫
|u1−u2|≤2ε

|∇(u1 − u2)||∇u2|p−1 dxdt := θ(ε),

which is uniformly bounded with respect to ε. In fact this term vanishes in the limit ε→ 0 given that
∇(u1 − u2) = 0 almost everywhere on the set of points such that u1 − u2 = 0. Then, thanks to (5.1)
we obtain that∫

Ω(T−)
gε(u1 − u2)(T−)(u1 − u2)(T−) dx−

∫
Ω(0)

gε(u1 − u2)(0)(u1 − u2)(0) dx ≤ θ(ε)

and thus taking the limit ε→ 0 we find∫
Ω(T−)

|u1 − u2|(T−) dx ≤
∫

Ω(0)
|u1 − u2|(0) dx

for any T > 0. This implies our uniqueness result.

Remark 5.2. This proof can be considerably simplified if the operator A does not depend explicitly
on u, as we can choose gε(x) = x in the previous computations and all the proof boils down to the
monotonicity property (2.5).

Remark 5.3. Let us note that the same uniqueness proof can be extended to the case in which there
exists a finite number of times t0 := 0 < t1 < . . . < tN−1 < tN := T such that ((ti, ti+1) × Q0) ∩ Ω̃
verifies Assumption 2.8 for each i = 0, . . . , N − 1. Namely, the former proof would show that any two
solutions u1, u2 with the same initial datum agree on ((0, t1) ×Q0) ∩ Ω̃. Taking traces at t1− we find
that u1 = u2 a.e. on Ω(t1−). Thus u1 = u2 a.e. on Ω(t1+) and we can repeat the former uniqueness
proof to obtain that u1 agrees with u2 on ((t1, t2) × Q0) ∩ Ω̃ and hence on (0, t2) × Q0 ∩ Ω̃. We can
continue in this way until we reach uniqueness in the whole of Ω̃.
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Remark 5.4. We observe that Assumption 2.8 could be replaced by the more general requirement
that the domain Ω̃ satisfies (5.1). In fact, it suffices to have (5.1) with a ”≥” instead of ”=”, and only
for functions u, v ∈ V such that u v ≥ 0.
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