UNIVERSITA
di VERONA

Working Paper Series

Department

of ECONOMICS

Department of Economics

University of Verona

A constrained minimum spanning tree problem

Alberto Peretti

WP Number: 8

December 2018

ISSN: 2036-2919 (paper), 2036-4679 (online)

A constrained minimum spanning tree problem

ALBERTO PERETTI
Department of Economics, University of Verona
Verona, Italy
e-mail: alberto.peretti@univr.it

December, 2018

Abstract

In the classical general framework of the minimum spanning tree problem for a weighted
graph we consider the case in which a predetermined vertex has a certain fixed degree. In
other words, given a weighted graph G, one of its vertices vy and a positive integer k, we
consider the problem of finding the minimum spanning tree of G in which the vertex vy has
degree k, that is the number of edges coming out of vg.

We recall that among the various methods for the solution of the unconstrained problem
an efficient way to find the minimum spanning tree is based on the simple procedure of
choosing one after the other an edge of minimum weight that has not be chosen yet and
does not create cycles if added to the previously chosen edges. This technique is known
as the “greedy algorithm”. There are problems for which the greedy algorithm works and
problems for which it does not.

We prove that for the solution of the one degree constrained minimum spanning tree
problem the classical greedy algorithm finds a right solution.

Keywords. Graph theory, Trees, Minimum spanning tree problem, Constrained minimum
spanning trees.

AMS Classification. 05C05, 05C85

JEL Classification. C650, C690

1 Introduction

Among the combinatorial optimization problems the well known MST (Minimum Spanning Tree)
problem consists in finding a spanning tree of minimum cost over a connected weighted graph.
It is a classical problem for which many efficient algorithms have been proposed. The problem
can be solved in polynomial time in the number of nodes of the given graph.

In the literature many variations of the original problem have been considered during the
years. For example, a very general formulation can be the following: given a connected weighted
graph G, find a minimum spanning tree for G that satisfies a property P, that is a property of
trees, usually assumed to be valuable in polynomial time. The new problem may be indicated
as an MST(P) problem. In [1]| the case when P is an isomorphism property is considered, that
means the tree is required to be isomorphic to a certain model of trees.

Another large class of specification of the original MST problem is the Degree-constrained
MST problem. Here the required tree has some constraint on the degree of its nodes. For
example the constraint can be to ask for a tree in which all the nodes have degree not greater
than a fixed positive integer k. This is known to be a difficult problem.

We aim here to consider a particular case in the Degree-constrained MST problem: in the
graph we fix the attention on a particular node and we ask in the optimal tree this node has a
predefined fixed degree.

2 Notations and problem definition

2.1 Notations

Let us introduce some of the basic vocabulary and notions of graph theory.

An undirected graph (graph for short in the following) G is a pair G = (V, E) where V is a
finite set of vertices and F is a finite set of edges, each one connecting two vertices. We may see
the set E as a subset of non ordered pairs of vertices: if e € E, then e;; = (v;,vj), v, v € V.
The two vertices are called the neighbors of the edge. The pairs are non ordered, as we are
considering undirected graph.

The degree of a vertex v is the number of edges having v as a neighbor. Equivalently, if we
define the neighbors of v as the set N(v) = {w €V : (v,w) € E}, the degree of v is [N (v)|.

A path p(u,v) in a graph G = (V, E) from vertex u € V to vertex v € V is a sequence
p(u,v) = (u,v1,v9,...,v%,0) of vertices of V such that (u,v;), (vg,v) € E, and (v;,vi41) € E
fori=1,...,k—1.

A path p(u,v) in G with v = v is called a cycle in G. The length |p(u,v)| of a path
p(u,v) = (u,v1,v2,...,05,v) is defined by k + 1, namely the number of edges between u and v
in p(u,v).

A graph is connected if for any two vertices u and v in V' there is a path p(u,v) going from
u to v. A tree is a connected graph with no cycles.

We call a forest a set of trees whose vertices are disjoint.

If G = (V, E) is a connected graph, a spanning tree for G is a tree (V, E’) where E' C E.

We will be dealing with weighted graphs, in the sense a positive cost function is defined on
the set of edges in G. We have then ¢: E — R,. If (u,v) € E, the value ¢(u,v) is the cost of
the edge (u,v).

If T is a tree in G the cost of T is the sum of the costs of the single edges in T'.

2.2 Problem definition

Let G = (V, E) be a connected weighted graph, where V' = {v1,v9,...,v,} is the vertex set of
G and E = {ejg,e9,...,¢ey} is the edge set of G. Let w; represent the weight or cost of edge e;,

for i = 1,...,m, where the weight is restricted to be a nonnegative real number.
The Minimum Spanning Tree problem consists in finding a spanning tree of G with minimum
cost. Formally, we may describe any subgraph of G by means of a vector x = (z1,%2,...,Tm)

where each component x; is defined as

1 if edge ¢; is in the subgraph
T = .
0 otherwise.

Remembering that a subgraph S of G is a spanning tree of G if S contains all the vertices
of G, is connected and contains no cycles, let’s call T the set of all the spanning trees of G. The
MST problem is the problem

min{z(;v) = Zwmi txE T}.
i=1

Now, suppose we want to set constraints on the degree of vertices in G. Of course we may
think of equality /inequality constraints. If b; is the constraint on the degree d(v;) of vertex vj,
then the general Degree-constrained Minimum Spanning Tree problem is the problem

min{z(m) = Zm:wixi s d(vj) < bjv; eV e T}.
i=1

In this framework, if £ is a positive integer, we have a k-bounded MST problem if b; = & for
each j.

We want to consider here a simpler case of a Degree-constrained Minimum Spanning Tree
problem, given by an equality constraint on one vertex of G, let’s say v1. The problem is then

min{z(@ = iwixi cd(v) =k,neV,xe T}.
i=1

3 Elementary operations in a graph

Let G = (V, E) be a connected weighted graph and let T'= (V| E’) be a spanning tree of G.

Definition 1. If a is an edge belonging to e \ E' and b is an edge in the cycle created by adding
a to the tree T', we say we are doing an elementary operation on T in adding a and taking off b.

Remark. By performing an elementary operation on a spanning tree of G we end up with
another spanning tree of G. We call the value c¢(a) —c(b) the cost of the elementary operation. It
is possible to characterize minimum spanning trees of a graph by means of elementary operations.
In fact the following theorem holds.

Theorem 1. A spanning tree T of G is minimum if and only if every elementary operation on
T has a nonnegative cost.

Proof. If T is minimum then every elementary operation on 7T has necessarily a nonnegative
cost. Let’s suppose that in T' every elementary operation has a nonnegative cost and let T be
a minimum spanning tree of G. Suppose aj,as,...,as are the edges in Ay (the order is not
relevant) and by, bo, ..., bs the ones in A. If the two sets of edges are not equal, let by the first
edge in A that does not belong to Ag. If we add by to Ag and we take out by from A we get a
cycle in Ag: in this cycle there is an edge ay, different from b, that does not belong to A and
reconnects A after the remotion of b;. Then
c(br) — c(ap) > 0 as an elementary operation on A, which is minimum;
c(ap) — c(bx) > 0 by the assumption, as an elementary operation on A.

Hence we have a null cost elementary operation on Ag that gives us a new minimum spanning
tree A1 with one edge more in common with A. If A and A; are not equal, we can repeat the
step more and more till we get the trees with the same set of edges and the same cost. O

Let us introduce the concept of partition in a graph.

Definition 2. We call partition forest of the graph G with roots vi,...,v, a forest with p con-
nected components which contains all the vertices of G and such that each component contains
Just one of the nodes v1, ..., vp.

Also for the partition forests we may define an elementary operation.

Definition 3. Given a partition forest F' with roots vi,...,vp, adding an edge and removing
another edge in the cycle that has been created, in such a way we end up again with a partition
forest with the same roots, is called an elementary operation on the partition forest F.

Remark. For as a partition forest with roots vy, ..., v, two kinds of elementary operations may
exist. The first kind corresponds to the elementary operations on a tree and consists in an
operation internal to one of the connected components of the forest. The second kind consists
in a connection operation of two different components and the consequent disconnection of the
same components. In the same way we did for the trees, it is possible to characterize a minimum
spanning forest by means of elementary operations.

Theorem 2. A partition forest F' with roots vy, ..., vy, is minimum if and only if every elemen-
tary operation on F has a nonnegative cost.

Proof. If F is minimum then every elementary operation on 7T has necessarily a nonnegative
cost. Let’s suppose in F' every elementary operation has a nonnegative cost and let Fjy be a
minimum partition forest with roots vy,...,vp.

Suppose a1, a9, ...,as are the edges in Fy and bq,bs,...,bs the ones in F. If the two sets
of edges are not equal, let by the first edge in F' that does not belong to Fy. Let’s add by to
Fy and remove by from F. In Fj either we create a cycle in one connected component or we
connect two different components. In F' we just create a new connected component C' that does
not contain any of the roots. Now it is easy to see that either in the created cycle or in the path
that connects the two roots we have an edge ay, different from by, that reconnects C' to the rest
of the forest. Then
c(by) — c¢(ap) > 0 as an elementary operation on Fp, which is minimum,;
c(ap) — c(bk) > 0 by the assumption, as an elementary operation on F.

Adding in Fy by and removing aj is then a null cost elementary operation that gives us a
new minimum forest with one edge more in common with F. We can repeat the steps till we
get the same forests. O

Remark. Clearly Theorem 1 is just a particular case of Theorem 2, as a spanning tree is a
partition forest with root v, where v is any node in the graph.

4 Two algorithms to find a minimum partition forest

4.1 A first algorithm for a minimum partition forest

Here is an algorithm for the search of a minimum partition forest with roots vy,...,v, in a
connected weighted graph G = (V, E,¢). We indicate with F' = (V| E’) the forest; if |V| =n
then |[E' =n —p|.

Algorithm 1

begin
E = 0;
while |E'| #n —p do
begin
sia e uno spigolo minimo, e ¢ E,
che aggiunto ad E’ non forma cicli e
non connette due radici;
E' :=F' u{e}
end
end
Theorem 3. Algorithm 1 finds a minimum forest with roots vi,. .., vp.

Proof. The output of Algorithm 1 is certainly a forest with roots vy, ..., v,. Let F' be this output
and let Fy be a minimum forest with roots v1,...,v,. If F' and Fy have the same edges, the
result is proved; otherwise let’s give these edges the same order in which they have been selected
by the algorithm. If ay,...,as are the edges, then for every i a; is a minimum edge that, added
to ai,...,a;_1, does not create cycles and does not connect two roots. Moreover let us give the
edges in Fy any ordering we want: be by,...,bs these edges. Let ap be the first edge in F that
does not belong to Fyy and let us add ay to Fy. We may have two cases:

1. We get a cycle in one of the connected components in Fy. In this cycle there is an edge b
that does not belong to F'; consider that b, if added to ay,...,ar_1, does not create cycles
and does not connect two roots, as ay,...,a—1 belong to Fy. Then ¢(b) > c(ax). Hence
if in Fyy we add a; and we remove b we get a forest F] with cost less than or equal to the
cost of Fy. As the strict inequality can not hold, being Fy minimum, then ¢(Fj)) = ¢(Fp).
Hence F{ is a minimum forest with roots v1,...,v, that has one more edge than Fj in
common with F. Now, if F' and Fjj have the same edges, the result is proved; otherwise
we can repeat the procedure.

2. Two roots v; and v; are connected in Fy. In the path v;...v; just created there is an edge
b that does not belong to F'; if added to a1, ...,a;_1, b does not make a cycle and does not
connect two roots, as ay,...,ax—1 belong to Fy. Then ¢(b) > c¢(ag). The same as before,
in Fy we may add aj and remove b, getting a forest F{j with roots vy, ..., v, and cost less
than or equal to the cost of Fy. As the equality must hold, F{, is a minimum forest with
roots vy, ..., v, that has one more edge than Fy in common with F. The conclusions are
the same as in the first case.

O

Remarks. Algorithm 1 operates on a partition forest in the same way Kruskal’s algorithm
operates on a spanning tree. It is a so called greedy algorithm: this is referred to the technique

of choosing at each step a minimal element that preserves the structure of the object we want
to construct. It is interesting that the greedy technique works for certain types of problems and
does not for others. The concept of matroid investigates on this aspect.

4.2 Another algorithm for a minimum partition forest

Here is a different algorithm for the search of a minimum partition forest with roots vi,..., v,
in a connected weighted graph G = (V, E,¢). We still indicate with F' = (V, E’) the forest.

Algorithm 2

begin
set up a minimum spanning tree T' = (V, 5) for G;
roots := {v1 };
E =T
for i =2 to p do
begin
let vg be the root to which v; is connected in F = (V, E');
let e be a maximum edge in the path v; ... vg;
E' = E'\ {e};
roots := roots U {v; }
end
end
Theorem 4. Algorithm 2 finds a minimum forest with roots vi, ..., vp.

Proof. Let F' be the output of Algorithm 2: clearly F'is a partition forest with roots v1,...,vp.
We prove it is minimum by showing that every elementary operation on F' has a nonnegative
cost, using Theorem 2.

If we consider an elementary operation internal to one of the components, consisting in adding
an edge a and removing an edge b in the cycle that has been created, certainly c¢(a) > ¢(b) as
otherwise the spanning tree T" obtained in the first part of the algorithm would have not been
minimum. Let’s consider now an elementary operation involving two different components that
consists in connecting them by adding the edge a and disconnecting them again by removing
the edge b in the path that joins the two roots. If a belongs to the tree T then a is maximum
in this path and c(a) > ¢(b). If a does not belong to T, then in T the two components are
connected by an edge ¢; obviously ¢(a) > ¢(c) because T is minimum and ¢(¢) > ¢(b) because ¢
is maximum in the path that joins the two roots: also in this case then c(a) > ¢(b). O

5 Minimal spanning trees with one degree constraint

Let G = (V, E, c) be again a connected weighted graph, let vg one of its nodes and k a positive
integer.! We want to solve the following problem: find a minimum spanning tree of G in which
the degree of vg is k. As we said in the footnote, we assume that the degree of vy in G is at least
k. We assume also that we do not disconnect G by removing any of the incident edges in vg. A
spanning tree of G with deg(vg) = k can be represented as in Figure 1.

We may think of v1,...,v; as the roots of the tree. Everything is underneath the roots in
the picture must be intended as a subtree and will be called a component of the tree. The nodes

'For the meaning k has in the following, we assume that k is not greater than the degree of 1o in the graph

G.

U1 V2 Uk

Figure 1: A model for a tree with deg(vg) = k. The triangular
structures below the roots have to be intended as subtrees.

of the components will be the “descendants” of their roots. These names are the same we have
with the partition forests: in fact the components of the tree are nothing but a partition forest
with roots vy, ..., v, for the subgraph of G generated by the nodes other than vy.

The following theorem can be easily proved.

Theorem 5. If (vg,v1) is a minimum cost edge among the incident edges in vg then a minimum
spanning tree for G exists with deg(vo) = k that contains (vo,v1).

Proof. Let T'(k) be a minimum spanning tree of G with deg(vg) = k. If T'(k) does not contain
(vo,v1) suppose in T'(k) v; is a descendant of the root ve. If (vg,v1) was not a minimum cost
edge incident in vy, the tree we obtain from T'(k) by adding (vg,v1) and removing (v, v2) would
be a tree with deg(vg) = k with cost less than T'(k). This contradicts the assumption T'(k) is
minimum. hence (vg,v2) is a minimum cost edge incident in vy, the same as (vp,v1): the tree
we obtain by adding (vg,v1) and removing (vg, v2) is then the minimum spanning tree of G with
deg(vg) = k we were looking for. O

Also for the trees with deg(vg) = k it is worthwhile to introduce the concept of elementary
operation, as it will be used in the following proofs. Since we want an elementary operation not
to modify the essential characteristics of the structure, for trees with deg(vg) = k we consider
elementary operations preserving the degree of vyg.

Be T'(k) then a minimum spanning tree of G with deg(vp) = k. An elementary operation on
T (k) preserving the degree of vy may be of three types:

1. (Root change in a component): if in T'(k) vy descends from vy, the elementary operation
consists in adding the edge (vg, v2) and removing the edge (vg,vy).

2. (On the components): it is an operation that does not involve the edges incident in vg; in
other words it is an elementary operation on the forest of the components of T'(k).

3. It consists in the following sequence of operations: addition of an edge (vg, v2), removal of
an edge a non incident in vy in the generated path, removal of an edge (vg,v1) and final
addition of an edge b that reconnects the tree.

Remarks. 1t is evident that the result of an elementary operation preserving the degree of vy
is a tree with deg(vg) = k. In the following, talking about elementary operations on a tree with
deg(vg) = k we will intend elementary operations preserving the degree of vy.

We present an algorithm for the search of a minimum spanning tree of G with deg(vg) = k.

Algorithm 3

begin
set up a minimum spanning tree 7' = (V' \ {vp}, S) for G for
the subgraph of G' generated by the nodes V' \ {v};
let (vp,v1) a minimum edge incident in wvp;
S:=85U {(Uo,vl)};
roots := {v1 };
while |roots| # k do
begin
for each node v such that (vg,v) exists with v ¢ roots, let e be a
maximum edge non incident in vg in the path v ... vg;
compute ¢ (v) = ¢(vg,v) — c(e);
let u be a node with minimum ¢ (u);
$ = S U{(t0,)} \ {e}:
roots := roots U {u};
end
end

Theorem 6. If T(k) is a minimum spanning tree of G with deg(vg) = k and vy ...vx are its
roots, then a minimum tree T'(k + 1) exists with deg(vg) = k 4+ 1 whose roots are vy . .. VgVE+1.

Proof. In order to facilitate the notations we give the proof in the case n = 4, but there is a
general validity. Suppose T'(4) and T'(5) are minimum spanning trees with deg(vg) = 4 and
deg(vg) = b respectively.

e T()

U1 V2 v3 V4
v3
AYATAYARNATATLIATA
Let’s assume that for example v3 is not a root in 7'(5): we want to show that we can always
find a minimum 77(5) in which vs is a root.
Let’s assume v3 is descendant of the root v. If in 7'(4) v descends from v3 we can make in
both trees an elementary operation of type 1:
(in T'(5)): U{(vo,v3)} \ {(vo,v)} has nonnegative cost as 7'(5) is minimum,
(in T(4)): U{(vo,v)} \ {(vo,v3)} has nonnegative cost as 7'(4) is minimum.
Clearly the cost is zero and we can obtain a 7"(5) simply by interchanging the two roots.
If instead in 7'(4) v does not descend from vz then in 7'(5) in the path vs...v there is an
edge a that can reconnect T'(4) after (vg, v3) has been removed. Let’s set

T@3)=T#)\{(vo,v3)} Ufa} e T(6) =T(5) U{(vo,v3)} \ {a}

Let u be a root in T'(6), different from v3, that is not a root in 7'(3). If either u is descendent
in T'(3) of a root v; not belonging to the component of u in T'(6) or w is in the component of vs,
the in the path w...v; there is an edge b that reconnects T'(6) after (vg,u) has been removed.
In this case:

Vo

T(3)

AAA N
VIATAtaYAYaYs

(in T'(5)): U{(vo,v3)}\{a}\{(vo,u)}U{b} in an elementary operation of type 3 with nonnegative
cost as 7T'(5) is minimum,
(inT(4)): \{(vo,v3)}U{a}U{(vo,u)}\{b} in an elementary operation of type 3 with nonnegative
cost as T'(4) is minimum.

The cost of the operation being null, it allows me to find the required tree T'(5).

Finally, if u is descendent in 7'(3) of a root v; belonging to the component of u in 7'(6),
then there is still the possibility for an elementary operation of type 1 by simply interchanging
the roots u and v;. The procedure can be repeated until all the roots in 7'(4) are also roots in
A(5). O

Theorem 7. Algorithm 3 finds a minimum spanning tree with deg(vg) = k.

Proof. By induction on the degree k.

If £ = 1 the thesis is clearly true. Suppose at step k a minimum tree with deg(vg) = k is
obtained and let T'(k) such a tree. Let T'(k + 1) be the tree we obtain after a further iteration
of Algorithm 3. Let finally 77(k + 1) be a minimum tree with deg(vg) = k+ 1. If vy ... vy are
the roots in T'(k), from Theorem 6 we may suppose that vy ... v, u be the roots in T"(k + 1).

Vo Vo

T(k) T(k+1)

Vk+1

aga && DA

T'(k+1)

Vk+1

YaRraYa

The components of T'(k) form a minimal forest with roots v; ... vy u for the same subgraph.
hence we can think of this second forest as obtained from the first with Algorithm 2, by removing
a maximum edge a in the path connecting u to its root. Remembering that 7'(k + 1) is obtained
from T'(k) by adding (v, vg+1) and removing a maximum edge b in the path connecting in
T'(k) vi41 to its root and remembering also this operation has minimum cost among all possible

operations, we have that

c(T(k+1)) = c(T(k)) + c(vo, vpy1) — c(b) < c(T(k)) + c(vo, u) — c(a) = c(T'(k + 1)).

Therefore, being T"(k + 1) of minimal cost, T'(k + 1) is also minimum. O

6 An example

Just to provide an application let us consider a simple numerical example. Here is a weighted
graph with six vertices in Figure 2. Let V = {v1,va,...,v6} is the vertex set of the graph.
o
3
2

2 ol4
3
\
5
Vle 3 ®us
4 4 1
5 /

v3 b 4 .’U,5

’U2.

Figure 2: A weighted graph with six vertices

We want to find a minimum spanning tree with deg(v;) = 3. First of all it is necessary to
set up a minimum spanning tree for the vertices V' \ {v1} = {v2,...,v6}. With the classical
algorithms for the (unconstrained) minimum spanning tree we get the pair vertices/edges

T = (V,S), where V.= {vg,...,v6} and S = {(va,v4), (vs3,v4), (v3,06), (v5,V6) }.

The tree is represented here below on the left.

2

V29 V4 V29 2 V4
/
V1o 2 *u Vg 2 ®u
1 1
2 2

vy ® o, 03 ® L o
Figure 3: A minimum spanning tree Figure 4: A minimum spanning tree
for V' \ {v1} with deg(v) =1

Now, by following the first step of Algorithm 3, (vi,v4) is a minimum edge incident in v;

and then we firstly update S = S U{(v1,v4)}, roots := {vs}. The new tree is represented above
on the right.

As |roots| # 3, we have to consider the nodes v such that (vi,v) exists with v ¢ roots. These
nodes are vq, v3, V5, vg. We have to compute for these nodes the “weights” ¢/ (v;) = ¢(v1,v;) —c(e),

10

where e is a maximum edge non incident in vy in the path v;...vy. We get

d(va) = c(vi,ve) —c(vy,v4) =6 —2=14
d(vs) = c(vi,v3) —c(vs,v4) =5—-2=3
d(vs) = c(vi,v5) —c(vs,v6) =4 —2 =2
d(vg) = c(vi,v6) —c(vs,v4) =3—-2=1

The vertex vg is chosen and consequently the arc (v3,v4) is removed from the tree.

V ={v1,v2,...,v6} and S = S U {(v1,v6)} \ {(v3,v4)}.

Figure 5: A minimum spanning tree with deg(v;) = 2

As |roots| # 3, we have to consider again the nodes v such that (v, v) exists with v ¢ roots.
These nodes are now vg, v3, v5. The weights are

d(va) = c(vi,ve) —c(vy,v4) =6 —2=14
d(vs) = c(vi,v3) —c(vs,v6) =5—1=4
d(vs) = c(vi,v5) —c(vs,v6) =4 — 2 =2

The vertex vs is chosen and consequently the arc (vs, vg) is removed from the tree.

V ={v1,v2,...,06} and S = S U {(v1,v5)} \ {(vs,v6)}.

A minimum spanning tree with deg(v1) = 3 is here below.

Figure 6: A minimum spanning tree with deg(v;) =3

11

7 Some considerations on the computational complexity

Suppose G has n nodes. At each iteration of Algorithm 3 we must find, for each of the roots,
the path that connects them to vy and find in this path a maximum cost edge. This operation
can be done easily if an orientation is given to the edges. We may think that in the tree every
node has a depth, given by the number of edges in the only path that connects the node to vg:
a node with depth 7 is a descendant of a node with depth 7 — 1. For the purposes of Algorithm
3 it is important to know, for every node its (unique) predecessor, in order to get the path that
connects it to a root.

Here is an algorithm that, with a fixed node vg, constructs an order of the nodes based on
the depths in relation to the root.

begin
predecessors := {vg};
S := set of the nodes of the tree;
while predecessors # () do
begin
descendants := (;
for each x € predecessors, if the edge (z,y)
exists in the tree and y € .S, then
descendants := descendants U {y};
pred(y) := x;
S := S\ predecessors;
predecessors := descendants;
end
end

Since the algorithm considers the nodes just once and for each of them the search for de-
scendants can be performed in n steps, the algorithm terminates in at most n? steps. Once the
nodes are sorted this way, the search for a maximum edge in the path connecting a root to vg
can be performed in at most n steps. Clearly after the removal of this edge the descendants
have to be updated: the picture shows what can happen.

Vo

U

Here r is a root and u and v are two possible roots. Suppose the algorithm decides on the
basis of costs to add edge (vp, u) and remove edge a. At the next step v no longer descend from
r but from u. We just need to reverse the order of descendants in the path w«...t, that can
be done in n steps. Remembering that a minimum spanning tree can be found in O(n?) steps,
Algorithm 3 for the search of a minimum spanning tree with deg(vo) = k requires O(kn?) steps
to terminate.

12

8 Further developments and conclusions

It is known that the greedy algorithm, namely the way of “choosing the best” one step after the
other, not always takes to the correct best final result. It depends on the kind of problem we
have. Interesting connections with the so called matroid theory exist. We have seen that with
the minimum spanning tree with one degree constraint, that is a degree constraint on one of
the vertices of the graph, the technique works. It is interesting that if we consider a slightly
generalised version of this problem, for example just the degree constraint on two of the vertices,
the greedy technique does not work any more. We intend to consider this problem in the general
context of degree-constrained minimum spanning tree in a future work.

References

[1] C. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree problems,
Journal of the Associationn for Computing Machinery, Vol. 29, No. 2, 1982, pp. 285-309.

[2] C. Papadimitriou, K. Steiglitz, Combinatorial optimization algorithms, Prentice-Hall, En-
glewood Cliffs, N.J., 1982.

[3] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis of computer algorithms,
Addison—Wesley, Reading, Mass., 1974.

[4] C. Berge, Graphs and hypergraphs, North-Holland Publishing Company, 1973.

13

