
1

A dynamic approach for workload partitioning
on GPU architectures

Federico Busato, Nicola Bombieri, Member, IEEE,

Abstract—Workload partitioning and the subsequent work item-to-thread mapping are key aspects to face when implementing any
efficient GPU application. Different techniques have been proposed to deal with such issues, ranging from the computationally simplest
static to the most complex dynamic ones. Each of them finds the best use depending on the workload characteristics (static for more
regular workloads, dynamic for irregular workloads). Nevertheless, no one of them provides a sound tradeoff when applied in both
cases. Static approaches lead to load unbalancing with irregular problems, while the computational overhead introduced by the
dynamic or semi-dynamic approaches often worsens the overall application performance when run on regular problems. This article
presents an efficient dynamic technique for workload partitioning and work item-to-thread mapping whose complexity is significantly
reduced with respect to the other dynamic approaches in literature. The article shows how the partitioning and mapping algorithm has
been implemented by fully taking advantage of the GPU device characteristics with the aim of minimizing the involved computational
overhead. The article shows, compares, and analyses the experimental results obtained by applying the proposed approach and
several static, dynamic, and semi-dynamic techniques at the state of the art to different benchmarks and over different GPU
technologies (i.e., NVIDIA Fermi, Kepler, and Maxwell) to understand when and how each technique best applies.

Index Terms—Computer Society, IEEE, IEEEtran, journal, prefix-scan, load balacing, GPU.

F

1 INTRODUCTION

Partitioning a workload and mapping work items to
threads are correlated important issues to face when struc-
turing and implementing any parallel application. In the
context of GPU applications, these tasks are generally imple-
mented by exploiting scan-based operations [1], [2]. Given a
list of input values and a binary associative operator, a prefix-
scan procedure computes a list of elements in which each
element is the reduction of the elements occurring earlier
in the input list [3], [4], [5], [6]. When the operator is the
addition, the prefix-scan represents a prefix-sum, which is
useful when parallel threads have to allocate dynamic data
within shared data structures such as global queues [7].

Given a workload to be allocated over the GPU threads
(see Fig. 1), prefix-sum is applied to efficiently calculate the
offset for each thread to access to the corresponding work-
items (coarse-grained mapping) or work-units (fine-grained
mapping) [8]. Nevertheless, even though prefix-scan opera-
tions allows the threads to efficiently access in parallel to the
corresponding data, they are not enough to solve the load
balancing problem. Indeed, the workload decomposition
and mapping strategies are left to the application designer.
How the application implements such a mapping can have
a significant impact on the overall application performance.

Different techniques have been presented in literature
to decompose and map the workload to threads through
the use of prefix-sum data structures [8], [9], [10], [11], [12],
[13], [14]. All these techniques differ from the complexity of
their implementation and from the overhead they introduce
in the application execution to address the most irregular
workloads. In particular, the simplest solutions [9], [10] ap-

• Federico Busato and Nicola Bombieri are with the Depart-
ment of Computer Science, University of Verona, Italy, email:
{name.surname@univr.it}.

A3	

A2	

A1	 B1	

C2	

C1	

D2	

F1	D1	

G2	

G1	E1	

E2	

E3	C3	

C4	

Workload

Work-item

E4	

E5	

H1	

H2	

H3	

0 1 2 3 4 5 6 7

E6	

E7	

F2	

F3	

F4	

C5	

G3	

Work-unit

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block0

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block1

0	 3	 4	 9	 11	 18	 22	 25	 28	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Exclusive prefix-sum

FIG. 1: Overview of the load balancing problem in the workload
partitioning and mapping to threads of scan-based applications

ply well to very regular workloads while they cause strong
unbalancing and, as a consequence, lost of performance in
case of irregular workloads. More complex solutions [8],
[11], [12], [13], [14] best apply to irregular problems through
semi-dynamic or dynamic workload-to-thread mappings.
Nevertheless, the overhead introduced for such a mapping
often worsens the overall application performance when
run on regular problems.

This article first presents an accurate analysis of the most
important and widespread load balancing techniques exist-
ing in the literature based on prefix-scan, by underlining
their advantages and drawbacks over different workload
characteristics. The analysis includes details on their coa-
lescing issues involved during the memory accesses both to
the prefix-sum structure and to the global memory, which
are strictly related to the strategy implementation.

2

Then the article presents an efficient dynamic partition-
ing and mapping technique, called Multi-phase Mapping, to
address the workload unbalancing problem in both regular
and irregular problems and how it has been implemented by
fully exploiting the GPU device characteristics. In particular,
Multi-phase Mapping implements a dynamic mapping of
work-units to threads through an algorithm whose complex-
ity is significantly reduced with respect to the other dynamic
approaches in the literature. This allows the proposed ap-
proach to efficiently handle irregular problems and, at the
same time, to provide good performance also when applied
to very regular and balanced workloads.

The article presents the experimental results obtained
by applying all the analysed techniques and Multi-phase
Mapping to different benchmarks and over different GPU
technologies (i.e., NVIDIA Fermi, Kepler, and Maxwell) to
understand when and how each technique best applies.

The article is organized as follows. Section 2 presents
the analysis of the related work. Section 4 presents the pro-
posed multi-phase mapping technique. Section 5 presents
the experimental results and their analysis, while Section 6
is devoted to the conclusions.

2 BACKGROUND AND RELATED WORK

2.1 The workload partitioning problem in GPUs
Consider a workload to be partitioned and mapped to GPU
threads (see Fig. 1). The workload consists of work-units,
which are grouped into work-items. As a simple and general
example, in the parallel breadth-first search (BFS) imple-
mentation for graphs, the workload is the whole graph,
the work-units are the graph nodes, and the work-items
are the node neighbours of each node. The native mapping
is implemented over work-items through the prefix-sum
procedure. A prefix-sum array, which stores the offset of
each work-item, allows the GPU threads to easily and ef-
ficiently access the corresponding work-units. Considering
the example of Fig. 1 associated to the BFS, the neighbour
analysis of eight nodes is partitioned and mapped to eight
threads. t0 elaborates the neighbours of node 0 (work-units
A), t1 elaborates the neighbours of node 1 (work-unit B),
and so on. Even though such a native mapping is very easy
to implement and does not introduce considerable overhead
in the parallel application, it leads to load imbalance across
work-items since, as shown in the example, each work-item
may have a variable number of work-units.

In the literature, the techniques for partitioning and
mapping (for the sake of brevity, mapping in the following) a
workload to threads based on prefix-sum for GPU applica-
tions can be organized in three classes: Static mapping, semi-
dynamic mapping, and dynamic mapping. They are all based
on the prefix-sum array that, in the following, is assumed
to be already generated (the prefix-sum array is generated,
depending on the mapping technique, in a preprocessing
phase [15], at run-time if the workload changes at every
iteration [8], [11], or it could be already part of the problem
[16]).

2.2 Static mapping techniques
This class includes all the techniques that statically assign
each work-item (or block of work-units) to a corresponding

A1	 B1	 C1	 F1	D1	 G1	H1	

t1 t0 t3
Warp0

t33 t32
Warp1

Block0

t2

A2	 C2	 D2	
A3	 C3	

C4	
C5	

id

id

id

id

id

id

id

id

id

E1	

t35 t34

F2	 G2	H2	E2	

F3	 G3	H3	E3	

F4	E4	

E5	

E6	

E7	

id

id

id

id

id

id

id id

id id id

FIG. 2: Example of work-items to threads mapping

A1	 B1	 C1	 F1	D1	 G1	 H1	

Warp0
Block0

A2	 C2	 D2	
A3	 C3	 C4	

C5	
id

id

id

id

id

id

id

E1	 F2	 G2	 H2	E2	

F3	 G3	 H3	E3	 F4	E4	

E5	 E6	

E7	

t1 t0

VW0

t3 t2

VW1
Warp1

id id

id

VW0 VW1

t32 t33 t34 t35

Warp2

t1 t0

VW0

t3 t2

VW1
Warp3

id

VW0 VW1

t32 t33 t34 t35

id id

id id

id

FIG. 3: Example of Virtual warps work-units mapping (black circles
represent coalesced memory accesses)

GPU thread. In general, this strategy allows the overhead
for calculating the work-item to thread mapping to be
negligible during the application execution but, on the other
hand, it suffers from load unbalancing when the work-units
are not regularly distributed over the work-items. The main
important techniques are summarized in the following.

2.2.1 Work-items to threads
It represents the simplest mapping approach by which each
work-item is mapped to a single thread [9]. Fig. 2 shows an
example, in which the eight items of Fig. 1 are assigned to a
corresponding number of threads. For the sake of clarity,
only four threads per warp have been considered in the
example to underline more than one level of possible unbal-
ancing of this technique. First, irregular (i.e., unbalanced)
work-items mapped to threads of the same warp lead the
warp threads to be in idle state (i.e., branch divergence). t1,
t3, and t0 of warp0 in Fig. 2 are an example. Irregular work-
items lead to whole warps to be in idle state (e.g., warp0
w.r.t. warp1 in 2).

In addition, considering that work-units of different
items are generally stored in non-adjacent addresses in
global memory, this mapping strategy leads to sparse and
non-coalesced memory accesses. As an example, threads
t0, t1, t2, and t3 of Warp0 concurrently access to the non
adjacent units A1, B1, C1, and D1, respectively. For all these
reasons, this technique is suitable to applications running on
very regular data structures, in which any more advanced
mapping strategy run at run time (as explained in the
following sections) would lead to unjustified overhead.

2.2.2 Virtual Warps
This technique consists of assigning chunks of work-units
to groups of threads called virtual warps, where the virtual

3

warps are equally sized and the threads of a virtual warp
belong to the same warp [10]. Fig. 3 shows an example in
which the chunks correspond to the work-items and, for
the sake of clarity, the virtual warps have size equal to
two threads. Virtual warps allow the workload assigned
to threads of the same group to be almost equal and,
as a consequence, it allows reducing branch divergence.
This technique improves the coalescing of memory accesses
since more threads of a virtual warp access to adjacent
addresses in global memory (e.g., t0, t1 of Warp2 in Fig. 3).
These improvements are proportional to the virtual warp
size. Increasing the warp size leads to reducing branch
divergence and better coalescing the work-unit accesses in
global memory. Nevertheless, virtual warps have several
limitations. Given the number of work-items and a virtual
warp size, the required number of threads is:

#RequiredThreads = #workitems · |VirtualWarp|

If the number is greater than the available threads,
the work-item processing is serialized with a consequent
decrease of performance. Indeed, a wrong sizing of the the
virtual warps can significantly impact on the application
performance. In addition, this technique provides good
balancing among threads of the same warp, while it does
not guarantee good balancing among different warps nor
among different blocks. Another major limitation of such a
static mapping approach is that the virtual warp size has to
be fixed statically. This represents a major limitation when
the number and size of the work-items change at run time.

The algorithm run by each thread to access the corre-
sponding work-units is summarized as follows:

VIRTUALWARP

1: VW INDEX = TH INDEX / |VirtualWarp|
2: LANE OFFSET = TH INDEX % |VirtualWarp|
3: INIT = prefixsum[VW INDEX] + LANE OFFSET
4: for i = INIT to prefixsum[VW INDEX+1] do
5: Output[i] = VW INDEX
6: i = i+ |VirtualWarp|
7: end

where VW INDEX and LANE OFFSET are the virtual warp
index and offset for the thread (e.g., VW0, and 0 for t0 in the
example of Fig. 3), INIT represents the starting work-unit id,
and the for cycle represents the accesses of the thread to the
assigned work-units (e.g., A1, A3 for t0 and A2 for t1).

2.3 Semi-dynamic mapping techniques

This class includes the techniques by which different map-
ping configurations are calculated statically and, at run time,
the application switches among them.

2.3.1 Dynamic Virtual Warps + Dynamic Parallelism
This technique has been introduced in the work [11] and
relies on two main strategies. It implements a virtual warp
strategy in which the virtual warp size is calculated and
set at run time depending on the workload and work-item
characteristics (i.e., size and number). At each iteration,
the right size is chosen among a set of possible values,
which spans from 1 to the maximum warp size (i.e., 32

FIG. 4: Example of Dynamic Virtual Warps + Dynamic Parallelism
work-units mapping where the dynamic parallelism is applied to a
subset of the workload with a power-law distribution

threads for NVIDIA GPUs, 64 for AMD GPUs). For per-
formance reasons, the range is reduced to power of two
values only. Considering that a virtual warp size equal to
one has the drawbacks of the work-item to thread technique
and that memory coalescence increases proportionally with
the virtual warp size (see Section 2.2.2), too small sizes are
excluded from the range a priori. The dynamic virtual warp
strategy provides a fair balancing in irregular workloads.
Nevertheless, it is inefficient in case of few and very large
work-items (e.g., in benchmarks representing scale free net-
works or graphs with power-law distribution in general).

On the other hand, dynamic parallelism, which exploits
the most advanced features of the GPU architectures (e.g.,
from NVIDIA Kepler on) [17] allows recursion to be im-
plemented in the kernels and, thus, threads and thread
blocks to be dynamically created and properly configured
at run time without requiring kernel returns. This allows
fully addressing the work-item irregularity. Nevertheless,
the overhead introduced by the dynamic kernel stack may
elude this feature advantages if replicated for all the work-
items unconditionally [11] [18].

To overcome these limitations, dynamic virtual warps
and dynamic parallelism are combined into a single map-
ping strategy and applied alternatively at run time. The
strategy applies dynamic parallelism to the work-items
having size greater than a threshold (DYNTH), otherwise it
applies dynamic virtual warps (Fig. 4 shows an example).
It best applies to applications with few and strongly unbal-
anced work-items that may vary at run time (e.g., applica-
tions for sparse graph traversal). This technique guarantees
balancing among threads of the same warps and among
warps. It does not guarantee balancing among blocks.

2.3.2 CTA+Warp+Scan
In the context of graph traversal, Merrill et al. [8] proposed
an alternative approach to the load balancing problem. Their
algorithm consists of three steps:

1) All threads of a block access the corresponding work-
item (through the work-item to thread strategy) and cal-
culate the item sizes. The work-items with size greater
than a threshold (CTATH) are non-deterministically or-
dered and, one at a time, they are (i) copied in the
shared memory, and (ii) processed by all the threads
of the block (called cooperative thread array - CTA).
The algorithm of such a first step (which is called strip-

4

A1	 B1	

C1	 F1	

D1	 G1	
H1	

t1	t0	 t3	
Warp0	

t33	t32	
Warp1	

Block0	

t2	

A2	

C2	

D2	A3	

C3	 C4	
C5	 id	id	 id	id	id	

E1	

t35	t34	

F2	

G2	
H2	

E2	

F3	

G3	 H3	

E3	

F4	

E4	 E5	 E6	 E7	

id	id	

id	

id	

id	

id	

id	 CTA	

WARP	

SCAN	

FIG. 5: Example of CTA+Warp+Scan work-units mapping (black
circles represent coalesced memory accesses)

mined gathering) is run by each thread (THID). It can be
summarized as follows:

STRIP-MINED GATHERING

1: while any(Workloads[THID] > CTATH) do
2: if Workloads[THID] > CTATH then
3: SharedWinnerID = THID
4: sync
5: if ThID = SharedWinnerID then
6: SharedStart = prefixsum[THID]
7: SharedEnd = prefixsum[THID + 1]
8: end
9: sync

10: INIT = SharedStart + THID%|THSET|
11: for i = INIT to SharedEnd do
12: Output[i] = SharedWinnerID
13: i = i+ |THSET|
14: end
15: end

where row 3 implements the non-deterministic order-
ing (based on iterative match/winning among threads),
rows 5-8 calculate information on the work-item to be
copied in shared memory, while rows 10-14 implement
the item partitioning for the CTA. This phase introduces
significant overhead for the two CTA synchronizations
and, rows 5-8 are run by one thread only.

2) In the second step, the strip-mined gathering is run
with a lower threshold (WARPTH) and at warp level.
That is, it targets smaller work-items and a cooperative
thread array consists of threads of the same warp. This
allows avoiding any synchronization among threads (as
they are implicitly synchronized in SIMD-like fashion
in the warp) and addressing work-items with sizes
proportional to the warp size.

3) In the third step the remaining work-items are processed
by all block threads. The algorithm computes a block-
wide prefix-sum on the work-items and stores the result-
ing prefix-sum array in the shared memory. Finally, all
threads of the block get use of such an array to access to
the corresponding work-unit. If the array size exceeds
the shared memory space, the algorithm iterates.

This strategy provides a perfect balancing among
threads and warps. On the other hand, the strip-mined gath-
ering procedure run at each iteration introduces a significant
overhead, which slows down the application performance
in case of quite regular workloads. The strategy well applies
only in case of very irregular workloads.

Thread 5

25

3

Thread Id
(From–To) Work-item

0 – 2 0

3 1

4 – 8 2

9 – 10 3

11 – 17 4

18 – 21 6

22-24 7

25-27 8

(a)

0 3 4 9 11 18 22 25 28

0 1 2 3 4 5 6 7 8

18

9

(b)

FIG. 6: Example of assignment of thread th5 to work-item 2 through
binary search over the prefix-sum array (a), and overall threads-items
mapping (b).

Fig. 5 shows an example of the three phases of the
algorithm in which the CTA phase computes the largest
work-item in one iteration, the Warp phase is applied on
work-items greater than three, and the Scan phase computes
the remaining work-units in two steps.

2.4 Dynamic mapping techniques
Contrary to static mapping, the dynamic mapping approaches
achieve perfect workload partition and balancing among
threads at the cost of additional computational overhead
at run time. The core of such a computation is the binary
search over the prefix-sum array. The binary search aims at
mapping work-units to the corresponding threads.

2.4.1 Direct Search
Given the exclusive prefix-sum array of the work-unit ad-
dresses stored in global memory, each thread performs a
binary search over the array to find the corresponding work-
item index (Fig. 6 shows an example). This technique pro-
vides perfect balancing among threads (i.e., one work-unit
is mapped to one thread), warps and blocks of threads. Nev-
ertheless, the large size of the array involves an arithmetic
intensive computation (i.e., #threads × binarysearch())
and the binary search performed by the threads to solve the
mapping to be very scattered. This often eludes the benefit
of the provided balancing.

2.4.2 Local Warp Search
To reduce both the binary search computation and the
scattered accesses to the global memory, this technique first
loads chunks of the prefix-sum array from the global to the
shared memory. Each chunk consists of 32 elements, which
are loaded by 32 warp threads through a coalesced memory
access. Then, each thread of the warp performs a lightweight
binary search (i.e., maximum log2(WarpSize) steps) over the
corresponding chunk in the shared memory.

In the context of graph traversal, this approach has been
further improved by exploiting data locality in registers
[11]. Instead of working on shared memory, each warp
thread stores the workload offsets in the own registers and
then performs a binary search by using Kepler warp-shuffle
instructions [17].

In general, the local warp search strategy provides a fast
work-units to threads mapping and guarantees coalesced
accesses to both the prefix-sum array and work-units in

5

global memory. On the other hand, since the sum of work
units included in each chunk of prefix-sum array is greater
than the warp size, the binary search on the shared memory
(or registers for the enhanced version for Kepler) is repeated
until all work-units are processed. This leads to more work-
units to be mapped to the same thread. Although this
technique guarantees a fair balancing among threads of
the same warp, it suffers from work unbalancing between
different warps since the sum of work-units for each warp
can be not uniform in general. For the same reason, it does
not guarantee balancing among blocks of threads.

2.4.3 Block Search
To deal with the local warp search limitations, Davidson
et al. [12] introduced the block search strategy through
cooperative blocks. Instead of warps performing 32-element
loads, in this strategy each block of threads loads a maxi
chunk of prefix-sum elements from the global to the shared
memory, where the maxi chunk is as large as the available
space in shared memory for the block. The maxi chunk size
is equal for all blocks. Each maxi chunk is then partitioned
by considering the amount of work-units included and the
number of threads per block. For example, considering that
the nine elements of the prefix-sum array of Fig. 1 exactly fits
the available space in shared memory and that each block is
sized 4 threads (for the sake of clarity), the maxi chunk will
be partitioned into 4 slots, each one including 7 work-units.
Finally, each block thread performs only one binary search
to find the corresponding slot.

With the block search strategy, all the units included in
a slot are mapped to the same thread. As a consequence,
all the threads of a block are perfectly balanced. The binary
searches are performed in shared memory and the overall
amount of searches is significantly reduced (i.e., they are
equal to the block size). Nevertheless, this strategy does not
guarantee balancing among different blocks. This is due to
the fact that the maxi chunk size is equal for all the blocks,
but the chunks can include a different amount of work-
units. In addition, this strategy does not guarantee memory
coalescing among threads when they access to the assigned
work-units. Finally, this strategy cannot exploit advanced
features for intra-warp communication and synchronization
among threads, such as, Kepler warp shuffle instructions.

2.4.4 Two-phase Search
Davidson et al. [12], Green et al [13] and Baxter [14] pro-
posed three equivalent methods to deal with the inter-block
load unbalancing. All the methods rely on two phases:
partitioning and expansion.

First, the whole prefix-sum array is partitioned into bal-
anced chunks, i.e., chunks that point to the same amount of
work-units. Such an amount is fixed as the biggest multiple
of the block size that fits in shared memory. As an example,
considering blocks of 128 threads, two prefix-sum chunks
pointing to 128×K units, and 1,300 slots in shared memory,
K is set to 10. The chunk size may differ among blocks (see
for example Fig. 1, in which a prefix-sum chunk of size 8
points to 28 units). The partition array, which aims at map-
ping all the threads of a block into the same chunk, is built
as follows. One thread per block runs a binary search on the
whole prefix-sum array in global memory by using the own

0	 3	 4	 9	 11	 18	 22	 25	 28	

A1	 A2	 A3	 B1	 C1	 C2	 C3	 C4	 C5	 D1	 D2	 E1	 E2	 E3	 E4	 E5	 E6	 E7	 F1	 ..	

Prefix-sum array
(shared memory)

NON-COALESCED MEM
ACCESSES

Global	
memory	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 ..	

Thread 0 Thread 1

Thread 0 Thread 1

I II III I III (Expansion step) II II

Thread 2

I

FIG. 7: Example of expansion phase in the two-phase strategy (10
work-units per thread)

global id times the block size (THglobal id × blocksize). This
allows finding the chunk boundaries. The number of binary
searches in global memory for this phase is equal to the
number of blocks. The new partition array, which contains
all the chunk boundaries, is stored in global memory.

In the expansion phase, all the threads of each block
load the corresponding chunks into the shared memory
(similarly to the dynamic techniques presented in the pre-
vious sections). Then, each thread of each block runs a
binary search in such a local partition to get the (first)
assigned work-unit. Each thread sequentially accesses all
the assigned work units in global memory. The number of
binary searches for the second step is equal to the block size.
Fig. 7 shows an example of expansion phase, in which three
threads (t0, t1, and t2) of the same warp access to the local
chunk of prefix-sum array to get the corresponding starting
point of assigned work-unit. Then, they sequentially access
the corresponding K assigned units (A1−D1 for t0, D2−F2

for t1, etc.) in global memory.
In conclusion, the two-phase search strategy allows the

workload among threads, warps, and blocks to be perfectly
balanced at the cost of two series of binary searches. The first
is run in global memory for the partitioning phase, while
the second, which mostly affects the overall performance, is
run in shared memory for the expansion phase. The number
of binary searches for partitioning is proportional to the K
parameter. High values of K involve less and bigger chunks
to be partitioned and, as a consequence, less steps for each
binary search. Nevertheless, the main problem of such a
dynamic mapping technique is that the partitioning phase
leads to very scattered memory accesses of the threads to the
corresponding work-units (see lower side of Fig. 7). Such a
problem worsens by increasing the K value.

3 THE PROPOSED MULTI-PHASE MAPPING

The proposed strategy aims at exploiting the balancing ad-
vantages of the two-phase algorithms while overcoming the
limitations of the scattered memory accesses. It consists of a
hybrid partitioning phase and an iterative coalesced expansion.

3.1 Hybrid partitioning

Differently from the dynamic techniques in literature, which
strongly rely on the binary search (see Section 2.4), the
proposed approach relies on a hybrid partitioning strategy
by which each thread searches the own work-items. Such a
hybrid strategy dynamically switches between an optimized
binary search and an interpolation search depending on the
benchmark characteristics.

6

3.1.1 Optimized binary search
In the standard implementation of the binary search, each
thread finds the searched element, on a prefix-sum array of
N elements, through one memory access in the best case
or through 2 logN memory accesses in the worst case (see
the example of Fig. 6). Indeed, at each iteration, each thread
performs two memory accesses, to check the lower bound
(value at the left of the index) and the upper bound (value at
the right of the index) to correctly update the index for the
next iteration. Nevertheless, in the context of binary search
on prefix-sum, since all threads must be synchronized by a
barrier before moving to the next iteration, and since at least
one thread executes all iterations involving 2 logN memory
accesses, each binary search actually has a time complexity
equal to 2 logN memory accesses.

In the proposed approach, each thread checks, at each
iteration, only the lower bound, thus involving only one
memory access per iteration. On the other hand, this ap-
proach requires all the threads to perform all iterations
(logN) indistinctly. Overall, such an optimization halves the
binary search complexity to logN memory accesses.

3.1.2 Interpolation search
In case of uniformly distributed inputs (i.e., low standard
deviation of work-item size) and a low average number
of work-units, the proposed approach implements an in-
terpolation search [19] in alternative to the optimized binary
search. The interpolation search has a very low complexity
(O(log logN)) at the cost of additional computation. The
algorithm pseudocode is the following:

INTERPOLATION SEARCH (Array, left, right, S)

1: while S ≥ Array[left] and S ≤ Array[right] do

2:
K = left + (S − Array [left]) ·

right−left
Array[right]−Array[left]

3: if Array [K] < S then
4: left = K + 1

5: else if Array [K] > S then
6: right = K − 1

7: else
8: return K
9: end

10: end

The idea is to use information about the underlying
distribution of data to be searched in a human-like fashion
when searching a word in a dictionary. Given a chunk of
prefix-sum elements (Array) and the item to be searched (S),
the procedure iteratively calculates the next search position
K (row 2 of the algorithm) by mapping S in the distribution
Array[left],Array[right]. The algorithm shows an average
number of comparisons equal to O(log log n) that increase
to O(N) in the worst case, differently to the binary search
that shows complexity O(logN) in all cases.

The main drawback is the higher computational cost
to calculate the next index of the search (row 2), which
involves double precision floating-point operations (divi-
sion, multiplication, and casting). Such operations present
a very low arithmetic throughput in GPU devices compared
with single precision operations. To limit such a cost, we

implemented the computation by minimizing the expensive
double precision operations and by replacing them with 64-
bit integer operations when possible.

The proposed hybrid approach switches between inter-
polation and binary search depending on the benchmark
characteristics. In particular, the interpolation search runs if
the following conditions hold:

Std Dev WIsize ≤ ThresholdSD
and
Average WIsize ≤ ThresholdAVG

where the standard deviation of the work-item size and
the average work-item size of the benchmark are calcu-
lated runtime. The switching between the two methods is
parametrized through the two thresholds that, as explained
in the experimental results, have been heuristically set to
ThresholdSD = 8 and ThresholdAVG = 9 for all the analysed
benchmarks.

3.2 Iterative Coalesced Expansion

In the expansion phase, all the threads of each block load the
corresponding chunks into the shared memory (similarly to
the dynamic techniques presented in the previous sections).
Then, each thread performs an binary search (optimized as
in the partitioning phase presented in Section 3.1.1) in such
a local partition to get the assigned work-unit.

Then, the expansion phase consists of three iterative sub-
phases, by which the scattered accesses of threads to the
global memory are reorganized into coalesced transactions.
This is done in shared memory and by taking advantage of
local registers:

1) Writing on registers. Instead of sequentially writing on
the work-units in global memory, each thread sequen-
tially writes a small amount of work-units in the local
registers. Fig. 8 shows an example. The amount of units
is limited by the available number of free registers.

2) Shared mem. flushing and data reorganization. After a
thread block synchronization, the local shared memory
is flushed and the threads move and reorder the work-
unit array from the registers to the shared memory.

3) Coalesced memory accesses. The whole warp of threads
cooperate for a coalesced transaction of the reordered
data into the global memory. It is important to note that
this step does not require any synchronization since
each warp executes independently on the own slot of
shared memory.

Steps two and three iterate until all the work-units assigned
to the threads are processed. Even though these steps in-
volve some extra computation with respect to the direct
writings, the achieved coalesced accesses in global memory
significantly improve the overall performance.

The shared memory size and the size of thread blocks
play an important role in the coalesced expansion phase.
The bigger the block size, the shorter the partition array
stored in shared memory. On the other hand, the bigger the
block size, the more the synchronization overhead among
the block warps, and the more the binary search steps
performed by each thread (see final considerations of the
Two-phase search in Section 2.4.4).

7

0	 0	 0	 3	 4	 4	 .	 9	 11	 11	 11	 11	 11	 .	 Thread	registers	

A1	 A2	 A3	 B1	 C1	 C2	 C3	 C4	 C5	 D1	 D2	 E1	 E2	 E3	 E4	 E5	 E6	 E7	 F1	 ..	

Prefix-sum	
array	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 ..	

Thread	1	Thread	0	

Thread	0	 Thread	1	

Threads		
0-9	

Threads		
10-19	 Coalesced		

memory		
accesses	

0	 3	 4	 9	 11	 18	 22	 25	 28	

Thread	0	 Thread	1	

I	 II	 III	 I	 III	II	 II	

Thread	2	

I	

Shared	Memory	

Shared	Memory	

Global	Memory	

WriLng		
on	registers	1

2
Shared	mem.	

flushing	and	data	
reorganizaLon	

3

FIG. 8: Overview of the coalesced expansion optimization (10 work-
units per thread)

0 3 4 9 11 18 22 25 28 .. 56

0 1 2 3 4 5 6 7 8 12

0 3 4 9 11 18 22 25 28 .. 56

0 1 2 3 4 5 6 7 8 12 13 14 Prefix-sum array (global memory)

0 #items_1 #items_2 #items_3

0 1 2 3 4 5

Partition array
(global memory)

#items_1

IS x #WU pointers to
work-units (=IS x Smem)

#items_2 #items_3

Partition
phase

IS x #WU pointers to
work-units (=IS x Smem)

IS x #WU pointers to
work-units (=IS x Smem)

Prefix-sum array
(shared memory)

Global-to-shared
mem copyTh0

I II III IV V

Th1

I II III IV

FIG. 9: Overview of the iterated search optimization (10 work-units
per thread and IS=2)

In particular, the overhead introduced to synchronize the
threads after the register writing (see sub-phase 1) is the
bottleneck of the expansion phase (each register writing step
requires two thread barriers). To reduce such an overhead,
we propose an iterative search optimization as follows:

1) In the partition phase, the prefix sum array is parti-
tioned into balanced chunks (see Fig. 9). Differently
from the two-phase search strategy, the size of such
chunks is fixed as a multiple of the available space in
shared memory:

ChunkSize = BlockSize×K × IS
where BlockSize×K represents the biggest number of
work-units (i.e., a multiple of the block size) that fits in
shared memory (as in the two-phase algorithm), while
IS represents the iteration factor. The number of threads
required in this step decreases linearly with IS.

2) Each block of threads loads from global to shared
memory a chunk of prefix-sum, performs the function
initialization, and synchronizes all threads.

3) Each thread of a block performs IS binary searches on
such an extended chunk.

4) Each thread starts with the first step of the coalesced
expansion (upper-side of Fig. 9), i.e., it sequentially
writes an amount of work-units in the local registers.
Such an amount is IS times larger than in the standard
two-phase strategy.

5) The local shared memory is flushed and each thread

moves a portion of the extended work-unit array from
the registers to the shared memory. The portion size is
equal to BlockSize×K . Then, the whole warp of threads
cooperate for a coalesced transaction of the reordered
data into the global memory, as in the coalesced expan-
sion phase presented in Section 3.2. This step iterates IS
times, until all the data stored in the registers has been
processed.

The iterative search optimization reduces the number of
synchronization barriers by a factor of 2 ∗ IS, avoids many
block initializations, decreases the number of required
threads, and maximizes the shared memory utilization dur-
ing the loading of the prefix-sum values with larger consec-
utive intervals. Nevertheless, the required number of regis-
ters grows proportionally to the IS parameter. Considering
that the maximum number of registers per thread is a fixed
constraint for any GPU device (e.g., 32 for NVIDIA Kepler
devices) and that exceeding such a constraint involves data
to be spilled in L1 cache and then in L2 cache or global
memory, too high values of IS may compromise the overall
performance of the proposed approach.

3.3 Optimizing the Multi-Phase implementation
The proposed algorithm achieves perfect load balancing
and overcomes the limitations related to scattered memory
accesses and synchronization overhead. In addition, the
algorithm structure is particularly well suited for advanced
optimizations targeting GPU architectures, which aim at re-
ducing the computational workload, simplifying the overall
execution flow, and improving the memory access pattern.

3.3.1 Full loop unrolling and intruction-level parallelism.
Loop unrolling is a common technique widely applied by
sequential code compilers to reduce the number of branch-
related instructions. Since GPU compilers cannot always
guarantee such an optimization (while preserving the se-
mantics correctness), loop unrolling has been forced in
Multi-phase Mapping, through #PRAGMA UNROLL directives
where possible, to take advantage of instruction level paral-
lelism (ILP) on the GPU device [20].

Loop unrolling has been forced in the coalesced expan-
sion phase: (i) in the chunk loading into shared memory
and (ii) in the subsequent iterative subphases (writing on
registers, shared memory flushing, and coalesced memory
accesses). Indeed, loop unrolling in these phases can be
applied since all threads perform the same number of loop
iterations and such a number is known at compile time.

3.3.2 Data and Pointer Hoisting.
Similarly to the loop unrolling optimization, loop-invariant
code motion has been forced to all kernel loops. It includes
hoisting of data and address computations as in the example
of Fig. 10.

3.3.3 Global data prefetching.
Data movement particularly affects the expansion phase of
the proposed algorithm. We optimized the global-to-shared
memory and shared-to-global memory data movement by
introducing an additional intermediate step between the
accesses to these memory spaces, as proposed in [21]. We

8

BEFORE HOISTING

1: for (; ;) do
2: x = y + z;
3: devInput[blockIdx.x + i] = x * x;
4: end

AFTER HOISTING

1: devInput += blockIdx.x;
2: x = y + z;
3: t = x * x;
4: for (; ;) do
5: devInput[i] = t;
6: end

FIG. 10: Example of data and pointer hoisting.

exploited the thread registers as fast intermediate local
memory, thus hiding the memory access latency.

3.3.4 Vectorized shared memory accesses.
The CUDA model provides vectorized memory accesses
(up to 16-bytes per single transaction) to fully exploit the
memory bandwidth. We implemented vectorized accesses
in almost all steps that involve shared memory and during
the expansion phase in global memory. The same technique
cannot be applied to global memory loads since the offset of
blocks in such a memory are not aligned.

3.3.5 Warp-synchronous programs.
In GPU computation, each thread warp executes in lock-
step way and it does not require any explicit synchroniza-
tion barrier to correctly preserve the semantics. In order
to eliminate communications and explicit synchronizations
also between warps, we organized the memory accesses by
splitting the shared memory in chunks of the same size on
which each warp can operate independently.

3.3.6 Scheduler overhead minimization.
Implementing the proposed partitioning and mapping ap-
proach requires a kernel structure similar to that shown in
Fig. 11. The kernel mainly consists of (i) an initialization
phase to declare and initialize data structures (rows 1-4), and
(ii) the actual computational phase on the data structures
(rows 6-8). The computational phase iterates (for loop in
rows 5-10) if the grid size (number of thread blocks) are less
than the generated chunks (see Section 3.2). The figure also
shows three different kernel configurations. Considering
that, in general, WorkLoadSize � ResidentThreads (i.e., 3-
4 orders of magnitude), configuration (a) generates much
more blocks than the other configurations (b, c). This allows
branch conditions involved by the loop construct and thread
barriers (row 9) to be avoided. On the other hand, the larger
number of blocks also involves more overhead due to the
initialization rows executed at each block context switch.
Such an overhead increases linearly with the initialization
activity and the number of generated blocks. The orthogonal
configuration (b) generates a smaller number of blocks,
reduces the block context switches but, on the other hand,
involves loop iterations, branch conditions, and synchro-
nization barriers. Multi-phase Mapping implements a trade-
off solution (c), where the number of blocks of solution (c) is
modulated by a constant,K. As reported in the experimental
results, solution (c) in which K has been heuristically set to

KERNEL IMPLEMENTATION (DEVICE SIDE):

1: var = 0 \\ Initialization
2: thread offset = ... \\ Initialization
3: shared SMem \\ Initialization
4: ... \\ Initialization
5: for (i = blockIdx.x; i < dWorkLoadSize

ChunkSize
e; i += gridDim.x) do

6: /* Computational phase
7: through SMem accesses
8: */
9: synchthreads()

10: end

KERNEL CONFIGURATIONS (HOST SIDE):

(a) deviceFunc≪
⌈
WorkLoadSize

ChunkSize

⌉
, blockDim ≫()

(b) deviceFunc≪
⌈
ResidentThreads

BlockSize

⌉
, blockDim ≫()

(c) deviceFunc≪
⌈
ResidentThreads

BlockSize

⌉
· K, blockDim ≫()

FIG. 11: Kernel structure and configurations.

32, provided the best scheduler overhead minimization in
all the analysed benchmarks.

3.3.7 Read-only cache and pointer aliasing.

Recent architectures introduce the read-only data cache [22],
[23]. It is faster and larger than the L1 cache, but requires
all data to be guaranteed read-only for the duration of the
whole kernel and not to be overlapped with other output
pointers (i.e., restrict pointer). We exploited the read-only
cache to load the global prefix-scan into the local memory.

4 COMPREHENSIVE COMPARISON OF COMPLEXITY
AND LIMITING FACTORS OF THE APPROACHES

To accurately compare Multi-phase Mapping and the existing
counterparts, we present an overall overview of the per-
formance limiting factors and the complexity analysis of
each approach core algorithm. Table 1 summarizes the main
performance limiting factors ordered by relevance for each
technique and corresponding sub-phases. Non-coalesced
memory accesses have a significant impact on the perfor-
mance and penalize most of the procedures that do not
implement an efficient cooperation among threads. Warp
divergence heavily affects the whole partitioning phase of
static techniques, while, in dynamic techniques, it is limited
to the computation of the binary search. The amount of
available shared memory also plays an important role from
the performance point of view in all the techniques based
on data locality. The partition phase of the Multi-phase and
Two-phase techniques suffers from non-coalesced memory
accesses and warp divergence. However, since this phase
involves a small fraction of the overall computation, such
limiting factors do not affect the overall performance signif-
icantly. In general, as shown in Table 1, Multi-phase Mapping
presents several and different limiting factors. However,
the impact of each factor in the corresponding sub-phase
is significantly lower than that in the counterparts. This
guarantees, as shown in the result section, the best overall
performance for all the different dataset typologies.

Given a workload consisting of N work-items and a
total number of W work-units, we express the complexity of

9

Technique Sub-phase Performance limiting factors

WORK-IT TO THREADS \ Non-coalesced memory accesses, warp divergence

VIRTUAL WARPS \ Non-coalesced memory accesses, warp divergence, block scheduling overhead,
Nontrivial tuning

DYN. VIRTUAL WARPS
+ DYN. PARALLELISM

Dyn. Virtual Warps Non-coalesced memory accesses, warp divergence, block scheduling overhead
Dyn. Parallelism Dynamic kernels overhead

CTA+WARP+SCAN
CTA Synchronization overhead
Warp \
Scan Available shared memory, synchronization overhead

DIRECT SEARCH \ Non-coalesced memory accesses, warp divergence

LOCAL WARP SEARCH \ Non-coalesced memory accesses, compute intensive

BLOCK SEARCH \ Non-coalesced memory accesses, synchronization overhead

TWO-PHASE SEARCH
Partition Non-coalesced memory accesses, warp divergence
Expansion Available shared memory

MULTI-PHASE
MAPPING

Partition - Binary Search Non-coalesced memory accesses, warp divergence
Partition - Interpolation Search Compute intensive
Expansion Available shared memory

TABLE 1: Summary of the performance limiting-factors.

Technique Work Complexity Parallel Complexity N. of required threads
Coalesced

accesses to
prefix-sum array

Coalesced
accesses to
work-units

WORK-IT TO THREADS O(W) O(WMAX) N Yes No

VIRTUAL WARP O(W) O
(

WMAX
|VirtualWarp|

)
N · |VirtualWarp| Yes Partial

DYN. VIRTUAL WARPS +
DYN. PARALLELISM

O(W) O
(

DynTh
|VirtualWarp|

)
N +

∑
Wi≥DynTH

Wi Yes Partial/Yes

CTA+WARP+SCAN O(W) maxi

Wi≥CTATH

Wi
|CTA|

Wi≥WarpTH
Wi
|Warp|

otherwise Wi

N Yes Yes

DIRECT SEARCH O(W · logN) O(logN) W No Yes

LOCAL WARP SEARCH O(W · log |Warp|)
O

(∑
i∈Warp

Wi

|Warp| ·log |Warp|

)
N Yes Yes

BLOCK SEARCH
O
(

N·|Block|
SMem

·log SMem+W

)
O

(
log SMem+

∑
i∈Block

Wi

|Block|

)
N Yes No

TWO-PHASE SEARCH

O
(

N

SMem
·log N

)
+

O

(
N·|Block|

SMem
·log SMem+W

) O (logN)+

O

(
log SMem+

W

N

)
W

SMem
+

N·|Block|
SMem

Yes No

MULTI-PHASE MAPPING

O
(

N

SMem·IS
·log N

)
+

O

(
N·|Block|

SMem
·log SMem+W

) O (logN)+

O

(
log SMem+

W

N

)
W

SMem·IS +
N·|Block|
SMem·IS Yes Yes

TABLE 2: Comprehensive comparison of complexity of the workload partitioning techniques. N is the number of work-
items, W is the total number of work-units, Wi is the number of work-units of a single work-item, WMAX is the maximum
number of work-units among all work-items, and SMem is the available shared memory. The Two-Phase Search and Multi-
Phase Search specify the complexity for the Partition and Expansion phases.

10

each technique in terms of work complexity (i.e., the time re-
quired by a single-thread execution of the approach), parallel
complexity (i.e., the time required by the parallel execution
of the approach with a hypothetical infinite number of
threads, also called critical path), number of threads required
for the overall computation, and coalesced memory accesses.
We distinguish the coalescing characteristics by specifying
whether the technique performs coalesced accesses to the
prefix-sum array (to load the work-unit addresses) and
coalesced accesses to the work-units in global memory.

The work complexity allows us to understand the work
efficiency of each technique, to be compared with the
work complexity of the reference sequential technique (i.e.,
O(W)). The number of required threads allows us to under-
stand how much each approach involves thread scheduling
activity. This is particularly relevant when considering N
much greater than the number of resident threads provided
by the GPU device.

Table 2 reports the results. All the static and semi-
dynamic techniques are work-efficient, as they achieve the
same work complexity of the sequential algorithm. On the
other hand, they present important differences in the par-
allel complexity, due to the different strategies adopted to
deal with the workload unbalancing. In the static and semi-
dynamic mapping classes, only CTA+Warp+Scan achieves
coalesced accesses on both the prefix-sum array and work-
units. The techniques based on virtual warps achieve coa-
lesced accesses on the prefix-sum array only among threads
of the same group. The Dynamic Virtual Warp + Dynamic
Parallelism technique allows for fully coalesced accesses only
in the child kernels invocations (i.e., with problems with very
high average of work-items size).

All the dynamic techniques pay extra overhead in work
complexity to uniformly distribute the workload among
GPU threads, but, on the other hand, their parallel com-
plexity is always logarithmic in the input size. Two-phase
Search and Multi-phase Mapping have the same parallel com-
plexity, but only the latter achieves full memory coalescing.
In addition, thanks to the iterative search (see Section 3.2),
Multi-phase Mapping improves the work complexity and the
number of required threads by a term of IS both in the
partition and expansion phases.

All techniques do not require extra (global) memory
space in addition to the input and output data, except for
Two-phase Search and Multi-phase Mapping that need W

SMem
and W

SMem·IS additional bytes, respectively, to store the par-
tition array. Finally, CTA+Warp+Scan, Two-phase Search, and
Multi-phase Mapping take advantage of the shared memory
to address the load balancing among threads of the same
block. As a consequence, they best apply in GPU devices
with a large amount of shared memory.

5 EXPERIMENTAL RESULTS

We tested the load balancing efficiency of all the techniques
presented in Section 2 and Multi-phase Mapping over differ-
ent benchmarks, whose characteristics are reported in Table
3. The benchmarks have been selected from The University
of Florida Sparse Matrix Collection [24], which consists of a
huge set of data representation from different contexts (e.g.,

0 1 2 3 4 5 6

0 7 9 2

1 3 8

2 4

3 4 3

4 1 5

5 6

6 2

Column Index

R
o

w
 In

d
ex

3 41

R
Row Index

C

13

4 0 3 6 5

0

0

1

3

2

5

3

7

0

4

9

2

5

11

1

6

12

0

Full matrix representation

V 37 9 2 3 8 4 4 1 5 6 2

Sparce matrix representation (CSR)

FIG. 12: The CSR data structure.

circuit simulation, molecular dynamic, road networks, lin-
ear programming, vibroacoustic, web-crawl). The six bench-
marks have been selected among the whole collection to
cover very different data characteristics in terms of average
work-item size, standard deviation from the item size, and
maximum work-item size. As summarized in the table, they
span from very regular to strongly irregular workloads.
Since sparse matrices are irregular by nature, we also in-
cluded a synthetic benchmark (regular8) to understand how
different algorithms behave in a very regular case.

In our problem formulation, the work-items correspond
to the rows of the input matrix, while the number of
work-units per work-item is the number of elements with
nonzero values in the matrix columns for both symmetric
and asymmetric matrix structures. The average work-item
size and the standard deviation have been computed by
considering the number of nonzero values independently
from the matrix structure. We computed the prefix-sum of
the number of work-units to generate the input data that is
equivalent to the row offset array of the CSR sparse matrix
format [25], [26], [27], [28]. CSR is one of most important and
widely used sparse-matrix format. It allows storing nonzero
elements (nnz) of a m× n matrix by using three arrays. Fig.
12 shows an example of a full matrix representation and the
corresponding CSR data structure. The C array of size |nnz|
is a concatenation row-by-row of the nnz column indices.
The R array consists of m + 1 elements that point at where
each row element list begins and ends within the array of
the column indices. The V array holds the corresponding
nnz values of the matrix. Since the specific values of the
matrix are not relevant for the load balancing problem, we
discard the V array and map the work-items and work-units
respectively to the R and C arrays.

The great-britain osm benchmark represents a road net-
work with very uniform distribution and low average. Cit-
patent represents the U.S. patent dataset, which has mod-
erate average and not-uniform distribution. web-NotreDame
is a web-crawl with a slightly higher average and middle-
sized standard deviation. Circuit5M represents a circuit sim-
ulation instance, which shows a very high standard devia-
tion. As-skitter is an autonomous system, while kron g500-
logn20 is a synthetic graph based on the Kronecker model.
The last two benchmarks are characterized both by highly

11

Workload Source Number of
Rows/Columns

Number of
nonzeros Structure Avg.

work-item size
Std. Dev.

work-item size
Max

work-item size

great-britain osm 7,733,822 16,313,034 symmetric 2.1 0.5 8

cit-Patents 3,774,768 16,518,948 asymmetric 4.8 7.5 770

web-NotreDame 325,729 1,497,134 asymmetric 5.2 21.4 3,445

regular8 1,000,000 8,000,000 asymmetric 8.0 0.0 8

circuit5M 5,558,326 59,524,291 asymmetric 10.7 1,356.6 1,290,501

as-Skitter 1,696,415 22,190,596 symmetric 13.1 136.9 35,455

kron g500-logn20 1,048,576 89,239,674 symmetric 96.2 1,033.1 413,378

TABLE 3: Benchmark Characteristics

GPU model N. of
SMs

N. of
cores

Mem.
Bandwitdh

DRAM
Memory

Shared
Memory

GeForce GTX 780
(Kepler) 12 2304 288 GB/s 3 GB 48 KB

Tesla K40 (Kepler) 15 2880 288 GB/s 12 GB 48 KB

GeForce GTX 980
(Maxwell) 16 2048 224 GB/s 4 GB 96 KB

GeForce GTX 460
(Fermi) 7 480 115 GB/s 1 GB 48 KB

GeForce GTX 570
(Fermi) 15 336 152 GB/s 1.2 GB 48 KB

TABLE 4: GPU Characteristics

not-uniform distribution, while they have low and high
average, respectively.

All the techniques have been integrated in a corre-
sponding basic application, in which the threads access and
update, in parallel, each work-unit of the benchmark work-
load. We ran the experiments on five GPU devices with three
different micro-architectures (Fermi, Kerpler, and Maxwell).
We included desktop-oriented devices (i.e., GeForce graph-
ics cards) and a HPC-oriented device (Tesla K40). Table
4 summarizes their characteristics in terms of number of
streaming multiprocessors (SMs), number of cores (stream
processors), DRAM memory bandwidth, available DRAM
memory, and shared memory.

Figures 13, 14, and 15 report the execution times required
by the reference application (implemented with each of the
analysed techniques) on the benchmarks. The benchmarks
are orderly presented from the most regular to the most ir-
regular. The reported values represent the best performance
obtained by tuning the kernel configuration in terms of
number of threads per block. For the GPU devices used
in this analysis, we obtained the best results with 128-256
threads per block for all the techniques. As confirmed by
the profiler, such a configuration led to the maximum device
occupancy and lowest synchronization overhead.

The results obtained with the Direct Search and Block
Search techniques are far worse than the other techniques
and, for the sake of clarity, have not been reported in the
figures. For the Two-Phase Search algorithm, we used the
well-know ModernGPU library [14] developed by NVIDIA
Research, which is based on the merge path algorithm
proposed by Green et al. [29]. All the other techniques have
been implemented by accurately following the algorithm
and optimization details presented in the corresponding
papers. Dynamic Virtual Warp and Local Warp Search use
advanced device features such as dynamic parallelism and

registers shuffle among warp threads that are not supported
by Fermi architectures (GTX 460 and GTX 570).

In the first benchmark (Fig. 13a), as expected, the static
techniques are the most efficient. This is due to the very reg-
ular workload and to the low average work-item size. The
semi-dynamic Dyn. VW + Dyn. Parallelism performs well
since the dynamic parallelism feature is always switched
off in such a regular workload. The static Virtual Warps
approach provides good performance as long as the virtual
warp size is properly set, while it sensibly worsens with
wrongly-sized warps. In this benchmark, any overhead for
the dynamic item-to-thread mapping may compromise the
overall algorithm performance (see for instance Local warp
search and Two-phase Search). However, the proposed Multi-
Phase Mapping is among the most efficient technique for
Kepler and Fermi architectures. The efficiency is comparable
with the best static approaches with the GTX 780, while it
is the most efficient technique with Tesla K40 and GTX 980.
This underlines the reduced amount of overhead introduced
by such a dynamic technique, which well applies also in case
of very regular workloads.

The second benchmark (Fig. 13b) presents slightly higher
average and standard deviation. Multi-phase Mapping shows
the best results with all devices, while the best static tech-
niques perform similarly to the semi-dynamic and dynamic
ones. Beside strongly depending on the virtual warp sizing,
the performance of the static techniques are very sensitive to
the GPU device characteristics. Their performance strongly
worsen (three times for the Work-items to threads, and almost
twice for the best sized Virtual Warps) even on different
devices of the same Kepler micro-architecture.

In web-NotreDame (Fig. 14a), Multi-phase Mapping is the
most efficient technique and provides almost twice the per-
formance with respect to the second best technique (Virtual
Warps). It is three times faster than the other dynamic
mapping techniques (Local Warp Search and Two-Phase) on
all the GPU devices. Also with this benchmark, the virtual
warp sizing strongly affects the Virtual Warps performance.
We noticed that the optimal virtual warp size is proportional
to the average of work-item sizes.

In these first three benchmarks, CTA+Warp+Scan, which
is one of the most advanced and sophisticated balancing
technique at the state-of-the-art, provides low performance.
This is due to the fact that the CTA and the Warp phases
are never or rarely activated, while the activation controls
involve much overhead.

Multi-phase Mapping provides the best results also in the
circuit5M benchmark (Fig. 14b). In such a benchmark, we
observed that the CTA+Warp+Scan, Two-Phase Search, and

12

0.7
0.8

1.2

0.7

1.6

1.31

1.6

0.9

0.8
0.9 0.9

1.3

0.9

1.5

1.28

1.6

1.0
0.80.9 0.9

0.9

1.5

0.9
1.0

1.11

1.0
0.8

0.7

0.0
0.2
0.4

0.6

0.8

1.0

1.2

1.4
1.6

1.8
2.0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 780 (Kepler)

Tesla K40 (Kepler)

GTX 980 (Maxwell)

2.1

2.9

5.0

9.8

4.8
4.2 4.1

3.4

1.2 1.4

2.3

4.6

8.8

2.2 2.4 2.2
1.9

0

1

2

3
4

5
6

7
8

9
10

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)

GTX 570 (Fermi)

8.42.2
3.04.3

6.0

2.2 4.3

8.3

19.7 39.8
18.4

Great-britain

// //

(a) great-britain osm

1.7

1.1
0.9

1.3

2.2

0.9

1.3
1.2 1.3

0.9
0.8

3.1

1.8

1.4 1.4

2.2

1.3 1.3 1.1

1.5

0.9
0.8

2.1

1.3

1.0 1.0

1.6

3.1

1.0

0.7

1.0
0.8

0.7
0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 780 (Kepler)
Tesla K40 (Kepler)
GTX 980 (Maxwell)

5.2

3.2 3.4

5.6
5.2

3.7
3.4

3.0

5.1

2.7

1.9
2.6

4.4

8.8

2.4
1.9 1.8 1.6

0
1

2
3

4

5

6

7

8
9

10

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)
GTX 570 (Fermi)

Cit-Patent

4.1 4.1

10.0 19.9

// //

(b) cit-Patent
FIG. 13: Comparison of execution time on the benchmarks.

0.37

0.19

0.12 0.13

0.22

0.38

0.13

0.22

0.27 0.27

0.11

0.29

0.15 0.14

0.21

0.38

0.14

0.24

0.29 0.30

0.09

0.22

0.14

0.10 0.11

0.16

0.29

0.12

0.15

0.18
0.20

0.07

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 780 (Kepler)
Tesla K40 (Kepler)
GTX 980 (Maxwell)

0.78

0.35
0.29

0.47

0.91

0.00

0.54

0.00

0.44

0.32

0.64

0.32

0.18
0.24

0.39

0.8

0.31 0.30

0.16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)

GTX 570 (Fermi)

0.58

1.7

// //

(a) web-NotreDame

119.6

54.8

28.0

15.4
11.0 9.4

2.4 2.4

67.1

2.9
2.0

138.4

67.1

35.2

18.8
12.9 11.3

5.5

2.6

74.8

2.9
2.1

22.8

11.7

7.4
6.0 5.2 5.4

2.9
2.0

39.6

1.8 1.6

1

2

4

8

16

32

64

128

256

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 780 (Kepler)
Tesla K40 (Kepler)
GTX 980 (Maxwell)

115.2

61.2

33.1

22.0 19.9
29.1

8.8

89.7

47.7

25.8

15.7
12.9 14.9

4.1

1

2

4

8

16

32

64

128

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)

GTX 570 (Fermi)

// // // //

(b) circuit5M

FIG. 14: Comparison of execution time on the benchmarks.

13

7.9

3.5

2.0

1.3 1.3

2.1

1.3
1.0

8.3

1.2
0.8

6.0

3.6

2.6
2.2 2.3 2.3

0.9

8.9

1.2 0.8

3.6

2.0
1.5 1.4 1.3

1.6
1.3

0.6

5.0

0.8 0.5

0

1

2

3

4

5

6

7

8

9
Ex

e
cu

ti
o

n
 T

im
e

 (
m

s)
GTX 780 (Kepler)

Tesla K40 (Kepler)

GTX 980 (Maxwell)

7.1

3.0 3.0

4.9

8.8

3.7
3.4

3.0

7.2

3.4

2.0
2.4

4.4

1.6 1.7 1.5

0

1

2

3

4

5

6

7

8

9

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)
GTX 570 (Fermi)

16.7
16.5

13.7

As-skitter

// //

(a) as-Skitter
(b) kron g500-logn20

FIG. 15: Comparison of execution time on the benchmarks.

0.92

0.46

0.24

0.31

0.57

0.31
0.35

0.41

0.57

0.32 0.32

0.92

0.45

0.25

0.36

0.67

0.25
0.33

0.40

0.60

0.38
0.32

0.80

0.46

0.24
0.28

0.45

0.85

0.24 0.24

0.39
0.46

0.31
0.26

0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8
0.9

1.0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 780 (Kepler)
Tesla K40 (Kepler)
GTX 980 (Maxwell)

2.5

1.2

0.8

1.2

2.6

1.3

1.7
1.5

1.2

1.8

0.8

0.4
0.6

1.1

2.2

0.5

1.0
0.7

0.6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

GTX 460 (Fermi)
GTX 570 (Fermi)

// //

5.4

1.29
1.11

regular8FIG. 16: Comparison of execution time on the regular8 benchmark.

Multi-phase Mapping dynamic techniques are one order of
magnitude faster than the static ones.

In web-Notredame and in circuit5M, Multi-phase Mapping
shows the best results due to the low average (less than
warp size) and high standard deviation.

In the last irregular benchmarks, as-skitter (Fig. 15a)
and kron g500-logn20 (Fig. 15b), Multi-phase Mapping and
CTA+Warp+Scan provide the best results. In the most ir-
regular benchmark (kron g500-logn20) CTA+Warp+Scan has
slightly better performance than Multi-phase Mapping par-
ticularly on the GTX 780 device, since the CTA and Warp
phases are frequently activated and exploited. Since Kepler
devices are throughput-oriented architectures (higher mem-
ory bandwidth) while Maxwell devices are more focused
on power consumption, CTA+Warp+Scan provides better
performance on GTX 780 than GTX 980 device by exploiting
the higher memory bandwidth of the former.

Dynamic Virtual Warps and Virtual Warps provide similar
performance. They are very efficient on benchmarks with
high-average work-item sizes since, with a thread group size
of 32, they completely avoid warp divergence.

In the regular benchmark, regular8 (Fig. 16), the most
efficient technique is the Virtual Warps for all the considered
GPU devices as expected. The perfectly uniform workload
benefits from the static techniques in which the size of the
thread group is properly set according to the benchmark
characteristics. While the work-unit average equal to eight
should provide higher performance for 8-thread groups, 4-
threads virtual warps show lower execution time thanks to
a smaller block scheduling overhead. CTA+Warp+Scan and

14

4.90

4.10

3.503.30

5.30

0.120.230.360.58
0.87

5.02

4.33
3.863.88

6.17

0.090.130.170.200.30

4.99

4.23
3.673.50

5.60

-1

0

1

2

3

4

5

6

7

102451225612864

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Kernel Block Size

Expansion Partition
Partition + Expansion Interpolation - Partition
Interpolation - Partition + Expansion

FIG. 17: Execution time of Partition and Expansion phases by varying
the block size (on 226 items with unif. distributed random work-sizes).

Multi-Phase Mapping provide slightly lower performance
since they involve extra work to organize the computation.

Finally, we observed that the Dynamic Parallelism feature,
implemented in the corresponding semi-dynamic technique,
finds the best application with the GTX 780 device and only
when the work-item sizes and their average are very large.
In any case, all the dynamic load balancing techniques, and
in particular Multi-phase Mapping, perform better without
such a feature in all the analysed datasets. GPU devices with
limited DRAM memory (GTX 460 and GTX 570) do not sup-
port Circuit5M and kron g500-logn20 with Two-Phase Search
and Multi-phase Mapping as they need additional space
to store the intermediate partitioning results. In general
we observed that all the techniques provide performance
two/three times better on recent architectures (i.e. Kepler
and Maxwell) than on the previous GPU generation (Fermi).

5.1 Multi-phase Mapping Analisys

Fig. 17 shows the impact of the thread block size on the
performance of the main phases of Multi-phase Mapping.
The partition phase performance improves linearly to the
block size. This is due to the fact that large blocks involve
the input workload to be partitioned in fewer work-unit
chunks and, as a consequence, they require fewer threads
for such a computation. The computation is completely
independent among threads. In contrast, large block sizes
penalize the performance of the expansion phase. This is due
to the synchronization overhead required to coordinate the
shared memory accesses. We observed that the best trade-
off size of blocks is 128 or 256 (see the partition+expansion
line in Fig. 17).

Fig. 18 depicts the contribution of each of the three
main steps of the expansion phase to the overall kernel
execution time, for the Kepler and Maxwell architectures.
For both architectures the main step of the load balancing
(i.e., binary searches) takes more than one third of the whole
execution. The time spent for the store activity is two/three
times higher than the time spent for loading data, even
though data storing involves much more memory accesses
than data loading. This is due to the fact that the size
of the data loaded into the block local memory is known
only at run-time. This prevent us form applying any of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Kepler Maxwell

G
P

U
 W

o
rk

lo
ad

Data Load Load Balancing

Data Store

FIG. 18: GPU workload breakdown of Multi-phase algorithm on
Kepler and Maxwell Architectures

9.3

8.2
8.3 8.3

8.2

8.8

9.7

23

28

32
34

42

50

26

20

25

30

35

40

45

50

55

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

1 2 3 4 5 6 7

N
. o

f
R

e
gi

st
e

rs

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

N. of Iterations Per Block (IS)

FIG. 19: Execution time by varying the number of iterations (on 226

work-items with uniformly distributed random work-item sizes).

optimizations presented in Section 3.3, in particular, loop
unrolling and vectorized memory accesses.

Fig. 19 reports the Multi-phase Mapping execution time
obtained by varying the number of iterations (i.e., the IS
value). IS affects the number of required registers and, as a
consequence, the overall balancing performance. In the GPU
devices used for these experiments, the maximum number
of registers per thread is 32. As for the standard behaviour
of GPU devices, exceeding such a threshold involves data
to be spilled in L1 cache and then in L2 cache or global
memory. With IS values from two to five, we obtained the
best performance, as all the data elaborated by the threads
mainly fits in registers and, in small part, in L1 cache. From
seven iterations onwards, the performance drastically de-
creases since the compiler places the data variables outside
the on-chip memory.

6 CONCLUSIONS

This article presented an accurate analysis of the load bal-
ancing techniques based on prefix-scan in the literature, by
underlining their advantages and drawbacks over differ-
ent workload characteristics. The article then presented an
advanced dynamic technique, called Multi-phase Mapping,
which addresses the workload unbalancing problem by
fully exploiting the GPU device characteristics. The paper
showed how Multi-phase Mapping implements a dynamic
partitioning and mapping approach through an algorithm
whose complexity is sensibly reduced with respect to the
other dynamic approaches. This allows the proposed ap-
proach to provide good performance when applied both to
very irregular and to regular and balanced workloads. The

15

article presented a comparison between the proposed solu-
tion and the existing approaches by considering different
benchmarks as well as different GPU architectures in order
to understand advantages and drawbacks of each technique
also considering the underlying device characteristics.

REFERENCES

[1] G. E. Blelloch, Vector Models for Data-Parallel Computing. Cam-
bridge, MA, USA: MIT Press, 1990.

[2] ——, “Scans as Primitive Parallel Operations,” IEEE Transactions
on computers, vol. 38, no. 11, pp. 1526–1538, 1989.

[3] M. Billeter, O. Olsson, and U. Assarsson, “Efficient Stream Com-
paction on Wide SIMD Many-core Architectures,” in Proceedings of
the ACM Conference on High Performance Graphics 2009, 2009, pp.
159–166.

[4] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Man-
ferdelli, “Fast Scan Algorithms on Graphics Processors,” in Pro-
ceedings of the 22nd ACM Annual International Conference on Super-
computing, ser. ICS ’08, 2008, pp. 205–213.

[5] D. Merrill and A. Grimshaw, “Parallel Scan for Stream Architec-
tures,” Department of Computer Science, University of Virginia,
Tech. Rep. CS-200914, 2009.

[6] S. Sengupta, M. Harris, M. Garland, and J. D. Owens, “Scientific
Computing with Multicore and Accelerators,” 2011.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms. MIT press, 2009.

[8] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proceedings of ACM Symposium on Principles and
Practice of Parallel Programming, vol. 47, no. 8, 2012, pp. 117–128.

[9] P. Harish and P. J. Narayanan, “Accelerating Large Graph Al-
gorithms on the GPU Using CUDA,” in Proceedings of the 14th
IEEE International Conference on High Performance Computing, ser.
HiPC’07, 2007, pp. 197–208.

[10] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA Graph Algorithms at Maximum Warp,” in Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’11, 2011, pp. 267–276.

[11] F. Busato and N. Bombieri, “BFS-4K: an Efficient Implementation
of BFS for Kepler GPU Architectures,” IEEE Transactions on Parallel
Distributed Systems, vol. 26, no. 7, pp. 1826–1838, 2015.

[12] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-
Efficient Parallel GPU Methods for Single-Source Shortest Paths,”
in Proceedings of IEEE Parallel and Distributed Processing Symposium,
2014 IEEE 28th International, 2014, pp. 349–359.

[13] O. Green, R. McColl, and D. A. Bader, “GPU Merge Path: a GPU
Merging Algorithm,” in Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 331–340.

[14] S. Baxter, “Modern gpu library.” [Online]. Available: http:
//nvlabs.github.io/moderngpu/

[15] K. Xu, Y. Wang, F. Wang, Y. Liao, Q. Zhang, H. Li, and X. Zheng,
“Neural decoding using a parallel sequential Monte Carlo method
on point processes with ensemble effect,” BioMed research interna-
tional, 2014.

[16] C. Yang, Y. Wang, and J. D. Owens, “Fast Sparse Matrix and Sparse
Vector Multiplication Algorithm on the GPU,” Proceedings of IEEE
Parallel and Distributed Processing Symposium Workshop (IPDPSW),
pp. 841–847, 2015.

[17] NVIDIA Corporation, “Kepler GK110,” www.nvidia.com/
content/PDF/kepler/NV DS Tesla KCompute Arch May
2012 LR.pdf.

[18] F. Busato and N. Bombieri, “An Efficient Implementation of the
Bellman-Ford Algorithm for Kepler GPU Architectures,” IEEE
Transactions on Parallel Distributed Systems, vol. 27, no. 8, pp. 2222–
2233, 2016.

[19] Y. Perl, A. Itai, and H. Avni, “Interpolation Search—a log log N
Search,” Communications of the ACM, vol. 21, no. 7, pp. 550–553,
1978.

[20] V. Volkov, “Better Performance at Lower Occupancy,” in Proceed-
ings of the GPU Technology Conference, GTC, vol. 10, 2010, p. 16.

[21] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing
GPU Memory Bandwidth via Warp Specialization,” in Proceedings
of ACM international conference for high performance computing, net-
working, storage and analysis, 2011, p. Art. n. 12.

[22] NVIDIA Corporation, “Kepler Tuning Guide.”
[23] ——, “CUDA C programming guide v7.5.”

[24] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, vol. 38,
no. 1, pp. 1:1–1:25, Dec. 2011.

[25] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector Mul-
tiplication on Throughput-Oriented Processors,” in Proceedings of
the ACM Conference on High Performance Computing Networking,
Storage and Analysis, 2009, p. Art. n.18.

[26] D. Langr and P. Tvrdik, “Evaluation Criteria for Sparse Matrix
Storage Formats,” IEEE Transactions on Parallel Distributed Systems,
vol. 27, no. 2, pp. 428–440, 2016.

[27] Y. Saad, Iterative methods for sparse linear systems. Siam, 2003.
[28] P. Mironowicz, A. Dziekonski, and M. Mrozowski, “A Task-

Scheduling Approach for Efficient Sparse Symmetric Matrix-
Vector Multiplication on a GPU,” SIAM Journal on Scientific Com-
puting, vol. 37, no. 6, pp. C643–C666, 2015.

[29] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk, “Merge
Path - Parallel Merging Made Simple,” in Proceedings of IEEE
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012, pp. 1611–1618.

Federico Busato received the Master degree in
Computer Science from the University of Verona
in 2014. Currently he is a Ph.D. student at the
University of Verona, Department of Computer
Science. His research activity focuses on high
performance computing and graph theory.

Nicola Bombieri received the PhD in Computer
Science from the University of Verona in 2008.
Since 2008, he is researcher and Professor As-
sistant at the Dept. of Computer Science of the
University of Verona. His research activity fo-
cuses on high performance computing, design
and verification of embedded systems, and auto-
matic generation and optimization of embedded
SW. He has been involved in several national
and international research projects and has pub-
lished more than 80 papers on conference pro-

ceedings and journals.

