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Abstract
Online planning methods for partially observable
Markov decision processes (POMDPs) have re-
cently gained much interest. In this paper, we pro-
pose the introduction of prior knowledge in the
form of (probabilistic) relationships among dis-
crete state-variables, for online planning based on
the well-known POMCP algorithm. In particu-
lar, we propose the use of hard constraint net-
works and probabilistic Markov random fields to
formalize state-variable constraints and we extend
the POMCP algorithm to take advantage of these
constraints. Results on a case study based on Rock-
sample show that the usage of this knowledge pro-
vides significant improvements to the performance
of the algorithm. The extent of this improvement
depends on the amount of knowledge encoded in
the constraints and reaches the 50% of the average
discounted return in the most favorable cases that
we analyzed.

1 Introduction
Planning in large uncertain environments is a key task for au-
tonomous and intelligent agents [Boutilier et al., 1999]. Sev-
eral approaches and modeling frameworks were developed
to deal with this problem in research fields as artificial in-
telligence [Russell and Norvig, 2003] and robotics [Thrun
et al., 2005]. Partially Observable Markov Decision Pro-
cesses (POMDPs) [Kaelbling et al., 1998] provide a standard
framework for modeling uncertainty in dynamical environ-
ment. They combine the strengths of Hidden Markov Models
[Bishop, 2006] and Markov Decision Processes [Russell and
Norvig, 2003], by capturing dynamics that depend on both
unobserved states and effects of sequential decisions.

Computing optimal policies [Sutton and Barto, 2018] for
POMDPs is a complex task. Since solving POMDPs exactly
is computationally intractable [Papadimitriou and Tsitsiklis,

1987], a lot of effort was put on approximate [Hauskrecht,
2000] and online [Ross et al., 2008] algorithms, and in recent
years impressive progress was made in this direction. Many
improvements were derived from the use of Monte Carlo Tree
Search (MCTS) [Browne et al., 2012], that have enabled the
solution of problems with very large state spaces. This search
strategy can find optimal solutions by taking random sam-
ples in the decision space and building a search tree according
to the results obtained from the simulation of these samples.
The first POMDP solvers based on Monte Carlo search dates
back to 2000 [Thrun, 2000], but the pioneer algorithm for
more recent improvements is arguably Partially Observable
Monte Carlo Planning (POMCP) [Silver and Veness, 2010],
which combines a Monte Carlo update of the agent’s belief
state with an MCTS-based policy.

In this paper, we aim at solving specific planning problems
in which the hidden state is described by n discrete state-
variables, and also some prior knowledge is available about
the relationships between state-variables values. There ex-
ist several problems having this structure. A synthetic one is
the well-known Rocksample [Smith and Simmons, 2004], in
which state-variables represent (unknown) rock values, and
some plausible prior knowledge can be provided by relation-
ships between rock values (e.g., rocks with similar color or
shape could have higher probability to have equal value).
A real-world problem having the same structure is that of
intelligent battery management for aquatic drones [Farinelli
et al., 2012; Duranti, 2015; Ferri et al., 2015; Griffith and
Pradalier, 2015; Castellini et al., 2018]. Since battery con-
sumption is heavily influenced by environmental factors, such
as, flowing current and wind, state-variables can be used in
this context to represent the difficulty level of path segments
(in terms of energy requirements), and state-variables rela-
tionships to represent the similarity between segment diffi-
culties, which depends on the similarity between environ-
mental features. Equivalent problems can be found also in
unmanned aerial and ground vehicles [Sadrpour et al., 2012;
LeSage and Longoria, 2013; Hamza and Ayanian, 2017].



We propose two methods for representing state-variable
relationships, namely, constraint networks (CNs) [Dechter,
2003] and Markov random fields (MRFs) [Bishop, 2006;
Murphy, 2012]. The first enables the definition of hard con-
straints, the second the use of probabilistic constraints. Then,
we present a novel extension of the POMCP algorithm that
takes advantage of the prior knowledge introduced by these
constraints. Finally, we compare the performance (in terms of
average discounted return) of the standard POMCP algorithm
with that of its extended versions, and quantify the impact of
different amounts and types (hard/probabilistic) of constraints
on this performance. Results show that POMCPs take advan-
tage of prior knowledge about state-variable relationships, in
terms of both improved average discounted return and speed
to accumulate the reward.

The contribution of this work is three-fold:

• we formalize the problem of Partially Observable Monte
Carlo Planning with state-variable relationships;

• we extend the POMCP algorithm with CNs and MRFs
to cope with constraints between state-variables;

• we systematically analyze the performance of the ex-
tended POMCP depending on different levels of prior
knowledge introduced by state-variable constraints.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 formalizes our extension to
POMCPs. In Section 4 results on Rocksample are described.
Section 5 draws conclusions and directions for future work.

2 Related Work
Some recent work concerns the improvement of planning
performance in specific application contexts where assump-
tions can be made regarding the structure of the problem.
An example is [Amato and Oliehoek, 2015], in which the
multiagent structure of a problem is used to decompose the
value function into a set of overlapping factors that enable
scalability and performance improvements in POMCP. Also
[Lee et al., 2018] recently presented a scalable extension of
POMCP for dealing with cost constraints while maximiz-
ing rewards. However, this work solves a different prob-
lem: we use constraints on the state space to refine the be-
lief space and increase performance (in terms of less ac-
tions or shorter execution time), while [Lee et al., 2018] pro-
poses cost-constraints to solve problems with multiple objec-
tives. Other related work concerns factored POMDPs and
their applications [Müller et al., 2012; J. D. Williams, 2005;
McAllester and Singh, 1999]. Our perspective is however
substantially different, since we do not propose a specific fac-
tored POMDP framework but the extension of an online plan-
ning method to incorporate prior knowledge on the domain.

3 Methods
We formalize the problem, describe CNs and MRFs for rep-
resenting state-variable relationships, and introduce extended
POMCPs that use this knowledge for policy generation.

3.1 Problem Formalization
A POMDP [Kaelbling et al., 1998] is a tuple
(S,A,O, T, Z,R, γ), where S is a finite set of states,
A is a finite set of actions, Z is a finite set of observa-
tions, T : S × A → Π(S) is the state-transition model,
O: S ×A→ Π(Z) is the observation model, R: S ×A→ R
is the reward function and γ ∈ [0, 1) is a discount factor.
The goal of an agent operating a POMDP, is to maximize
its expected total discounted reward (also called discounted
return) E[

∑∞
t=0 γ

tR(st, at)], by choosing the best action at
in each state st at time t; γ is used to reduce the weight of
distant rewards and ensure the (infinite) sum’s convergence.

In this context, we define a planning problem in which
the (hidden) state s is fully described by n discrete state-
variables, called X1, . . . , Xn. Hence, a specific configura-
tion (x1, x2, . . . , xn) of all state-variables fully describes the
hidden state, where xi ∈ D and D = {d1, . . . , dk} is the
domain of all state-variables. For instance, in the well-known
Rocksample problem, state-variablesX1, . . . , Xn are the (un-
known) values of rocks and D = {0, 1}, where 1 represents a
valuable rock and 0 a valueless rock. A possible hidden state
could be s = (0, 1, 1, 1, 0), i.e., the first and last rocks are
valueless, and the second, third and fourth rocks are valuable.
In the intelligent battery management problem for aquatic
drones, mentioned in the introduction, state-variables could
represent difficulties of path segments, withD containing val-
ues for low, medium and high segment difficulty.

Given a planning problem of such form, the POMCP al-
gorithm [Silver and Veness, 2010] can be used to compute a
policy π which approximates the optimal one. The policy π is
computed online using Monte-Carlo Tree Search [Browne et
al., 2012]: for any observed history ht = {a1, o1, . . . , at, ot}
(i.e., a sequence of actions and observations), MCTS assigns
to a tree node a value V π(ht) ∈ R, namely the expected dis-
counted cumulative return from history ht when following
policy π. That is, V π(ht) = Eπ[

∑∞
k=t γ

k−trk],
Let us assume now to have some probabilistic prior knowl-

edge about the relationships between state-variables. For in-
stance, we could know that P (X1 = X5) = 0.9, namely, the
probability the value of rock 1 is equal to the value of rock 5
is 90%. Intuitively, this knowledge can be used to constrain
the belief state and to improve the performance (e.g., average
discounted return) of the policy computed online by POMCP.
In other words, if we call π′ the policy generated by using the
knowledge about state-variable relationships and π the policy
generated without considering that knowledge, then the value
of π′ should be at least as good as the value of π.1 Hence, for
each history ht, we have that V π

′
(ht) = V π(ht) +Gπ

′

R (ht),
where Gπ

′

R (ht) ≥ 0 is a gain in the return quantity derived
from following π′ instead of π.

The goal of this paper is to experimentally characterize the
aforementioned gain as a function of the prior knowledge pro-
vided on state-variable relationships in the specific context of
the POMCP algorithm. To this end, we first describe how
knowledge about state-variable relationships can be mathe-
matically formalized, and then explain how to modify the

1This is easily proved to be actually a certainty—unless the prior
information is flawed.



POMCP algorithm to exploit this new knowledge.

3.2 Representation of State-Variable Relationships
State-variable relationships are the additional input to the
POMCP algorithm that we use to improve planning perfor-
mance. This knowledge can be represented in several ways.
Here we propose two such representation methods, namely
CNs and MRFs. The first allows the definition of hard con-
straints, the second is a generalization to probabilistic con-
straints. The two representations are then used in Section 4
to characterize two kinds of influence between state-variable
constraints and planning performance.

Constraint Networks
A constraint network [Dechter, 2003]R is a triple (X,D,C)
consisting of a set of variables X = {X1, . . . , Xn}, with re-
spective domains D = {D1, . . . , Dn} which list the possible
values for each variable Di = {di1, . . . , viki}, and a set of
constraints C = {C1, . . . , Cu}. Each constraint Ci is a rela-
tion Qi defined on a subset of variables Yi ⊆ X . The relation
denotes the variables’ simultaneous legal values assignments.
Yi is called the scope of Qi. If Yi = {Xi1 , . . . , Xir}, then Qi
is a subset of the Cartesian product Di1 , . . . , Dir . Hence, a
constraint is also a pair Ci = 〈Yi, Qi〉.

In our context, constraint network variables X are rep-
resented by state-variables (we used the same notation for
both concepts), the domain of all variables coincide and
are represented by the sets Di = {d1, . . . , dk} of state-
variable values (e.g., {0, 1} for Rocksample’s rock values).
Each constraint Ci = 〈Yi, Qi〉, where Yi = {Xi1 , Xi2}
and Qi = {(dj , dj), j = 1, . . . , k}, represents the fact
that two state variables Xi1 and Xi2 have the same val-
ues. As an example, in Rocksample the constraint Ci =
〈{X1, X5}, {(0, 0), (1, 1)}〉 represents the equality between
rocks 1 and 5, which is equivalent to the notation P (X1 =
X5) = 1 used above.

Pairwise MRFs
Dependencies between pairs of state variables can be repre-
sented via undirected graphs, where nodes represent state-
variables and edges represent probabilistic relationships be-
tween state-variables. The theory of MRFs [Bishop, 2006;
Murphy, 2012] can be used to factorize the joint probabil-
ity of segment difficulties as a product of potential func-
tions over the maximal cliques of the graph, according to
the Hammersley-Clifford theorem. The joint probability is
p(x|θ) = 1

Z(θ)

∏
q∈Q ψq(xq|θq) where x is a vector of state-

variables (e.g., (0, 1, 1, 0, 0) in the Rocksample problem), θ
is a parameterization of the MRF, Q is the set of (maximal)
cliques of the graph, ψq(xq|θq) is a potential function for
clique q and Z(θ) =

∑
x

∏
q∈Q ψq(xq|θq) is a normaliza-

tion factor called partition function.
We use pairwise MRF, a particular type of MRF where

the parametrization is restricted to the edges of the graph
rather than to the maximal cliques, hence set Q corresponds
to the set of relations in constraint networks. We conveniently
express potentials as exponentials, so that ψq(xq|θq) =
exp(−E(xq|θq)) whereE(xq) is called energy function, and
the exponential representation is a Boltzmann distribution. In

this way, the product of potentials can be computed by adding
the energies of all pairwise relationships.

Since our state-variables are discrete, we represent the po-
tentials as matrices of (non-negative) numbers representing
the relative “compatibility” between different assignments of
state-variables. For instance, given a pair of state-variables
(Xi, Xj) | i, j ∈ {1, . . . , n} in Rocksample, their potential
could be, ψXiXj (0, 0) = 0.45 which indicates a probabil-
ity of 0.45 to have value 0 in both rocks Xi and Xj , or
ψXiXj

(0, 1) = 0.05, which indicates a probability of 0.05
to have value 0 in rock Xi and 1 in rock Xj .

3.3 Standard POMCP Algorithm
The standard POMCP algorithm [Silver and Veness, 2010]
does not consider prior knowledge about state-variable rela-
tionships. Here we provide a description of the main elements
of this algorithm, and in the next section we introduce an ex-
tension that uses this knowledge.

Particle initialization. POMCP starts with a MCTS con-
taining only the root node representing the empty history h
(no action performed and no observation observed). The be-
lief state is represented by a particle filter which is initialized
with K particles. The particles in the root node are initialized
by a procedure that selects random hidden states (e.g., rock
value configurations in Rocksample) from a uniform distribu-
tion over all possible hidden states. This procedure is called
Standard Particle Initialization (SPI) in the following.

Simulations and node statistics update. At each step
POMCP performs nSim simulations from the current history
h to generate (online) a policy for that step. A particle, repre-
senting a state s of the system, is randomly chosen from the
particle filter of node hwhich represents the belief state of the
agent. At each simulation step2, an action a is selected using
the Upper Confidence Bound for Trees (UCT) method [Kocsis
and Szepesvári, 2006] when the current history is inside the
tree, and a uniform policy when the current history is outside
the tree. A black-box simulator G(s, a) is used to perform a
simulation step, it returns a simulated observation and a sim-
ulated reward. When all simulation steps are performed, the
total reward of the simulation is used to update node statistics
about the average return of all simulations passing through h.

Action selection in the real environment. Real actions
(performed in the real environment) are selected, once again,
by the UTC strategy, which uses the statistics of the root node.

Belief update. When an action a is applied to the real envi-
ronment a real observation o is obtained, the belief is updated
according to the evidence collected by moving particles to the
new history node hao, the tree root is moved to node hao and
the rest of the tree is pruned. Notice that both the constraint
probabilities and the evidence collected step by step influence
the belief state over time.

Particle reinvigoration. If a lack of particles is experi-
enced, then new particles are generated by computing lo-
cal transformations on current particles. These transforma-

2The term step is used to identify steps in the real environment;
the term simulation step to identify steps in the simulation phase.



tions concern the modification of the value of a single state-
variable. Specific local transformations may be defined de-
pending on the problem of interest.

3.4 Extending the POMCP Algorithm
To enable the introduction of state-variable relationships two
kinds of change to the POMCP algorithm can be imple-
mented, namely, (i) new particle initialization strategies can
be used to initialize the particle filter with states that sat-
isfy state-variable constraints, (ii) new particle reinvigoration
strategies can be used to generate new states that satisfy the
constraints in the vicinity of current states.
Particle initialization for constraint networks. The parti-
cles in the belief state of the empty history node are initial-
ized by considering the (hard) constraints in the constraint
network. We first compute the connected components of the
constraint network. Each component identifies a set of state-
variables that must have equal values (e.g., nodes 0-2-3 in
Figure 1 must have same values since they are in the same
connected component). For each particle (i.e., vector of state-
variables) to be initialized, we randomly select a value d ∈ D
for each connected component and set all the variables in the
connected component to this value. This procedure, which
can be simply extended to non-equality constraints, is called
Constraint Network Initialization (CNI) in the following.
Particle initialization for MRF. This procedure aims at
initializing particles in the belief state according to the prob-
abilistic constraints defined by a MRF. We first generate a
large number N of uniformly random particles (we used
N = 10000 in our experiments). Each random particle is
a specific configuration of state-variable values. Then, we
compute the joint probability of each particle by the formulae
in Section 3.2. Finally, we select K particles by consider-
ing their probability distribution, namely, each particle has a
probability to be selected which is proportional to its joint
probability. This basic sampling procedure, called MRF Ini-
tialization (MRFI) in what follows, ensures that the distribu-
tion of the initial belief satisfies the probabilistic constraints
defined by the MRF. More advanced sampling methods, such
as rejection or importance sampling [Thrun et al., 2005;
Bishop, 2006], may be considered for specific applications.
Particle reinvigoration. We performed particle reinvigora-
tion using the same sampling strategies used for particle ini-
tialization, namely CNI or MRFI depending on the type of
constraint representation. We noticed, however, that reinvig-
oration positively affects (on average) planning performance
only when the size of the state space is much larger than the
number of particles used by POMCP.

3.5 Characterization of Performance Gain
As mentioned above, the question we want to answer in this
work is: how does the average cumulative discounted re-
turn of the POMCP policy changes with respect to changes
in state-variable relationship constraints? As an extreme
example, if a constraint network is defined which forces all
the state-variables of a Rocksample problem with 11 rocks
to have the same values, then only two possible configura-
tions of the rock values can be considered, namely, all valu-

Figure 1: On the left: an instance of the Rocksample problem used
in our tests. Numbers shown are rock ids; all valuable rocks are
marked with a $ sign, and they are worth a reward of 10. On the
right: an example of constraint network for the Rocksample instance
displayed on the left.

able rocks or all valueless rocks. Of course the search in this
small space makes the policy synthesis problem much sim-
pler then in the standard case and, consequently, the average
discounted return is expected to grow. Similar analysis could
be performed considering the policy value, instead of the dis-
counted return, as an ”expected” performance measure. Next
section presents a systematic experimental analysis of these
dependencies in the general case of probabilistic constraints.

4 Experimental Evaluation
We present and discuss results achieved by extended POM-
CPs on Rocksample with different levels of prior knowledge.

4.1 The Rocksample Case Study
We tested our approach on Rocksample(11,11) [Smith and
Simmons, 2004], in which 11 rocks are randomly arranged
on a grid with 11 rows and 11 columns. Figure 1 shows an
instance of the problem having a particular placement of the
rocks in the grid (known by the agent), a specific configura-
tion of rock values (hidden state-variables) and an agent po-
sition (observable state-variable). Notation (i, j) is used to
identify the cell in row i and column j (from the top-left cor-
ner of the grid). For instance, cell (8,10) contains symbol 9X
which represents the valueless rock 0, while cell (2,10) con-
tains symbol 10$ which represents the valuable rock 10. Hash
marks represent grid bounds and the asterisk in cell (6,1)
shows the current agent position. In our tests, rock positions
are fixed and known by the agent, while rock values, which
are unknown by the agent, are randomly chosen at each run
from a Bernoulli distribution with probability p = 0.5, hence
they are uniformly distributed in {0, 1}.

At each step, the agent can perform one action among mov-
ing (North, South, East or West), sampling a rock (i.e., getting
the rock) and checking a rock. In the last case, the probability
to observe the correct value of one rock is inversely propor-
tional to the distance between the agent and the rock. The
reward is 0 in case of moving and checking, 10 if a valuable
rock is sampled and -10 if a valueless rock is sampled. If the
agent hits the rightmost border it gets a reward of 10 and the
run ends. The policy should suggest actions that maximize
the discounted reward over runs of 100 steps. In order to get



statistically sound results, we averaged the discounted return
over 50 runs, and provided mean performance and standard
errors. Tests with different number of simulations nSimwere
performed. In particular, we repeated each of the 50 runs for
nSim from 23 = 8 to 214 = 16384, with steps of the power
of 2. Test parameters are displayed in Table 1 and correspond-
ing results shown in Figure 2.

4.2 Planning Strategies
The original C++ code of the POMCP algorithm provided in
[Silver and Veness, 2010] was used to perform tests in the
standard case (STD). The same code was modified in two
ways to obtain an oracle planner (ORC) and a constrained
state-variable planner (CSV). The oracle was made by forc-
ing the particle filter of POMCP to contain only the true state
of the system. In the following we call this initialization strat-
egy oracle particles initialization (OPI). Using the ORC plan-
ner the agent’s belief is always correct and all the simulations
are performed considering the real configuration of rock val-
ues, which is a key advantage to obtain correct policies and
high returns. The CSV planner, instead, employs particle ini-
tialization and reinvigoration described in Section 3.4, that
guarantee an exploration of the state space considering prob-
abilistic constraints on state-variables.

4.3 Experiment Design and Results
We performed two kinds of experiments on the CSV planner,
one to evaluate the influence of the number of state-variable
constraints on planning performance, and one to evaluate
the influence of uncertainty over state-variable constraints on
planning performance.

Influence of the Number of State-Variable Constraints
In the first set of experiments we used hard constraints,
namely constraints that must be satisfied by state-variable
configurations in order to be considered valid, and we ana-
lyzed the variation of average discounted return correspond-
ing to the variation of the number of constraints. In particular,
we set equality constraints between pairs of state-variables
that actually have the same values in the real state.

We observed that the performance of the CSV planner does
not depend on the number of constraints, but it depends on
the number of connected components in the constraints net-
work, since this number actually constrains the state space.
We tested the performance of the CSV planner with constraint
networks having 8, 5, and 2 connected components, and com-
pared their performance to that of the STD and ORC planners.
In Table 1, these tests are referenced as E1 for the STD plan-
ner; E2 for the ORC planner; and E3, E4, E5 for the CSV
planner with 8, 5, and 2 components, respectively. Notice that
the STD planner corresponds to the CSV planner with 11 con-
nected components (i.e., no edge in the constraint network),
since there are 11 state-variables in Rocksample(11,11).

For each experiment, we performed 50 runs for each spe-
cific number of simulations (as described in Section 4.1). Fig-
ure 2(a) shows the average discounted return (across all 50
runs) for the different number of simulations. In the bottom
lies the blue line for the STD planner which has the lowest
performance, with a maximum average discounted return of

about 14 when 16384 simulations are performed. Then the
CSV planners with 8, 5 and 2 connected components, called
CSV 8 CC, CSV 5 CC and CSV 2 CC, respectively, have in-
creasing performance, with a maximum average discounted
return of about 21 (+50% with respect to the STD planner) by
CSV 2 CC when 16384 simulations are performed. Finally,
the ORC planner has the best performance with an average
discounted return of almost 25 with 16384 simulations.

We computed also the average cumulative discounted re-
ward and the average cumulative policy value of each of the
five planners when 16384 simulations are performed. They
are two measures of the speed and capability of the planner
to accumulate reward over time. The first considers the sum
of the reward actually obtained from the real environment,
while the second considers the sum of the potential reward
expected step by step by the agent according to the policy
which it updates online according to the POMCP strategy.
Figure 2(b) shows that the order of performance is kept, with
ORC (red line) reaching the maximum cumulative average
reward with the highest speed, followed by CSV 2 CC (dark
green line), then by CSV 5 CC and CSV 8 CC (respectively,
green and light green line) which have similar final values but
different speeds (i.e., CSV 5 CC is faster than CSV 8 CC, as
expected); finally, STD has lower final performance in terms
of both final value and speed. The curves of cumulative pol-
icy values are not displayed for space reasons but they show
a similar behavior. Time performance of different approaches
depend on the number of simulations performed at each step
but no correlation is observed between the number of con-
nected components in the constraint network and the average
time needed to complete each run.

Influence of Uncertainty in State-Variable Constraints
In the second set of experiments we analyzed the influence of
uncertainty about state-variable constraints on planning per-
formance. We used probabilistic constraint networks based
on pairwise MRF and set network edges in the same way
we did in the first set of experiments (i.e., using only equal-
ity constraints between some pairs of state-variables actually
having same values in the real state). However, instead of set-
ting the constraint probabilities to 1 (hard constraints) we set
them to decreasing values 0.9, 0.7, 0.5 and 0.2, in different
experiments called respectively E6, E7, E8 and E9 (see Table
1). The number of connected components in the network was
always set to 2. As an example, in experiment E6 we set all
edge probabilities (i.e., potentials), to 0.9. This means that for
every pair of connected state-variables, the probability that
they have same value is 0.9, therefore they could be different.
Notice that the planner with edge potentials equal to 0.5 (i.e.,
experiment E8) corresponds to the STD planner, since prob-
ability 0.5 corresponds to no prior knowledge. On the other
hand, edge potentials equal to 0.2 (i.e., experiment E9) corre-
spond to deceptive constraints, since they put small equality
probability to pairs actually having equal state-variables.

Comparisons between different aspects of the performance
of planners ORC, CSV 2 CC (MRF 1.0), CSV 2 CC (MRF
0.9), CSV 2 CC (MRF 0.7), CSV 2 CC (MRF 0.5) and CSV
2 CC (MRF 0.2) are displayed in the right-hand side col-
umn of Figure 2. In particular, Figure 2(c) shows decreas-



Exp
name

Planning
algorithm

Constraint
representation

Particle
init./reinv.

# connected
components

Edge
potentials

E1 STD No SPI 11 -
E2 ORC No OPI - -
E3 CSV 8 CC CN CNI 8 1.0
E4 CSV 5 CC CN CNI 5 1.0
E5 CSV 2 CC CN CNI 2 1.0
E6 CSV 2 CC (MRF 0.9) MRF MRFI 2 0.9
E7 CSV 2 CC (MRF 0.7) MRF MRFI 2 0.7
E8 CSV 2 CC (MRF 0.5) MRF MRFI 2 0.5
E9 CSV 2CC (MRF 0.2) MRF MRFI 2 0.2

Table 1: List of experiments performed and related settings.

Figure 2: Results: influence of state-variable constraints on different aspects of planning performance. (a,c) average discounted rewards for
CNs and MRFs, respectively; (b,d) average cumulative discounted reward with nSim=16384, for CNs and MRFs, respectively. Notation CSV
x CC represents a CSV planner with a constraint network having x connected components. Notation CSV x CC (MRF y) represents a CSV
planner with a MRF network having x connected components and edge potentials with value y.

ing average discounted return of the six planners. As ex-
pected, ORC has the best performance since it uses only the
true state, then comes CSV 2 CC (MRF 1.0) which explores
only a 4-dimensional space of states, and subsequently come
the planners with edge potentials 0.9, 0.7 and 0.5, in which
the soft constraints potentially enable to explore the complete
state space, but in practice the exploration is probabilistically
focused on states close to the true real state. We notice that
the trend of average discounted return of CSV 2 CC (MRF
0.5) in Figure 2(c) is similar to that of STD in Figure 2(a), as
expected, with a value of about 14 for 16384 simulations in
both cases. Of interest is CSV 2 CC (MRF 0.2), whose per-
formance is worse than the standard because the knowledge
provided is deceptive (it explores states far from the true one).

The analysis of average cumulative discounted rewards
across run steps in the case of 16384 simulations (see Fig-
ure 2(d)) shows that the order of performance is similar to

that displayed in Figure 2(c), namely the smaller the edge
potentials the smaller the average cumulative reward and the
speed of accumulation of the reward itself. However, in this
specific case the performance of CSV 2 CC (MRF 0.7) was
higher than that of CSV 2 CC (MRF 0.9) for nSim = 16384
(see Figure 2(c)), and this inversion is kept also in cumulative
discounted reward. Also in this case the average time per run
has no correspondence with the amount of knowledge (i.e.,
number of edge potentials) injected in the constraint network.

5 Conclusions and Future Work
We analyzed the influence of probabilistic constraints among
state-variables in POMCP planning according to two dimen-
sions of analysis, namely, i) the relationship between the
number of connected components and planning performance,
and ii) the relationship between constraint uncertainty and
planning performance. Results shown that POMCP can take



advantage of prior knowledge about state-variable relation-
ships, in terms of both improved average discounted return
and speed to accumulate the reward. Future developments
concern the application of the proposed approach to a real
case study of battery management in autonomous robots, and
the theoretical characterization of bounds on the gain in dis-
counted return Finally, we intend to investigate the scaling
potential of our methodology.
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