
applied
sciences

Article

Quantum Calculi—From Theory to Language Design

Margherita Zorzi

Department of Computer Science, University of Verona, 37100 Verona, Italy; margherita.zorzi@univr.it

Received: 31 August 2019; Accepted: 4 December 2019; Published: 12 December 2019
����������
�������

Abstract: In the last 20 years, several approaches to quantum programming have been introduced.
In this survey, we focus on the QRAM (Quantum Random Access Machine) architectural model.
We explore the twofold perspective (theoretical and concrete) of the approach and we list the main
problems one has to face in quantum language design. Moreover, we propose an overview of some
interesting languages and open-source platforms for quantum programming currently available.
We also provide the higher-order encoding in the functional languages qPCFand IQu of the well
known Deutsch-Jozsa and Simon’s algorithms.

Keywords: quantum language design; quantum computing; programming theory

1. Introduction

Quantum computers are nowadays a tangible reality. Even if physicists and engineers have to
continuously address problems in the realization of quantum devices, the advance of these innovative
technologies has presented a noticeable speedup. Examples of this are the universal architectures
behind IBM Quantum Experience or Rigetti’s Forest platform [1] that are potentially able to solve
problems more efficiently than a classical computer.

In the last fifteen years, the definition and the development of quantum programming languages
catalyzed the attention of a part of the computer science research community [2–8]. The interest in the
development of a quantum language of is twofold. On the one hand, it presents a theoretical challenge:
a calculus able to characterize (all or an interesting class of) quantum computable functions provides
the basis for a quantum computability theory. On the other hand, a solid quantum programming
design is essential to design robust, powerful and easy languages, which effectively allow users to
program emerging quantum architectures. In quantum language design, a computer scientist has to
address (at least) the following questions: What is the Architectural Model the language refers to?;
How to manage quantum data (which are non-duplicable to ensure the no-cloning property, so need a
form of linear treatment)?; what class of quantum functions one aim to program (expressive power)?

In this survey, we provide some possible answers, starting from the state of art and proposing
some examples of quantum programming in two functional calculi, called qPCF and IQu respectively.

Moreover, we browse the state of art of some important quantum languages, mainly focusing on
the functional programming style.

The purpose of this article is not to reconstruct the entire history of quantum languages but to
provide an agile introduction to (part of) the topic and the tools for further study.

Note

In this paper, we assume familiarity with basic concepts about quantum computing such as quantum
bits [9], quantum state/registers [10–13], quantum data properties and quantum algorithms [14]. For
the mathematical background, in particular the algebraic characterization of quantum computational
spaces and operators, see for example, Reference [15].

Appl. Sci. 2019, 9, 5472; doi:10.3390/app9245472 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3285-9827
http://dx.doi.org/10.3390/app9245472
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/24/5472?type=check_update&version=2

Appl. Sci. 2019, 9, 5472 2 of 17

2. On Quantum Language Design: Main Features

2.1. The Architectural Model

In quantum software design, the choice of an architectural model is not as easy as for the classical
case. This holds today and, in particular, held two decades ago, when quantum programming theory
moves the first steps.

In this report, we mainly focus on the so-called quantum data & classical control (qd&cc) [3,16],
approach, which separates the classical and quantum parts of the computation. A classical program
(ideally in execution on a classical machine) computes some “directives,” sent to a hypothetical
quantum device that applies them to quantum data.

This idea is inspired by an architecture called Quantum Random Access Machine (QRAM),
introduced by Knill [17], who noticed that the quantum circuit families [9,18], the most interesting
computational model, is not enough to describe quantum algorithms. In fact, as clearly observed in
Reference [19] a quantum algorithm assume an explicit “control flow” that permits to execute quantum
operations, eventually measures quantum data and runs classical computation on the measured results.
The following picture represents the QRAM in a simplified and intuitive way:

Classical
Computer

Quantum
Device

quantum
instructions

feedback

The QRAM model can be formulated in several version—for example, one can consider a
simplified architecture, where measurement is postponed at the end of the computation [8,20];
otherwise, one can admit general measurements (in this case part of the computation possibly
depends on intermediate measurement results) [3,21,22]. In a more general perspective, the natural
unidirectionality of the QRAM (the classical “client” morally depends on the quantum “ server”) can
be relaxed. This has been done in Reference [7], where the notion of dynamic lifting is introduced—
oversimplifying the story, the classical computer is able to receive a query and send back to the
quantum device the continuation of the computation. Dynamic lifting is supported, for example, by
the language Quipper.

We focus on the QRAM model since the only superposition of data reflects what physicists are
realizing in the development of quantum devices. Moreover, this choice based on classical control
makes easier the sound description of quantum programs. In fact, it is quite easy to observe that if
the set of unitary transformation clearly forms an algebra, they do not form a Hilbert space (the same
holds for the set of Quantum Turing Machines).

Projects as Quipper [7], where the QRAM is definitively reformulated in terms of
quantum-coprocessor [23], or the recently developed quantum circuit definition language QWIRE [21,24]
and the Q# language by Microsoft [25] follow the qd&cc approach.Following the same direction,
in Section 4.5.3 we propose two higher-order encoding examples according to syntax and operational
semantics of the paradigmatic languages qPCF and IQu.

In literature can be found other approaches to quantum programming that can be considered as
orthogonal to the QRAM based one. Oversimplifying, the concept of quantum superposition has been
extended from data to programs, introducing notions of “sums of programs” and “quantum control”.
Roughly speaking, given two correct programs M and N also the combination αM + βN (where α and
β are scalar coefficients) is considered meaningful as its semantical and denotational account. The
origin of this approach can be traced in the lambda calculus introduced by L. Vaux in Reference [26],
where the author, out from the quantum setting, extended the pure lambda-calculus by endowing
the set of terms with a structure of vector spaces to study main properties and the relationship with
the ordinary lambda-calculus. Based on Vaux’s investigations, some versions of the (linear) algebraic

Appl. Sci. 2019, 9, 5472 3 of 17

and vectorial lambda calculus have been successively studied, also establishing connections with
quantum computation (see for example, Reference [27]). The related notions of superposition of
program and quantum control (where the control flow notions of sequencing, conditionals, loops and
recursion are not entirely classical as for ordinary quantum algorithms) have been addressed in some
recent papers. Even if the effective practical utility of these proposals is not yet visible, they offer
new interesting perspectives on quantum computability and quantum programming theory. See for
example, Reference [28] by Mingsheng and Reference [29] by Sabry, Kaiser-Vizzotto and Valiron.

2.2. On the Expressive Power of a Quantum Language

What is the expressive power of a given quantum programming language? Even then, the question
can be addressed from two perspectives. For a quantum computability viewpoint, it is interesting to
characterize the class of the quantum computable functions encodable in the language. This can be reached,
for example, by establishing an expressive equivalence with another computational model, such as
the Quantum Turing Machines (QTM). Since QTMs are very complex and programming on they is
very challenging, the equivalence can be retraced passing through the equivalence (on total functions)
between QTM and finitely generated Quantum Circuit families (QCF), a subclass of QCF. This has been
proved, for example, in Reference [8] for the quantum lambda calculi Q. The proof is complex and
the result can be roughly summarized as in Figure 1, where the continuous arrow represents a direct
equivalence (for which at least a proof has been showed in literature) and the dotted arrow represents
an indirect equivalence (obtained as a byproduct):

QTM // QCFoo

��
Q Language

ii OO

Figure 1. Direct and indirect equivalence between quantum computational models.

The equivalence with a (sub)classes of QCFs is interesting also from a programming perspective.
Some recent research trends suggests that quantum languages can be conveniently formulated and
viewed as (higher-order) circuit definition languages [20,21,23,30] (see also Section 3).

Following this idea, a higher-order program parametrically encodes an entire family of circuits:
when it is fed with an input dimension, it returns the correct circuit description for the given arity.

In the Quipper language [7], a neat distinction between the notion of parameters and inputs is given.
Informally, parameters capture compile-time information (e.g., problem size), whereas inputs concern
the run-time circuit generation.

In Section 4.5.3 we see two higher-order examples, respectively the encoding of the Deutsch-Jozsa
algorithm [9] in the languages qPCF and IQu and the encoding of Simon’s quantum subroutine
(the central part of Simon’s algorithm [9]) in the language IQu.

For other parametric encodings of quantum circuit families see also Quipper’s literature and
documentation in References [31,32].

2.3. On the Linearity of Quantum Data

It is well-known that quantum data are not duplicable (no cloning property) [33]. Therefore,
the design of the type system for a quantum programming language necessarily has to address the
problem of data linearity. In this section, we specifically take a look at this aspect through a quick
overview of some languages in literature. A more general discussion about the state of art of quantum
programming is in Section 3.

Following Selinger’s suggestion in his seminal work about quantum programming theory [16],
higher-order language can be equipped with some kind of linear type system along the lines of
Girard’s linear logic (LL), in order to account for the non-duplicability of quantum data [3,8,34–38].

Appl. Sci. 2019, 9, 5472 4 of 17

Several versions of LL have been used in literature.For example, Selinger and Valiron’s quantum
lambda calculus [3] (on which the programming language Quipper is partially inspired) is based on
the multiplicative fragment of affine LL, that is, contraction structural rule is not allowed. This choice
is justified by the no-cloning property of quantum states and, logically, signifies that one can not
duplicate resources but can discard them.

Instead, Altenkirch and Grattage [4,39] chose a different approach to the (central) problem of copy
and discard quantum data. In their language QML (that can not be completely considered QRAM based
but is relevant for this discussion) is possible to write expressions like let x = (false+ true)in〈x, x〉which
(apparently) violates no-cloning properties, since the variable x is duplicate in the let expression (notice
also that a limited superposition “+” between ground value is admitted). The previous expression does
not clone quantum data (this is guaranteed by the formal semantics the authors provide): it shares a
copy of the quantum datum among different references. This is captured through a type system based
on multiplicative strict LL, that is, linear logic with contraction and without weakening. We spend
some further words about these calculi in Section3.

In Dal Lago et al. [34] the untyped quantum lambda calculus Q is introduced and studied. The set
of well-formation rules (w.f.r.) is based on Wadler’s formulation of LL and the ! (“bang”) operator
allows distinguishing between duplicable (classical) and non-duplicable (quantum) resources. Classical
variables and quantum variables (variables “pointing to” qubits) belong to different syntactical classes.
These choices statically respect the linearity of quantum data, that can neither be duplicated or erased
(duplication and erasing of classical data are allowed). Moreover, the surface reduction is adopted,
to avoid dynamic duplication of linear resources: informally, a term of the form !(M) can not contain
quantum variables (this is guaranteed by w.f.r.) and can not be reduced. Lambda calculus’ β-reduction
is modified accordingly (in particular, β-reduction is split into three different rules). A small example
clarifies the design of the language and the operational behavior of programs.

Example 1 (How to violate quantum linearity). In Q computational steps are defined between configurations
that is, triples of the form [Q,QV,M] where Q is “the quantum memory” (it keeps information about the
mathematical state we are computing and qubit names), QV is the set of qubit names contained in the lambda
term M. Q inherits configurations from Reference [3] (and this tradition can be retraced in Idealized ALGOL
programming style [40]).

Let us consider the following well–formed expression, where 1 represent a empty quantum state (a memory
containing 0 qubits), the subterm new (1) create a qubit and its name and cnot is the controlled not operator [9]:
[1, ∅, (λ!x.cnot〈x, x〉)!(new (1))].

Observe that the sub-term !(new 1) is a duplicable term because it is marked with the bang and, by w.f.r.,
does not yet contain references to quantum data. The operational behavior of new c, where c is a constant 0 or 1 is
the following: the contraction creates a new quantum bit in the quantum register q and a new quantum variable
in the lambda term (this corresponds to the preparation of the input state). We show now a correct computation,
where: (i) we do not reduce in the scope of the bang; (ii) we perform firstly the cβ reduction, corresponding
to classical β reduction (we are passing a duplicable argument to a λ binding a classical variable !x); (iii) we
separately (in two steps) create two new quantum bits and the associated quantum variables by contracting
subterms new 1 (each of them creates a different, fresh quantum data) (iv) finally we evaluate the cnot on the two
qubits created in the reductions by the evaluation→U . The “link” between a qubits name and the related qubit φ

is represented in the first element of the configuration by the notation p 7→ |φ〉).

[1, ∅, (λ!x.cnot〈x, x〉)!(new 1)] →cβ
[1, ∅, cnot〈new 1, new 1〉]

2→new [|p 7→ 1〉 ⊗ |q 7→ 1〉, {p, q}, cnot〈p, q〉)]
→U [|p 7→ 1〉 ⊗ |q 7→ 0〉, {p, q}, 〈p, q〉].

The the quantum state |p 7→ 1〉 ⊗ |q 7→ 0〉 represents the output of the application of the controlled-not on
the state |10〉 (see Reference [9]).

Appl. Sci. 2019, 9, 5472 5 of 17

However, if we reduce under the scope of the bang (namely reducing the subterm new (1) before executing
the cβ–reduction and then create a single quantum variable), we would obtain the following computation:

[1, ∅, (λ!x.cnot〈x, x〉)!(new 1)] →new [|p 7→ 1〉, {p}, (λ!x.cnot〈x, x〉)!(p)]

→qβ
[|p 7→ 1〉, {p}, cnot〈p, p〉)].

Notice that we have duplicated the quantum variable p, creating a double reference to the same qubit. As a
consequence, we could apply a binary unitary transform (cnot) to a single qubit (the one referenced by p), which
is not compatible with the basic principles of quantum computing.

The use of Linear Logic is not the only way to control the linearity of quantum data. In the last
years, different solutions partially or completely based on dependent types have been useful in the
definition of safe quantum languages. See Section 3 and References [20,41].

3. Quantum Programming Languages

In recent years, we have seen an increase in quantum software platforms. Mainstream industries,
such as IBM and Microsoft, invested a huge amount of resources both in software development and in
the technological advance.

The world of quantum programming can claim two decades of interesting research and is growing
day-by-day. In this section, we only focus on a fragment of this world and remand to the literature for a
complete overview. Quantum languages can be divided into three classes: practical-minded tools for
generating quantum circuit description; quantum languages with a limited (or still underdeveloped)
theoretical account; theoretically attractive languages with a focus on semantics and denotational models.

To the first category belongs Forest, the quantum software platform developed by Rigetti
and Qiskit (Quantum Information Software Kit), an opensource platform developed by IBM for the
20-qubits quantum computer IBM Q Experience. Forest includes an opensource quantum language
called PyQuil embedded in Pyton and offers to the user both a small online real quantum architecture
named Quantum Processing Unit (QPU) that support computations up to 8 qubits and a remote
Quantum Virtual Machine (QVM) for simulation up to 30 qubits. Qiskit native language is OpenQASM,
a low-level quantum assembly language that provides instruction to the actual quantum devices,
similarly to PyQuil. IBM provides local and cloud-based quantum simulators (up to 25 qubits). For a
complete account and comparison of open-source quantum programming platforms, see Reference [1].

The second category hosts languages such as Quipper by Selinger, Valiron et al. [42] and the
Quantum developers KIT, based on the language Q# by Microsoft. Quipper represents one of the
more advanced academic reality in the landscape of quantum languages. Quipper represents one of
the more advanced academic reality in the landscape of quantum languages. Quipper is embedded
(an embedded language provide a “quantum core” sophistically interfaced with a host “classical”
language) in Haskell and is based on the QRAM model, successively rephrased in terms of quantum
co-processors in Reference [23]. Quipper is higher-order, scalable, permits to easily write programs using
ancillae qubits [9], allows to compile classical programs into quantum circuits and simulate in Haskell
quantum computations. Moreover, the language pursues the goal to optimize the number of resources
needed for computations. Also to this end, in Quipper a neat separation between compile-time inputs
(called parameters) and run-time inputs (sometimes called states) is explicit. Quipper does not have a
dedicated type system and so lacks both linear and dependent types (see Section 2.3) and does not
support a denotational semantics. For this reason, in the present survey, we will focus only on a class
of Quipper sub-languages called Proto−Quipper.

Q#, recently introduced by Microsoft, is a stand-alone (i.e., non-embedded) domain-specific
programming language used for expressing quantum algorithms. It allows us to write sub-programs
that execute on an adjunct quantum processor under the control of a classical host program (in this
sense, Q# is a QRAM based language) and also includes a resource estimator. Literature about

Appl. Sci. 2019, 9, 5472 6 of 17

theoretical properties of Q# is still missing. Despite some feature such as the use of polymorphic types
being very interesting, in this paper we do not go deeper in the discussion and remand to the on-line
documentation [25].

The third category is the one we focus on in Section 4.

4. Foundational Quantum Programming Languages

In this section, we discuss some quantum languages called here ”foundational” since they have
been deeply studied from a theoretical viewpoint. In particular, as previously said, we focus on some
QRAM based functional calculi, reserving Section 4.6 to provide references to other (interesting or
historically important) languages we do not address here.

4.1. Quantum Lambda Calculi

In Reference [16], Selinger rigorously defined a first-order quantum functional language. This
paper represents a milestone for a part of the calculi developed in the following years and definitively
founds the QRAM-based programming model, where only data (qubits) are superposed and where
programs live in a standard classical world. Subsequently the author, in joint work with Valiron [3],
defined a quantum λ-calculus with classical control, here dubbed λsv, that we have briefly discussed
in Section 2.3.

The main goal of Selinger and Valiron’s work is to give the basis of a typed quantum functional
language, based on a call-by-value λ–calculus enriched with constants for unitary transformations and
an explicit measurement operator which allows the program to observe the value of one qubit.

Reductions are defined between program states, whose definition is similar to the one of
configuration (Section 2.3). Because of the presence of measurement, the authors provide an operational
semantics based on a probabilistic call-by-value evaluation. The type system of λsv is based on linear
logic (linearity is extended to higher types), by distinguishing between duplicable and non-duplicable
resources. The type system of λsv is based on linear logic (linearity is extended to higher types),
by distinguishing between duplicable and non-duplicable resources.

Selinger and Valiron’s type syntax is the following: A, B ::= α|X|!A|A → B|>|A⊗ B where α

ranges over a set of type constants, X ranges over a countable set of type variables,→ represents the
linear implication and > is the linear unit type.

As previously said the authors restrict the system to be affine, that is, contraction structural rule
is not allowed. The type system avoids run-time errors and is also equipped with subtyping rules,
which provide a more refined control of the resources. λsv enjoys some good properties such as
subject reduction and progress and a strong notion of safety. The authors also define a new interesting
quantum type inference algorithm, based on the idea that a linear (quantum) type can be viewed as a
decoration of an intuitionistic one.

An example of λsv well-typed term, encoding the EPR circuit is λsv as EPR =

λx.CNOT〈H(nw(0)), nw(0)〉 and has type !(> → (qbit⊗ qbit)) where qbit is the base type of qubits.
The nw constant behaves like the new constant used in Section 2.3.

λsv’s reductions are performed in a call-by-value setting. This is a central characteristic since
different strategies are not equivalent (see the original paper or Reference [8]). Moreover, a mixed
strategy can produce an hill-formed term.

In Reference [43], the authors provide a categorical semantics for λsv. For some recent investigations
on semantic models, see Reference [44]. See also Reference [45], where the authors define a particle-style
geometry of interaction [46] for λsv.

The pure quantum lambda calculus Q we employ in Example 1 is morally an heir of λsv,
despite the fact that it has been introduced for different scopes. In particular, the ”quantum Turing
completeness” (i.e., the equivalence with the Quantum Turing Machines) of Q has been proved,
in joint with properties of the set of well forming rules (such as Subject Reduction) and a notion of
standardization, that ideally aims to capture the separation between classical and quantum part of

Appl. Sci. 2019, 9, 5472 7 of 17

the computation. Oversimplifying, Standardization Theorem says that a correct computation of a
well-formed program always corresponds a computation where reduction steps are performed in the
following order: first, one reduces classical redexes (this corresponds to the generation of the suitable
quantum circuit among the entire infinite quantum circuit family according to the input dimension
one provides); second, one reduces subterms of the shape new(c) (see Example 1); finally, subterms
of the shape U〈q1, . . . , qk〉), where U is a constant representing a unitary operator and 〈q1, . . . , qk〉 is
a pattern of quantum variable representing qubits in the quantum register (this corresponds to the
evaluation of the circuit generated at stage 1 on the input prepared at stage 2). Different versions of
this idea have been implicitly used in several following proposals, in particular for systems designed
as quantum circuit generator languages. For the quantum lambda calculus Q two other sibling systems
have been defined: SQ [35], a sub-calculus of Q intrinsically quantum polytime (where soft linear logic
is used as a basis for the w.f.r. set) and for Q∗ [36] and extension of Q with a partial measurement
operator. Differently from λsv, in Q∗, no strategy is imposed and a form of confluence (based on a
notion of probabilistic distributions of observable results) is proved. For a complete account about the
“Q-Family”, see Reference [8].

An interesting development of Selinger and Valiron’s quantum lambda calculus has been
developed in Reference [37], where the author propose a fully expressive lambda calculus (λsv does
not allow to encode an entire infinite quantum circuit family) and provide a denotational semantics for
higher-order programs based on Girard’s quantitative semantics.

4.2. QML and the QIO-Monad

Another seminal contribution in the definition of quantum functional calculi is QML, the typed
quantum language for finite quantum computations we briefly compared with λsv in Section 2.3.
QML has been developed in References [4,39,47,48].

QML permits to encode quantum algorithms easily. More precisely, a single term can encode a
quantum circuit, that is, captures an algorithm of type Qk → Qk, where Q is the type of the qubits
for a given k ∈ Nat. The syntax allows building expressions such as αt, where α is an amplitude
and t is a term or expressions like t + u where the symbol “+” represents the superposition of terms.
However, superposition is controlled by a restrictive notion of “orthogonality” between terms, defined
employing a notion of inner product between judgments [4]. Intuitively, t⊥u holds when t and u are
“distinguishable in some way” [39]: in other words, one can derive the judgement true⊥false from
t⊥u by means of orthogonality rules. Orthogonality of judgments is automatically inferred by static
analysis of QML’s terms [48].

Quantum superposition can be combined with the conditional construct. The syntax includes
both the if then else and the quantum conditional if◦ then else ; the quantum conditional if◦ then else

is allowed when the values in the branches are orthogonal. For example, the following term represents
the encoding of the Hadamard gate in QML: had x = if◦x then (1√

2
false+ (− 1√

2
)true) else (1√

2
false+

1√
2
true). The denotational semantics of QML has been defined in terms of superoperators.

Starting from QML and as a step toward higher-order quantum programming, Altenkirch et.al
successively introduced the Quantum IO-monad [44]. The QIO-monad is a functional interface to
quantum programming, implemented as a Haskell library and provides a constructive semantics for
quantum programming. The main idea to Quantum IO- monad is to split reversible (i.e., unitary,
purely quantum) and irreversible (i.e., probabilistic) computations and provides a reversible let
operation, supports the use of ancillas (i.e., auxiliary qubits). Various central quantum procedures
(e.g., the complete implementation of Shor’s algorithm) are implemented.

As pointed out in Reference [19], the QIO-monad represents the early step towards embedding
quantum computation inside a functional host language, the key idea behind languages as Quipper

and QWIRE. See also Green’s Ph.D. thesis, where the author embedded the Quantum IO-Monad inside
Agda, a dependently-typed programming language, showing the usefulness of dependent types in the

Appl. Sci. 2019, 9, 5472 8 of 17

setting of quantum languages. Dependent types prevent some instances of qubit cloning and represent
an important tool to address quantum data linearity (see the language QWIRE and qPCF below).

4.3. Proto−Quipper

Ross defines the first version of Proto−Quipper in Reference [49] (see also Section 2.3, where we
spend some word about its LL-based type system). Proto−Quipper has been introduced as a ”bridge”
between quantum lambda calculi Quipper, to isolate a well-typed and safe core of the practical language.
The syntax and the type system of Ross’ Proto−Quipper are inspired to λsv, with some important
additions. A central feature is a boxing-unboxing mechanism for quantum circuits. Informally, the box
function turns a function describing a linear operation into a circuit regarded as a classical data (a dual
function unbox performs the reverse operation). A boxed circuit can be used multiple times as a
part of a larger circuit. This avoids useless circuit duplication and has a positive impact on resource
consumptions. Moreover, the syntax is extended with constant terms to capture useful circuit-level
operations, like reversing.

Linear types are extended with a specific type Circ(T, U) (where T and U represents the
input-output set of wires) of circuits. Proto−Quipper is type-safe (Subject Reduction and Progress
Theorems hold) and allows a notion of subtyping similar to the one defined for λsv. The operational
semantics of Proto−Quipper is defined between configurations, as in λsv and Q. Proto−Quipper can
be considered a quantum circuit description language, as QWIRE, qPCF and IQu we describe in the
following Sections. Differently from QWIRE, qPCF and IQu, Proto−Quipper is not Turing complete
but expressive enough to be an interesting formal core of Quipper. Another version of Proto−Quipper

called Proto−Quipper-M has been introduced by Selinger and Rios in Reference [30]. Proto−Quipper-M
mainly focuses on denotational models (an aspect we did not address in this paper), so we remand to
the original paper.

Proto−Quipper has been also investigated in Reference [50], where Mahmoud and Felty formalize
the semantics of the language by encoding the typing and evaluation rules in linear description logic,
to reason about the linear type system of the “father” language Quipper.

For a further insight on Proto−Quipper-like languages denotation see also the Combined
Linear/Non Linear calculus (CLNL) by Lindenhovious et al. [51], a version of Benton’s LNL calculus
enriched with string diagrams, a tool that has found applications across a range of areas in computer
science and in particular in quantum circuit description languages. LNL calculus also inspired the
language QWIRE we introduce in the following section and the denotational model for a language
similar to QWIRE based on enriched categories proposed by Staton and Renella in Reference [52].

4.4. QWIRE

QWIRE (“choir”) [19,21,24,53] is a powerful and flexible language for writing verifired quantum
programs. As Quipper, QWIRE is based on the QRAM. The “quantum core” (called circuit language)
of QWIRE can be treated as a “quantum plugin” for a host classical language. In its current version
it is embedded in COQ proof assistant [19,24] and is a verified circuit generation language. This is
reflected by the type system, inspired to Benton’s LNL Logic that partitions the exponential data into a
purely linear fragment and a purely non-linear fragment connected via a categorical adjunction (notice
that this fully reflects also the QRAM structure). This choice also makes the “quantum core” strongly
independent from the host language. The type system of the circuit language essentially controls the
well formation of expressions concerning wires, that is, the circuit’s inputs/outputs. The type system
of the host language also controls the boxing mechanism (similarly to Quipper, a circuit can be “boxed”
and then promoted as a classical resource/code). QWIRE supports dinamic lifting, that allows the
quantum computer to initialize a residual computation in a continuation-passing style. Dynamic lifting
is an integral part of many quantum algorithms, including quantum error correction but it is also
inefficient because the quantum computer must remain suspended (and must continuously undergo
error correction to prevent degradation), waiting for the remainder of the circuit to be computed.

Appl. Sci. 2019, 9, 5472 9 of 17

For this reason, QWIRE also supports static lifting, which models the fact that there is no residual
quantum state left on the quantum computer after a run and can be used when dynamic lifting is no
essential (as in the quantum teleportation encoding).

Differently from Quipper, QWIRE is type-safe and supports both linear and dependent types.
A strong type system guarantees the safety of generated circuits. In some sense, QWIRE design inherit
and develop the better of the two perspectives we often pointed out in this paper: on the one hand
good properties of quantum lambda calculi/paradigmatic languages are preserved; on the other hand,
as Quipper it is designed for realistic computations.

QWIRE is an ongoing project and nowadays the main effort is devoted to efficiency,
formal verification and optimization of quantum programs, a research area still underdeveloped.
See Reference [19] for a complete account about the use of lifting operations and several techniques
(safe semantics, automatic type-checking, circuit denotation. . .) designed for QWIRE.

4.5. qPCF and IQu

In this section we describe two (stand-alone) functional languages called qPCF and IQu
respectively. See References [20,41] for the complete study of qPCF and see Reference [22] for the
current version of IQu. Both qPCF and IQu follow the QRAM-based approach, support the direct
manipulation of quantum circuits and enjoy properties such as Preservation and Progress Theorems.
W.r.t. our previous proposals [8], strongly oriented to the characterization of quantum computable
functions, qPCF IQu are programming oriented calculi. They have been designed to make quantum
programming as easier as possible also for a programmer with low/medium skills in quantum
computing theory. This scope is eased by the gate based subtended model of computation, that allows
representing the quantum part of the program (the one offloaded to the quantum coprocessor in
the QRAM architecture) as a quantum circuit. Both qPCF and IQu can be foundational for concrete
languages. In particular, as a medium time goal, we are proceeding with the implementation of the
ALGOL-like language IQu.

4.5.1. qPCF

The language qPCF is based on a version of the QRAM model where measurements are all
performed at the end of the computation. qPCF is a simple extension of Plotkin’s PCF: essentially,
it extends PCF with a new kind of classical data, quantum circuits, that can be, thanks to the type
system, treated as classical objects (i.e., freely duplicated). In qPCF linear logic-based typing has been
completely avoided, in favor of the use of a simple version of dependency, that permits to soundly
encode quantum circuits families directly controlling arities of subcircuits, avoiding illegal erasing or
duplication of wires. qPCF types includes: the types of quantum circuits circ(E) (where E that morally
represents a circuit dimension), the type of indexes (i.e., strongly normalizing expressions) Idx and the
(standard) quantification over types Πx.τ.

The syntax of qPCF allows us to easily manipulate circuits through operations such as
sequentialization and parallelization of an arbitrary number of sub-circuits. For example, consider
the program Mseq = λucirc(k).λxNat.YWux : circ(k)→ Nat→ circ(k) : σ → σ where Y is the recursion
operation, W = λwσ.λucirc(k).λyNat. if y (u) (⦂ (u) (w u (pred y))) and σ = circ(k) → Nat → circ(k).
Given a term representing a circuit (of ariety k) C : circ(k), it is easy to observe that Mseq applied to C

and n concatenates n + 1 copies of C.
The parallel composition of quantum circuit can be achieved by using the operator iter (that has

type ΠxIdx. circ(E0)→ circ(E1)→ circ(E0 + ((1 + E1) ∗ x))).
Consider the program Mpar = λxIdx.λucirc(k)λwcirc(h). iter x u w : ΠxIdx. circ(k) → circ(h) →

circ(k+ (x ∗ (h+ 1))). When applied to a numeral n and two unitary gates U1 : circ(k) and U2 : circ(h),
Mpar generates a circuit built upon a copy of gate U1 in parallel with n copies of gate U2. Notice that
the term is driven by an argument of type Idx, to ensure that iteration is strong normalizing and,
consequently, that the arity of the generated circuit is always a numeral.

Appl. Sci. 2019, 9, 5472 10 of 17

qPCF makes especially convenient the programming of quantum algorithms in deferred form,
where measurements are all postponed at the end of the computation. qPCF quantum states are
not stored. This is possible since the interaction with the quantum co-processor is neatly decoupled
using the operator dmeas. It offloads a quantum circuit to a co-processor for the evaluation which is
immediately followed by a (von Neumann) Total Measurement. This means that partial measures
are forbidden. Thanks to the deferred measurement principle [9], this restriction does not represent
a theoretical limitation. Nevertheless, general measurement is an useful programming tool and we
model it in the language IQu described in Section 4.5.2.

4.5.2. IQu

IQu (read “Haiku” as the Japanese poetic form) extends Reynold’s Idealized Algol, the core of
Algol-like languages [40]. Idealized Algol combines the fundamental features of procedural languages,
that is, local stores and assignments, with a fully-fledged higher-order procedure mechanism which,
in its turn, conservatively includes PCF. We exploited Idealized Algol features to provide a (as much
as possible) minimal extension to capture higher-order circuit generation.

In IQu enjoys a simple type theory: classical types (for natural numbers, command and classical
variables) are extended with two new types.

The first one, cırc, is the type of quantum circuits. Quantum circuits are classical data, so their type
allows to operate on them without any special care. In IQu all circuits/gates Uk , of any dimension k,
are typed with the unique circuit type cırc. The second one, qVar, types quantum variables (representing
quantum content of registers). Since the manipulation of quantum registers requires care, we adapt
Idealized Algol’s original de-reference mechanism to access the content of classical and quantum
variables. Registers can not be duplicated but we can access their classical content via suitable methods
and, if interested in that, we can duplicate that content. On the other and, the type of “quantum
variables” prevents to read quantum states but allows to measure them.

This reference mechanism allows modeling the no-cloning property of quantum data therefore
in IQu we use neither dependent types or linear typer for describing quantum circuits, to keep it as
simple as possible.

As for qPCF, basic circuit manipulations (concatenation and parallelization) are easy encodable
thanks to recursion and ad hoc operators denoted as ⦂ and ‖ respectively.

Evaluation in IQu, as in Idealized ALGOL, and in quantum languages such as References [3,8],
is defined between pairs (s, M), where s is a store, that is, a function that links quantum and classical
variables to classical data and quantum registers respectively and M is a term. We possibly represent
quantum stores as pairs {r, |φ〉}, where r is the name of the register and |φ〉 is the related quantum
state. A fresh quantum register of an arbitrary dimension k can be easily created and bound in a
program M by means of the command qnewN x in M, where N is expected to reduce to k.

The function rsize returns the arity of a quantum register. The expression x C N evaluates the
application of the circuit N to the quantum state stored in x, then it stores the resulting state in x.

Finally, measN x measures N qubits of a quantum state which x stores (and, update such state,
in accordance with the quantum measurement rules).

Formally, IQu does not extend qPCF. However, such an extension is possible, thus we state
that IQu extends qPCF with classical and quantum stores. Moreover, since IQu supports general
measurement, the programmer does not necessarily encode algorithms in deferred form as, for qPCF.

4.5.3. Programming Quantum Algorithms: Three Higher-Order Examples

In this section, we use qPCF and IQu to provide three higher-order examples of quantum circuit
family encodings. The examples are parametric, whereas the majority of the examples proposed in
the literature are linear: this means that a term (the program) represents an entire (infinite) quantum
circuit family. When fed with the input dimension, the evaluation of the program morally first yields

Appl. Sci. 2019, 9, 5472 11 of 17

the description of the circuit of the right size among the whole family and then returns to the user the
evaluation of the circuit on the quantum state provided as the input of the computation.

We show the encodings of the well-known Deutsch-Jozsa and Simon’s algorithms. We implement
the circuit representing the Deutsch-Jozsa procedure in qPCF and IQu, to see at work the main
peculiarities of the languages and the different solutions we chose in the definition of the syntax,
the type and the reduction systems. Finally, we propose the encoding of the circuit family implementing
Simon’s quantum subroutine in IQu, exploiting its partial measurement operator and the quantum store.

Example 2 (Deutsch-Jozsa Circuit in qPCF). Figure 2 represents, up to the last phase (measurement of
the output state), the circuit implementing the well-known Deutsch-Josza algorithm (the generalization of the
Deutsch’s algorithm) [9], that considers a function f : {0, 1}n → {0, 1} which acts on many input bits:

As for the previous two algorithms, we assume that access to the function f is restricted to
queries to a device corresponding to the transformation Bf defined similarly to before:

Bf |x⟩ |b⟩ = |x⟩ |b ⊕ f(x)⟩

for all x ∈ {0, 1}n and b ∈ {0, 1}.
It turns out that classically this problem is pretty easy given a small number of queries if we

allow randomness and accept that there may be a small probability of error. Specifically, we can
randomly choose say k inputs x1, . . . , xk ∈ {0, 1}n, evaluate f(xi) for i = 1, . . . , k, and answer
“constant” if f(x1) = · · · = f(xk) and “balanced” otherwise. If the function really was constant
this method will be correct every time, and if the function was balanced, the algorithm will be
wrong (and answer “constant”) with probability 2−(k−1). Taking k = 11, say, we get that the
probability of error is smaller than 1/1000. However, if you demand that the algorithm is correct
every time, then 2n−1 + 1 queries are needed in the worst case.
In the quantum case, 1 query will be sufficient to determine with certainty whether the function

is constant or balanced. Here is the algorithm, which is called the Deutsch-Jozsa Algorithm:

H H

H H

Bf

H

❄

H H

|0⟩

|0⟩

|0⟩

|1⟩

M

M

M

There are n bits resulting from the measurements. If all n measurement results are 0, we
conclude that the function was constant. Otherwise, if at least one of the measurement outcomes
is 1, we conclude that the function was balanced.
Before we analyze the algorithm, it will be helpful to think more about Hadamard transforms.

We have already observed that for a ∈ {0, 1} we have

H |a⟩ =
1√
2

|0⟩ +
1√
2
(−1)a |1⟩ ,

which we can also write as
H |a⟩ =

1√
2

∑

b∈{0,1}
(−1)ab |b⟩ .

4

Figure 2. Circuit representation of Deutsch-Jozsa algorithm.

Given a classical input state of the form |0 . . . 01〉, the circuit returns a state that, once measured, reveals
in the first n− 1 bits if the function f is constant or balanced. If all n− 1 measurement results are 0, we can
conclude that the function is constant. Otherwise, if at least one of the measurement outcomes is 1, we conclude
that the function is balanced.

In qPCF, unitary gates of arity k + 1 are typed with the (dependent) type circ(k), where the dependency
parameter i in type circ(i) is the numeral representation of the integer i. Moreover, the special type Idx is reserved
for strongly normalizing expressions that represent dimensions of operation on circuits, such as sequentialization
and parallelization. Sequential composition of two circuits C1 and C2 (of th same arity k) is denoted as C1 ⦂ C2.
The qPCF term iter put in parallel an arbitrary number of quantum gates of arbitrary ariety: for example,
iter kUV create a parallel composition of k copies of the gate V and a copy of the gate U.

Let H : circ(0) and I : circ(0) be the (unary) Hadamard and Identity gates respectively. Suppose MB f :
circ(n) is given for some n such that MB f ⇓⇓⇓α U f where U f : circ(n) is the qPCF-circuit that represents the the
black-box function f having arity n + 1 and ⇓⇓⇓α represents the evaluation labelled with its probability (in this
case, α = 1).

The term λxIdx. iter xHH : ΠxIdx. circ(x) generates x + 1 parallel copies of Hadamard gates H

and λxIdx. iter xIH : ΠxIdx. circ(x) concatenates in parallel x copies of Hadamard gates H and one copy
of the identity gate I. Notice that we abstract on types by means of the standard abstraction Π of dependent
types. Thus the parametric measurement-free Deutsch-Jozsa circuit can be defined as

DJ− = λxIdx.λycirc(x).((iter x H H) ⦂ y) ⦂(iter x I H) : σ,

where σ = ΠxIdx. circ(x)→ circ(x).
The last phase is performed by the operator dMeas, the qPCF function that takes as inputs the representation

(as numeral) of a classical state and the description of a circuit, applies the circuit on the state and returns
a possible, probabilistic results. dMeas is here suitably fed with the n(0 . . . 0︸ ︷︷ ︸

n

1) and DJ−nMB f . Notice that

DJ−nMB f returns the Deutsch-Jozsa circuit of dimension n + 1 for the function f among the infinite family.
The evaluation yields dMeas(n(0 . . . 0︸ ︷︷ ︸

n

1),DJ−nMB f) ⇓⇓⇓α m where m is the result (with probability α = 1).

Appl. Sci. 2019, 9, 5472 12 of 17

We can make the term parametric also w.r.t. the sub-circuit represented by MB f . It suffices to replace
n with the variable nIdx, to replace the black-box with a variable bcirc(n) so that, the resulting term is typed
ΠnIdx.Πbcirc(n).Nat or more simply ΠnIdx. circ(n)→ Nat (where Nat is the usual type of integers).

Example 3 (Deutsch-Jozsa Circuit in IQu). We show how an IQu term represents the infinite family of
quantum programs that encode the Deutsch-Jozsa algorithm (Figure 2), as we have just done with qPCF.

Let H 1 : circ be the Hadamard gate and Id 1 : circ be the Identity gate. Notice that we “decorate”
IQu constants representing unitary operators with their arities and, as described in the previous section, all
gates/circuits are typed with the ground type circ. We implement Deutsch-Jozsa in IQu by sequentially composing
the terms M1, x and M3, where x : circ is expected to be substituted by the black-box circuit that implements the
function f , while both M1 and M3 are defined in the coming lines.

• Let Mpar be a term that applied to a circuit C : circ and to a numeral n puts n + 1 copies of C in
parallel. It is defined as Mpar = λucirc.λkNat.YW1uk : circ(→)Nat → circ, where Y is the recursion
operator, W1 is the term λwσ.λucirc.λkNat. if k (u) (u ‖ (w u pred(k))) whose type is σ → σ with
σ = circ→ Nat→ circ.

• The circuit M1 : circ is obtained by feeding the term Mpar with two inputs: the (unary) Hadamard gate H 1

and the input dimension rsize (r) where r is a co-processor register with suitable dimension. It should be
evident that it generates n + 1 parallel copies of the gate H 1.

• The circuit M3 : circ can be defined as (MparH
1 pred(rsize (r))) ‖ Id1 : circ, that is, it is obtained by the

parallel composition of the term Mpar fed by the gate H 1 and the dimension pred(rsize (r)) (generating
n parallel copies of the gate H 1) and a single copy Id1 of the identity gate.

Fixed an arbitrary n, the generalization of Deutsch-Jozsa is obtained by using the quantum variable binder
qnewn r in P that makes the quantum variable r available in P. The local variable declaration qnewn r in P
creates a quantum register which is fully initialized to 0. Since the expected input state of Deutsch-Jozsa circuit
is |0 . . . 0︸ ︷︷ ︸

n

1〉, we define and use an initializing circuit Minit = (MparId
1 (pred(rsize (r)))) ‖ Not 1 : circ

that complements the last qubit, setting it to 1 (pred is the standard predecessor function of PCF and rsize (r)
extracts the size, that is, the numeber of quantum bits available in the register). Let DJ+ be the circuit
Minit ⦂ M1 ⦂ x ⦂ M3. The (parametric) IQu encoding of the Deutsch-Jozsa algorithm can be defined as
λxcirc. qnew n+1 r in ((r C DJ+);measn r). Given an input dimension n and an encoding of the function f
to evaluate, the program solves any instance of the Deutsch-Jozsa algorithm.

Let MB f be a black-box closed circuit implementing the function f that we want to check and let DJ? be
DJ+[MB f /x] namely the circuit obtained by the substitution of MB f to x in DJ+. By means of the suitable
evaluation rule of IQu, we have {(r, |0 . . . 0〉︸ ︷︷ ︸

n

)}, r C DJ? ⇓⇓⇓1 {(r, |φ〉)}, skip where |φ〉 is the computational

state after the evaluation of DJ?. To measure the state |φ〉 we use the operational rule for the constructor measn r
to conclude {r, |φ〉},measn r ⇓⇓⇓1 {r, |φ′〉}, k, where k is the (deterministic) output of the measurement and 1 is
the associated probability.

Example 4 (Simon’s algorithm in IQu). Simon’s quantum algorithm is an important precursor to Shor’s
algorithm for integer factorization. Simon’s algorithm [54] solves in quantum polynomial-time a classically
hard problem [55] which can be formulated as follows. Let be f : {0, 1}n → X (X finite) a black-box function.
Determine the string s = s1s2 . . . sk such that f (x) = f (y) if and only if x = y or x = y ⊕ s. Simon’s
algorithm requires an intermediate, partial measure of the quantum state. The measurement is embedded in a
quantum subroutine that can be eventually iterated at most n times, where n is the input size. We here focus on
the inherently quantum relevant fragment of Simon’s algorithm [56]. The circuit in Figure 3 implements the
quantum subroutine of Simon’s algorithm.

Appl. Sci. 2019, 9, 5472 13 of 17

Figure 3. Circuit representation of Simon’s algorithm.

The whole procedure can be easily encoded in IQu, thanks to the partial measurement operator and the
possibility to store intermediate quantum states.

Simon’s quantum subroutine sequentially composes M1, x and M3, where x : cırc is expected to be
substituted by the black-box circuit that implements the function f (denoted as B f in the figure above). M1 and
M3 are defined by letting M1 = M3 = (Mpar(H 1) rsize (r)) ‖ (Mpar(Id 1) rsize (r)) : cırc where: (i) Mpar

is the term that sequentializes an arbitrary number of copy the same gate (easily definable by the Y operator), (ii)
r is a quantum register; and, (iii) H 1 : cırc, Id 1 : cırc are the unary Hadamard and Identity gates, respectively.

Let MSP
+ be the circuit M1 ⦂ x ⦂M3 : cırc . Let n be the arity of f we want to check. The program that

implements Simon’s subroutine can be encoded as λxcırc. qnew 2∗n r in ((r C MSP
+);measn r), where the

abstracted variable x : cırc will be replaced by a suitable encoding of the black-box function that implements f .
Let MB f : cırc be the encoding of the circuit implementing f and let MSP

? be MSP
+[MB f /x], namely the

circuit obtained by the substitution of MB f for x in MSP
+.

The following evaluation respects the IQu semantics:

{(r, |0 . . . 0︸ ︷︷ ︸
2∗n

)〉}, r C MSP
? ⇓⇓⇓1 {(r, |φ〉)}, skip ,

where |φ〉 is the state after the evaluation of the circuit MSP
?. We can measure the first n quantum bits as

follows: {(r, |φ〉)},measn r ⇓⇓⇓α {(r, |φ′〉)}, k, where φ′ is one possible state after the partial measurement and
α is the related probability.

The classical output k can be used as feedback from the quantum co-processor by the classical program,
in this way it can decide how to proceed in the computation. In particular, it can use the measurement as
guard-condition in a loop that iterates the subroutine. So we can easily re-use the Simon-circuits above as many
times as we want, by arbitrarily reducing the probability error.

4.6. Other Quantum Calculi

In literature, several imperative approach to quantum computation have been proposed.
The Quantum Computation Language (QCL), designed and implemented by Omer [57], is based on
the syntax of C programming language. Its interpreter is implemented using a simulation library for
executing quantum programs on a classical computer and it has been used as a code generator for
classical machine controlling a quantum circuit. Along with QCL several other imperative quantum
programming languages were proposed, see for example, References [58] and [2].

Starting from the seminal paper, Reference [59], some measurement based calculi have been defined.
In particular, the so-called measurement calculus [5] has been developed as an efficient rewriting system
for measurement-based quantum computation. In Reference [5], the authors defined a calculus
of local equations for 1-qubit one-way quantum computing. Roughly speaking, the idea is that a
computation is built out of three basic commands, entanglement, measurement and local correction. The

Appl. Sci. 2019, 9, 5472 14 of 17

authors define a suitable syntax for these primitives, which permits the description of patterns, that is,
sequences of basic commands with qubits as input-output. By pattern composition, it is possible to
implement quantum gates and quantum protocols. Moreover, a standardization theorem, which has
some important consequences, is stated and proved.

5. Conclusions

Quantum programming theory is a dynamic and vital research field. In the last twenty years,
several languages have been introduced and implemented. Quantum lambda calculi provided the basis
for quantum computability, establishing the equivalence with other computational models. Foundational
languages helped in developing ad hoc type theories for the sound management of data according to
quantum mechanics principles. More practical languages showed how to program simulated and real
small devices, in the perspective of the availability of a universal, powerful quantum device.

Different design choices bring different benefits and weaknesses. The choice of the QRAM
architectural model, which assumes a strong separation between data and control, allows to efficiently
manage the restrictions due to programming with quantum data. Moreover, it seems to be the more
realistic architecture for physical implementation. Concerning the design of the type system, in this
paper, we met several solutions. Linear Logic (LL) perhaps remains the most natural option for
quantum type systems, since LL modalities allow to syntactically distinguish between duplicable and
non-duplicable resources and reduction strategies can easily preserve the no-cloning properties of
quantum data. Nevertheless, different solutions such as the use of dependent types are emerging as
valid alternatives. This holds both for “stand-alone” languages (such as qPCF) and for embedded
languages, in which the quantum core is purely linear and neatly separated from the “host” part,
as happens in QWIRE and Quipper. This classification can be central to the scope of a language. On the
one hand, a stand-alone calculus can represent a better solution if one is interested in theoretical
studies since good properties (of the type system or the operational semantics) do not depend on the
properties of the host language. On the other hand, an embedded language allows more direct control
of quantum operations and is suitable for the implementation in automatic verification systems.

Concerning the denotational semantics of quantum languages, an argument we did not address
in this paper, many fascinating theoretical results have been shown extending to the quantum setting
different techniques and tools (as the Geometry of the Interaction or several categorical frameworks)
and various challenging questions remain open [44,45,52,60].

We conclude that the theoretical results of the last decades and the current technological
development seem to happily converge in the same direction. The advances of quantum technologists,
that year-by-year provide more efficient architectures, also suggest how quantum computers have to
be programmed. For example, the NISQ (Noisy Intermediate-Scale Quantum) technology, available
shortly, is providing important steps toward bigger and fault-tolerant computers and could early
become a concrete reference for realistic software design [61]. Thanks to this parallel effort, today we
can design increasingly efficient languages and run quantum algorithms on both simulators and real
prototypes [1]. At the same time, formal verification of quantum programs (e.g., based on logic [62,63]
or on mechanizable tools [64]) became an urgent and exciting challenge. We are entering the quantum
future and we are ready to program it.

Funding: This research received no external funding.

Acknowledgments: I wish to dedicate this paper, that embraces one of the passions of my life, to four very
special people that, day-by-day, make me happy: my beloved-hippie-super-mom Franca (the genius of the family),
my brother-friend-uncle Franco (the cub of the family), my friend-confidant-maître Andrea Masini (the Don Quixotte
of our Department of Computer Science) and my best friend Gionata (who, in the last 20 years, has shared with me
secrets, drinks and football-related joys and sorrows). Thanks, dears, for all. Long and prosper life.

Conflicts of Interest: The author declares no conflict of interest.

Appl. Sci. 2019, 9, 5472 15 of 17

References

1. LaRose, R. Overview and Comparison of Gate Level Quantum Software Platforms. Quantum 2019, 3, 1–24.
[CrossRef]

2. Sanders, J.W.; Zuliani, P. Quantum Programming. In Proceedings of the 5th International Conference on
Mathematics of Program Construction—MPC 2000, Ponte de Lima, Portugal, 3–5 July 2000; Lecture Notes
in Computer Science; Backhouse, R.C., Oliveira, J.N., Eds.; Springer: Berlin/Heidelberg, Germany, 2000,
Volume 1837, pp. 80–99. doi:10.1007/10722010_6. [CrossRef]

3. Selinger, P.; Valiron, B. A lambda calculus for quantum computation with classical control. Math. Struct.
Comput. Sci. 2006, 16, 527–552. doi:10.1017/S0960129506005238. [CrossRef]

4. Altenkirch, T.; Grattage, J. A Functional Quantum Programming Language. In Proceedings of the 20th IEEE
Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, 26–29 June 2005; pp. 249–258.
doi:10.1109/LICS.2005.1. [CrossRef]

5. Danos, V.; Kashefi, E.; Panangaden, P. The Measurement Calculus. J. ACM 2007, 54. doi:10.1145/1219092.1219096.
[CrossRef]

6. Díaz-Caro, A.; Arrighi, P.; Gadella, M.; Grattage, J. Measurements and Confluence in Quantum Lambda
Calculi With Explicit Qubits. Electr. Notes Theor. Comput. Sci. 2011, 270, 59–74. doi:10.1016/j.entcs.2011.01.006.
[CrossRef]

7. Green, A.S.; Lumsdaine, P.L.; Ross, N.J.; Selinger, P.; Valiron, B. Quipper: A Scalable Quantum Programming
Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Seattle, WA, USA, 16–19 June 2013; ACM: New York, NY, USA, 2013; pp. 333–342.
doi:10.1145/2491956.2462177. [CrossRef]

8. Zorzi, M. On quantum lambda calculi: a foundational perspective. Math. Struct. Comput. Sci. 2016,
26, 1107–1195. doi:10.1017/S0960129514000425. [CrossRef]

9. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary ed.; Cambridge
University Press: Cambridge, UK, 2010; pp. xxvi+676. doi:10.1017/CBO9780511976667. [CrossRef]

10. Masini, A.; Viganò, L.; Zorzi, M. Modal Deduction Systems for Quantum State Transformations.
Multiple-Valu. Logic Soft Comput. 2011, 17, 475–519.

11. Viganò, L.; Volpe, M.; Zorzi, M. Quantum state transformations and branching distributed temporal logic.
In Logic, Language, Information, and Computation, Proceedings of the 21st International Workshop, WoLLIC 2014,
Valparaíso, Chile, 1–4 September 2014; Lecture Notes in Computer Science 8652; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 1–19. doi:10.1007/978-3-662-44145-9_1. [CrossRef]

12. Viganò, L.; Volpe, M.; Zorzi, M. A branching distributed temporal logic for reasoning about entanglement-free
quantum state transformations. Inf. Comput. 2017, 255, 311–333. doi:10.1016/j.ic.2017.01.007. [CrossRef]

13. Masini, A.; Zorzi, M. A Logic for Quantum Register Measurements. Axioms 2019, 8, 25.
doi:10.3390/axioms8010025. [CrossRef]

14. Nakahara, M.; Ohmi, T. Quantum Computing—From Linear Algebra to Physical Realizations; CRC Press:
Boca Raton, FL, USA, 2008.

15. Roman, S. Advanced Linear Algebra, 3rd ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA,
2008; Volume 135, pp. xviii+522.

16. Selinger, P. Towards a Quantum Programming Language. Math. Struct. Comput. Sci. 2004, 14, 527–586.
doi:10.1017/S0960129504004256. [CrossRef]

17. Knill, E. Conventions for Quantum Pseudocode; Technical Report; Los Alamos National Laboratory: Los Alamos,
NM, USA, 1996.

18. Nishimura, H.; Ozawa, M. Perfect computational equivalence between quantum Turing machines and finitely
generated uniform quantum circuit families. Quant. Inf. Process. 2009, 8, 13–24. doi:10.1007/s11128-008-0091-8.
[CrossRef]

19. Rand, R. Formally Verified Quantum Programming. Ph.D. Thesis, University of Pennsylvania, Philadelphia,
PA, USA, 2018. Available online: http://www.cis.upenn.edu/~rrand/thesis.pdf (accessed on 1 June 2019).

20. Paolini, L.; Zorzi, M. qPCF: A language for quantum circuit computations. In Theory and Applications of
Models of Computation; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 10185, pp. 455–469. doi:10.1007/978-3-319-55911-7_33. [CrossRef]

http://dx.doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.1007/10722010_6
http://dx.doi.org/10.1007/10722010_6
https://doi.org/10.1017/S0960129506005238
http://dx.doi.org/10.1017/S0960129506005238
https://doi.org/10.1109/LICS.2005.1
http://dx.doi.org/10.1109/LICS.2005.1
https://doi.org/10.1145/1219092.1219096
http://dx.doi.org/10.1145/1219092.1219096
https://doi.org/10.1016/j.entcs.2011.01.006
http://dx.doi.org/10.1016/j.entcs.2011.01.006
https://doi.org/10.1145/2491956.2462177
http://dx.doi.org/10.1145/2491956.2462177
https://doi.org/10.1017/S0960129514000425
http://dx.doi.org/10.1017/S0960129514000425
https://doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-3-662-44145-9_1
http://dx.doi.org/10.1007/978-3-662-44145-9_1
https://doi.org/10.1016/j.ic.2017.01.007
http://dx.doi.org/10.1016/j.ic.2017.01.007
https://doi.org/10.3390/axioms8010025
http://dx.doi.org/10.3390/axioms8010025
https://doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/S0960129504004256
https://doi.org/10.1007/s11128-008-0091-8
http://dx.doi.org/10.1007/s11128-008-0091-8
http://www.cis.upenn.edu/~rrand/thesis.pdf
https://doi.org/10.1007/978-3-319-55911-7_33
http://dx.doi.org/10.1007/978-3-319-55911-7_33

Appl. Sci. 2019, 9, 5472 16 of 17

21. Paykin, J.; Rand, R.; Zdancewic, S. QWIRE: A Core Language for Quantum Circuits. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, Paris, France, 15–21 January
2017; ACM: New York, NY, USA, 2017; pp. 846–858. doi:10.1145/3009837.3009894. [CrossRef]

22. Paolini, L.; Roversi, L.; Zorzi, M. Quantum programming made easy. In Proceedings of the Joint International
Workshop on Linearity & Trends in Linear Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford,
UK, 7–8 July 2018; EPTCS; Ehrhard, T., Fernández, M., de Paiva, V., de Falco, L.T., Eds.; 2018; Volume 292,
pp. 133–147, Open Publishing Association, Waterloo, Australia . doi:10.4204/EPTCS.292.8. [CrossRef]

23. Valiron, B.; Ross, N.J.; Selinger, P.; Alexander, D.S.; Smith, J.M. Programming the Quantum Future.
Commun. ACM 2015, 58, 52–61. doi:10.1145/2699415. [CrossRef]

24. Rand, R.; Paykin, J.; Zdancewic, S. QWIRE Practice: Formal Verification of Quantum Circuits in
Coq. In Proceedings of the 14th International Conference on Quantum Physics and Logic, Nijmegen,
The Netherlands, 3–7 July 2017; Volume 266, pp. 119–132. doi:10.4204/EPTCS.266.8. [CrossRef]

25. Q# Reference Page, Technical Report, Microsoft. Available online: https://docs.microsoft.com/en-us/
quantum/language/?view=qsharp-preview (accessed on 1st June, 2019).

26. Vaux, L. The algebraic lambda calculus. Math. Struct. Comput. Sci. 2009, 19, 1029–1059.
doi:10.1017/S0960129509990089. [CrossRef]

27. Arrighi, P.; Díaz-Caro, A. Scalar System F for Linear-Algebraic Lambda-Calculus: Towards a Quantum
Physical Logic. Log. Methods Comput. Sci. 2012, 8. doi:10.2168/LMCS-8(1:11)2012. [CrossRef]

28. Ying, M. Foundations of Quantum Programming; Morgan Kaufmann: Burlington, MA, USA, 2016.
29. Sabry, A.; Valiron, B.; Vizzotto, J.K. From Symmetric Pattern-Matching to Quantum Control. In Foundations

of Software Science and Computation Structures; Baier, C., Dal Lago, U., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 348–364.

30. Rios, F.; Selinger, P. A Categorical Model for a Quantum Circuit Description Language. In Proceedings of the
14th International Conference on Quantum Physics and Logic, Nijmegen, The Netherlands, 3–7 July 2017;
Open Publishing Association, Waterloo, Australia, 2018; Volume 266, pp. 164–178. doi:10.4204/EPTCS.266.11.
[CrossRef]

31. Quipper Reference Page; Technical Report. Available online: https://www.mathstat.dal.ca/~selinger/
quipper/ (accessed on 1 June 2019).

32. Siddiqui, S.; Mohammed Jahirul Islam, O.S. Five Quantum Algorithms Using Quipper; Technical Report;
Shahjalal University of Science and Technology: Sylhet, Bangladesh; University of Maryland: Baltimore
County, MD, USA, 2014.

33. Park, J.L. The concept of transition in quantum mechanics. Found. Phys. 1970, 1, 23–33. doi:10.1007/BF00708652.
[CrossRef]

34. Dal Lago, U.; Masini, A.; Zorzi, M. On a Measurement-free Quantum Lambda Calculus with Classical
Control. Math. Struct. Comput. Sci. 2009, 19, 297–335. doi:10.1017/S096012950800741X. [CrossRef]

35. Dal Lago, U.; Masini, A.; Zorzi, M. Quantum implicit computational complexity. Theor. Comput. Sci. 2010,
411, 377–409. doi:10.1016/j.tcs.2009.07.045. [CrossRef]

36. Dal Lago, U.; Masini, A.; Zorzi, M. Confluence Results for a Quantum Lambda Calculus with Measurements.
Electr. Notes Theor. Comput. Sci. 2011, 270, 251–261. doi:10.1016/j.entcs.2011.01.035. [CrossRef]

37. Pagani, M.; Selinger, P.; Valiron, B. Applying quantitative semantics to higher-order quantum
computing. In Proceedings of the POPL ’14, San Diego, CA, USA, 22–24 January 2014; pp. 647–658.
doi:10.1145/2535838.2535879. [CrossRef]

38. Dal Lago, U.; Zorzi, M. Wave-Style Token Machines and Quantum Lambda Calculi. In Proceedings of the
Third International Workshop on Linearity—LINEARITY 2014, Vienna, Austria, 13 July 2014; Electronic
Proceedings in Theoretical Computer Science 176; Open Publishing Association: Waterloo, Australia, 2014;
pp. 64–78. doi:10.4204/EPTCS.176.6. [CrossRef]

39. Grattage, J. QML: A Functional Quantum Programming Language. Ph.D. Thesis, University of Nottingham,
Nottingham, UK, 2006.

40. O’Hearn, P.W. Algol-like Languages; Progress in Theoretical Computer Science; Birkhäuser: Basel, Switzerland.
41. Paolini, L.; Piccolo, M.; Zorzi, M. QPCF: Higher-Order Languages and Quantum Circuits. J. Automat. Reason.

2019. doi:10.1007/s10817-019-09518-y. [CrossRef]

https://doi.org/10.1145/3009837.3009894
http://dx.doi.org/10.1145/3009837.3009894
https://doi.org/10.4204/EPTCS.292.8
http://dx.doi.org/10.4204/EPTCS.292.8
https://doi.org/10.1145/2699415
http://dx.doi.org/10.1145/2699415
https://doi.org/10.4204/EPTCS.266.8
http://dx.doi.org/10.4204/EPTCS.266.8
https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://docs.microsoft.com/en-us/quantum/language/?view=qsharp-preview
https://doi.org/10.1017/S0960129509990089
http://dx.doi.org/10.1017/S0960129509990089
https://doi.org/10.2168/LMCS-8(1:11)2012
http://dx.doi.org/10.2168/LMCS-8(1:11)2012
https://doi.org/10.4204/EPTCS.266.11
http://dx.doi.org/10.4204/EPTCS.266.11
https://www.mathstat.dal.ca/~selinger/quipper/
https://www.mathstat.dal.ca/~selinger/quipper/
https://doi.org/10.1007/BF00708652
http://dx.doi.org/10.1007/BF00708652
https://doi.org/10.1017/S096012950800741X
http://dx.doi.org/10.1017/S096012950800741X
https://doi.org/10.1016/j.tcs.2009.07.045
http://dx.doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1016/j.entcs.2011.01.035
http://dx.doi.org/10.1016/j.entcs.2011.01.035
https://doi.org/10.1145/2535838.2535879
http://dx.doi.org/10.1145/2535838.2535879
https://doi.org/10.4204/EPTCS.176.6
http://dx.doi.org/10.4204/EPTCS.176.6
https://doi.org/10.1007/s10817-019-09518-y
http://dx.doi.org/10.1007/s10817-019-09518-y

Appl. Sci. 2019, 9, 5472 17 of 17

42. Green, A.S.; Lumsdaine, P.L.; Ross, N.J.; Selinger, P.; Valiron, B. An Introduction to Quantum Programming in
Quipper. In Proceedings of the 5th International Conference on Reversible Computation, Victoria, BC, Canada,
4–5 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 110–124. [CrossRef]

43. Selinger, P.; Valiron, B. On a Fully Abstract Model for a Quantum Linear Functional Language: (Extended
Abstract). Electr. Notes Theor. Comput. Sci. 2008, 210, 123–137. doi:10.1016/j.entcs.2008.04.022. [CrossRef]

44. Makie, I.; Gay, S., Eds. Semantic Techniques in Quantum Computation; Cambridge University Press: Cambridge,
UK, 2009. doi:10.1017/CBO9781139193313. [CrossRef]

45. Hasuo, I.; Hoshino, N. Semantics of higher-order quantum computation via geometry of interaction.
In Proceedings of the LICS’11, IEEE Computer Society, Washington, DC, USA, 21–24 June 2011; pp. 237–246.

46. Abramsky, S.; Haghverdi, E.; Scott, P.J. Geometry of Interaction and Linear Combinatory Algebras.
Math. Struct. Comput. Sci. 2002, 12, 625–665. doi:10.1017/S0960129502003730. [CrossRef]

47. Altenkirch, T.; Grattage, J.; Vizzotto, J.K.; Sabry, A. An Algebra of Pure Quantum Programming.
Electron. Notes Theoret. Comput. Sci. 2007, 170, 23–47. [CrossRef]

48. Grattage, J. An Overview of QML With a Concrete Implementation in Haskell. Electr. Notes Theor. Comput. Sci.
2011, 270, 165–174. doi:10.1016/j.entcs.2011.01.015. [CrossRef]

49. Ross, N.J. Algebraic and Logical Methods in Quantum Computation. Ph.D. Thesis, Department of
Mathematics and Statistics, Dalhousie University, Halifax, NS, Camada, 2015.

50. Mahmoud, M.Y.; Felty, A.P. Formalization of Metatheory of the Quipper Quantum Programming Language
in a Linear Logic. J. Autom. Reason. 2019, 63, 967–1002. doi:10.1007/s10817-019-09527-x. [CrossRef]

51. Lindenhovius, B.; Mislove, M.W.; Zamdzhiev, V. Enriching a Linear/Non-linear Lambda Calculus:
A Programming Language for String Diagrams. arXiv 2018, arXiv:1804.09822.

52. Rennela, M.; Staton, S. Classical Control and Quantum Circuits in Enriched Category Theory. Electron. Notes
Theoret. Comput. Sci. 2018, 336, 257–279. doi:10.1016/j.entcs.2018.03.027. [CrossRef]

53. Rand, R.; Paykin, J.; Lee, D.H.; Zdancewic, S. Reqwire: Reasoning about reversible quantum circuits.
In Proceedings of the 15th International Conference on Quantum Physics and Logic—QPL 2018, Dalhousie
University, Halifax, NS, Canada, 3–7 June 2018; Volume 287, pp. 299–312. [CrossRef]

54. Simon, D.R. On the Power of Quantum Computation. SIAM J. Comput. 1994, 26, 116–123. [CrossRef]
55. Arora, S.; Barak, B. Computational Complexity: A Modern Approach, 1st ed.; Cambridge University Press:

New York, NY, USA, 2009. doi:10.1017/CBO9780511804090. [CrossRef]
56. Kaye, P.; Laflamme, R.; Mosca, M. An Introduction to Quantum Computing; Oxford University Press: Oxford,

UK, 2007; p. xii+274.
57. Omer, B. Structured Quantum Programming. Ph.D. Thesis, Vienna University of Technology, Wien,

Austria, 2003.
58. Bettelli, S.; Serafini, L.; Calarco, T. Toward an architecture for quantum programming. arXiv 2001, arXiv:cs/0103009.
59. Nielsen, M. Universal quantum computation using only projective measurement, quantum memory, and

preparation of the 0 state. Phys. Lett. 2003, 308, 96–100. [CrossRef]
60. Clairambault, P.; De Visme, M.; Winskel, G. Game Semantics for Quantum Programming. Proc. ACM

Program. Lang. 2019, 3, 32:1–32:29. doi:10.1145/3290345. [CrossRef]
61. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 79. doi:10.22331/q-2018-08-06-79.

[CrossRef]
62. Baltag, A.; Smets, S. Quantum logic as a dynamic logic. Synthese 2011, 179, 285–306. [CrossRef]
63. Ying, M.; Ying, S.; Wu, X. Invariants of quantum programs: Characterisations and generation. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
18–20 January 2017; Castagna, G., Gordon, A.D., Eds.; ACM: New York, NY, USA, 2017; pp. 818–832.
[CrossRef]

64. Amy, M. Towards large-scale functional verification of universal quantum circuits. In Proceedings of the
15th International Conference on Quantum Physics and Logic, QPL 2018, Dalhousie University, Halifax, NS,
Canada, 3–7 June 2018; Volume 287, pp. 1–21. [CrossRef]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1016/j.entcs.2008.04.022
http://dx.doi.org/10.1016/j.entcs.2008.04.022
https://doi.org/10.1017/CBO9781139193313
http://dx.doi.org/10.1017/CBO9781139193313
https://doi.org/10.1017/S0960129502003730
http://dx.doi.org/10.1017/S0960129502003730
http://dx.doi.org/10.1016/j.entcs.2006.12.010
https://doi.org/10.1016/j.entcs.2011.01.015
http://dx.doi.org/10.1016/j.entcs.2011.01.015
https://doi.org/10.1007/s10817-019-09527-x
http://dx.doi.org/10.1007/s10817-019-09527-x
https://doi.org/https://doi.org/10.1016/j.entcs.2018.03.027
http://dx.doi.org/10.1016/j.entcs.2018.03.027
http://dx.doi.org/10.4204/EPTCS.287.17
http://dx.doi.org/10.1137/S0097539796298637
https://doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1016/S0375-9601(02)01803-0
https://doi.org/10.1145/3290345
http://dx.doi.org/10.1145/3290345
https://doi.org/https://doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1007/s11229-010-9783-6
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.4204/EPTCS.287.1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	On Quantum Language Design: Main Features
	The Architectural Model
	On the Expressive Power of a Quantum Language
	On the Linearity of Quantum Data

	Quantum Programming Languages
	Foundational Quantum Programming Languages
	Quantum Lambda Calculi
	QML and the QIO-Monad
	Proto-Quipper
	QWIRE
	qPCF and IQu
	qPCF
	IQu
	Programming Quantum Algorithms: Three Higher-Order Examples

	Other Quantum Calculi

	Conclusions
	References

