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A B S T R A C T

We have previously demonstrated promotion of diethylnitrosamine (DEN) initiated liver tumorigenesis after
feeding diets high in fat or ethanol (EtOH) to male mice. This was accompanied by hepatic induction of the
proto-oncogene PIKE (Agap2). Switch of dietary protein from casein to soy protein isolate (SPI) significantly
reduced tumor formation in these models. We have linked EtOH consumption in mice to microbial dysbiosis.
Adoptive transfer studies demonstrate that microbiota from mice fed ethanol can induce hepatic steatosis in the
absence of ethanol suggesting that microbiota or the microbial metabolome play key roles in development of
fatty liver disease. Feeding SPI significantly changed gut bacteria in mice increasing alpha diversity (P < 0.05)
and levels of Clostidiales spp. Feeding soy formula to piglets also resulted in significant changes in microbiota, the
pattern of bile acid metabolites and in inhibition of the intestinal-hepatic FXR/FGF19-SHP pathway which has
been linked to both steatosis and hepatocyte proliferation. Moreover, feeding SPI also resulted in induction of
hepatic PPARα signaling and inhibition of PIKE mRNA expression coincident with inhibition of steatosis and
cancer prevention. Feeding studies in the DEN model with differing dietary fats demonstrated tumor promotion
specific to the saturated fat, cocoa butter relative to diets containing olive oil or corn oil associated with mi-
crobial dysbiosis including dramatic increases in Lachnospiraceae particularly from the genus Coprococcus.
Immunohistochemical analysis demonstrated that tumors from EtOH-fed mice and patients with alcohol-asso-
ciated HCC also expressed high levels of a novel cytochrome P450 enzyme CYP2W1. Additional adoptive
transfer experiments and studies in knockout mice are required to determine the exact relationship between soy
effects on the microbiota, expression of PIKE, CYP2W1, PPARα activation and prevention of tumorigenesis.

1. Introduction

HCC is the world's second leading cause of cancer mortality. It is
found 3-times more frequently in men than women [1–3]. Incidence of
HCC has increased in the U.S. since the 1970s from 1.6 to 4.9/100,000
[1]. One-year survival rates remain below 50% [1]. Fatty liver diseases
produced by alcohol (EtOH) abuse (alcoholic steatohepatitis, ASH) and
associated with obesity, type II diabetes, metabolic syndrome and high
levels of dietary fat (nonalcoholic steatohepatitis, NASH) are well-
known risk factors for HCC. ASH and NASH account for 36–67% of all

HCC cases [4,5]. The mechanisms whereby EtOH/high fat consumption
cause HCC remain incompletely understood and there are currently few
clinical strategies to treat HCC in patients with ASH/NASH other than
by liver transplant. Epidemiological data suggest that consumption
of> 80 g/d of alcohol over 10 years increases the risk of HCC 5-fold in
Western populations [6]. Moreover, obesity rates have also recently
risen dramatically with an estimated 5% increase in HCC risk for each
unit of body mass index (BMI) [5]. There is evidence that EtOH and
dietary fat may initiate tumors as a result of generation of reactive
oxygen species and as a result of increased activation of environmental
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pro-carcinogens such as nitrosamines found in well-cooked meats and
cigarette smoke by the major EtOH and dietary fat-inducible cyto-
chrome P450 enzyme CYP2E1 [6–9]. EtOH and FA metabolism by
CYP2E1 also produce reactive metabolites including acetaldehyde and
lipid peroxides. EtOH disrupts of one-carbon metabolism which may
further contribute to initiation [2]. Alcohol use and dietary fat con-
sumption may also synergize with hepatitis C and other initiating fac-
tors such as cigarette smoking in development of HCC [10,11]. How-
ever, a major role for EtOH/dietary fat appears to be to act as tumor
promoters [4,6]. Chronic EtOH consumption in experimental animals
results in continuing liver injury with the appearance of inflammation
and fibrosis [8,12]. Many groups have reported increased hepatocyte
proliferation after chronic alcohol consumption as a repair response
[12–14]. A similar pattern of progressive injury accompanied by in-
creased hepatocyte proliferation has been observed in animal models of
high fat-driven NASH [15–17]. The hepatic regenerative response as-
sociated with fatty liver disease is influenced by dietary EtOH/fat
concentration, length of exposure, fat type, nutritional status and

hormonal milieu. It has been suggested that the pro-proliferative signals
associated with the regenerative response are responsible for tumor
promotion [6,18–20].

We have demonstrated that EtOH and dietary fat act as hepatic
tumor promoters in mice where carcinogenesis was initiated by treat-
ment with a single dose of diethylnitrosamine (DEN) on postnatal day
(PND) 13 [18–21]. Tumor development was coincident with develop-
ment of steatosis, elevation of ceramide/sphingosine synthesis and
development of inflammation and fibrosis [18–20]. Development of
ASH was additionally linked to depletion of hepatic retinoids [18].
These models replicate the progression of HCC in fatty liver diseases
observed clinically. We have previously shown that tumors in the DEN/
EtOH mouse model were β-catenin positive [18]. In addition, increased
β-catenin signaling has also been reported in a DEN/high fat mouse
model of NASH-driven HCC [20].

There is epidemiological data to suggest that Asians are at lower risk
of development of alcoholic HCC. In the U.S. there is a reported 5-fold
increased risk of HCC among chronic or excessive drinkers [1]. In

Fig. 1. Hepatic triglyceride concentrations in male mice fed casein (CAS) or SPI-containing Lieber DeCarli ethanol (EtOH) diets or the casein diet + soy phyto-
chemical extract in the NIAAA chronic + binge model of alcohol exposure. Data are mean ± SEM for N = 5–6/group, *P < 0.05 vs CAS/EtOH.

Fig. 2. Accumulation of lipid droplets in livers of antibiotic-treated mice subsequently treated with microbiota from cecum of mice fed EtOH Lieber DeCarli diets in
the absence of alcohol vs. mice subsequently treated with microbiota from pair-fed mice in adoptive transfer experiments using a modified NIAAA chronic + binge
model ( ). Data are mean ± SEM for N = 5–6/group, *Effects of EtOH microbiota statistically significant P < 0.05.
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contrast, epidemiological studies in Asia report only a 1.6–1.8-fold in-
crease in risk [22,23]. We have published data showing that substitu-
tion of soy protein isolate (SPI) for casein as the protein source in high
fat liquid diets with EtOH results in inhibition of tumor promotion
coincident with blockade of EtOH-induced Wnt-β-catenin activation
and of hepatocyte proliferation [18,19]. However, anti-tumor and anti-

proliferative effects of SPI appear to involve pathways in addition to
Wnt signaling. We observed protective effects of SPI against high fat-
induced tumorigenesis in the DEN model even in the absence of
changes in nuclear β-catenin expression [20]. SPI blocks development
of steatosis in rodent models of both ASH and NASH and anti-cancer
effects may simply reflect inhibition of multiple pathways triggered by
excess triglyceride accumulation. The anti-steatotic effects of feeding
SPI appear to be associated with activation of PPARα and increased FA
degradation [20,24–26]. However, it appears that the protective effects
of SPI on EtOH-associated tumor promotion are not mediated via the
isoflavone genistein which has been implicated in some of the anti-
cancer properties of soy [27]. Studies included in the current report
were designed to determine if protein/peptide or phytochemical com-
ponents of SPI other than isoflavones play a role in protection against
EtOH-induced steatosis by feeding SPI.

One possible additional factor in development of HCC in ASH and
NASH and in protection by SPI may be effects related to the microbiome
and the microbiome –associated metabolome. Alterations in the mu-
cosa-associated colonic bacterial microbiota by chronic alcohol con-
sumption was first reported in rats by Mutulu et al. [28]. Bacterial
overgrowth and intestinal microbial dysbiosis was subsequently de-
scribed in the mouse Tsukomoto-French intragastric model after three
weeks of alcohol consumption accompanied by decreases in Firmicutes,
beneficial bacteria including Lactobacillus, Pediococcus, Leuconostoc and
Lactococcus and by increases in Bacteriodetes [29]. One consequence of
microbial dysbiosis is a significant alterations in the microbial meta-
bolome. Alcohol consumption has been reported to suppress production
of the short chain fatty acid (SFA) butyrate, reduce the levels of taurine-
conjugated bile acids and increase levels of more toxic unconjugated
and glycine-conjugated bile acids and significantly reduce intestinal
amino acid metabolism [30–33]. Changes in the microbial metabolome
and microbial metabolism of EtOH to acetaldehyde have been linked to
disruption of the intestinal epithelial barrier, intestinal inflammation
and changes in intestinal FXR signaling and production of FGF15/19
[30–33]. In addition, increased intestinal permeability results in
translocation of pathogen-associated molecular patterns (PAMPs) such
as endotoxin, peptidoglycan and bacterial DNA which may contribute
to development of hepatic inflammation [29]. Microbial dysbiosis and
alterations in microbial metabolism of bile acids have also been sug-
gested to play a role in NASH progression to HCC [34]. Probiotic
treatment/fetal transplants have been proposed as potential therapies
for ASH and NASH [35,36]. It has also been postulated that protective
effects of soy on lipid homeostasis and steatosis are the result of ben-
eficial changes in gut microbiota populations and altered bile acid
metabolism and signaling [35,36]. Soy feeding was reported to increase
microbial diversity in Golden Syrian hamsters including elevation in

Fig. 3. Alpha diversity is significantly increased in cecal microbiome of male
mice fed SPI-EtOH Lieber DeCarli diets compared to mice fed casein-EtOH
Lieber DeCarli diets in the NIAAA chronic + binge model of alcohol exposure.
Data are mean ± SEM for N = 5–6/group.

Table 1
Liver tumor and Agap2 expression in DEN-treated male mice fed low fat diet or
high fat diets for 30 Weeks.

Diet Group Adenoma + HCC
Incidence

Adenoma + HCC
Multiplicity

Agap2 mRNA

Chow (Saline) – – 0.57 ± 0.04a

Low Fat 45a 0.5 ± 0.2a 1.00 ± 0.16b

Corn Oil 60a 3.0 ± 1.5a 1.23 ± 0.18b

Cocoa Butter 100b 11.3 ± 3.5b 4.59 ± 0.81c

Olive Oil 60a 1.5 ± 0.6a 2.24 ± 0.2b

Corn Oil + DHA 72a,b 5.0 ± 2.0a 0.86 ± 0.08b

Incidence: % mice with tumors; Multiplicity: Number of tumors/mouse. Data
are mean ± SEM for N = 9–10/group. a< b < c statistically significant
P < 0.05. Previously published in part [23].

Fig. 4. MIIseq data from DEN-treated male mice fed low or high fat diets of differing composition for 30 weeks (23). Each lane represents data from a single mouse.

M.J. Ronis, et al. Chemico-Biological Interactions 325 (2020) 109131

3



Bifidobacteria and Clostridales in comparison to feeding milk protein
[37]. This was accompanied by reductions in serum triglycerides [37].
Similar increases in Bifidobacter have been reported in women fed soy
bars [38]. Improved body composition and lipid homeostasis were also
reported in soy-fed female low-fit rats and in obese OLETF rats ac-
companied by a lower ratio of Firmicutes to Bacterioides and increases in
Lactobacillus [39]. We have analyzed microbiome composition in mice

fed EtOH liquid diets with casein or SPI as the protein source or fed high
fat diets with differing fat composition and conducted adoptive transfer
studies to examine the role of microbial dysbiosis in development of
ASH/NASH and the role of altered microbiome composition in the
protective effects of SPI.

CYP2W1 is an orphan CYP enzyme, with a well conserved sequence
between humans, rats and mice, which was first cloned from the

Fig. 5. Differences in the predicted microbiome –associated metabolome by KEGG analysis of MIIseq data from DEN-treated male mice fed low or high fat diets of
differing composition for 30 weeks (23). Each lane represents data from a single mouse. Cocoa butter profiles differ from other diet groups P < 0.05. KEGG analysis
suggest that these changes in microbiome composition results in significant suppression of microbial sphinogolpid metabolism and significant increases in ether lipid
metabolism relative to other high fat diets with less potent tumor promotion effects (Fig. 5). RNAseq analysis of global hepatic gene changes in livers from DEN/cocoa
butter fed mice relative to mice fed olive oil, corn oil or corn oil + DHA revealed elevated expression of a proto-oncogene Agap2 (PIKE) which we have verified by
real time RT-PCR (Table 1) induction of which occurred prior to tumor development in livers from mice 15 weeks of cocoa butter feeding [23]. Subsequent RT-PCR
analysis of livers from DEN-treated mice fed high fat and EtOH Lieber DeCarli liquid diets with or without SPI substitution for casein revealed similar significant
upregulation in this model and suppression in SPI-fed vs. casein-fed mice [23].

Fig. 6. Representative positive CYP2W1 staining of a hepatic adenoma in a DEN/EtOH treated male mouse relative to the surrounding non-tumored tissue.
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hepatoma HepG2 cell line [40]. Neither the CYP2W1 mRNA nor protein
were detected in adult human livers or other adult tissues but was
observed in human colon tumors and in fetal intestine and colon [41].
The orthologues of human CYP2W1 were detected in the fetal GI tract
of rats and mice [40,41]. Increased rates of tumor growth have been
reported in subcutaneous CYP2W1 +ve colon cancer cell xenografts
compared to xenografts using cells where CYP2W1 expression was
abolished [42]. A variety of potential endogenous CYP2W1 substrates
have been identified using recombinant CYP2W1 which might be me-
tabolized to regulate tumor growth. These include retonoids, free fatty
acids, lysophospholipids and arachidonic acid [43–45]. CYP2W1 has
been found to be inducible in colon cancer cell lines by linoleic acid and
its derivatives which is consistent with these compounds being CYP2W1
substrates [41]. Since CYP2W1 appears to be specific to tumors, it has
been suggested that it may also serve as both a cancer biomarker and as
a therapeutic target for prodrugs which can be converted by CYP2W1 to
cytotoxic metabolites [40–42]. A recent series of studies using the
chloromethylindoline duocarmycin analogue ICT2706, which is acti-
vated by CYP2W1 to a DNA alkylating agent, demonstrated abolition of
tumor growth in CYP2W1 positive human colon cancer xenografts
whereas CYP2W1 negative xenografts were resistant [46]. One small
previous study using an antibody against CYP2W1, suggested that in
addition to expression in colon tumors, CYP2W1 is also over-expressed
in HCC [47]. We have conducted studies to examine if CYP2W1 is over-
expressed in tumors from our DEN/EtOH mouse model and in human
HCC compared to surrounding tissues.

2. Materials and methods

2.1. In vivo mouse models

Two models of tumor promotion in DEN mouse models were uti-
lized. In the first model, male C57/BL6 mice were injected i.p. with
10 mg/kg DEN on PND13 and were fed standard rodent chow until PND
65. Mice were then pair-fed 35% fat Lieber DeCarli liquid diets (Dyets
Inc., Bethlehem, PA) with or without substitution of EtOH for carbo-
hydrate calories up to 28% total calories and with either casein or SPI as
the sole protein source for 16 weeks as previously described [18]. In the
second model male C57/BL6 mice were also injected i.p. with 10 mg/kg
DEN on PND13. In this case mice were weaned on PND 28 onto a low
(12%) mixed fat pelleted casein-based AIN-93G diet or onto pelleted
diets in which fat was substituted for carbohydrate at 35% of calories
and the fat source was either cocoa butter (saturated fat), olive oil
(monounsaturated fat), corn oil (polyunsaturated fat) or 30% corn
oil + 5% decosohexaenoic acid (DHA, w-3 enriched). These diets were
fed for 30 weeks as previously described [21]. In addition, more acute
hepatic effects of EtOH were examined in modified versions of the
NIAAA chronic binge model alcohol model [48]. Male C57/BL6 mice
age 8 weeks were pair-fed (5%) Lieber DeCarli diets with casein or SPI
as the protein source or with casein plus a phytochemical soy extract
(Samsara Herbs, Soy Isoflavone Extract, 40% concentrated extract, Nik
Trade #78342342) for 10 d and given a 4 g/kg binge 6 h prior to sa-
crifice. In addition, groups of male C57BL/6 mice were pair-fed (5%)

Fig. 7. Expression of CYP2W1 mRNA in hepatic tumor and non-tumor surrounding tissue from HCC patient samples in the Karolinska Institute archive relative to
expression in the HepG2 cell line from which CYP2W1 was originally cloned. * Statistically significant P < 0.05 tumor vs. non-tumor in 24 patients.
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Lieber DeCarli diets with casein for 13 d with 4 g/kg binges at d 5 and d
10 and sacrificed 24 h later or were subject to adoptive transfer of cecal
microbiota from EtOH-treated or pair-fed mice after 14 d administra-
tion of an antibiotic cocktail as described previously [49]. All animal
studies were approved by IACUC committees at the University of Ar-
kansas for Medical Sciences or LSUHSC – New Orleans.

2.2. Clinical samples of HCC and surrounding non-tumored tissue

Resected HCC and surrounding non-tumored tissue was obtained
from an archival tissue bank of patients at the Karolinska Institutet,
Stockholm, Sweden and from a tissue bank of livers of HCC patients at
the University of Verona, Italy diagnosed with ASH. Samples were
collected under IRB approved protocols.

2.3. Pathological, biochemical and microbial analysis

Formalin fixed lobes from DEN-treated mice were H&E stained and
scored for the presence of adenomas and HCC by certified veterinary
pathologists at UAMS and the LSU School of Veterinary Medicine as
described previously [18,23]. Unstained fixed liver sections from mice
from the DEN/EtOH model and from human HCC-ASH patients also
underwent immunohistochemical staining for the presence of CYP2W1
using a highly specific rabbit polyclonal antibody to the C-terminal of
human CYP2W1 (Ab 852, from M.I-S, 40–42). Frozen HCC and sur-
rounding non-tumored tissue from the Karolinska Institutet archive
were used for mRNA extraction and real time RT-PCR analysis of
CYP2W1 mRNA expression [50]. Expression of PIKE (Agap2) mRNA
from frozen DEN-treated mouse liver was quantified by RNAseq and
real time RT-PCR as described previously [23]. Steatosis in fixed liver
sections from mice fed Lieber DeCarli diets was measured biochemi-
cally or via quantification of Oil Red O staining [13,15]. MIIseq DNA
sequencing of the 16S rRNA gene sequences of mouse cecal samples and
bioinformatics was conducted as previously described [23,49]. 16S
rRNA sequences were curated using Quantitative Insights Into Micro-
bial Ecology (QIIME 1.91) and R package Phyloseq scripts and micro-
biome metabolome patterns by KEGG analysis [49].

2.4. Statistical analysis

Data are presented as mean ± SEM. Adenoma and HCC incidence
wefre determined using Fisher's Exact Test. Tumor multiplicity, bio-
chemical and mRNA expression data were determined by One-way
ANOVA with Mann-Witney U rank-sum test or Neuman-Keuls test for
post hoc comparisons. Statistical significance was set at P < 0.05.

3. Results

3.1. Potential role of steatosis, the microbiome and Agap2 in tumor
promotion and the protective effects of SPI in ASH/NASH livers

We examined the development of steatosis in the NIAAA binge-on-

Fig. 8. Positive CYP2W1 staining of resected HCC in the liver of 4 patients diagnosed with alcohol-associated HCC relative to the surrounding non-tumored tissue.

Fig. 9. Hypothesized relationship between EtOH exposure, SPI feeding, com-
position of the gut microbiota and the microbiome-associated metabolome,
signaling via PPARα, Agap2 and FGF19 hepatic steatosis and promotion of
hepatic tumorigenesis.
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chronic model of ASH in mice fed Lieber DeCarli diets where casein
protein was swapped for SPI or where a phytochemical extract of soy
was added to the casein diet. As shown in Fig. 1, both SPI and the
extract were effective in suppressing triglyceride accumulation after
EtOH feeding and the effects of the extract were dose-dependent
(P < 0.05).

Moreover, data from an adoptive transfer experiment utilizing a
modified NIAAA model [50].demonstrated that cecal microbiota iso-
lated from EtOH-fed mice were capable of inducing steatosis in anti-
biotic-treated mice pair-fed control liquid diets in the absence of EtOH
(Fig. 2). This implicates microbial dysbiosis produced by EtOH in he-
patic triglyceride accumulation and downstream events leading to de-
velopment of HCC. One possible mechanism underlying the anti-stea-
totic effects of feeding.

SPI may be related to positive effects on microbial composition
which have previously been documented in rodent models and clinical
studies [37–39]. In preliminary studies using the NIAAA model, we
have observed significantly increased alpha diversity in the cecal mi-
crobiome of EtOH-fed mice fed SPI compared to casein (Fig. 3).
Moreover, we observed significant increases in Clostidiales spp. which
have been implicated in mucus biosynthesis, butyrate production and
Treg cell-mediated anti-inflammatory responses [51,52]. Additional
evidence for a potential role for microbial dysbiosis in tumor promotion
in fatty liver disease comes from an additional study of the importance
of dietary fat type in hepatic tumor promotion in the mouse DEN model
[23]. We have previously shown selective promotion of liver tumors in
mice treated with DEN and fed high fat pelleted diets made with a
highly saturated fat source, cocoa butter relative to other mono-
unsaturated or polyunsaturated fat sources (Table 1). This was ac-
companied by specific effects of cocoa butter feeding on composition of
the cecal microbiota. In particular there was an increase in Rikenella-
ceae and Lachnospiraceae (especially Copprococcus, 23) and a reduction
in S24-7 (Fig. 4).

3.2. Potential role of CYP2W1 in ASH-Associated tumor promotion

Immunohistochemical analysis of fixed livers from the DEN/EtOH
mouse model using a rabbit polyclonal antibody specific for human
CYP2W1 revealed expression in tumors but not the surrounding liver
(Fig. 6). Real time RT-PCR analysis of CYP2W1 mRNA expression in
HCC and surrounding non-tumored liver from patients in the Karolinska
Institute tissue archive demonstrated highly variable expression lower
than that found in HepG2 cells from which it was originally cloned but
overall higher expression in tumors than surrounding tissue (Fig. 7).
Subsequent immunohistochemical analysis of HCC specifically from 10
patients diagnosed with ASH from the University of Verona tissue bank
demonstrated a similar HCC-specific expression pattern of CYP2W1
protein to that seen in the DEN/EtOH mice with little or no expression
in surrounding non-tumored liver (Fig. 8).

4. Discussion

We have previously demonstrated that both EtOH and high fat li-
quid diets significantly promote hepatic tumorigenesis in the male
mouse DEN model with EtOH the most potent factor [18]. In addition,
we have demonstrated that switch of dietary protein from casein to SPI
results in suppression of tumorigenesis in both ASH and NASH models
[19,20]. However, whereas inhibition of β-catenin signaling is im-
plicated in SPI protection against EtOH-associated tumor promotion
[19], we found that SPI also protected against high fat-induced tumor
promotion in DEN-treated mice even when nuclear β-catenin levels
remained elevated [20]. These data imply additional mechanisms un-
derlying cancer prevention by SPI feeding. One potential additional
mechanism may be prevention of steatosis and downstream effects on
ceramide/sphingosine metabolism and development of inflammation
[19,20]. We previously observed prevention of triglyceride

accumulation by feeding SPI in several rodent models of fatty liver
disease associated with activation of PPARα signaling [20,24–26].
However, which component of SPI might be responsible and possible
involvement of additional pathways was unclear. We have previously
published data showing that genistein, the major isoflavone phyto-
chemical bound to SPI does not protect against tumorigenesis in the
mouse DEN/EtOH model [27] nor do isoflavones fed at levels found in
SPI induce PPARα-regulated genes in rats despite in vitro studies
showing induction at higher doses [26]. Our current data suggest that
prevention of steatosis by SPI is associated with a phytochemical
component other than isoflavones. Data from previous studies of gut
microbiota following EtOH exposure [28–30] and our adoptive transfer
study [50] suggest that microbial dysbiosis plays a key role in devel-
opment of alcoholic steatosis and liver pathology. Interestingly, PPARα
is expressed in the GI tract in addition to liver and mediates expression
of antimicrobial peptides and anti-inflammatory cytokines [53]. It is
possible that activation of PPARα in the GI plays a role in beneficial
effects of SPI feeding on microbiome phenotype and hepatic trigly-
ceride accumulation after alcohol consumption (Fig. 9). In separate
studies in the neonatal piglet we have recently published data de-
monstrating differential effects of feeding cow's milk based infant for-
mula (largely casein) and soy-based infant formula on composition of
the intestinal microbiome with additional effects on microbial meta-
bolism of primary and secondary bile acids [54]. Bile acid signaling has
been shown to modulate the intestinal FXR-FGF19 axis which in turn
affects hepatic lipid metabolism [30,54]. Suppression of FGF19 ex-
pression in soy formula fed piglets and recent studies by Grace Gao
linking FGF19 signaling with control of hepatocyte proliferation [55]
suggest that this pathway may also play a role in prevention of hepatic
tumor promotion by feeding SPI (Fig. 9). Additional adoptive transfer
studies with microbiota from SPI fed mice and studies in PPARα
knockout mice and FGF19 transgenic mice are required to confirm a
role for these pathways in regulation of hepatic tumor promotion in
ASH/NASH.

Our data also indicate a potential role for expression of the proto-
oncogene Agap2 and expression of CYP2W1 in tumors may play a role
in tumor promotion in fatty liver disease.

Agap2 is a PI3-kinase enhancer which acts to enhance downstream
pro-proliferative signaling via the Akt and Erk signaling pathways [23].
CYP2W1 includes retinoids as its substrates [43–45]. Alcohol abuse and
EtOH treatment of rodent models results in hepatic retinoid depletion.
Over-expression of CYP2W1 in tumors may further deplete local re-
tinoid concentrations. Previous studies have demonstrated inhibition of
retinoid signaling is linked to β-catenin activation [56] and the tumors
in the DEN/EtOH mouse model are β-catenin positive [18]. In addition,
other studies have suggested negative cross-talk between retinoids and
sphingosine-1-phosphate in regulation of hepatocyte proliferation [57].
Additional studies in knock out and transgenic animals are required to
determine the relative importance of Agap2 and CYP2W1 pathways in
hepatic tumor promotion.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cbi.2020.109131.
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