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ABSTRACT
Accepted version of the manuscript. Please refer to
https://dl.acm.org/citation.cfm?doid=3167132.3167396 for the
final version.We propose an automatic system aimed at discover-
ing relevant activities for aquatic drones employed in water moni-
toring applications. The methodology exploits unsupervised time
series segmentation to pursue two main goals: i) to support on-line
decision making of drones and operators, ii) to support off-line
analysis of large datasets collected by drones. The main novelty of
our approach consists of its unsupervised nature, which enables
to analyze unlabeled data. We investigate different variants of the
proposed approach and validate them using an annotated dataset
having labels for activity “upstream/downstream navigation”. Ob-
tained results are encouraging in terms of clustering purity and
silhouette which reach values greater than 0.94 and 0.20, respec-
tively, in the best models.
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1 INTRODUCTION
Aquatic drones are increasingly used for autonomous monitoring
of catchments. In this context robotic boats must navigate rivers
and lakes to acquire real-time data concerning important water
parameters. While human operators are usually involved in such
data collection activities, direct tele-operation of the drones is often
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not an option for an entire mission, hence autonomous navigation
capabilities are required [3].

A promising research area in this context concerns the automatic
identification of events [7], activities [1, 4] and situations [5] of
interest from the analysis of large datasets collected by unmanned
vehicles using artificial intelligence and statistical learning meth-
ods [8]. This paper follows this line of research and aims at devel-
oping an unsupervised activity recognition system for unmanned
vehicles involved in water monitoring. Activities are here consid-
ered as states of the drone in the environment, such as, “the drone is
navigating upstream” or “the drone is blocked”. Manual data label-
ing is usually expensive and time consuming in this context hence
automatic techniques that can extract states from unlabeled data
represent crucial tools for water drone control and data analysis.
The proposed approach exploits time-series segmentation methods
to automatically detect time intervals in which data have similar
properties: it represents a statistically grounded way to identify
primitive states directly from sensor readings.

This paper provides three contributions to the state-of-the-art: i)
a formalization of the activity recognition problem in the context
of autonomous water monitoring; ii) a first unsupervised learning
system based on Gaussian Mixture Models (GMMs) [2], Hidden
Markov Models (HMMs) [9], K-Means (KM) [2] and Affinity-Pro-
pagation (AP) [6] for generating a model of water drone states from
unlabeled datasets; iii) the successful evaluation of this model on the
activity upstream/downstream navigation and a first interpretation
of segments identified.

The next section introduces the system architecture and de-
scribes datasets, drone states and clustering setup. In Section 3 the
methodologies are tested and evaluated. Section 4 outlines future
developments.

2 MATERIAL AND METHODS
Systemoverview.Aquatic drones, displayed in Figure 1, are equipped
with sensors able to detect: i) GPS coordinates, ii) water properties,
iii) commands to propellers, iv) battery voltage. Signals from dif-
ferent sources are integrated and synchronized. A data matrix of
variables (rows) and time steps (columns) is thus generated which
we aim to annotate with state labels (shown in the bottom of Fig-
ure 1).
Dataset. Data collection was performed in two different parts of
a river. The first dataset, called ESP2, has 2831 samples (collected
in 47mins), the second dataset, called ESP5, has 3615 samples (col-
lected in 60mins). Sampling interval is of 1 sec . Both the datasets
have 13 features, namely time, latitude, longitude, altitude, speed,
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Figure 1: System overview: main elements of the proposed
activity recognition system.

electrical conductivity, dissolved oxygen, temperature, battery volt-
age, heading, acceleration, command to propeller 1 and 2. From
each dataset we generated two matrices used for model training:
the matrix of raw data (RAW), containing all variables except time,
latitude and longitude (namely, 10 variables in total) and the matrix
of processed data (PRO) containing both the moving means and
standard deviations of the variables in the raw matrix over a slid-
ing window of 10 seconds (20 variables in total). Both normalized
(NORM) and unnormalized (UNORM) versions of these matrices
were used for model generation. Normalization was performed by
scaling each variable to the range [0, 1].
Activities. Aquatic drones perform different activities during their
missions. Manual labeling was performed for five activities. Here
we focus on upstream/downstream navigation (UDN) which is
crucial in water monitoring because it influences sensor readings
and therefore provides important contextual information for both
decision making and data analysis. Labeling was performed in a
partial way, namely, experts analyzed georeferenced path images
and videos and they labeled time intervals in which specific states
clearly occurred. They left unlabeled (i.e., label “-” in Figure 2) time
intervals in which the state of the drone was not completely clear.
Clustering/segmentation setup. Sensor time series were pro-
cessed via four clustering/segmentation techniques to determine
groups of points with coherent behavior.GMMs [2] generated mod-
els having from 2 to 8 clusters. The algorithm was re-initialized
300 times and the model with maximal log-likelihood was used.
Initial component means were generated by the k-means algorithm,
initial mixing proportions were set to uniform, initial covariance
matrices defined diagonal. Parameter learning was performed by
the Expectation-Maximization (EM) algorithm (< 100 iterations).
HMMs [2] generated models having from 2 to 8 hidden states.
Observation models were set to single component multivariate
Gaussian distributions (with one dimension for each observed vari-
able). The initial state distribution was set to uniform, the initial
transition matrix was set to random stochastic, initial means and
covariance matrices were computed by k-means. The model was
trained by the EM algorithm (< 20 iterations) and the Viterbi algo-
rithm [2] was used to generate the most likely sequence of hidden
states (i.e., drone states) given the observed sequence of sensor

readings. K-means [2] used Euclidean distance ∥ · ∥2, number of
clusters between 2 and 8 and it was re-initialized 300 times. AP [6]
used preference parameter from 30 to 180 (step 30) times the value
of the median of the similarity matrix.
Performance evaluation. To assess the performance of our frame-
work we employed two measures, purity and silhouette. Purity is
a measure of the extent to which clusters contain a single class,
and it is computed by formula P(C) = 1

N
∑
k ∈K max

d ∈D
|k ∩ d |, where

C is a clustering, N is the total number of points, K is the set of
clusters and D is the set of classes. Purity values close to 1 identify
clusterings having almost one label for each cluster. Silhouette is an
internal measure that contrasts the average distance to elements in
the same cluster with the average distance to elements in other clus-
ters. Given the i-th data point, it is computed as S(i) = b(i)−a(i)

max{a(i),b(i)} ,
where a(i) is the average dissimilarity of point i with all other data
within the same cluster and b(i) is the lowest average dissimilarity
of point i to any other cluster, of which i is not a member. Val-
ues close to 1 indicate points belonging to perfectly compact and
separated clusters.

3 RESULTS
We generated clustering models according to five dimensions of
analysis, namely, i) clustering methods GMM, HMM, KM, AP, ii)
datasets ESP2, ESP5, iii) RAW and PRO data, iv) NORM and UN-
NORM data, v) number of clusters from 2 to 8 for GMM, HMM
and KM, and preference coefficient from 30 to 180 (step 30) for
AP. A total of 324 models were generated and evaluated on purity
(related to the detection of upstream/downstream navigation) and
silhouette.

For each experiment we selected the four models, one for each
clustering method, having the best performance in terms of purity.
Table 1 shows the performance of selected clusterings and Figure
2 the best segmentations, in terms of both purity and silhouette,
for each experiment. In fact, we used the mean silhouette of the
clustering to select the most significant clusterings among those
having highest purity. The clusterings having best performance
are C4 for ESP2 and C7 for ESP5 (see bold values in Table 1). Their
purities/silhouettes are 0.94/0.20 and 0.98/0.21, respectively.

ESP2
Method Data Norm. # Cl. Pur. Sil.

C1 GMM RAW UNORM 8 0.97 0.01
C2 HMM PRO UNORM 2 1.00 0.00
C3 KM RAW NORM 7 0.95 0.16
C4 AP RAW NORM 6 0.94 0.20

ESP5
C5 GMM RAW UNORM 5 0.86 0.04
C6 HMM PRO NORM 8 0.98 0.11
C7 KM PRO UNORM 7 0.98 0.21
C8 AP PRO UNORM 8 0.98 0.12

Table 1: Performance of the best purity models for
each method (i.e., GMM, HMM, KM, AP) on up-
stream/downstream navigation (UDN).

As a case study we analyze model C7 which is the best clustering
for activity UDN. It was generated by k-means using processed
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Figure 2: Best clusterings for experiments ESP2 and ESP5. In
manual labeling, label ’-’ (red) means “no label available”.

(PRO) and un-normalized (UNORM) data, and it has 7 clusters. The
cluster which best matches downstream navigation is cluster 3
(with 58% of coverage of the path manually labeled as downstream
navigation) while the cluster which best matches upstream naviga-
tion is cluster 1 (with 67% of coverage of the path manually labeled
as upstream navigation).

We compare these two clusters to identify the properties that
characterize upstream and downstream navigation in experiment
ESP5. The variables that show different means between cluster 1
and 3, according to Student’s t-test (p-value <0.05) are: mean head-
ing h̄, mean values of commands to propellers m̄1 and m̄0, standard
deviation of battery voltage v̂ , mean electrical conductivity ēc , stan-
dard deviation of dissolved oxygen d̂o and standard deviation of
heading ĥ.

Differences between mean headings of cluster 1 and 3 have an
intuitive interpretation since upward and downward navigation
have opposite directions. Different mean values of commands to
propellers point out that full power was provided during upstream
navigation to contrast the water flow (cluster 1), while low power
was provided during downstream navigation, when the boat was
propelled also by the water flow. Standard deviation of battery
voltage was higher in upstream navigation (cluster 1) than in down-
stream navigation (cluster 3) because battery voltage decreases
more sharply when the boat moves upstream than when it moves
downstream. The mean electrical conductivity had lower values
in upstream navigation than in downstream navigation, probably
because the relative movement between the boat and the water in-
fluences electrical conductivity sensor reading. A similar behavior
was observed for the standard deviation of dissolved oxygen which
is higher in upstream navigation than in downstream navigation,
probably because of increased turbulences produced by the boat
during upstream navigation.

4 CONCLUSIONS AND FUTUREWORK
This work can be extended in several directions. As for the selec-
tion of the most significant clusters we aim at sorting all clusters
(generated by different methods and parameter settings) accord-
ing to their silhouette and merge them in a hierarchical structure.
The capability of the activity recognition system to interact with

humans should be also enhanced in two ways: i) by enabling the
system to suggest new activities and acquire from humans new
knowledge about them (human-in-the-loop), ii) by enabling humans
to understand the knowledge contained in the system (eXplainable
AI ).
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