
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

On the variable ordering in the subgraph
isomorphism algorithms

Vincenzo Bonnici, Rosalba Giugno

Abstract—Graphs are mathematical structures to model several biological data. Applications to analyze them require to apply
solutions for the subgraph isomorphism problem, which is NP-complete. Here, we investigate the existing strategies to reduce the
subgraph isomorphism algorithm running time with emphasis on the importance of the order with which the graphs vertices are taking
into account during the search, called the variable ordering, and its incidence on the total running time of the algorithms. We focus on
two recent solutions, which are based on an effective variable ordering strategy. We discuss their comparisons with the others
algorithms present in the ICPR2014 contest on graph matching algorithms for pattern search in biological databases.

Index Terms—Biological graphs, subgraph isomorphism, variable ordering, search strategy, space search tree reduction.

F

1 INTRODUCTION

IN research areas that deal with biological and chemical
data, the advancements of the technology are yielding

every day to the acquisition of more accurate data and
interactions among them. Well-known examples are protein-
protein interaction [1], [2], gene-regulatory [3], [4], [5], [6],
drug-effect [7], [8], [9], [10], and disease correlation [11], [12],
[13] networks. The mathematical structures used to model
pairwise relations between data are the graphs. They consist
of vertices to represent data and edges to connect them.
Moreover, data such as molecules, drugs, proteins, and RNA
structures have also two and three dimensional descriptions
and are represented as graphs [14], [15].

Indeed, graphs serve as the underlying data structures
for biomedical data repositories [16], [17], [18], [19], [20]
and for the plenty of algorithms to analyze them [21], [22],
[23], [24], [25]. For example, graph analysis allows finding
network motifs [26], detecting active parts of molecules
or regulatory circuits [27], [28], [29], computing networks,
molecules and proteins similarity in base of the presence of
a large amount of common subgraphs [30], [31].

The core procedure of the above algorithms implies
solving the subgraph isomorphism (SubGI) problem. SubGI,
sometimes called graph searching or graph matching, con-
sists of finding the occurrences of a graph (called pattern)
in another graph (called target). This is viewed as a general-
ization of the graph isomorphism (GI) problem, where pattern
and target graphs have the same size. Recently, authors
in [32] reported a polynomial time algorithm to solve GI,
while SubGI is still considered belonging to the class of NP-
Complete problems [33].

Solving SubGI is a complex task. Several techniques and
heuristics are applied together to reach the goal with a
reasonable running time. Often, the solution is a branch-
and-bound algorithm over the the space of all possible
matches, i.e.,search space, efficiently represented by a tree,
space search tree (SST) [34].

The efficiency of a subgraph isomorphism algorithm
mostly depends on the used heuristics to traverse the SST,
which imply to apply constrains before and during the
traversing for pruning unfair branches [35], [36], [37]. Some

constraints can be more strength than others, and, usually,
the level of strength is directly connected to the cost of
applying them. A crucial aspect is to decide the constraint
ordering to reduce the amount of verification in the pruning
steps. Traversing strategy and constraint ordering do not
affect the structure of the SST. Instead, the SST structure
essentially depends on the order in which variables (pattern
vertices) are taken into account, which is called variable
ordering.

In this article, we review the characteristics of subgraph
isomorphism algorithms present in literature, with particu-
lar emphasis on the classification and differentiation of the
existing variable ordering strategies. Then, we discuss two
algorithms, RI [38] and RI-DS [38], whose efficiency is due
to the choice of suitable variable ordering with respect to
apply extensive pruning rules. RI and RI-DS participated to
the ICPR2014 contest on graph matching algorithms for pattern
search in biological databases outperforming all other methods
in terms of running time and memory consumption. The
comparisons with reference to the competition are discussed
in the result section.

2 BACKGROUND

2.1 Basic Notions
A graph is a pair G = (V,E), where V is the set of
vertices, and E ∈ V × V is a set of edges connecting
them. Graph vertices do not implicitly follow any order.
However, an unique index is assigned to each of them and
V is represented as an ordered set {v1, v2, . . . , v|V |}.

If edges have directions, then G is denoted as a di-
rected graph, otherwise G is an undirected graph. Given
two vertices v, v′ ∈ V , (v, v′) indicates an undirected
edge, and

−−−→
(v, v′) is a directed edge going from the source

vertex v to the destination vertex v′. The neighbourhood
N(v) = {v′ ∈ V : (v, v′) ∈ E} of a vertex v is the set
of vertices connected to v. The neighborhood of a set of
vertices V ′ ⊆ V is N(V ′) = {

⋃
v∈V ′ N(v)

⋂
V ′}.

The degree of a vertex v is |N(v)|. In case of directed
graphs, Nout(v) = {v′ ∈ V :

−−−→
(v, v′) ∈ E} is the outgoing

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

neighborhood of v and Nin(v) = {v′ ∈ V :
−−−→
(v′, v) ∈ E} is

its incoming neighborhood. A similarly distinction is made
for out-degree and the in-degree of a vertex.

The pair (V,E) describes the topology of a graph. Labels
may be associated to vertices and (or) edges. The notion of
graph is extended to a quadruple G = (V,E, α, β), called
labelled graph, where α : V 7→ ΣV and β : E 7→ ΣE are
two injective functions that map vertices and edges to their
respective sets of labels ΣV and ΣE .

2.2 Problem Definition

Given a pattern graph Gp = (Vp, Ep, αp, βp) and a target
graph Gt = (Vt, Et, αt, βt), the Graph Isomorphism problem
(GI) finds a bijective function f : Vp 7→ Vt that maps
each vertex of Gp in Gt, and viceversa, by preserving the
topology of both graphs and ensuring label compatibility.
For a generic pattern vertex v ∈ Vp and its mapped target
vertex f(v) ∈ Vt, the label compatibility between them
is ensured by the equivalence αp(v) ≡ αt(f(v)). Given
two pattern vertices, v, v′ ∈ Vp, the topology is preserved
by a bijective correspondence between the pattern edges
and the target edges. Formally, for each (v, v′) ∈ Ep

than (f(v), f(v′)) ∈ Et, and for each (v, v′) /∈ Ep than
(f(v), f(v′)) /∈ Et, as well as the edge labels compatibility
βp((v, v′)) ≡ βt((f(v), f(v′))) of exiting edges. The maps
correspond to the matches or occurrences of the pattern
graph in the target.

The SubGraph Isomorphism problem (SubGI) is defined by
relaxing the conditions of the GI problem. Two kinds of
SubGI problems exist. If f is injective than the GI prob-
lem becomes an Induced Subgraph Isomorphism. Whereas,
by removing the constraint of non edge existence, the
Monomorphism problem is obtained. The main difference
between induced subgraph isomorphism and monomor-
phism is that the latter allows the existence of extra edges
between the mapped vertices of the target graph, which do
not exist in the pattern graph. In the following, we refer to
SubGI problem without distinguish between induced and
monomorphism unless necessary.

The subgraph isomorphism problem can be sub-
categorized in three ways [39]. Testing, which verifies the
existence of at least one match of the pattern graph over
the target graph; Counting, which calculates how many
occurrences of the pattern graph are contained in the target
graph; and Listing, which reports the exact locations of
all such occurrences. Each one of such categories shows
peculiar issues and can be solved with ad-hoc solutions. In
this context we focus on the listing problem.

The SubGI problem can be also formalized in terms of
a constraint satisfaction problem (CSP) [40]. Given a set of
variables and a set of possible values, the problem is to find
an assignment such that a set of constraints are satisfied.
Constraints may involve multiple variables. In the case of
SubGI, variables correspond to the pattern vertices Vp and
values correspond to the target vertex set Vt. The label
compatibility is modelled by unary constraints, while the
topology is preserved by binary constraints representing the
edges. At each variable is assigned a set of possible values,
called domain, which changes during the searching phase
[41]. Due to the strict connection between SubGI and CSP,

in this article we may refer to pattern vertices as variables,
pattern labels and pattern edges as constraints, and target
vertices as values.

2.3 The Search Space
The function f of the SubGI problem definition is generally
not unique, and the number of possible mappings equals
the number of matches.

Let µp = (u1p, u
2
p, . . . , u

|Vp|
p) be a rearrangement of the

ordering of the vertices in Vp, such that uip = vjp ∈ Vp. The
subgraph isomorphism problem can be seen as the combi-
natorial problem of finding all possible combinations of |Vp|
vertices of the target graph, µt = (u1t , u

2
t , . . . , u

|Vp|
t) such

that uit = vjt for a vjt ∈ Vt. We represent a mapping by the or-
dered set of pairs M = {(u1p, u1t), (u2p, u

2
t), ..., (u

|Vp|
p , u

|Vp|
t)}.

We denote with M(i) the i-th pair of the mapping,
M(i) = (uip, u

i
t); with M [i] the first i-pairs of the mapping,

M [i] = {(u1p, u1t), . . . , (uip, u
i
t)}; and with Mp[i] the ordered

set (u1p, u
2
p, . . . , u

i
p) (similarly for Mt[i]). We identify with

µp[i] and µt[i] the first i elements of µp and µt, respectively.
In Table1, we catalogued the used notation.

The set of all possible mapping is the search space of the
problem, which is compactly represented as a tree, named
the Search Space Tree (SST), [34]. The tree has a dummy
root for commodity, and two mappings M1 and M2 are
branched together up to depth i iff M1[i] = M2[i] and
M1[i + 1] 6= M2[i + 1]. A branch from a root to a leaf of
the SST encodes one of the possible mappings, whereas a
branch from a root to an internal node of the SST represents
a possible partial solution (or mapping). The order µp can be
arbitrary chosen and it may vary among different mappings.
For this reason, the SST for Gp and Gt may be not unique.

A simple brute force SubGI algorithm searches over
all the possible mappings those which respect the SubGI
constraints (see Section 2.2), which is obviously inefficient.
Several methodologies are established in literature [35], [36],
[38], [42]; alongside the CSP based ones [37], [43], [44], [45].
Those methodologies are a manifold of efficient strategies.

One aspect regards the selection of the SST, also referred
as the SST construction. The main technique involved here
regards the order, µp, in which variables are taken into
account, called variable ordering (see Section 3.1). An other
aspect is how the SST is visited. This process consists in
traversing the SST from the root downward to the leafs
following an opportune depth first search visit, such as
partial solutions are verified and extended until a complete
matching is found. More precisely, a basic strategy, called
backtracking [41] (BT), visits the SST branches and veri-
fies the SubGI constraints at each node of the tree. If the
current matching pair does not satisfy the constraints, then
all its unfair sub-branches are pruned and the algorithm
backtracks to the previous partial solution. Improvements
to the BT approach are given by the BM [46] (backmarking)
and BJ [47] (backjumping) strategies. A SST may contain
duplicate sub-trees which lead to redundant consistency
checks. The aim is to avoid redundant checks by some
straightforward bookkeeping for BM, or by detecting and
avoiding parts of the SST that cannot contain any valid
solution for BJ. An alternative to BT, and its variants, is to
predict downward inconsistency by look-ahead procedures.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

TABLE 1
Used notation

Symbol Definition Description

G (V,E) a generic graph
V {v1, v2, . . . , v|V |} the ordered vertex set of a graph
E ⊆ V × V the set of edges of a graph

(v, v′) (v, v′) ∈ E an undirected graph edge
−−−→
(v, v′)

−−−→
(v, v′) ∈ E an directed graph edge from u to v

N(v) {v′ ∈ V : (v, v′) ∈ E} the neighborhood of a vertex v
N(V ′)

⋃
v∈V ′{N(v)

⋂
V ′} the neighborhood of a set of vertices V ′ ⊆ V

Nout(v) {v′ ∈ V :
−−−→
(v, v′) ∈ E} the outgoing neighborhood of a vertex v

Nin(v) {v′ ∈ V :
−−−→
(v′, v) ∈ E} the incoming neighborhood of a vertex v

G (V,E, α, β) a labeled graph
α α : V 7→ ΣV a function which maps vertices to their labels
β β : E 7→ ΣE a function which maps edges to their labels
Gp (Vp, Ep, αp, βp) a labeled pattern graph
Gt (Vt, Et, αt, βt) a labeled target graph

µp (u1p, u
2
p, . . . , u

|Vp|
p) a rearrangement of the ordering of the vertices in Vp

µp[i] (u1p, u
2
p, . . . , u

i
p) the first i elements of µp

µt (u1t , u
2
t , . . . , u

|Vt|
t) an order rearrangement of |Vp| vertices of Vt

µt[i] (u1t , u
2
t , . . . , u

i
t) the first i elements of µt

(uip, u
j
t) for uip ∈ µp, u

j
t ∈ µt a mapping (or matching) of uip to ujt , also called matching pair

M {(u1p, u1t), (u2p, u
2
t), ..., (u

|Vp|
p , u

|Vp|
t)} a complete mapping by µp and µt

M(i) (uip, u
j
t) the i-th pair of the mapping M

M [i] {(u1p, u1t), (u2p, u
2
t), ..., (uip, u

i
t)} the first i pair of the mapping M

Mp[i] (u1p, u
2
p, ..., u

i
p) the first i pattern vertices of the mapping M

Mt[i] (u1t , u
2
t , ..., u

i
t) the first i target vertices of the mapping M

M(uit) vjt ∈ Vt, for uit ∈Ms
t : uit = vjt the mapped target vertex in M by invoking the original vertex order of Vt

These may involve the mere SubGI constraints or additional
extra-constraints, usually less expensive to be evaluated,
such as graph invariants, [48], [49], and properties related
to the current partial matching, based on the neighborhood
of a vertex [36], [42]. Graph invariants are also used to
compute compatibility maps between pattern and target
vertices, avoiding redundant computations [38], [45], [49].

In terms of CSP, the SubGI problem is solved by ex-
tending an assignment of a subset of variables until all
variables are assigned, i.e., propagating the effects of a
value assignment to the unassigned variable domains. If,
after a propagation, one of the unassigned variable domain
becomes inconsistent, then the current partial matching is
discarded. For example, since a matching requires that all
the mapped target vertices must be distinct, the assignment
of a target to a pattern vertex is propagated by removing
such target vertex from the domains of unmapped pattern
vertices. If one of such domains becomes empty, then the
current partial matching is discarded and the algorithm
backtracks to the previous partial solution. In this direc-
tion, well known strategies are the forward-checking [50]
(FC) and the arch-consistency [51], [52] (AC). FC separately
propagates the effects of a selected value to all variables,
like in the above example. AC forces arc consistency on all
remaining variables by propagating edge constraints only
to the neighborhood of the assigned pattern vertex or to
further vertices. Finally, graph invariants are used to reduce
the initial set of values of domains.

3 THE VARIABLE ORDERING STRATEGY

In this section, we first categorize the variable ordering
characteristics and then we describe the strategies used in
literature (see Table2 for a summary view).

3.1 Variable ordering characteristics

3.1.1 Static vs dynamic

Variable ordering can be fixed before or during the travers-
ing of SST. Let’s refer to the first case as static variable
ordering and to the second case as dynamic variable ordering.
A dynamic variable ordering implies computations during
the traversing in order to decide which variable will be the
next in the branch. A static variable ordering defines the
order once and it remains the same for all the branches.

3.1.2 Pattern, target, state and domain driven

A variable ordering may rely on properties of both pattern
and target graphs, on the current state of the traversing, and
on current values in variable domains. Pattern and target
driven variable orderings take into account invariants owned
by graphs, such as topology, degrees or label properties.
State driven variable ordering is based on the current state of
the computation, which also includes M [i] (µp, µt or both),
while domain driven variable ordering involves the values in
the variable domains (i.e., their cardinality).

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

vp
1

vp
2

vt
2

vt
1

vt
4

vt
3

vp
1 ,vt

1

vp
2 ,vt

3vp
2 ,vt

2 vp
2 ,vt

4

vp
1 ,vt

1

vp
2 ,vt

3vp
2 ,vt

2 vp
2 ,vt

4

vp
1 ,vt

1 vp
1 ,vt

1

() () ()

()

()() ()

()()()

(a)

(b)

(a) (c)

(d)

Fig. 1. (a) a pattern graph Gp and (b) a target graph Gt. Vertex labels
are the colors white and gray. (c) is the resultant SST if the pattern vertex
with the most unfrequent label is ordered first v1p. If v2p is ordered before
v1p the SST in (d) is obtained.

3.1.3 Most-constraint and fail-first

The most-constraint principle enqueues in the ordering the
variable that is subjected to the greatest number of con-
straints before the others. This principle generalizes to the
fail-first principle where the constraints having an high
probability of failing are put before in the ordering.

3.2 Variable ordering strategies in practice

3.2.1 Degree strategy

Highest-degree and degree-1 ordering strategies are pattern-
driven, static and most-constraint variable ordering that
order first the pattern vertex with the highest degree [53] or
put the pattern vertices having degree equal to 1 in the last
position of the ordering [54]. They generalize to the degree
strategy in which pattern vertex are enqueued in descendant
order according to their degree [35].

3.2.2 Unfrequently-feature and domain strategy

A strategy that applies the fail-first principle may choose
the pattern vertex having the less frequent label in the target
graph. This is a static and target-driven strategy, [50], which
we call unfrequently-feature strategy.

The example in Figure 1 shows a pattern graph Gp

having two nodes {v1p, v2p} connected by one edge, for which
αp(v1p) 6= αp(v2p) and a target graph having the same label
set of Gp, but only one vertex with the same label of
v1p , identified by v1t . Searching first for v1p may be more
reasonable than searching for v2p , since the matching pair
(v1p, v

1
t) is checked once instead of multiple times.

Note that, the domain of v1p is smaller than the domain of
v2p . Thus, algorithms which rely on domains reduction steps,
implement the singleton-domain ordering strategy, which
puts the variables with a domain cardinality equal to 1 in
the first position of the ordering [37], [45], [50]. This is a
static, domain and target-driven variable ordering.

Minimum-domain [50] strategy is a dynamic variable
ordering based on domains, similarly to the one of the

vp
1

vp
2

vp
3

vp
1

vp
1

vp
2

vp
2

vp
3

vp
3

(a)

(b)

(c)

Fig. 2. (a) a pattern graph Gp and two of its possible variable orderings,
(b) and (c). At µp[2], no edge constraints will be verified in (b), whereas
in (c) the edge (v1p, v

2
p) is verifiable.

singleton-domain, but it works on domains having cardi-
nality greater than 1. Given a partial matching M [i], the
next variable to be evaluated is the one with the smallest
domain. By combining domain cardinalities and pattern ver-
tex degrees, degree-weighted-domains is obtained [55], [56]. In
[57], dynamic weights are assigned to domains. The domain
weights are updated according to the number of times the
constraints are violated. The variable with the minimum
score is chosen. We refer to this as weighted-domains strategy.
It is a dynamic, state-driven variable ordering based on the
fail-first principle.

3.2.3 State-neighbourhood strategy

State-neighbourhood strategy is a fail-first, pattern, static and
state variable ordering, which consists in choosing a pattern
vertex that is a neighbour of the current partial order µp[i].
Once µp[1] is chosen, µp[2] is selected over the set N(µp[1]),
and the process is repeated iteratively for each µp[i], until
i = |Vp| − 1.

An explanation of this criterion can be shown by taking
into account the unlabelled pattern graph Gp in Figure
2. If we choose the ordering µp = (v1p, v

3
p, v

2
p) (Figure 2

(b)), then all the topological constraints (the existence of
the edges) can be verified only on the leaves of the SST’s
branches, namely at µp[i] for i = |Vp|−1. As a consequence,
several branches having µp[2] = (v1p, v

3
p) will be traversed

without applying any constraints verification. Instead, if
µp = (v1p, v

2
p, v

3
p) (Figure 2 (c)), then the constraints due to

the edge (v1p, v
2
p) is verified at i = 2, and probably some of

the branches of SST will be pruned.
A simple procedure to generate a state-neighbourhood

strategy consists in choosing a pattern vertex vip, putting it
at the head of the variable ordering, and iteratively adding
the pattern vertices as they are discovered by a breadth first
visit starting from vip [58].

The state-neighbourhood strategy can be also a dynamic,
state, pattern and target-driven variable ordering as in [36],
[42], which we call State-neighbourhood+ strategy. Given a
partial ordering Mp[i], the next variable in the ordering is
chosen in Nout(Mp[i]). If Nout(Mp[i]) and Nout(Mt[i]) are
empty, then the next variable is chosen in Nin(Mp[i]). If
Nin(Mp[i]) andNin(Mt[i]) are empty, then the next variable
is chosen in {Vp \Mp[i]}. The reason why Mt is also taken
into account, comes from the fact that the strategy is used to
ensure the non-redundancy of the mappings.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

vp
1

vp
2

vp
3 vp

4 vp
5

vp
6

vp
7

Fig. 3. A pattern graph where centrality measures may give an
unfair variable ordering. Eccentricity [60] values of pattern vertices
{v1p, v2p, . . . , v7p} are {0.25, 0.25, 0.33, 0.5, 0.33, 0.33, 0.25, 0.25}, re-
spectively, and were calculated by the Cytoscape [61] pluging CentiS-
cape [62]. Choosing v4p as first vertex in the order goes against the
most-constraint and fail first-principle and will yield an efficient strategy.

3.2.4 Maximum and sum -cardinality strategy
Maximum-cardinality strategy [59] provides an example of
a state-neighbourhood strategy combined with the fail-first
principle. Given a partial variable ordering µp[i], the next
pattern vertex included in the ordering is the one with the
highest number of neighbors in µp[i]. The aim is to select
the variable affected by the highest number of constraints
that are verifiable at depth i+1 of the branching. In [45], the
maximum-cardinality strategy is extended to cover the case
of two variables that have the same number of neighbors in
µ[i]. The algorithm chooses the vertex vkp which maximizes
the quantity

∑
{|N(vjp)| : vjp ∈ µ[i] and vjp ∈ N(vkp)}. The

variable indirectly affected by the highest number of already
verified constraints is chosen. We refer to this ordering as the
sum-cardinality strategy.

3.2.5 The choice of the first variable
The goodness of a state-neighbourhood ordering depends
on the selection of the first variable. By selecting different
starting vertices, the resultant variable orderings may con-
sistently vary as well as their goodness to construct the SST.
Generally, the vertex with the highest degree is selected to be
the first [38], [59]. Alternatively, the vertex with the highest
centrality or other graph centrality measurements could be
selected. However, in a pattern graph like that shown in
Figure 3, the most central vertex is v4p . Choosing such vertex
goes against the most-constraint and fail first-principle and
will yield an efficient strategy.

4 RI AND RI-DS METHODOLOGIES

In [38], the authors present RI, a methodology for solving
the SubGI problem. It is based on a static, pattern and
state-driven variable ordering. RI replaces costly predictive
pruning verification (e.g., look-ahead procedures) with an
effective variable ordering strategy.

4.1 RI Variable ordering strategy

Let µ[i] be a partial variable ordering. Let vkp ∈ N(µ[i]) be
a vertex candidate to be included in the order, its neighbors
can be split in three sets (Figure 4):

1) N1(vkp) = {vjp : vjp ∈ N(vkp) and vjp ∈ µ[i]}, those
already included in the partial ordering;

2) N2(vkp) = {vjp : vjp ∈ N(vkp) and vjp ∈
{N(µ[i]) µ[i]}}, those who are not included but that
are neighbors of at least one node in µ[i];

vp
k N3(vp

k)N1(vp
k) N2(vp

k)

Fig. 4. A graphical representation of the 3-way neighborhood sets rela-
tively to a vertex vkp and current partial ordering µ[i]. Moreover, vertices
in µ[i], N(µ[i]) and the reminders are delimited by dashed circles from
the most internal circle to the most external one, respectively.

3) N3(vkp) = {vjp : vjp ∈ N(vkp) and vjp /∈ {N1(vkp) ∪
N2(vkp)}}, all the remaining ones.

The variable ordering strategy of RI, namely 3-way-N,
consists in comparing the cardinality of those three sets.
Given two vertices vip, v

j
p ∈ N(µ[i]), vip is preferred to vjp

if |N1(vip)| > |N1(vjp)|. If such cardinalities are the same,
then vip is preferred if |N2(vip)| > |N2(vjp)|. If such second
cardinalities are the same, then |N3(vip)| and |N3(vjp)| are
compared, choosing vip if |N3(vip)| > |N3(vjp)|. Finally, if
such third cardinalities are the same, RI chooses randomly
one among vip and vjp. The aim is to choose the variables
affected by the highest number of verifiable constraints, but
at the same time maximizing the number of constraints that
will become verifiable in the upcoming steps.

4.2 RI SST visit
The traversing procedure of the SST is a basic BT that
verifies only the SubGI constraints. At step i of a partial
matching, M(i) = (vkp , v

j
t), RI checks the following con-

straints, in the order with which they are listed:

1) verify that vjt is not already included in the current
partial matching, vkt /∈ µt[i− 1];

2) verify that |N(vkp)| ≤ |N(vjt)|;
3) verify vertex label compatibility, αp(vkp) = αt(v

j
t);

4) verify the topology constraints, edges and their
labels, for each (vkp , v

′
p) ∈ Ep : v′p ∈ µp[i −

1] than (vjt ,M(v′p)) ∈ Et and βp((vkp , v
′
p)) =

βt((v
j
t ,M(v′p)));

5) if induced sub-isomorphism is performed then ver-
ify that for each (vkp , v

′
p) /∈ Ep then (vjp,M(v′p)) /∈

Et.

The constraints 1), 2), 4), and 5) are the SubGI definition
constraints. The constraint 3) is applied to prevent costly
edge verification. In fact, the constraints ordering of RI
reflects the case that the verification of the presence of
target vertices in the current partial matching, is less costly

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

TABLE 2
Characteristics of the existing variable ordering strategies on solving SubGI problem.

Strategy Static Dynamic Pattern Target State Domains Most-constraint Fail-first

Degree X X X X
Unfrequently-feature X X

Singleton-domain X X X
Minimum-domain X X X

Degree-weighted-domain X X X X X X
Weighted-domain X X X X

State-neighbourhood X X X X
State-neighbourhood+ X X X X
Maximum-cardinality X X X X X

Sum-cardinality X X X X X
3-way-N (RI) X X X X X

3-way-N+D (RI-DS) X X X X X X X

than label compatibility checks (this order can be tuned
depending on label data complexity, use of compatibility
maps, and devoted data structures).

4.3 RI-DS: Efficiency and memory consume trade off

RI has been developed to be both time and memory efficient.
However, for NP-Complete problems solved by heuristic
methodologies, efficiency and memory consumption is a
typical trade-off subjected to the no-free-lunch principle
[63], [64].

In [38], authors present RI-DS which differs from RI
by precomputing a compatibility map among pattern and
target vertices. This, in some applications, helps to reduce
the total running time of the algorithm.

During the search phase, a matching pair (vip, v
j
t) is

probably tested more than once, i.e., it belongs to several
matchings. The simple BT algorithm in RI verifies the la-
bel compatibility each time the pair (vip, v

j
t) is taken into

account. If the verification operation is relatively costly,
the algorithm may suffer in terms of performance. On the
contrary, RI-DS verifies the label compatibility just once and
stores the result in a compatibility map C . In RI-DS, C[i][j]
is true if αp(vip) = αt(v

j
t) and |N(vip)| ≤ |N(vjt)|, false

otherwise.
Moreover, before starting the searching process, RI-DS

applies an AC reduction procedure to such initial domains
(see Section 2). The RI-DS variable ordering strategy, namely
3-way-N+D, combines the RI’s variable ordering with the
singleton-domain strategy.

4.4 RI and RI-DS Data Structure

In RI and RI-DS, vertex labels are stored in a static array
of size |V |. Given a vertex vi, its adjacent list Adj[i] is a
static array of size |N(v)|. If the graph is ordered, only
outgoing neighbors are stored. Since such data structures
are static arrays, they are predisposed to be ordered and a
binary search on them can be performed. Similarly to the
adjacent list, given a vertex vi, a static array stores the
label of the edge

−−−−−−−−−→
(vi, Adj[i][j]). Finally, the compatibility

map rows are stored using bit-vectors [35], [45], [65]. The
choice of the above data structures are dictated by the aim to

balancing the memory consumption with the running time
of the algorithm.

5 RESULTS

5.1 Benchmarks

Biological graphs are very heterogeneous: (i) they can be
sparse or dense, (ii) they can have labels on vertices and/or
on edges or not, and (iii) they can vary in size from few to
thousands of vertices.

In [66] and [67], the authors provided a set of target and
pattern graphs independent of any applications. The dataset
includes randomly connected graph, regular and irregular
meshes (2D, 3D and 4D grids), and regular and irregular
bounded valence (where the degree of vertices is bounded
to a certain threshold) graphs. The target set is generated by
varying some parameters of the graph structure [68]. The
number of their vertices goes from 16 to 1296. Patterns were
extracted from target graph by taking into account the ratio
between their number of vertices.

In [38], a first general benchmark of biochemical and bi-
ological networks was presented. It includes chemical com-
pounds, DNA, RNA and protein structures, contact maps of
amino acids, protein-protein interaction (PPI) networks, and
microbial networks. Patterns were extracted from targets,
varying in size and density.

Inspired by the previous one, the dataset, used to eval-
uated the methodologies presented at the ICPR2014 contest
of Graph Matching Algorithms for Pattern Search in Biological
Databases, includes: biochemical compounds, protein struc-
tures and protein contact maps.

• The molecule dataset is formed by 10, 000 chemi-
cal compounds varying from 8 to 99 vertices and
with an average degree of 2. The vertex label al-
phabet contains 5 distinct elements which represent
the chemical elements (such as carbon, hydrogen,
etc...) forming the compounds. A total of 50 patterns
were extracted, with different number of vertices,
4, 8, 16, 32, 64, ten for each size.

• The protein dataset contains 300 graphs having from
535 to 10, 081 vertices, and an average degree equal
to 2. The vertex labels is still formed by the symbols

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Fig. 5. Simulation results for the network.

of chemical elements, for a total of 5 distinct labels.
10 patterns were extracted for each size (number of
vertices) 8, 16, 32, 64, 128, 256, obtaining a total of 60
patterns.

• The contact maps dataset has 300 graphs having
from 99 to 733 vertices and an average vertex
degree equal to 20. The vertex label alphabet if
formed by the 21 amino acid symbols. 60 patterns
were extracted by varying the number of vertices
(8, 16, 32, 64, 128, 256).

Summarizing, the molecules dataset is formed by small
and sparse graphs, the protein structure dataset contains
large and sparse graphs, and the contact map one is a
collection of medium size and dense graphs. All graphs
have no labels on edges.

5.2 Comparisons
RI and RI-DS have been extensively compared in [38] on the
monomorphism problem against VF2 [36], LAD [37] and
FocusSearch [45]. Their performance have been shown in
terms of running time, memory and visited size of the SST
(i.e., the number of produced matching pairs during the
search). They have also been compared in [69], on solving
GI and induced SubGI. The performance of both algorithms
were confirmed, except on solving GI over some instances
of dense graphs. However, RI and RI-DS are optimized and
designed to solve SubGI and not GI.

RI and RI-DS, together with other four algorithms partic-
ipated to the ICPR2014 contest on graph matching algorithms
for pattern search in biological databases.

• LAD [37] : a CSP method based on minimum-domain
variable ordering which propagates the injectivity
constraint (a target vertex cannot be mapped to two
pattern vertices in the same solution).

• FC: a CSP based approach, referred here as FC, which
combines two variants of forward checking [43] to
propagate injectivity and edge constraints.

• L2G: a CSP based approach that combines a most-
constraint variable ordering to the minimum-domain
one, in a single dynamic variable ordering. It also
applies a look-ahead procedure based on the vertex
degree.

• PJ: a CSP based algorithm based on criteria presented
in [70], [71] to deal with GI. Initial domains are com-
puted by looking at label and degree compatibility,
and an AC reduction procedure is applied. During
the searching process, the algorithm propagates con-
straints up to a given distance (along the pattern
graph) from the current variable.

All the presented approaches are developed in C++, except
PJ that is developed in OCaml.

The contest comparisons required solving the induced
SubGI in two cases: Finding all the occurrences of pattern
graphs (Listing) or finding just the first one (Testing).

Algorithms were evaluated in terms of time and mem-
ory requirements. The results confirmed that RI and RI-DS

outperform in average the other approaches. The graphics
report the results provided by the context on the case
of searching all occurrences (the methods showed similar
behavior for the Testing case). Moreover, graphics include
the performance of VF2 [36], one of the state of the art of
graph matching algorithms.

Concerning the running time, CPS based approaches are
affected by the costs of propagating constraints, updating
variable domains and checking for their consistency, which
may lead to unfair partial mappings. CSP based approaches
work better in small or dense graphs, where the proximity
of vertices helps the effectiveness of constraint propagation.
However, RI and RI-DS have shown that avoiding such tech-
niques and focusing on a good static variable ordering, leads
to improving performance in terms of time requirements for
all of the proposed datasets.

Figure 6 shows the running times on the sparse graphs
of the molecule dataset. For low target sizes (number of
vertices), domain based techniques can apply constraints
efficiently, but they lose their efficiency on larger targets.
On small sizes, CSP techniques are able to skim the initial
domains. In fact, RI-DS shows similar trends to the CSP
based approaches, even if it relies just on compatibility
maps obtained by a single step of AC reduction. RI requires
traversing the SST to obtain the same skimming level, which
is generally more costly than compute compatibility maps.

Generally, RI outperforms the other methods on sparse
graphs, as confirmed by the tests on the protein dataset, see
Figure 7. Propagating constrains on large sparse graphs with
respect to dense graphs does not improve the performance
of CSP based approaches shown in [69] and [38]. However,
as shown in Figure 8, RI-DS based on a simple initial domain
reduction strategy outperforms all the other methods in
dense graphs.

Concerning memory requirements, RI-DS outperformed
all the other algorithms (not graphically shown here). All
methods, with the exception of RI and RI-DS, are CSP based
thus they need to dials with domains and their representa-
tion. Moreover, since they are based on propagation proce-
dures, updated domains are stored by duplication of initial
domains. Since, RI does not use domains, it is not affected
by this problem. RI-DS uses domains just as compatibility
map, it does not update them during the traversing phase
and represents them by using bit-vectors. Moreover, all
algorithms, except L2G, RI and RI-DS, use adjacent matrices
to represent graphs, allowing a constant time for verifying
edge existence but requiring quadratic space.

The mostly comparable approach with RI and RI-DS is
L2G. It uses weak look-ahead procedures and it is based
on choosing a good variable ordering. However, L2G relies
on a dynamic variable ordering which needs additional
cost respect to the static one of RI. This negatively affects
the L2G’s performance. Finally, the performance of RI, RI-
DS and L2G could potentially be improved since they use
adjacency lists instead of adjacency matrices, verifying edge
existences with an asymptotic complexity bigger than O(1).

6 CONCLUSION

In this article, we reviewed the general framework of sub-
graph isomorphism algorithms. We focused on the classifi-
cation and differentiation of the variable ordering strategies.

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

8 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

4.00E-007

4.00E-006

4.00E-005

FC L2G LAD PJ RI RI-DS VF2

Target Size

T
im

e
 (

se
c.

)
-

lo
g

. s
ca

le

Fig. 6. Running times for finding all the occurrences over the molecules dataset.

53
5

63
4

73
1

75
5

79
5

83
1

86
1

88
6

99
5

10
49

10
97

11
92

13
00

14
94

15
76

16
32

16
84

17
54

18
44

19
48

20
44

21
26

22
22

23
16

23
44

23
83

24
66

25
93

26
10

26
16

26
48

27
75

28
72

29
28

29
91

31
34

32
09

33
66

34
83

35
15

35
26

35
66

36
18

37
11

38
70

41
56

42
83

44
21

45
32

46
04

47
97

51
26

53
18

56
08

57
95

59
45

62
61

68
83

91
74

10
08

1

1.00E-005

1.00E-004

1.00E-003

1.00E-002

1.00E-001

1.00E+000

FC L2G LAD PJ RI RI-DS VF2

Target Size

T
im

e
 (

se
c.

)
-

lo
g

. s
ca

le

Fig. 7. Running times for finding all the pattern occurrences over the protein structure dataset.

99 10
4

10
7

11
7

12
2

12
4

13
0

13
6

13
8

14
1

14
6

14
9

15
1

15
7

15
9

16
4

18
1

18
6

19
0

19
2

19
7

19
9

22
0

22
2

22
5

22
8

25
2

26
5

27
4

27
6

28
0

30
2

33
0

33
6

36
0

38
7

39
3

41
4

45
7

50
1

55
8

58
5

60
0

61
7

74
1

2.86E-005

2.86E-004

2.86E-003

FC L2G LAD PJ RI RI-DS VF2

Target Size

T
im

e
 (

se
c.

)
-

lo
g

. s
ca

le

Fig. 8. Running times for finding all the pattern occurrences over the contact map dataset.

We showed the importance of variable ordering with respect
to pruning rules. In order to do that, we described two algo-
rithms RI and RI-DS and their performance in the ICPR2014
contest, where they outperformed all other methods.

REFERENCES

[1] A. Mashaghi, A. Ramezanpour, and V. Karimipour, “Investigation
of a protein complex network,” The European Physical Journal B-
Condensed Matter and Complex Systems, vol. 41, no. 1, pp. 113–121,
2004.

[2] S. Li, C. M. Armstrong, N. Bertin, H. Ge, S. Milstein, M. Boxem,
P.-O. Vidalain, J.-D. J. Han, A. Chesneau, T. Hao et al., “A map of
the interactome network of the metazoan c. elegans,” Science, vol.
303, no. 5657, pp. 540–543, 2004.

[3] P. Faccioli, P. Provero, C. Herrmann, A. Stanca, C. Morcia, and
V. Terzi, “From single genes to co-expression networks: extract-
ing knowledge from barley functional genomics,” Plant molecular
biology, vol. 58, no. 5, pp. 739–750, 2005.

[4] M. B. Gerstein, A. Kundaje, M. Hariharan, S. G. Landt, K.-K.
Yan, C. Cheng, X. J. Mu, E. Khurana, J. Rozowsky, R. Alexander
et al., “Architecture of the human regulatory network derived from
encode data,” Nature, vol. 489, no. 7414, pp. 91–100, 2012.

[5] M. N. McCall, “Estimation of gene regulatory networks,” Journal
of Postdoctoral Research, vol. 1, no. 1, 2013.

[6] C. Christensen, J. Thakar, and R. Albert, “Systems-level insights
into cellular regulation: inferring, analysing, and modelling intra-
cellular networks,” IET systems biology, vol. 1, no. 2, pp. 61–77,
2007.

[7] F. Iorio, R. Bosotti, E. Scacheri, V. Belcastro, P. Mithbaokar, R. Fer-
riero, L. Murino, R. Tagliaferri, N. Brunetti-Pierri, A. Isacchi et al.,
“Discovery of drug mode of action and drug repositioning from

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

transcriptional responses,” Proceedings of the National Academy of
Sciences, vol. 107, no. 33, pp. 14 621–14 626, 2010.

[8] J. Lamb, “The connectivity map: a new tool for biomedical re-
search,” Nature Reviews Cancer, vol. 7, no. 1, pp. 54–60, 2007.

[9] M. Cokol, I. Iossifov, C. Weinreb, and A. Rzhetsky, “Emergent
behavior of growing knowledge about molecular interactions,”
Nature biotechnology, vol. 23, no. 10, pp. 1243–1248, 2005.

[10] M. A. Yıldırım, K.-I. Goh, M. E. Cusick, A.-L. Barabási, and M. Vi-
dal, “Drugtarget network,” Nature biotechnology, vol. 25, no. 10, pp.
1119–1126, 2007.

[11] V. Janjić and N. Pržulj, “Biological function through network
topology: a survey of the human diseasome,” Briefings in functional
genomics, p. els037, 2012.

[12] K.-I. Goh and I.-G. Choi, “Exploring the human diseasome: the
human disease network,” Briefings in functional genomics, p. els032,
2012.

[13] K. Wysocki and L. Ritter, “Diseasome an approach to understand-
ing gene–disease interactions,” Annual review of nursing research,
vol. 29, no. 1, pp. 55–72, 2011.

[14] I. Daylight Chemical Information Systems. Daylight. [Online].
Available: http://http://www.daylight.com/

[15] Frowns. [Online]. Available: http://frowns.sourceforge.net/
[16] G. D. Bader, M. P. Cary, and C. Sander, “Pathguide: a pathway

resource list,” Nucleic acids research, vol. 34, no. suppl 1, pp. D504–
D506, 2006.

[17] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, Ö. Babur,
N. Anwar, N. Schultz, G. D. Bader, and C. Sander, “Pathway
commons, a web resource for biological pathway data,” Nucleic
acids research, vol. 39, no. suppl 1, pp. D685–D690, 2011.

[18] A. Chatr-aryamontri, B.-J. Breitkreutz, S. Heinicke, L. Boucher,
A. Winter, C. Stark, J. Nixon, L. Ramage, N. Kolas, L. ODonnell
et al., “The biogrid interaction database: 2013 update,” Nucleic acids
research, vol. 41, no. D1, pp. D816–D823, 2013.

[19] V. Bonnici, F. Russo, N. Bombieri, A. Pulvirenti, and R. Giugno,
“Comprehensive reconstruction and visualization of non-coding
regulatory networks in human,” Frontiers in Bioengineering and
Biotechnology, vol. 2, p. 69, 2014.

[20] S. Turkarslan, E. J. Wurtmann, W.-J. Wu, N. Jiang, J. C. Bare, K. Fo-
ley, D. J. Reiss, P. Novichkov, and N. S. Baliga, “Network portal:
a database for storage, analysis and visualization of biological
networks,” Nucleic acids research, vol. 42, no. D1, pp. D184–D190,
2014.

[21] A.-L. Barabasi and Z. N. Oltvai, “Network biology: understanding
the cell’s functional organization,” Nature Reviews Genetics, vol. 5,
no. 2, pp. 101–113, 2004.

[22] D. Yu, M. Kim, G. Xiao, and T. H. Hwang, “Review of biological
network data and its applications,” Genomics & informatics, vol. 11,
no. 4, pp. 200–210, 2013.

[23] P. Csermely, T. Korcsmáros, H. J. Kiss, G. London, and R. Nussi-
nov, “Structure and dynamics of molecular networks: A novel
paradigm of drug discovery: A comprehensive review,” Pharma-
cology & therapeutics, vol. 138, no. 3, pp. 333–408, 2013.

[24] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine:
a network-based approach to human disease,” Nature Reviews
Genetics, vol. 12, no. 1, pp. 56–68, 2011.

[25] A. Giuliani, S. Filippi, and M. Bertolaso, “Why network approach
can promote a new way of thinking in biology,” Frontiers in
genetics, vol. 5, 2014.

[26] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex
networks,” Science, vol. 298, no. 5594, pp. 824–827, 2002.

[27] N. Pržulj, “Biological network comparison using graphlet degree
distribution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, 2007.

[28] T. Milenkoviæ and N. Pržulj, “Uncovering biological network
function via graphlet degree signatures,” Cancer informatics, vol. 6,
p. 257, 2008.

[29] S. Mangan and U. Alon, “Structure and function of the feed-
forward loop network motif,” Proceedings of the National Academy
of Sciences, vol. 100, no. 21, pp. 11 980–11 985, 2003.

[30] A. P. Cootes, S. H. Muggleton, and M. J. Sternberg, “The identifi-
cation of similarities between biological networks: application to
the metabolome and interactome,” Journal of molecular biology, vol.
369, no. 4, pp. 1126–1139, 2007.

[31] J. Lauri, “Subgraphs as a measure of similarity,” in Structural
Analysis of Complex Networks. Springer, 2011, pp. 319–334.

[32] S. Fankhauser, K. Riesen, H. Bunke, and P. Dickinson, “Suboptimal
graph isomorphism using bipartite matching,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 26, no. 06, 2012.

[33] R. G. Michael and S. J. David, “Computers and intractability: a
guide to the theory of np-completeness,” WH Freeman & Co., San
Francisco, 1979.

[34] N. J. Nilsson, Principles of artificial intelligence. Springer, 1982.
[35] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal

of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.
[36] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)

graph isomorphism algorithm for matching large graphs,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 26,
no. 10, pp. 1367–1372, 2004.

[37] C. Solnon, “Alldifferent-based filtering for subgraph isomor-
phism,” Artificial Intelligence, vol. 174, no. 12, pp. 850–864, 2010.

[38] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro, “A
subgraph isomorphism algorithm and its application to biochem-
ical data,” BMC bioinformatics, vol. 14, no. Suppl 7, p. S13, 2013.

[39] D. Eppstein, “Subgraph isomorphism in planar graphs and related
problems,” in Proceedings of the sixth annual ACM-SIAM symposium
on Discrete algorithms. Society for Industrial and Applied Mathe-
matics, 1995, pp. 632–640.

[40] A. K. Mackworth, “Constraint satisfation,” Encyclopedia of Artificial
Intelligence, 1987.

[41] S. W. Golomb and L. D. Baumert, “Backtrack programming,”
Journal of the ACM (JACM), vol. 12, no. 4, pp. 516–524, 1965.

[42] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved
algorithm for matching large graphs,” in 3rd IAPR-TC15 workshop
on graph-based representations in pattern recognition, 2001, pp. 149–
159.

[43] J. J. McGregor, “Relational consistency algorithms and their appli-
cation in finding subgraph and graph isomorphisms,” Information
Sciences, vol. 19, no. 3, pp. 229–250, 1979.

[44] S. Zampelli, Y. Deville, and C. Solnon, “Solving subgraph iso-
morphism problems with constraint programming,” Constraints,
vol. 15, no. 3, pp. 327–353, 2010.

[45] J. R. Ullmann, “Bit-vector algorithms for binary constraint satis-
faction and subgraph isomorphism,” Journal of Experimental Algo-
rithmics (JEA), vol. 15, pp. 1–6, 2010.

[46] J. Gaschnig, “A general backtrack algorithm that eliminates most
redundant tests.” in IJCAI, 1977, p. 457.

[47] ——, “Experimental case studies of backtrack vs.{W} altz-type vs.
new algorithms for satisficing assignment problems,” 1978.

[48] B. D. McKay et al., Practical graph isomorphism. Department of
Computer Science, Vanderbilt University, 1981.

[49] N. Dahm, H. Bunke, T. Caelli, and Y. Gao, “Efficient subgraph
matching using topological node feature constraints,” Pattern
Recognition, vol. 48, no. 2, pp. 317–330, 2015.

[50] R. M. Haralick and G. L. Elliott, “Increasing tree search efficiency
for constraint satisfaction problems,” Artificial intelligence, vol. 14,
no. 3, pp. 263–313, 1980.

[51] A. K. Mackworth, “Consistency in networks of relations,” Artificial
intelligence, vol. 8, no. 1, pp. 99–118, 1977.

[52] F. Boussemart, F. Hemery, and C. Lecoutre, “Revision ordering
heuristics for the constraint satisfaction problem,” in Proceedings of
CPAI04 workshop held with CP04, 2004, pp. 29–43.

[53] R. J. Wallace, “Factor analytic studies of csp heuristics,” in Prin-
ciples and Practice of Constraint Programming-CP 2005. Springer,
2005, pp. 712–726.

[54] D. Sabin and E. C. Ereuder, “Understanding and improv-
ing the mac algorithm,” in Principles and Practice of Constraint
Programming-CP97. Springer, 1997, pp. 167–181.

[55] C. Bessiere and J.-C. Régin, “Mac and combined heuristics: Two
reasons to forsake fc (and cbj?) on hard problems,” in Principles
and Practice of Constraint ProgrammingCP96. Springer, 1996, pp.
61–75.

[56] B. M. Smith, “The brélaz heuristic and optimal static orderings,” in
Principles and Practice of Constraint Programming–CP99. Springer,
1999, pp. 405–418.

[57] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting
systematic search by weighting constraints,” in ECAI, vol. 16, 2004,
p. 146.

[58] U. Čibej and J. Mihelič, “Search strategies for subgraph isomor-
phism algorithms,” in Applied Algorithms. Springer, 2014, pp.
77–88.

[59] R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and se-

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

lectively reduce acyclic hypergraphs,” SIAM Journal on computing,
vol. 13, no. 3, pp. 566–579, 1984.

[60] O. Ore, Theory of graphs. American Mathematical Soc., 1965,
vol. 38.

[61] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang,
D. Ramage, N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape:
a software environment for integrated models of biomolecular
interaction networks,” Genome research, vol. 13, no. 11, pp. 2498–
2504, 2003.

[62] G. Scardoni, M. Petterlini, and C. Laudanna, “Analyzing biolog-
ical network parameters with centiscape,” Bioinformatics, vol. 25,
no. 21, pp. 2857–2859, 2009.

[63] N. Biggs, Algebraic graph theory. Cambridge university press, 1993.
[64] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduc-

tion to algorithms. MIT press Cambridge, 2001, vol. 2.
[65] C. Lecoutre, J. Vion et al., “Enforcing arc consistency using bitwise

operations,” Constraint Programming Letters (CPL), vol. 2, pp. 21–
35, 2008.

[66] P. Foggia, C. Sansone, and M. Vento, “A database of graphs
for isomorphism and sub-graph isomorphism benchmarking,” in
Proc. of the 3rd IAPR TC-15 International Workshop on Graph-based
Representations. Citeseer, 2001, pp. 176–187.

[67] M. De Santo, P. Foggia, C. Sansone, and M. Vento, “A large
database of graphs and its use for benchmarking graph isomor-
phism algorithms,” Pattern Recognition Letters, vol. 24, no. 8, pp.
1067–1079, 2003.

[68] H. Bunke and M. Vento, “Benchmarking of graph matching algo-
rithms,” in Proc. of the 2nd Workshop on Graph-based Representations,
1999, pp. 109–114.

[69] V. Carletti, P. Foggia, and M. Vento, “Performance comparison of
five exact graph matching algorithms on biological databases,” in
New Trends in Image Analysis and Processing–ICIAP 2013. Springer,
2013, pp. 409–417.

[70] L. Babai, P. Erdo s, and S. M. Selkow, “Random graph isomor-
phism,” SIAM Journal on Computing, vol. 9, no. 3, pp. 628–635,
1980.

[71] P. Codenotti, “Distinguishing vertices of inhomogeneous random
graphs,” Technical Report IMA Preprint Series 2419, Institute
for Mathematics and its Applications, University of Minnesota,
Minneapolis, Minnesota, Tech. Rep., 2013.

