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Abstract. Processes having the same bridges as a given reference Markov
process constitute its reciprocal class. In this paper we study the recipro-
cal class of compound Poisson processes whose jumps belong to a finite
set A ⇢ Rd. We propose a characterization of the reciprocal class as
the unique set of probability measures on which a family of time and
space transformations induces the same density, expressed in terms of
the reciprocal invariants. The geometry of A plays a crucial role in the
design of the transformations, and we use tools from discrete geometry
to obtain an optimal characterization. We deduce explicit conditions for
two Markov jump processes to belong to the same class. Finally, we pro-
vide a natural interpretation of the invariants as short-time asymptotics
for the probability that the reference process makes a cycle around its
current state.

Contents

Introduction 1
1. Framework. Some definitions and notations 3
2. The time and space transformations 6
3. Characterization of the reciprocal class 15
4. Appendix 22
References 25

Introduction

For a given Rd-valued stochastic process X = (Xt)t2[0,1] and I ✓ [0, 1] we
let FI be the �-field generated by the random variables (Xs : s 2 I). We
say that X is a reciprocal process if for every 0  s < t  1 the �-fields
F[0,s][[t,1] and F[s,t] are independent conditionally to F{s,t}. Comparing this
notion to that of Markov process (F[0,t) and F(t,1] independent conditionally
to F{t}) it is not hard to show that every Markov process is reciprocal, but
non-Markov reciprocal processes exist (see e.g. [25]).

The notion of reciprocal process is very natural in many respects. On one
hand it emerges when one solves dynamic problem such as stochastic con-
trol problems or stochastic di↵erential equations with boundary constraints,
i.e. constraints on the joint distribution at the boundary times t = 0 and
t = 1; this point of view has actually inspired the whole theory of reciprocal
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processes, that originated from ideas in [28] and [1] and led to several devel-
opments (see e.g. [34, 33, 10]). On the other hand it is a special case of the
more general notion of Markov random field ([8]), which provides a Markov
property for families of random variables (Xr) indexed by r 2 Rd.

The systematic study of reciprocal processes has initiated with the Gauss-
ian case: covariance functions giving rise to reciprocal Gaussian processes
have been thoroughly studied and characterized ([13, 14, 15, 4, 3, 19]). A
more ambitious aim has been that of describing reciprocal processes in terms
of infinitesimal characteristics, playing the role that infinitesimal generators
play for Markov processes; this has led to the introduction of a second order
stochastic calculus ([16, 31, 17]).

In this paper we consider a related problem. Suppose we are given a
reference Markov process, whose law on its path space will be denoted by P.
For simplicity, we assume X to be the canonical process on its path space.
A probability Q is said to belong to the reciprocal class of P if for every
0  s < t  1 and A 2 F[s,t] we have

Q(A|F[0,s][[t,1]) = P(A|F[0,s][[t,1]) = P(A|Xs, Xt), (0.1)

where the last equality is an immediate consequence of the fact thatX, being
Markov, is a reciprocal process under P. In particular, X is a reciprocal
process also under Q. The elements of the reciprocal class of P are easy
to characterize from a measure-theoretic point of view. Denote by Pxy the
bridge of P from x to y, i.e. the probability obtained by conditioning P on
{(X0, X1) = (x, y)}; a probability Q is in the reciprocal class of P if and
only if it is a mixture of the bridges of P, i.e.

Q =

Z
Pxyµ(dx, dy)

for some probability µ on Rd ⇥ Rd.
Along the lines of what we have discussed above, it is desirable to char-

acterize the probability measures belonging to the reciprocal class of P by
infinitesimal characteristics. One first question in this direction is the follow-
ing. Assume P is the law of a Markov process with infinitesimal generator
L. Given another Markov generator L0, under what conditions the laws
of the Markov processes generated by L0 belong to the reciprocal class of
P? This question is well understood for Rd-valued di↵usion processes with
smooth coe�cients, and it has motivated the search for the so-called recip-
rocal invariants: the collection of reciprocal invariants forms a functional
F (L) of the coe�cients of the generator, such that the following statement
holds: the laws of the processes generated by L and L0 belong to the same
reciprocal class if and only if F (L) = F (L0). Explicit expressions for the
reciprocal invariants of di↵usion processes can be found in [16, 6, 20]. For
pure jump processes with values in a discrete state space, the understand-
ing of reciprocal invariants is very limited, except for some special cases like
counting processes ([7],[25]) or for pure jump processes with independent in-
crements under very restrictive assumption on the geometry of jumps (called
incommensurability), see Chapter 8 in [22].
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In this paper we consider possibly time-inhomogeneous compound Poisson
processes with jumps in a finite set A, considerably weakening the assump-
tions in [22]. Our analysis reveals how reciprocal invariants are related to
the geometric and graph-theoretic structure induced by the jumps. Close
ideas apply to other context where a similar structure emerges, in particular
to random walks of graphs, which will be treated in a forthcoming paper.
To make clearer the improvement with respect to [22], we note that the
assumption there imply that the corresponding graph structure in acyclic;
In our framework, we will see that cycles are exactly the main parameter in
the collection of reciprocal invariants, see Proposition 3.4.

The basic tool for identifying the reciprocal invariants is provided by
functional equations, called duality formulae or integration by parts formu-
lae, which represent a subject of independent interest. They have provided
in particular useful characterizations of Poisson processes ([29, 21]). The
idea of restricting the class of test functions in the duality formula in order
to characterize the whole reciprocal class has appeared for the first time
in [26, 27] in the framework of di↵usions. In this paper we make explicit
a functional equation containing a di↵erence operator, which only depend
on reciprocal invariants and characterize the reciprocal class of compound
Poisson processes.

The paper is organized as follows. In Section 1 we set up the necessary
notations and provide the relevant definitions. In Section 2 we define suitable
transformations on the path space, and compute the density of the image of
the law of the process under these transformations. This will allow in Section
3 to derive the duality formulae and to identify the reciprocal invariant. At
the end of Section 3 we also give an interpretation of the reciprocal invariants
in the time-homogeneous case, in terms on the asymptotic probability the
process follows a given cycle. This could be extended to other contexts, e.g.
to Markov di↵usions, providing an alternative to the physical interpretation
given in [6]. These extensions will be the subject of a forthcoming work.

1. Framework. Some definitions and notations

We consider Rd-valued random processes with finitely many types of
jumps, chosen in a given set

A =
�
a1, ..., aA

 
✓ Rd (1.1)

of cardinality A. We associate toA the matrixA = (aj
i
)1id,1jA 2 Rd⇥A.

Their paths are elements of D([0, 1],Rd), the space of right continuous with
left limits functions on [0, 1] (usually called in french càdlàg paths), equipped
with its canonical filtration (Ft)t2[0,1]. F[s,t] is defined by �((Xr)r2[s,t])

In this setting, paths can be described by the counting processes corre-
sponding to each type of jumps. It is therefore natural to introduce the
following random variables:

Definition 1.1. Let define N = (Nt)0t1, where Nt := (N1
t , ..., N

A
t ) and,

for any j 2 {1, ..., A}, N j

t
counts how many times the jump aj has occurred
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up to time t:

N j

t
(!) =

X

st

1{!s�!s�=aj}.

The total amount of jumps up to time t, |N |t, is given by the sum of the
coordinates of Nt, that is |N |t :=

P
A

j=1
N j

t
.

The i-th jump time of type aj is:

T j

i
:= inf

n
t 2 [0, 1] : N j

t
= i

o
^ 1.

Finally, the ith jump time of the process is:

Ti := inf{t 2 [0, 1] : |N |t = i} ^ 1.

Then, we can express the canonical process as Xt = X0+
P

j
ajN j

t
, which

leads to introduce the following set ⌦ of paths indeed carried by the processes
we consider here:

⌦ =
�
! : |N |1(!) < +1 and Xt(!) = X0(!) +ANt(!), 0  t  1

 

✓ D([0, 1],Rd).

We also define the set S of possible initial and final values (X0, X1) for
paths in ⌦:

S :=
n
(x, y) 2 Rd ⇥ Rd, 9 n 2 NA such that y = x+An

o
.

For any measurable space X , we will denote by M(X ) the set of all non
negative measures on X and by P(X ) the subset of probability measures on
X . B(X ) is the set of bounded measurable functions on X .

A general element of P(⌦) will be denoted by Q. Concerning its time
projections, we use the notations

Qt := Q �X�1

t
and Q01 := Q � (X0, X1)

�1

for the law at time t, resp. the joint law at time 0 and 1.
As reference process , we will consider in this paper a time-inhomogeneous

compound Poisson process denoted by Px
⌫ , where x 2 Rd is a fixed initial

position and ⌫ is a regular jump measure belonging to the set

J :=
n
⌫ 2 M(A⇥ [0, 1]), ⌫(dx, dt) =

AX

j=1

�aj (dx)⌦ ⌫j(t)dt,

⌫j(·) 2 C([0, 1],R+), 1  j  A
o
. (1.2)

Heuristically, the process with law Px
⌫ leaves its current state at rate

P
A

j=1
⌫j

and when it jumps, it chooses the jump aj with probability ⌫j/
P

A

j=1
⌫j .

More precisely, under Px
⌫ the canonical process X satisfies X0 = x a.s.

and it has independent increments whose distribution is determined by its
characteristic function

Px

⌫

⇣
exp

�
i�·(Xt�Xs)

�⌘
= exp

⇣ AX

j=1

�
ei�·a

j�1
� Z t

s

⌫j(r)dr
⌘
, � 2 Rd, (1.3)
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where � ·x is the scalar product in Rd. Note that here, as well as in the rest
of the paper, for Q 2 P(⌦) and F : ⌦ ! R, we write Q(F ) for

R
FdQ.

The properties of Px
⌫ are well known, in particular its semimartingale char-

acteristics (0, ⌫, 0), see e.g. Chapters II and III of [12].

1.1. Reciprocal classes. We first define a bridge of the compound Poisson
process Px

⌫ .

Definition 1.2. For (x, y) 2 S and ⌫ 2 J , Pxy
⌫ , the bridge of the compound

Poisson process from x to y, is given by the probability measure on ⌦:

Pxy

⌫ := Px

⌫( . |X1 = y).

Remark 1.3. Note that Pxy
⌫ is well defined as soon as (x, y) 2 S, since in

that case Px
⌫(X1 = y) > 0.

The reciprocal class associated to the jump measure ⌫ 2 J is now defined
as the set of all possible mixtures of bridges in the family (Pxy

⌫ )(x,y)2S .

Definition 1.4. Let ⌫ 2 J . Its associated reciprocal class is the following
set of probability measures on ⌦:

R(⌫) :=
�
Q 2 P(⌦) : Q(·) =

Z

S
Pxy

⌫ (·)Q01(dxdy)
 
.

Let us describe the specific structure of any probability measure in the
reciprocal class R(⌫).

Proposition 1.5. Let Q 2 P(⌦). Define then the compound Poisson process
PQ
⌫ with the same dynamics as Px

⌫ but the same initial distribution as Q by
PQ
⌫ =

R
Rd Px

⌫(.)Q0(dx). Then the following assertions are equivalent:

i) Q 2 R(⌫)
ii) Q is absolutely continuous with respect to PQ

⌫ and the density dQ/dPQ
⌫

is �(X0, X1)-measurable.

Proof. i) ) ii)
We first prove that Q01 is absolutely continuous with respect to (PQ

⌫ )01.
Let us consider a Borel set O ✓ Rd⇥Rd such that Q01(O) > 0. There exists
n 2 NA such that Q01(O \ {N1 = n}) > 0. We can rewrite this event in a
convenient way:

{(X0, X1) 2 O} \ {N1 = n} =
�
X0 2 ⌧�1

n (O)
 
\ {N1 = n}

where ⌧n : Rd ! Rd⇥Rd is the map x 7! (x, x+An). Since Q01(O\{N1 =
n}) > 0, Q0(⌧�1

n (O)) = (P⌫)0(⌧�1
n (O)) > 0.

A simple application of the Markov property of PQ
⌫ implies that

(PQ
⌫ )01 (O) � PQ

⌫ ((X0, X1) 2 O \ {N1 = n})
= (PQ

⌫ )0(⌧
�1

n (O))PQ
⌫ (N1 = n) > 0.

Therefore we can conclude that Q01 << (PQ
⌫ )01 and we denote by h the

density function dQ01/d(PQ
⌫ )01.

Finally, let us choose any F 2 B(⌦). By hypothesis:

Q
�
F
�

= Q(Q[F |X0, X1]) = Q
�
PX0,X1
⌫ (F )

�

= PQ
⌫

�
PX0,X1
⌫ (F )h(X0, X1)

�
= PQ

⌫

�
PX0,X1
⌫ (Fh(X0, X1))

�

= PQ
⌫

�
Fh(X0, X1)

�
,
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which leads to the conclusion that

dQ
dPQ

⌫

=
dQ01

d(PQ
⌫ )01

= h(X0, X1).

This proves ii).
ii) ) i) Suppose that there exists a non negative measurable function h
such that dQ/dPQ

⌫ = h(X0, X1). It is a general result in the framework of
reciprocal processes that, in that case, Q 2 R(⌫), see e.g. Theorem 2.15 in
[18]. For sake of completeness, we recall shortly the arguments. Let us take
three measurable test functions �, , F .

Q (�(X0) (X1)F ) = PQ
⌫ (�(X0) (X1)h(X0, X1)F )

= PQ
⌫

⇣
�(X0) (X1)h(X0, X1)PQ

⌫ (F |X0, X1)
⌘

= Q
⇣
�(X0) (X1)PQ

⌫ (F |X0, X1)
⌘
.

Thus Q(F |X0, X1) = PQ
⌫ (F |X0, X1) Q-a.s. for arbitrary functions F which

implies that

Q(.|X0 = x,X1 = y) = Pxy

⌫ Q01-a.s.

and the decomposition written in Definition 1.4 follows. ⇤

2. The time and space transformations

In this section we define two families of transformations on the path space
⌦, and we analyze their action on the probability measures of the reciprocal
class R(⌫). This will later provide (in Theorem 3.3) a characterization of
R(⌫) as the set of probability measures under which a functional equation
holds true. As a consequence, we will see that R(⌫) depends on ⌫ only
through a family of specific functionals of ⌫, that we call reciprocal invari-
ants.

2.1. Time Changes. We consider the set U of all regular di↵eomorphisms
of the time interval [0, 1], parametrized by the set A:

U =
n
u 2 C1({1, · · · , A}⇥ [0, 1]; [0, 1]), u(·, 0) ⌘ 0, u(·, 1) ⌘ 1,

min
j2A,t2[0,1]

u̇(j, t) > 0
o
.

With the help of each u 2 U we construct a transformation of the refer-
ence compound Poisson process by time changes acting separately on each
component process N j , j = 1, ..., A.

Definition 2.1. Let u 2 U . We define the time-change transformation ⇡u
by:

⇡u : ⌦ �! D([0, 1],Rd)

⇡u(!)(t) := !(0) +
AX

j=1

ajN j

u(j,t)
(!), 0  t  1.
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Remark 2.2. We cannot a priori be sure that ⇡u takes values in ⌦ since it

may happen that jumps sincronize, i.e. u�1(j, T j

i
) = u�1(j0, T j

0

i0 ) for some
j, j0. However it is easy to see that this happens with zero probability under
Px
⌫ .

We now define a family of maps called reciprocal time-invariants.

Definition 2.3. The reciprocal time-invariant associated to ⌫ is the
function:

⌅⌫ : {1, · · · , A}⇥ [0, 1]2 ! R+, ⌅⌫(j, s, t) :=
⌫j(t)

⌫j(s)
.

Remark 2.4. Note that in the time-homogeneous case ⌅⌫ ⌘ 1.

In the next proposition we shall prove that the image of Px
⌫ under the

above time change ⇡u is absolutely continuous with respect to Px
⌫ , and that

its density is indeed a function of the reciprocal time-invariant ⌅⌫ .

Proposition 2.5. The following functional equation holds under Px
⌫ : For

all u 2 U ,

Px

⌫

⇣
F� ⇡u

⌘
= Px

⌫

⇣
F exp

⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘
, 8F 2 B(⌦).

(2.1)

Proof. We first observe that, for every fixed j 2 {1, ..., A} the process

N j

t
� ⇡u �

Z
t

0

⌫j(u(j, s))u̇(j, s)ds (2.2)

is a Px
⌫ -martingale w.r.t. to its natural filtration F̃ . Indeed, for any s  t

and any F F̃s-measurable, by applying the basic properties of processes with
independent increments, we obtain:

Px

⌫

�
F (N j

t
�N j

s ) � ⇡u
�
= Px

⌫

�
F
� Z u(j,t)

u(j,s)

⌫j(r)dr

= Px

⌫

�
F
� Z t

s

⌫j(u(j, r))u̇(j, r)dr.

Therefore N j

t
� ⇡u is an inhomogeneous Poisson process with intensity

⌫j(u(j, ·))u̇(j, ·).

Moreover, if j 6= j0, N j
· �⇡u and N j

0
· �⇡u are independent processes under Px

⌫ ,
because the processes N j and N j

0
are independent and ⇡u acts separately on

each component. This implies that the image of Px
⌫ under ⇡u, Px

⌫ � ⇡�1
u , is a

compound Poisson process whose jump measure is given by
P

A

j=1
�aj (dx)⌦

⌫j(u(j, t))u̇(j, t)dt.
We can now apply the Girsanov theorem (see e.g. Theorem 5.35, Chapter
III of [12]) to get the density of the push-forward measure Px

⌫ � ⇡�1
u w.r.t.
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Px
⌫ :

dPx
⌫ � ⇡�1

u

dPx
⌫

= exp
h AX

j=1

⇣Z 1

0

�
⌫j(u(j, t))u̇(j, t)� ⌫j(t)

�
dt

+

Z
1

0

log(⌅⌫(j, t, u(j, t))u̇(j, t)dN j

t

⌘i
.

With the change of variable t = u�1(t0) we have for any j
Z

1

0

⌫j(u(j, t))u̇(j, t)dt =

Z
1

0

⌫j(t0)dt0.

Therefore the first integral disappears and the conclusion follows. ⇤
Remark 2.6. In the recent work [7], the authors establish a di↵erential ver-
sion of the equation (2.1), in the context of counting processes (i.e. A = {1})
with a possibly space-dependent intensity. Such a formula is inspired by the
Malliavin calculus for jump processes developed in [2] puting in duality a
di↵erential operator and the stochastic integral. We can, without getting
into the details, relate the functional equation (2.1) with the formula proved
there as follows: First consider a smooth function v satisfying the loop con-
dition

R
1

0
vt dt = 0 and define the function u"t := t+ "

R
t

0
vs ds, " > 0. Note

that, for " su�ciently small, u" 2 U . If we then apply (2.1) to a smooth
functional of the jump times, we obtain after some elementary operations:

1

"
Px

⌫(F � ⇡u" � F ) =
1

"
Px

⌫

✓
F
⇣
exp(

Z

[0,1]

log⌅⌫(1, t, u"(t)) u̇"t dNt)� 1
⌘◆

.

If we now let " tend to 0, we obtain the duality formula

Px

⌫

�
DvF

�
= Px

⌫

�
F

Z
1

0

vt dNt) + Px

⌫

�
F

Z
1

0

vt

Z
1

t

⌫̇(s)

⌫(s)
dNsdt

�

where DvF = lim"!0(F � ⇡u" � F )/".
This formula can then be extended to space-dependent intensities.

2.2. Space transformations. The transformations ⇡u introduced in the
previous section, when acting on a given path, change the jump times leav-
ing unchanged the total number of jumps of each type. We now introduce
transformations that modify the total number of jumps; these transforma-
tions act on the counting variable N1 taking its values in NA, which we
embed into ZA to take advantage of the lattice structure.

2.2.1. Shifting a Poisson random vector. We first consider a multivariate
Poisson distribution p� 2 P(NA) where� = (�1, ...,�A) 2 RA

+:

8n 2 NA, p�(n) = exp

0

@�
AX

j=1

�j

1

A
AY

j=1

(�j)n
j

nj !
. (2.3)

We first give a straightforward multidimensional version of Chen’s char-
acterization of a Poisson random variable. He introduced it to estimate the
rate of convergence of sum of dependent trials to the Poisson distribution
(see the original paper [5] and Chapter 9 in [30] for a complete account of
Chen’s method).
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Proposition 2.7. Let � 2 (R+)A. Then ⇢ 2 P(NA) is the multivariate
Poisson distribution p� if and only if

8ej , j = 1, . . . A, ⇢(f(n+ e
j)) = �j⇢(f(n)nj), 8f 2 B(NA),

where e
j denote the j-th vector of the canonical basis of ZA.

One can interpret this characterization as the computation of the density
of the image measure by any shift along the canonical basis of NA.

Now we consider as more general transformations multiple left- and right-
shifts, acting simultaneously on each coordinate, that is, we shift by vectors
v 2 ZA.

Definition 2.8. Let v 2 ZA. We define the v-shift by

✓v : ZA �! ZA

z 7! ✓v(z) = z+ v.

Consider the image of p� under ✓v. It is a probability measure whose
support is no more included in NA since there may be z 2 NA such that
✓v(z) 62 NA. Therefore we only compute the density of its absolutely con-
tinuous component, appearing in the Radon-Nykodim decomposition:

p� � ✓�1

v = pv,ac
�

+ pv,sing
�

. (2.4)

A version of the density of the absolutely continuous component is given by

dpv,ac
�

dp�
(n) = ��v

AY

j=1

nj !

(nj � vj)!
1{nj�vj}, where �v :=

AY

j=1

(�j)v
j
.

In view of obtaining a change of measure formula as in Proposition 2.7 we
define

Gv(n) :=
AY

j=1

nj !

(nj � vj)!
1{nj�vj}. (2.5)

Let us now consider the space B](ZA) ✓ B(ZA) consisting of test functions
with support in NA:

B](ZA) := {f 2 B(ZA) : f(z) = 0 8z /2 NA}.

Then, the considerations above can be summarized in the following formula:

p�(f � ✓v) = ��v p�(f Gv), 8f 2 B](ZA). (2.6)

Example 2.9. Let A = {�1, 1}. We call n� (rather than n1) and n+(rather
than n2) the counting variables for the jumps �1 and 1 respectively. The
same convention is adopted for the intensity vector � = (��,�+). Then, for
v = (1, 1) (resp. v = (1,�1) and for any f 2 B](Z2),

p�
⇣
f(n� + 1, n+ + 1)

⌘
=

1

���+
p�
⇣
f(n�, n+)n�n+

⌘
,

p�
⇣
f(n� + 1, n+ � 1)

⌘
=
�+

��
p�
⇣
f(n�, n+)

n�

n+ + 1

⌘
.
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2.2.2. Lattices and conditional distributions. We now consider, associated
to a measure µ 2 P(NA), the following set of probability measures on NA:

RA(µ) :=
�
⇢ 2 P(NA) : ⇢(·) =

Z
µ(·|�(A)) d⇢�(A)

 
,

where the �-algebra �(A) is generated by the application z 7! Az defined
on ZA, and the measure ⇢�(A) is the projection of ⇢ on �(A).
The setRA(µ) presents strong analogies with a reciprocal class as introduced
in Definition 1.4. Indeed, one can prove an analogous to Proposition 1.5,
that is

⇢ 2 RA(µ) if and only if ⇢ << µ and
d⇢

dµ
is �(A)-measurable.

Our first goal is to characterize RA(p�) using the formula (2.6) computed
for a suitably chosen set of shift vectors v. The right set will be the following
sublattice of ZA:

kerZ(A) := ker(A) \ ZA. (2.7)

Let us observe that if two paths !, !̃ 2 ⌦ have the same initial and final
values, (X0, X1)(!) = (X0, X1)(!̃), then N1(!) � N1(!̃) 2 kerZ(A). The
next statement clarifies the role of kerZ(A).

Proposition 2.10. Let ⇢ 2 P(NA). Then ⇢ 2 RA(p�) if and only if

8c 2 kerZ(A), ⇢(f � ✓c) =
1

�c
⇢(f Gc) 8f 2 B](ZA), (2.8)

where Gc is defined in (2.5).

Proof. ()) Let f 2 B](ZA) and c 2 kerZ(A). By definition of kerZ(A) and
RA(p�) we can choose a version of the density h = d⇢

dp�
such that h � ✓c = h.

Applying the formula (2.6) we obtain:

⇢(f � ✓c) = p� ((f � ✓c)h) = ⇢ ((fh) � ✓c)
= ��cp� (f Gch ) = ��c⇢ (f Gc)

(() Let n,m 2 NA be such that An = Am. Set f := 1n, c := n � m.
Then

⇢(m) = ⇢(f � ✓c) = ��cGc(n)⇢(n).

Since, by (2.6), the same relation holds under p�, we have

d⇢

dp�
(m) =

d⇢

dp�
(n),

which completes the proof. ⇤
Example 2.11. Resuming Example 2.9, we verify that, in this case, kerZ(A) =✓

1
1

◆
Z. Proposition 2.10 tells us that a probability distribution ⇢ on N2

satisfies
⇢(. |n+ � n� = x) = p�(. |n+ � n� = x) 8x 2 Z

if and only if, for all k in N⇤ and for all f 2 B](Z2),

⇢
⇣
f(n� + k, n+ + k)

⌘
=

1

(�+��)k
⇢
⇣
f(n�, n+)

k�1Y

i=0

(n� � i)(n+ � i)
⌘
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and

⇢
⇣
f(n� � k, n+ � k)

⌘
= (�+��)k ⇢

⇣
f(n�, n+)

kY

i=1

1

(n� + i)(n+ + i)

⌘
.

Taking Proposition 2.10 as a characterization of RA(p�) is rather unsat-
isfactory, since we do not exploit the lattice structure of kerZ(A). It is then
natural to look for improvements, by imposing (2.8) to be satisfied only for
shifts in a smaller subset of kerZ(A), but still characterizing RA(p�). In
particular, since kerZ(A) is a sublattice of ZA, one wants to understand if
restricting to a basis su�ces. We answer a�rmatively if kerZ(A) satisfy a
simple geometrical condition, see Proposition 2.15. However, in general this
is false, and we construct the Counterexample 2.12.
Before doing so, let us recall that L ✓ RA is a lattice if there is a set of
linearly independent vectors {b1, .., bl} such that:

L =
n lX

k=1

zkbk, zk 2 Z, k = 1, .., l
o
. (2.9)

Any set {z1, ..., zl} satisfying (2.9) is a basis for L. Since any discrete sub-
group of RA is a lattice (see e.g. Proposition 4.2 in [23]) then kerZ(A) is a
lattice.
The equations (2.8) essentially tell us that, if n 2 NA is such that m := ✓�cn

is also an element of NA, then ⇢(m) = ⇢(n)p�(m)/p�(n). If we let c vary
in a lattice basis it may happen that the ”network” of relations constructed
in this way is not enough to capture the structure of conditional probabili-
ties. In the next paragraph, we will indeed reformulate this problem as a
connectivity problem for a certain family of graphs, and propose a solution
in this framework using generating sets of lattices.

Counterexample 2.12. Let A = {3, 4, 5}. Then

kerZ(A) =
�
c 2 Z3 : 3c1 + 4c2 + 5c3 = 0

 
.

We define three vectors

f = (�3, 1, 1), g = (1,�2, 1), h = (2, 1,�2).

Note that {f, g, h} ✓ kerZ(A). We also define

nf := (3, 0, 0), ng := (0, 2, 0), nh := (0, 0, 2).

Moreover, we observe that

if, for some c 2 kerZ(A), ✓cnf 2 N3 then c = f. (2.10)

This can be checked with a direct computation. The analogous statement
also holds for g and h, i.e.

✓cng 2 N3 ) c = g, ✓cnh 2 N3 ) c = h.

Let us now consider any basis ker⇤Z(A) of kerZ(A). Since kerZ(A) is two
dimensional, at least one vector, f or g or h, does not belong to ker⇤Z(A).
We assume w.l.o.g that f /2 ker⇤Z(A). For any 0 < " < 1, � 2 R3

+, we define
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the probability measure ⇢ 2 P(N3) as a mixture between the degenerate
measure �nf and p� as follows:

⇢ = "�nf + (1� ")p�. (2.11)

Note that ⇢ /2 RA(p�). Indeed any version of the density must be such that:

d⇢

dp�
(nf ) =

"

p�(nf )
+ (1� "),

d⇢

dp�
(✓cfnf ) = 1� ".

But, on the other hand, identity (2.8) is satisfied for any c 2 ker⇤Z(A). Let
us pick any test function f = 1{z=n̄}, where n̄ 2 N3 and c 2 ker⇤Z(A). There
are two possibilities:
- Either ✓�cn̄ 2 Z3 \ N3. In this case (2.8) is satisfied by ⇢ because both
sides of the equality are zero, the left side because ✓�cn̄ /2 NA, ⇢(NA) = 1
and the right side because Gc(n̄) = 0.
- Or ✓�cn̄ 2 NA. In this case, thanks to (2.10) and f /2 ker⇤Z(A) we have
n̄ 6= nf and ✓�cn̄ 6= nf . Therefore, by (2.11),

⇢(1{✓cz=n̄}) =
⇢(✓�cn̄)

⇢(n̄)
⇢(1{z=n̄}) =

p�(✓�cn̄)

p�(n̄)
⇢(1{z=n̄})

= ��c⇢(1{z=n̄}Gc(z))

which is equivalent to (2.8).
We thus obtain an example of a set A such that, for any � 2 R3

+ and any
basis ker⇤Z(A) of kerZ(A) we can construct a probability measure ⇢ which
satisfies (2.8) for c 2 ker⇤Z(A) and f 2 B](ZA) but does not belong to
RA(p�).

2.2.3. Generating sets of lattices and conditional distributions. We first de-
fine the foliation that the lattice kerZ(A) induces on NA: given n 2 NA, let
define the leaf containing n by

FA,n := {n+ kerZ(A)} \ NA. (2.12)

Fix now � ✓ kerZ(A). � induces a graph structure on each leaf (see e.g.
[23]):

Definition 2.13. For � ✓ kerZ(A) and n 2 NA we define G(FA,n,�) as the
graph whose vertex set is FA,n and whose edge set is given by

�
(m,m0) 2 FA,n ⇥ FA,n : 9 c 2 � with m = ✓c(m

0)
 
.

We are now ready to introduce the notion of generating set for kerZ(A).

Definition 2.14. The set � is a generating set for kerZ(A) if, for all n 2
NA, G(FA,n,�) is a connected graph for the graph structure we have just
defined.

We now recall, following Chapters 10 and 11 of the recent book [11] - in
which an extensive study of generating sets for lattices is done - that there
exists a finite generating set for any given lattice. Finding a generating set
for a lattice kerZ(A) is indeed closely related to the algebraic problem of
finding a set of generators for the lattice ideal associated to kerZ(A) ✓ ZA,
see Lemma 11.3.3 in [11].
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Any generating set contains a lattice basis, but in general it might be
much larger. Figure 1 illustrates a case where {(2,�4, 2) , (0,�5, 4)}, basis
of kerZ(A), is not a generating set since the graph G(FA,n,�) is not con-
nected for n = (6, 1, 2).

Computing explicitly generating sets is a hard task. We give here two
simple conditions on kerZ(A) under which a lattice basis is also a generating
set. The proof is given in the Appendix.

Figure 1. A = {3, 4, 5} and ker⇤Z(A) =
{(2,�4, 2) , (0,�5, 4)}. Left: Projection on the x1x2
plane of G := G(FA,n, ker

⇤
Z(A)) for n = (6, 1, 2). The red

lines are the edges of G, while the dashed lines represent
edges that are not in G because one endpoints does not be-
long to N3. The graph G(FA,n, ker

⇤
Z(A)) has three connected

components. Right: Adding the vector (4,�3, 0) to ker⇤Z(A)
turns G into a connected graph.

Proposition 2.15. Let ker⇤Z(A) be a basis of kerZ(A). Suppose that one of
the following conditions holds:
i) The basis ker⇤Z(A) contains an element c̄ such that each coordinate c̄j , j =
1, ..., A is positive.
ii) Each vector of the basis ker⇤Z(A) is an element of NA.
Then, the basis ker⇤Z(A) is a generating set.

In the next theorem we show how one can use generating sets to charac-
terize the set of probability measures RA(µ). Even though we are interested
here in the case µ = p� the statement is proven in a slightly more general
context. In the same spirit as in (2.4), we consider the Radon-Nykodim
decomposition of the image of µ by ✓c, µ�✓�1

c = µac
c +µsing

c , and the density
of µac

c with respect to µ:

Gµ

c :=
dµac

c

dµ
. (2.13)
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Theorem 2.16. Let A 2 Rd⇥A be any matrix and the lattice kerZ(A) be
defined as before by kerZ(A) := ker(A)\ZA . Assume that � is a generating
set of kerZ(A) and let µ, ⇢ be two probability measures on NA. Suppose
moreover that µ(n) > 0 for all n 2 NA.
Then ⇢ 2 RA(µ) if and only if

8c 2 �, ⇢(f � ✓c) = ⇢(f Gµ

c) 8f 2 B](ZA), (2.14)

where Gµ
c is defined by (2.13).

Proof. ()) goes along the same lines of Proposition 2.10 since � ✓ kerZ(A).

(() Let n,m 2 NA be such that An = Am and assume that ⇢(n) > 0.
Then m 2 FA,n (see (2.12)). Since � is a generating set for kerZ(A) there
exists a path from m to n included in G(FA,n,�) i.e. there exists c1, ..., cK 2
� such that, if we define recursively:

w0 = m, wk = ✓ckwk�1,

then wk 2 NA for all k and wK = n. We can choose fk = 1{z=wk} and
apply (2.14) for c = ck:

⇢(wk�1) =
µ(wk�1)

µ(wk)
⇢(wk)

which, since µ is a positive probability on NA, o↵ers an inductive proof that
⇢(wk) > 0. Therefore one obtains

⇢(m)

⇢(n)
=

KY

k=1

⇢(wk�1)

⇢(wk)
=

KY

k=1

µ(wk�1)

µ(wk)
=

µ(m)

µ(n)

which is equivalent to d⇢/dµ (n) = d⇢/dµ (m), which completes the proof.
⇤

As consequence of Theorem 2.16, we obtain the following statement,
which improves Proposition 2.10.

Corollary 2.17. Let ⇢ 2 P(NA) and � be a generating set of kerZ(A)
defined by (2.7). Then ⇢ 2 RA(p�) if and only if

8c 2 �, ⇢ (f � ✓c) =
1

�c
⇢ (f Gc) , 8f 2 B](ZA), (2.15)

where Gc is defined in (2.5).

Example 2.18. We continue Examples (2.9) and (2.11), illustrating Corollary
2.17. For given ��,�+ the probability measure ⇢ belongs to RA(p�) if and
only if

⇢
�
f(n� + 1, n+ + 1)

�
=

1

���+
⇢
�
f(n�, n+)n+n�� 8f 2 B](Z2).

This improves Example 2.11, where we obtained a redundant characteriza-
tion.
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3. Characterization of the reciprocal class

3.1. Main result. We present here our main result: the reciprocal class
R(⌫) associated to a compound Poisson process with jump measure ⌫ is
characterized as the set of all probabilities for which a family of trans-
formations induces the same density, expressed in terms of the reciprocal
invariants. We have already introduced in the previous section the family
of reciprocal time-invariants. Let us now introduce the family of reciprocal
space-invariants.

Definition 3.1. Let ⌫ be a jump measure in J as defined in (1.2). For any
c 2 kerZ(A) we call reciprocal space-invariant �c

⌫ the positive number

�c
⌫ :=

AY

j=1

✓Z
1

0

⌫j(t)dt

◆�c
j

.

Remark 3.2. In the time homogeneous case, ⌫j
t
⌘ ⌫j , �c

⌫ = 1/
Q

A

j=1
(⌫j)c

j
.

We can now use these invariants to characterize the reciprocal class.

Theorem 3.3. Let ⌫ 2 J and Q 2 P(⌦). Then Q belongs to the reciprocal
class R(⌫) if and only if

i) For all u 2 U and all F 2 B(⌦),

Q
⇣
F � ⇡u

⌘
= Q

⇣
F exp

⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘
. (3.1)

ii) There exists a generating set � ✓ kerZ(A) such that for every c 2 �
and every f 2 B](ZA), the following identity holds:

⇢
⇣
f � ✓c

⌘
= �c

⌫ ⇢
⇣
f Gc

⌘
, (3.2)

where ⇢ := Q �N�1

1
2 P(NA) is the law of N1 under Q.

Remark 3.4. Note that identities similar to (3.2) hold for any t 2]0, 1], i.e.
any Q 2 R(⌫) satisfies (we assume a time homogeneous ⌫, for simplicity):

Q (f � ✓c(Nt)) = �c
⌫ (1� t)�|c| Q ((fGc)(Nt)) , 8f 2 B](ZA), 0 < t  1,

(3.3)
where |c| :=

P
A

j=1
cj . However, the identities (3.3) do not contain enough

information to characterize the reciprocal class as the time-invariants do not
appear.

Proof. ()) Let Q 2 R(⌫) and PQ
⌫ be constructed as in Proposition 1.5.

Since there is no ambiguity, we write P⌫ rather than PQ
⌫ . An application

of the same proposition gives that Q << P⌫ , and h := dQ
dP⌫

is �(X0, X1)-

measurable. Consider now u 2 U . By definition of u, for any j, N j

1
�⇡u = N j

1
,

so that (X0, X1) � ⇡u = (X0, X1), P⌫-a.s..
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We then consider F 2 B(⌦) and apply Proposition 2.5 under the measure
P⌫ , which leads to

Q
⇣
F � ⇡u

⌘
= P⌫

⇣
(F � ⇡u)h(X0, X1)

⌘
= P⌫

⇣
(Fh(X0, X1)) � ⇡u

⌘

= P⌫

⇣
Fh(X0, X1) exp

⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘

= Q
⇣
F exp

⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘
.

In a similar way, if c 2 �, since � ✓ kerZ(A) we have that A(✓cN1) = AN1.
We observe that P⌫(N1 2 .|X0 = x) = p�, where

�j :=

Z
1

0

⌫j(t)dt. (3.4)

For f 2 B](ZA) and c 2 � we use Proposition 2.10, observing that N1 has
law p� and is independent of X0, to obtain

⇢
⇣
f � ✓c

⌘
= Q

⇣
f � ✓c(N1)

⌘

= P⌫

⇣
h(X0, X1) f � ✓c �N1

⌘

= P⌫

⇣
h(X0, X0 +A(✓cN1))f � ✓c �N1

⌘

= P⌫

⇣
PX0
⌫

⇣
h(X0, X0 +A(✓cN1))f � ✓c �N1

⌘⌘

= �c
⌫ P⌫

⇣
h(X0, X1)(fGc) �N1

⌘
= �c

⌫ ⇢
⇣
f Gc

⌘

and ii) is now proven.

(() We will show that Q satisfies ii) of Proposition 1.5, which is equiv-
alent to Q 2 R(⌫). We divide the proof in three steps. In a first step, we
refer to the Appendix for the proof of the absolute continuity of Q w.r.t. to
PQ
⌫ , since it is quite technical. In a second step we prove that the density is
�(X0,N1)-measurable and in a third one we prove that this density is indeed
�(X0, X1)-measurable. For sake of clarity, since there is no ambiguity, we
denote by P⌫ the probability PQ

⌫ .
Step 1: Absolute continuity.
See the Appendix.
Step 2: The density H := dQ

dP⌫
is invariant under time change.

We show that, for any u 2 U , H is ⇡u-invariant, i.e. H � ⇡u = H P⌫-a.s..
Since P⌫(⌦) = 1 we have that ⇡u is P⌫-a.s. invertible. Applying the identity



RECIPROCAL CLASS OF JUMP PROCESSES 17

(2.1) under P⌫ we obtain, for any F 2 B(⌦):

P⌫ (F H � ⇡u) = P⌫

�
(F � ⇡�1

u H) � ⇡u
�

= P⌫

⇣
F � ⇡�1

u H exp
⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘

= Q
⇣
F � ⇡�1

u exp
⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘⌘

= Q (F ) = P⌫ (F H)

which gives us the desired invariance, since F is arbitrary.
We claim that this implies that H is �(X0,N1)-measurable, i.e. that there
exists a function h : R⇥ NA �! R+ such that

H =
dQ
dP⌫

=
dQ � (X0,N1)�1

dP⌫ � (X0,N1)�1
= h(X0,N1) P⌫-a.s..

This is true since, given any two !,!0 2 ⌦ with the same initial state and
the same number of jumps of each type, one can construct u 2 U such that
!0 = ⇡u(!).
Step 3: The density H is invariant under shifts in �.
Let us recall that P⌫(N1 2 .|X0 = x) = p�, where � is given by (3.4). Under
our assumption we might apply Corollary 2.17 to p� = P⌫(N1 2 .|X0 = x)
and ⇢x = Q(N1 2 .|X0 = x). We obtain that the conditional density d⇢

x

dp�
is AN1-measurable Q0 -a.s. and, by mixing over the initial condition, that
dQ�(X0,N1)

�1

dP⌫�(X0,N1)
�1 = dQ

dP⌫
is �(X0,AN1) = �(X0, X1)-measurable. ⇤

3.2. Comparing reciprocal classes through invariants. In what fol-
lows and in the next subsections, we consider jump measures ⌫ 2 J which
are time-homogeneous. In that case we identify ⌫ with the vector
(⌫1(0), ..., ⌫A(0)) 2 RA

+.
We present in Proposition 3.5 a set of explicit necessary and su�cient con-
ditions for two compound Poisson processes Px

⌫ and Px

⌫̃
to have the same

bridges, or equivalently, to belong to the same reciprocal class. A more im-
plicit condition has been presented by R. Murr in his PhD thesis, see [22],
Proposition 7.50. Our result is in the spirit of [7], where two counting pro-
cesses where shown to have the same bridges if and only if their reciprocal
(time-)invariants coincide.

In the next proposition we denote by kerZ(A)? the orthogonal comple-
ment of the a�ne hull of kerZ(A), and the logarithm of the vector ⌫ 2 RA

+,
denoted by log(⌫), has to be understood componentwise.

Proposition 3.5. Let x 2 Rd, ⌫, ⌫̃ 2 RA
+ and ker⇤Z(A) be a lattice basis of

kerZ(A). The following assertions are equivalent:

i) Px

⌫̃
2 R(⌫).

ii) For every c 2 kerZ(A)⇤ the equality �c
⌫ = �c

⌫̃
holds.

iii) There exists v 2 kerZ(A)? such that log(⌫̃) = log(⌫) + v.
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Proof. i) ) ii) By applying (3.2) and the trivial fact that Px

⌫̃
2 R(⌫̃), we

have
�c
⌫̃ Px

⌫̃(f) = Px

⌫̃(f � ✓c �N1) = �c
⌫ Px

⌫̃(f), 8f 2 B](ZA), (3.5)

and ii) follows.
ii) ) i) Observe that since kerZ(A)⇤ is a lattice basis, any c 2 kerZ(A)
can be written as an integer combination of the elements of ker⇤Z(A), i.e.
c =

P
c⇤2ker⇤Z(A)

zc⇤c⇤, zc⇤ 2 Z. Therefore all the reciprocal space-invariants
coincide since

�c
⌫ =

Y

c⇤2ker⇤Z(A)

(�c⇤
⌫ )zc⇤ =

Y

c⇤2ker⇤Z(A)

(�c⇤
⌫̃ )zc⇤ = �c

⌫̃ , 8c 2 kerZ(A). (3.6)

With a similar argument as above one proves that the identity (3.2) is sat-
isfied under Px

⌫̃
. The functional equation (3.1) is trivially satisfied by Px

⌫̃

because ⌅⌫ ⌘ ⌅⌫̃ = 1. The conclusion follows by applying Theorem 3.3.
ii) , iii) We just observe that the equality �c

⌫ = �c

⌫̃
is equivalent to

AX

j=1

log(⌫j)cj =
AX

j=1

log(⌫̃j)cj .

Since a lattice basis ker⇤Z(A) of kerZ(A) is a linear basis of the a�ne hull of
kerZ(A) ii) is equivalent to the fact that log(⌫) and log(⌫̃) have the same
projection onto kerZ(A), which is equivalent to iii). ⇤
Example 3.6. Continuing on Example 2.18, two time-homogeneous com-
pound Poisson processes with jumps in A = {�1, 1} and rate ⌫ = (⌫�, ⌫+)
resp. ⌫̃ = (⌫̃�, ⌫̃+) have the same bridges if and only if

⌫�⌫+ = ⌫̃�⌫̃+.

Example 3.7. Let A = {�1, 3} and define two time-homogeneous compound
Poisson processes with jumps in A and rate ⌫ = (⌫�, ⌫+) resp. ⌫̃ = (⌫̃�, ⌫̃+).
They have the same bridges if and only if

(⌫�)3⌫+ = (⌫̃�)3⌫̃+.

Example 3.8. Let A = {a1, ..., a6} be the vertices of an hexagon, see the
Figure 2:

ai =
�
cos(

2⇡

6
(i� 1)), sin(

2⇡

6
(i� 1))

�
2 R2, i = 1, ..., 6. (3.7)

Then a basis of kerZ(A) is:

ker⇤Z(A) = {e1 + e4, e2 + e5, e1 + e3 + e5, e2 + e4 + e6}. (3.8)

By Proposition 3.5, Px
⌫ with jump rates ⌫ = (⌫1, ..., ⌫6) belongs to R(⌫̃) if

and only if 8
>>><

>>>:

⌫1⌫4 = ⌫̃1⌫̃4,

⌫2⌫5 = ⌫̃2⌫̃5,

⌫1⌫3⌫5 = ⌫̃1⌫̃3⌫̃5,

⌫2⌫4⌫6 = ⌫̃2⌫̃4⌫̃6
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a1
a4
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a3

a5

a2

a4

a6

Figure 2. A representation of the vectors of A and of the
incidence vectors of ker⇤Z(A)

3.3. An interpretation of the reciprocal space-invariants. We aim
at an interpretation of the space-invariants for a time-homogeneous jump
measure ⌫ 2 J under the geometrical assumption ii) of Proposition 2.15:

kerZ(A) admits a lattice basis ker⇤Z(A) included in NA. (3.9)

A lattice basis satisfying (3.9) is a generating set for kerZ(A). Therefore it
is su�cient to interpret the invariants �c

⌫ for c 2 ker⇤Z(A).
Assumption (3.9) is not only natural in view of the interpretation we will
give in Proposition 3.12 but it is satisfied in many interesting situations.
One can prove that this is the case when A ✓ Z and A contains at least
one negative and one positive jump. Assumption (3.9) also holds in several
situations when d > 1, e.g. in the setting of Example 3.8.
In the context of di↵usions, various physical interpretation of the recipro-
cal invariants have been given, mainly based on analogies with Stochastic
Mechanics, see [9], [20], [31] and [32]. Regarding jump processes, the only
interpretation known to the authors was given by R. Murr [22]. Inspired by
[24] he related the reciprocal time-invariant associated to a counting process
(the space-invariants trivialize) with a stochastic control problem, whose
cost function is expressed in terms of the invariant.

We propose here a di↵erent interpretation of the invariants as infinitesi-
mal characteristics, based on the short-time expansions for the probability
that the process makes a cycle around its current state. We believe this
interpretation to be quite general, and we are currently working on various
extensions.

To be precise, let us define the concept of cycle we use here. In the rest
of this section, a basis ker⇤Z(A) satisfying (3.9) is fixed.

Definition 3.9. A cycle is a finite sequence � := (xk)0kl such that

i) xk � xk�1 2 A, 1  k  l,
ii) xl = x0 = 0.

To each cycle � we can associate an element N(�) 2 kerZ(A) \ NA by
counting how many times each jump occurred in the cycle, thus neglecting
the order at which they occurs:

N(�)j := ]{k : xk � xk�1 = aj}, 1  j  A,

where ]E denotes the number of elements of a finite set E. Note that, for
a given c 2 kerZ(A), we can construct a cycle � such that N(�) = c if and
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only if c 2 NA. Therefore, under assumption (3.9), N�1(c) is non empty for
any c 2 ker⇤Z(A).

n+

n-

X

0

10

T1 T2

-1+1

t

Figure 3. Here A = {�1, 1} and kerZ(A) = (1, 1)Z. Left:
A representation of the cycle � = {0, 1, 0} satisfying N(�) =
(1, 1). Right: A typical path in L�

" . The probability of L�
" is

equivalent to (⌫+⌫�)"2 over the whole reciprocal class, as
"! 0.

Definition 3.10. We define the trace �"(!) of a path ! 2 ⌦ as the ordered
sequence formed by the displacements from the initial position up to time ":

⌥"(!) = (0, XT1 �X0, ..., XT|N|"
�X0).

The subset of paths whose trace coincides with a given cycle � over a small
time interval [0, "] is denoted by

L�

" := {! : ⌥"(!) = �}.

Finally, we introduce the usual time-shift operator on the canonical space:

⌧t : D([0, 1],Rd) �! D([0, 1� t],Rd), ⌧t(!)s = !t+s, 8 0  s  1� t.

The following short-time expansion holds under the compound Poisson
process.

Proposition 3.11. Let ⌫ 2 J be a time-homogeneous jump measure, x, x0 2
Rd. Then for any time t � 0, c 2 ker⇤Z(A) and any cycle � with N(�) = c,
we have:

Px0
⌫ (⌧t(X) 2 L�

" |Xt = x) =
1

�c
⌫ |c|!"

|c| + o("|c|) as "! 0

where |c| =
P

A

j=1
cj.

Proof. First observe that w.l.o.g. t = 0, the general result following from
the Markov property of Px0

⌫ . For simplicity, we denote by ⌫̄ the total jump
rate

P
A

j=1
⌫j . Moreover, we denote by j(k) the unique element of {1, ..., A}

such that XTk �XTk�1 = aj(k). With an elementary computation based on
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the explicit distribution of Px0
⌫ :

Px

⌫(L
�

" ) = Px

⌫

⇣
{|N |" = |c|} \

|c|\

k=1

{XTk �XTk�1 = aj(k)}
⌘

= exp(�"⌫̄)("⌫̄)
|c|

|c|!

|c|Y

k=1

⌫j(k)

⌫̄
= exp(�"⌫̄)"|c|

AY

j=1

(⌫j)]{k:j(k)=j}

= exp(�"⌫̄)"
|c|

|c|!

AY

j=1

(⌫j)c
j
= exp(�"⌫̄) 1

�c
⌫ |c|!

"|c|

from which the conclusion follows. ⇤

Even more interesting, the same time-asymptotics holds under any Q 2
R(⌫) and in particular under any bridge Pxy

⌫ .

Proposition 3.12. Let ⌫ 2 J be a time-homogeneous jump measure and
Q 2 R(⌫). Then for any time t � 0, c 2 ker⇤Z(A) and any cycle � with
N(�) = c, we have:

Q-a.s. Q
⇣
⌧t(X) 2 L�

"

���Xt

⌘
=

1

�c
⌫ |c|!"

|c| + o("|c|) as "! 0

Proof. Assume that Q 2 R(⌫). Observe that w.l.o.g we can assume that
Q0 = �x0 for some x0 2 Rd, the general result following by mixing over the
initial condition. Then by Proposition 1.5, dQ/dPx0

⌫ = h(X1). We first show
the identity:

Px0
⌫

⇣
1{⌧t(X)2L�

" }h(X1)
���Xt

⌘
= Q

⇣
1{⌧t(X)2L�

" }|Xt

⌘
PXt
⌫

⇣
h(X1�t)

⌘
. (3.10)

Indeed, let us take any test function of the form 1{Xt2A}. We have:

Px0
⌫

⇣
1{⌧t(X)2L�

" } h(X1)1{Xt2A}

⌘
= Q

⇣
1{⌧t(X)2L�

" } 1{Xt2A}

⌘

= Q( Q(1{⌧t(X)2L�
" }|Xt) 1{Xt2A})

= Px0
⌫

⇣
Q(1{⌧t(X)2L�

" }|Xt) h(X1)1{Xt2A}

⌘

= Px0
⌫

⇣
Q(1{⌧t(X)2L�

" }|Xt) Px0
⌫ (h(X1)|Xt) 1{Xt2A}

⌘

from which (3.10) follows. Consider now the left hand side of (3.10). We
have, by applying the Markov property and the fact that � is a cycle:

Px0
⌫

⇣
h(X1) 1{⌧t(X)2L�

" }|Xt

⌘
= Px0

⌫

⇣
Px0
⌫ (h(X1)|F[t,t+"])1{⌧t(X)2L�

" }|Xt

⌘

= Px0
⌫

⇣
PXt+"
⌫ (h(X1�(t+"))) 1{⌧t(X)2L�

" }|Xt

⌘

= Px0
⌫

⇣
PXt
⌫ ( h(X1�(t+"))) 1{⌧t(X)2L�

" } |Xt

⌘

= Px0
⌫

⇣
1{⌧t(X)2L�

" }|Xt

⌘
PXt
⌫

⇣
h(X1�(t+"))

⌘
.

Applying (3.10) and Proposition 3.11 and the continuity of

(!, t, .) 7! PXt
⌫ (h(X1�.))
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we obtain:
1

�c
⌫ |c|! P

Xt
⌫ (h(X1�t)) = lim

"!0
"�|c|Q(1{⌧t2L�

" }|Xt) PXt
⌫ (h(X1�t)) (3.11)

We observe that PXt
⌫ (h(X1�t)) = dQt/d(Px0

⌫ )t and therefore it is strictly
positive Q-a.s. . This allows us to divide on both sides by PXt

⌫ (h(X1�t)) and
the conclusion follows. ⇤

We have thus shown that each element of the reciprocal class has the same
probability to spin around its current state in a very short time interval.

Remark 3.13. In the statement of Proposition 3.12 we could have replaced
Xt with Ft, i.e. the following asymptotics holds true:

Q(⌧t(X) 2 L�

" |Ft) =
1

�c
⌫ |c|!"

|c| + o("|c|) as "! 0.

4. Appendix

Proof. (Step 1 in Theorem 3.3)
We first observe that it is su�cient to prove that

Q(.|N1 = n) << P⌫(.|N1 = n) for all n such that Q(N1 = n) > 0.

To this aim, we use an approximation argument.
Let us fix n and construct a discrete (dyadic) approximation of the jump

times. For m � maxj=1,...,A log2(n
j) + 1 := m̄ , Dm is composed by A

ordered sequences of dyadic numbers, the j-th sequence having length nj :

Dm :=
n
k = (kj

i
)jA,inj : kj

i
2 2�mN, 0 < kj

i�1
< kj

i
 1, 8j  A, 8i  nj

o

For k 2 Dm we define the subset of trajectories whose jump times are
localized around k:

Om

k = {N1 = n} \
\

jA

inj

n
0  kj

i
� T j

i
< 2�m

o
(4.1)

Moreover, as a final preparatory step, we observe for every m � m̄, k,k0 2
Dm one can easily construct u 2 U such that:

u(j, t) = t+ k0j
i
� kj

i
, 8j  A, i  nj and t s.t. 0  kj

i
� t < 2�m (4.2)

We can observe that (4.2) ensures u̇(j, T j

i
) = 1 over Om

k , and that Om

k0 =
⇡�1
u (Om

k ). We choose F = 1On
k0
1{N1=n}/Q(N1 = n) and u as in (4.2) and

apply (3.1) to obtain :

Q
⇣
Om

k0 |N1 = n

⌘
= Q

⇣
{! : ⇡u(!) 2 Om

k } |N1 = n

⌘

= Q
⇣
1Om

k
exp

⇣ AX

j=1

Z
1

0

log⌅⌫(j, t, u(j, t)) u̇(j, t)dN j

t

⌘���N1 = n

⌘

� C Q
⇣
Om

k |N1 = n

⌘
,
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where

C :=
⇣

inf
s,t2[0,1],jA

⌅⌫(j, s, t)
⌘P

j nj

> 0 (4.3)

since ⌫ 2 J . With a simple covering argument we obtain, for all m � m̄
and k 2 Dm,

]Dmmin{1, 1
C
}Q (Om

k |N1 = n)

 Q (Om

k |N1 = n) +
X

k02Dm

k0 6=k

Q (Om

k0 |N1 = n)  1.

It can be shown with a direct computation that 1

|Dm|  C 0P⌫(Om

k |N1 = n)

for some C 0 > 0 uniformly in m,k 2 Dm (the proof is given in Lemma 4.1).
Therefore there exists a constant C

00
> 0 such that:

Q(Om

k |N1 = n)  C
00 P⌫(O

m

k |N1 = n), 8m � m̄,k 2 Dm.

With a standard approximation argument, using the fact that Q(⌦) = 1, we
can extend the last bound to any measurable set. This completes the proof
of the absolute continuity.

⇤

Lemma 4.1. Let Dm and P⌫ as before. Then there exists a constant C
0

such that for m large enough,

C
0 P⌫(O

m

k |N1 = n) � 1

]Dm

Proof. We want to prove that,for n 2 NA :

1

]Dm
 C 0P⌫(O

m

k |N1 = n), 8 m � max
jA

log(nj) + 1, k 2 Dm (4.4)

We can first compute explicitly ]Dm with a simple combinatorial argument:
each k 2 Dm is constructed by choosing nj dyadic intervals, j  A, and
ordering them. Therefore

]Dm =
AY

j=1

✓
2m

nj

◆
. (4.5)

On the other hand, we observe that defining ⌫̃(dxdt) =
P

A

j=1
�aj (dx) ⌦ dt,

P⌫̃ is equivalent to P⌫ , and therefore, we can prove (4.4) replacing P⌫ with
P⌫̃ . To do this, for each k 2 Dm we define the function:

� : {1, ..., 2m}⇥ {1, ..., A} �! {0, 1}

�(i, j) :=

(
1, if i 2 {2mk

j

1
, ..., 2mk

j

nj}
0, otherwise .
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Then, using the explicit distribution of P⌫̃ ,

P⌫̃(O
m

k |N1 = n)

= P⌫̃

⇣ \

(i,j)2{1,..,2m}⇥{1,..,A}

{N j

i
2m

�N j

i
2m

= �(i, j)}|N1 = n

⌘

= exp(A) exp(�2�m)2
m
A(2�m)(

P
j n

j
)

AY

j=1

nj ! =
AY

j=1

2�mn
j
nj !

It is now easy to see that there exists a constant C0 > 0 such that:
✓
2m

nj

◆
� C0

2mn
j

nj !
, 8 j  A, m � max

j=1,...,A

log(nj) + 1, k 2 Dm

from which the conclusion follows. ⇤

Proof. ( of Proposition 2.15)

i) Let n 2 NA,m 2 FA,n. Since ker⇤Z(A) is a lattice basis there exists
c1, ..., cK ✓ (ker⇤Z(A) [ � ker⇤Z(A))K such that, if we define recur-
sively

w0 = n, wk = ✓ckwk�1

then we have that wK = m. Let us consider l large enough such
that

l min
j=1,...,A

c̄j � | min
j=1...,A
k=1,...,K

wj

k
|. (4.6)

We then consider the sequence w0
k
, k = 0, ...,K+2l defined as follows:

w0
k =

8
><

>:

✓c̄w0
k�1

, if 1  k  l

✓ck�lw
0
k�1

, if l + 1  k  K + l

✓�c̄w0
k�1

if K + l + 1  k  K + 2l.

It is now easy to check, thanks to condition (4.6) that

w0
k 2 FA,n 8 k  K + 2l.

Since all the shifts involved in the definition of w0
k
are associated

to vectors in ker⇤Z(A) [ � ker⇤Z(A) we also have that w0
k
2 FA,n and

(w0
k�1

, w0
k
) is an edge of G(FA,n, ker

⇤
Z(A)), k  K + 2l.

Moreover we can check that

w0
K+2l = n+ lc̄+

X

kK

ck � lc̄ = m

Therefore n and m are connected in G(FA,n, ker
⇤
Z(A)) and the con-

clusion follows since the choice of m is arbitrarily in FA,n and n any
point in NA.

ii) Let n 2 NA,m 2 FA,n. Since ker⇤Z(A) is a lattice basis there exists
K < 1 and c1, ..., cK ✓ (ker⇤Z(A) [ � ker⇤Z(A))K such that if we
define recursively :

w0 = n, wk = ✓ckwk�1 (4.7)

then we have that wK = m
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Observe that w.l.o.g there exists K+ s.t. ck 2 ker⇤Z(A) for all k  K+

and ck 2 � ker⇤Z(A) , k 2 {K+ + 1, ..., A}. Applying the hypothesis one
can check directly that {wk}0kK is a path which connects n to m in
G(FA,n, ker

⇤
Z(A)). ⇤
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