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Abstract

We introduce a class of stochastic volatility models (X;);>o for which the absolute moments
of the increments exhibit anomalous scaling: E (| X, — X;|9) scales as h9/? for ¢ < ¢*, but
as hA@ with A(q) < q/2 for ¢ > ¢*, for some threshold ¢*. This multi-scaling phenomenon
is observed in time series of financial assets. If the dynamics of the volatility is given by
a mean-reverting equation driven by a Levy subordinator and the characteristic measure
of the Levy process has power law tails, then multi-scaling occurs if and only if the mean
reversion is superlinear.
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1. Introduction

The last few decades have seen a considering effort in constructing stochastic dynamics
which exhibit some of the peculiar features of many observed time series, such as: heavy
tailed distribution, long memory and path discontinuities. In particular, applications to
mathematical finance have motivated the use of stochastic differential equations driven by
general Levy processes. In this paper we consider a different, though related, pattern which is
rather systematically observed in time series of financial assets, that we call multi-scaling of
moments (@, , , |§|, @]) Let (X¢)t>0 be a continuous-time martingale, having stationary
increments; in financial applications this could be identified with the de-trended log-price of
an asset, or the price with respect to the martingale measure used to price derivatives. We
say the multi-scaling of moments occurs if the limit

log E (| Xy — Xi9)

lim su = A 1.1
nsup EELLE (0 (1)

is non-linear of the set {g > 1: |A(q)| < +oc}. More intuitively, (I.I)) says that E (| X, — X¢|7)
scales, in the limit as h | 0, as h4@, with A(q) non-linear. In the case X; is a Brownian
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martingale (i.e. a stochastic integral w.r.t. a Brownian motion), one would expect A(q) = %,

at least for ¢ sufficiently small. In this case, multi-scaling of moments can be identified with
deviations from this diffusive scaling, occurring for ¢ above a given threshold; this type of
multi-scaling is indeed observed in the values of many financial indexes and exchange rates.

A class of stochastic processes that exhibit multi-scaling for a rather arbitrary scaling
function A(q) are the so-called multifractal models (, @, ) In these models, the process
X is given as the random time change of a Brownian motion:

Xt = WI(t)a (12)

where (W;)¢>0 is a standard Brownian motion, and () is a stochastic process, often taken to
be independent of W., with continuous and increasing trajectories, sometimes called trading
time. Modeling financial series through a random time-change of Brownian motion is a clas-
sical topic, dating back to Clark |g], and reflects the natural idea that external information
influences the speed at which exchanges take place in a market. In multi fractal models, the
trading time I(t) is a process with non absolutely continuous trajectories. As a consequence,
X; cannot be written as a stochastic volatility model, i.e. in the form dX; = o:dB;, for a
Brownian motion B;. This makes the analysis of multi fractal models hard in many respects,
as the standard tools of Ito’s Calculus cannot be applied.

In [1] a much simpler process has been constructed which exhibits a bi-scaling behavior:
(TI) hold with a function A(q) which is piecewise linear and the slope A’(q) takes two
different values, which suffices to fit most of the cases observed. This process is a stochastic
volatility model, although of a rather peculiar type. Besides exhibiting multi-scaling, this
model accounts for other relevant stylized facts in time series of financial indexes, such as the
autocorrelation profile t — Cov(| Xy, — Xol|, | Xen — X¢|) as well as heavy tailed distribution
of X h — X().

The aim of this paper is to analyze multi-scaling in a more general class of stochastic
volatility models, namely those of the form dX; = o;dB;, with a volatility process o; inde-
pendent of the Brownian motion By; these processes are exactly those that can be written
in the form (I:2) with a trading time I(¢) independent of Wy, and with absolutely contin-
uous trajectories. We devote special attentions to models in which V; := o2 is a stationary
solution of a stochastic differential equation of the form

AV, = —f(V,)dt + dLy, (1.3)

for a Levy subordinator L; whose characteristic measure has power law tails at infinity, and
a function f(-) such that a stationary solution exists, and it is unique in law. We first show
multi-scaling is not possible if f(-) has linear growth. Thus, the heavy tails produced by
the Levy process are not sufficient to produce multi-scaling. On the other hand, we show
that, if f(-) behaves as Cx” as © — 400, with C' > 0 and ~ > 1, then the stochastic
volatility process whose volatility is a stationary solution of (L.3]), exhibits multi-scaling.
In this class of models multi-scaling comes from the combination of heavy tails of L; and
superlinear mean reversion; technically speaking, as will be seen later, the key point is that
the distribution of V; has lighter tails than those of L;.

We remark that the class of processes introduced in |[1] can be seen as limiting cases of
those considered here, with v > 2 and the characteristic measure of the Levy process L;
concentrated on +oo.



The paper is organized as follows. In Section 2 we give some basic facts on stochastic
volatility models, and provide some necessary conditions for multi-scaling. Section 3 contains
more specific results for models whose volatility is given by (IL.3)).

2. Multiscaling in stochastic volatility models

We consider a stochastic process (X;);>o that can be expressed in the form
dXt == O’tth, (21)

where (W;)>0 is a standard Brownian motion, and (o¢);>0 is a stationary, [0,4o00)-valued
process, independent of (X;)i>0, that we will call the wolatility process. We assume the
following weak continuity assumption on the volatility process.

Assumption A. As h | 0, the limit

1 h
E/ (05 — 00)%ds — 0
0

holds in probability.

We begin with a basic result on the scaling function A(q) defined in (II)). It states
that under a uniform integrability condition on the integrated squared volatility, the diffu-
sive scaling holds. Thus a necessary condition for multi-scaling is the loss of this uniform
integrability.

Proposition 1. Assume that, p > 1,

1 rh p/
limsup E <— / o’ ds>
hl0 h Jo

Then, under Assumption A, A(q) =4 for every q < p.

2
< +00. (2.2)

Proof. Note that

X — X, 1 [k 1
Sho A0 osdWs = / oundBh,
Vh Vvh Jo 0

where B := %Whu is also a standard Brownian motion. Thus, #XO has the same law of
fol oundB,, where B is any Brownian motion independent of the volatility process (o¢)i>0.

It follows from Assumption A and the isometry property of the stochastic integral, that

Xp

1
/ O’uthu — O'()Bl (23)
0

in L? and therefore in probability, as h | 0. By and Burkholder-Davis-Gundy inequality

(see [13]),
1 p 1 p/2 1 rh p/2
E[/ oundB., ]ngEK/ aghdu> ]:E[(—/ agds> ]
0 0 h 0




so the family of random variables { fol oundBy : h > 0} is bounded in LP. This implies that
the convergence in (2:3) is also in L4, for every q < p. Thus

[P

as h | 0 (in particular E (of) < 4+0o0). Taking the logarithms in the limit above, one obtains
A(g) = 3.

| > seEis

O

Remark 2. Suppose 1 < ¢ < p. Then % < A4 This follows immediately from the fact

q
that, for every h > 0,
log E (| X¢4n — Xi|9)

q

10gE(‘Xt+h—Xt|q)
qlogh

In what follows, for models of the form (2:1]), we assume the following further conditions.
Assumption B. E (0’8) < +o00.

= log || X¢1n — Xillg

is increasing in ¢, so that is decreasing in ¢ for all 0 < h < 1.

Under Assumption B, (2:2) holds true for p = 2. By Proposition [l and Remark 2] we
have that A(q) = 4 for 1 < ¢ < 2, while 2 > A(q) > —oo for ¢ > 2. This suggests the
following formal definition of multi-scaling.

Definition 3. Under Assumptions A and B, we say that multi-scaling occurs if {g : —oo0 <
A(gq) < 4} has a nonempty interior.

In what follows, Assumptions A and B will be assumed implicitely. Note now that, by
Burkholder-Davis-Gundy inequality, there are constant c,, C}, such that for each h > 0

h p/2 h h p/2
(/ afdt> ] <E[X, - X/ =E / osdW, (/ afdt> ] :
0 0 0

(2.4)
Thus, the condition
1 [h q/2
(—/ a?ds)
h Jo

for each h > 0 is necessary for A(q) > —oo. Note also that, by Jensen’s inequality,

E [(% /Oh agds>Q/2] < %/OhE[ag] ds = E[a], (2.5)

for ¢ > 2. Thus, whenever E [o{] < 400, the assumption of Proposiiton [I] holds.
This remarks, together with Proposition[I] yields the following statement.

cpE

P
] <0E

E < 400

Corollary 4. A necessary condition for multi-scaling in (2.1)) is that there exists p > 2 such

that
1 [h p/2
E <E /0 agds>

< 400

for each h > 0, but



From the result above we derive an alternative necessary condition for multi-scaling,
which has sometimes the advantage to be more easily checked in specific models.

Corollary 5. A necessary condition for multi-scaling in (2:1)) is that, for some h > 0, there
exists p > 2 such that

E[oh] < 40 E[sup o} | = +o0.

0<t<h

Proof. Assume multi-scaling holds, and define

¢" = inf{q : E[od] = +c}.
By Corollary 4] ¢* < 400 while, by Assumption B, ¢* > 2. Moreover, by Proposition []
A(q) = q/2 for q¢ < ¢*. Thus, by Definition [3] A(q) has to be finite for some ¢ > ¢*; in

particular, as observed above,
1 [h a/
(ﬁ /0 J§d8>

for h > 0. Consider [, 7 with ¢* <1 <1 < g. Setting M}, := supy<,<j, 0t, we have

1 [k 1 [h
— / olds < M} 72— / olds.
h Jo h Jo

By stationarity of o4, and by applying Hoder inequality with conjugate exponents 5 and
1/2—1

r/2
1-2 h r/2172%/"
r r 1
l r/2—1 - 2
E(oh) < [E(Mh >] (h/o asds> ” .

r/2—17
Since | > ¢*, it follows that E (O’lo) = +00. Moreover, being r < g,

1",
(E/o O'Sd8>

T,l/271
E (Mh"/“> = +o0.

It is easily checked that, choosing [ and ¢* sufficiently close, one gets

2

E < 400

we obtain

E

r/2

E < 400.

Thus, necessarily,

N 1/2-1 <
Fi=r
r2—1 %
which implies i
E (0p) < +oc.

Setting p := max(7, 2), the proof is completed.



We conclude this section showing a further property of the scaling function A(q)

Remark 6. Assume that, for each h > 0, the integrated volatility has moments of all orders,

ie.
h q
([
0

The following argument shows that, under this assumption, A(q) is increasing in q. We will
see later an example in which the integrated volatility has heavy tails, so it violates (2.6)),
and A(-) is decreasing in an interval. We begin by observing that, by (2.4),

log E [( s afdt)p/ 2]

E < 400 for every ¢ > 1. (2.6)

A(g) = limsu 2.7
(q) o Sup Tog (2.7)
From this it easily follows that
/2
E [(foh afdt)p }
. _ - ‘
hI}rLl&)nf ) 0 = A< A(g), (2.8)
and P
E [(foh J?dif)p ]
A< A(¢) = liminf = 0. (2.9)

hl0 hA
Consider p > ¢ > 1. Moreover, let € > 0, and take [ < ¢ such that [A(q) — €]4 < A(q). Set

h
ap, = </ 0?dt>
0

We now use Young’s inequality af < O‘TT + 6—7, valid for o, 8 > 0, r,7’" > 0, % + % = 1.

1/2

l
. —1
Choosmga:#,ﬂzaz ,r =4, we get

—1
q—1 ‘1%
a,®.

Taking expectations:

E [( Jy otdt) p/z}

hA(q)—e

q—l h qQ(Z:I—ill)
+ E (/ afdt) . (2.10)
0

— =0. (2.11)



Moreover,

p—1
h 92(=0
limE (/ afdt> =0 (2.12)
h10 0

by (2:6) and dominated convergence. It follows from (2.10), (2.11) and (2:12), that

g LS4

hl0 hA(g)—e =0

which, together with (2.8)), yields A(p) > A(q)—e. Since € is arbitrary, the conclusion follows.

3. Superlinear Ornstein-Uhlenbeck volatility

In this section we devote our attention to a specific class of stochastic volatility models,
namely those of the form

dXt = O'tdBt
AV, = —f(V;)dt + dL, (3.1)
Vi = of,

where:

o (By);>0 is a standard Brownian motion.

o (Lt)t>0 is a Levy process with increasing paths (subordinator) independent of (By);>o.
More precisely (L¢)¢>0 is a real-valued process, with independent increments, Ly = 0

and
E [exp(—AL¢)] = exp[—t¥(A)],

with

U(A) =mA+ /(0 . (1 - e_M> v(dz),

where m > 0 is the drift of the process, and v is a positive measure on (0, +00), called
characteristic measure, satisfying the condition

/ (I Az)v(dx) < 0.
(0,4-00)

For generalities on Levy Processes see E, , .

e f(-) is a locally Lipschitz, nonnegative function such that f(0) = 0 (which guarantees
V; > 0if Vo > 0).

Some conditions on f(-) are needed for to have a stationary solution. We will address
this point later. We will always assume that V} is independent of (L;)¢>0. We note now that
for many “natural” choices of f, multi-scaling is not allowed In particular, multiscaling is
not present in Ornstein-Uhlenbeck models (see e.g. _



Proposition 7. Suppose f(-) satisfies the linear growth condition
|f(v)] < Av+ B

for some A,B > 0 and all v > 0. Moreover, assume has a solution for which (V;)i>0
is stationary, nonnegative and integrable, such that Assumptions A and B hold. Then multi-
scaling does not occur.

Proof. By Remark[2] A(q) < q/2, so we need to show the converse inequality. Let (V/);> be
solution of
dV{ = —(AV/ + 2B)dt + dL,

3.2
Vo = Vo 42

Note that
d(V, = V) = = [f(V}) — AV = 2B] dt.
In particular V; —V} is continuously differentiable, and Vy—V{ = 0. It follows that V;—V/ > 0

for every ¢t > 0: indeed the path of V; — V/ cannot downcross the value zero, since whenever
t is such that V; = VY = v, then

d
a(V;—V{’) = —f(v)+ Av+2B > B > 0.
Thus for every t > 0
_ 2B , _ o Ali—s B B 2B
‘/%2‘/,*,,:‘/06 At+7(e At_1)+/OeA(t )dLsZVoe At+€tA/2Lt/2—7.
On the other hand .
Vi=Vo- [ f(Vds+ L <Vo+ L
0
which yields
sup Vi < Vo + L.
te[0,h]
Putting all together
—Ah |, —Ah)2 2B
Voe +e Lh/2_I§Vh§ sup V; < Vo + Ly,. (3.3)
te[0,h]
Since
2B

Voe A 4 e=AM2L, o — T € = VtLyel?

the conclusion now follows from (3.3) and Corollary [5]
O

Proposition [flshows that, for models of the form to exhibit multi-scaling, one need
to consider a drift f(-) with a superlinear growth.
Definition 8. We say that a function f : (0, +00) — (0, 4+00) is regularly varying at infinity
with exponent o € R if, for every z > 0,

o flE)
t—lg?oo f(t) -




In the case a = 0 we say that f is slowly varying at infinity. Note that f is regularly
varying at infinity with exponent « if and only if f(u) = u®l(u) where [ is slowly varying
at infinity. In what follows we consider models of the form (3:I) for which the following
assumptions hold:

A1l (Bi)t>0 is a standard Brownian motion.

A2 (Li)i>0 is a Levy subordinator with characteristic measure v. Moreover (Bj):>o and
(L¢)¢>0 are independent.

A3 The function u — v((u,+00)) is regularly varying at infinity with exponent —a < 0.
A4 f :[0,4+00) — [0,400) is increasing, locally Lipschitz, f(0) = 0, and it is regularly
varying at infinity with exponent v > 1.
The following result has been proved in (see also ] for related results).

Theorem 9. Under assumption A2-A4, the equation dV; = —f(V;)dt + dLy admits an
unique stationary distribution p. Moreover p((u,+00)) is reqularly varying at infinity with
exponent —a — v + 1.

In what follows we assume V| is independent of (B;)¢>¢ and (L);>0, and it has distribu-
tion . Theorem [9 shows that, if v > 1, V; has a distribution with lighter tails than those of
the Levy process L;.

We are now ready to state the main result of this paper.

Theorem 10. Assume A1-A4 are satisfied, and that a+~ > 2 (which, in particular, implies
Assumption B). Then the following statements hold.

(1) If v > 2 then

[\

A(q):{%ﬁ, for1<gqg<2a+~y—1)

__21)q 4 ol forq>2(a+~vy—1).

(v y—1

(2) If 1 <~ <2 then

5 for1<g<2(a+vy-—1)
Alg) = 2(77__21)q—|— G for2(a+y—1) <g<FE
—00 forq>22_—°‘,y.

Moreover, for q # 2(a+~v —1), 22_—‘{/, the scaling exponent A(q) in ([II) can be defined

as a limit rather that a lim sup.
We remark that, in the case 1 < v < 2, A(-) is decreasing for 2(a +v —1) < ¢ < 22_—°‘,Y
This is not in contradiction with Remark[6] since assumption (2.6) is not satisfied.

Remark 11. A simple consequence of Theorem [I0] is that, by a comparison argument,
Proposition[7]can be extended to any f which is regularly varying at infinity with exponent
1.

The proof of Theorem [I0] will be divided into several steps. We begin by dealing with
the case f(v) = Cv?, with C' > 0, and L; is a compound Poisson process.



Proposition 12. The conclusion of Theorem [10 hold if f(v) = Cv7, with C > 0, L; is a
Levy subordinator with zero drift and finite characteristic measure v.

Proof. Note that, for ¢ < 2(a +~ — 1), by Theorem [9] we have E [Voq/2] < 400 so that, by

Proposition M and (2.5), A(¢g) = £. Thus it is enough to consider the case ¢ > 2(av + v — 1).
In what follows we also write ap ~ h" for

logap,

= 4
hlg%) log h (34)

We will repeatedly use the simple fact that (3.4) follows if we show that for every ¢ > 0
there exist C. > 1 such that

1
gh““ <ap < C.h"C.

In what follows all estimates on A(q) are based on the fact (see ([2.7)) that the limit

log E [( I Jgdt)m]

I
ho log h

exists if and only if the limit
iy 108 E ([ Xen — X¢|?)
h10 log h

exists, and in this case the coincide.

Part 1: v > 2

By the assumption of finiteness of v, (L;) jumps finitely many times in any compact interval.
Denote by (T})r>1 the (ordered) set of positive jump times, and Tp = 0. Given h > 0, we
denote by i(h) the random number of jump times in the interval (0, h].

Case i(h) = 0. When i(h) = 0, V; solves, for ¢ € [0, h], the differential equation £V; = —CV’,

whose solution is )

Vi= (Vg 7+ (- 1)ct)
Integrating, we get

h — 2 _ =2 A a=2
| vt = T [+ - new = - )] (3.5)
O -

Note that, setting X := ([0, +0)),

(/oh tht) " 1{i(h)=0}] =E [(/Oh tht> " ‘z‘(h) _ 0] oA

/2
The factor e=** gives no contribution to the behavior of E [( foh V}dt) ! 1{i(h):0}:| as h — 0,

E

and it can be neglected. Moreover, by (3.5), and using the fact that Vy and {i(h) = 0} are

10



independent,

(/Oh tht> " ‘z‘(h) - o] _

/2 _ 1—y =1 1—y T
(2 7 _ %q Yo _ Yo
B <’Y—1> (7~ DCR==E ('v—l)ChJrl (y=1)Ch

E

(3.6)
Since, for 0 < a <1 and z > 0,
a(z+ 1)< (2417 =24 < (2 +1)771 (3.7)
a/2
for computing the limit limy, logERfli‘:dt) / } , the right hand side of (3.6) can be replaced

. . . . )
by (using the previous inequality for a = %; recall that v > 2)

1—v ﬂ/—f—l 9/ 1—v T = 1)

=2 |7 7* y—2 Vo~ "
hI-D IR 0 19 =hTDE | ——— 41 . (3.8
! (w—1xm+ ) ! (@—n0h+ (38)

In other words:
h a/2 -2 Vol—’Y _ﬁ

E Vidt 1= ~ h20-D"E — +1 . 3.9
([ ver) 1| ~ 17558 |2+ )

To estimate the r.h.s. of (3.9), we observe that for y > 0 and 0 < u < 7, the following
inequalities can be easily checked

1 _ _ _
gl SA+y) 7" =Q+y) sy (3.10)
1—
Setting r := ﬁ and Y := %, using (3.10]) we obtain
1 Vol—“/ _ﬁ
—PY <1)<E — +1 <E(Y™“ 3.11
>tV <D<E | o"han * St (3:.11)

for every u < 2”;’_1). Set £ := a,%;l Note that ¢ < r for ¢ > 2(a + v — 1). By Theorem[9}]

1 _1_qaty—l
PY <) =P (V> (—— ) )~ [ (—E2—)" ~ S, (3.12)
B "\ (v=1DCh (v—1)Ch ’ '
Moreover, take u < &. We have
E(Y™) = [(v=)CH"E [v;07] < an, (3.13)

11



for some A > 0 that may depend on u but not on h, where we have used the fact that
< 400, since u(y — 1) < a4y — 1. Since u can be taken arbitrarily close to &,

E [V*O“(“/—l)
by (311, (312) and (BI3) we obtain
_ q
Vl—’Y 2(y-1)
(m - 1) ~ ht, (3.14)

which yields
2

—2 « —1
E l{i(h):o}] ~ BT (3.15)

([ v)

Note that (3.15]) has the right order, according to the statement of Theorem [I0] Therefore,
in order to complete the proof for v > 2, it is enough to show that for each u < %“’II

h q/2 2
- (/ th’f) Liigny1y | < ARZG-0 (3.16)
0
for some A > 0 that may depend on u but not on h.
Case i(h) = 1. Now
o
y (VOM by - 1)075) ™ for 0 <t < Ty
t = 1
(lel‘“’ +(y - DOt - Tl)) T for Ty <t <
which yields
h v — 2 1—v =2 1—v =2
[ vt =122 067+ (- yemy - ]
—9 B =2 =2 3.17
+ I [V + - non-n) -] B

v—1
=: P(h) + Q(h),

and therefore
2

h q/
E [(/ tht> loiny=1y
0

/2
We now show that E [(foh tht)q 1{i(h):1}:| can be bounded above as in (3.10)):

h a/2
(/0 tht> Lrin=13

for every u < % By (3.18) it suffices to show that both E(Pq/2(h)1{i(h):1}) and
E (Qq/z(h)l{i(h)zl}) have an upper bound of the same form.

Note first that
ﬁ]

P < 223 (047 + (- pom ™ - )

<2071 [E (Pq/2(h)1{i(h):1}> +E <Qq/2(h)> 1{i(h):1}] (3.18)

E < ApTEn T (3.19)

2
|
)

12



which coincides with (3:5), whose scaling has already been obtained. Since P(i(h) = 1) ~ h,
we have that E (Pq/z(h)l{i(h)zl}) scales as the term studied in the case i(h) = 0, but with
an extra factor h, i.e.

E (P20 1oy ) < ARFIDTT < ApTD T, (3.20)
For the term E (Q%/2(h)1;,)—11) we repeat the steps of the case i(h) = 0 (note that all
{i(h)=1}

inequalities used there held pointwise) with V7, in place of Vi and h — T} in place of h (see

(3:9)), obtaining

) s Vi e e
E <Qq/ (h)l{i(h):1}> <E |(h—T)0-D* " +1 1i(n)=1}

12 Vj{—’Y 201
< h20-D'E 1 1 10—
= G-DCh-T) =1}

(3.21)

This last term can be bounded from above as follows, for u < ﬁ and using the trivial
bound Vp, < Vo + Ly,

! Vj}l—v BicE) [ Vj{l—v -

. ((v etk -Ty) ¢ 1) 1“("’”] =F <(,y etk -Ty) 1) 1“("“}]
- i -

= ((v —1)C(h - Tl)) 1“("“}]

<E VTil 1y
o \G-nem ) T

< AR'E [(Vo + Ly) Y 1{z’<h):1}}
(3.22)

for a constant A > 0. Now observe that Vj is independent of 1;;)—1y, that Lj, has distribu-
tion v conditioned to {i(h) = 1}, and that P(i(h) = 1) < Ah. It follows that, for a suitable
constant C > 0,

E |(Vo+ )"0 1=y | < CPGR) = 1) [E (vgO7Y) + B (£;07Vlin) = 1)]
= CP(i(h) =1) [ / 0OV p(dv) + / zuﬁ—%(dz)} .
(3.23)

Since, by Theorem [9] the tails of u are lighter that those of v, the above integrals are both
finite if an only if [ 0“0~y (dv) < +oo, which holds true for u < a/(y — 1) (assumption
A3). Thus, for every u < o/(y — 1),

E |:(‘/0 + Lh)u('y—l) l{i(h)zl}] < Ah (324)
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for some A > 0. By (3:21), (3:22), (3:23) and (3:24), we have that E (Qq/2(h)1{i(h):1}) is
bounded from above by
Bh%q-l—uﬁ—l

for every u < a/(y — 1) and some B > 0 possibly depending on u. Equivalently,
—2
E (Q(M)1iin—r) ) < BRT-DH (3.25)

for all u < %“’II Therefore, by (3:20) and (3:25)), (3:19) is established.
Case i(h) > 2. To prove (3.16) and thus to complete the whole proof, we are left to show

that
2

h q/
( / tht> Lii(h)>2)
0
a+vy—1

for all u < T and some A > 0.
Let n > 2, and restrict to the event {i(h) = n}. We have

E < AR (3.26)

/ 1
(Vol_w + (v — 1)Ct> e for0<t<Ty
1

<VT11_7 +(y-1C(t - Tl)) T for Ty <t < T
Vi = :

1

(VTI,:Y1 +(y—=1)C(t - Tn—l)) T for T, <t < T,

1

<V7%,f7 +(y-1DC(t Tn)) " for T, <t < h,

so that (3.17) becomes

h v — 2 1— =2 1y 2=2
[ Vit =12 3 (5 + = 00— Tt - )]

-4
- 2 — J—e — J—e
F I {047+ (0= D0 =T - () (3.27)
=: ) Bi(h) + Puya(h)
k=1

Each term E {P,gﬂ(h)l{i(h):n}] can be estimated as in (3:2I) and (3:22)), obtaining

=2 o wly—
E [P]g/2(h)1{z(h):n}:| S Chz(ﬁfl)q—i_ E [(‘/0 + Lh) (ﬁ{ 1) l{z(h):n}:|

< O R(i(h) = m) [E (v ) +E (£ Vlic) = )
(3.28)

for u < ﬁ and some constant C,C’ that may depend on u but not on n and h. The
distribution of Ly given {i(h) = n} is given by the n-fold convolution v*". In other words,
if X1, Xo,...,X, are independent random variables with law v,

£ (LZ(H)“(’U = n) =E [(Xl +Xo 4o Xn)uﬁ—l)] < puO-D-1g [Xfw_n} ‘

14



Foru < a/(y—1), E {Xf(y_l)} < 400 as well as E <V0u(7_1)> < 4o00. Thus

_2
E [Plgp(h)l{i(h):n}} < OG0t D=1R(i(h) = n), (3:29)

for some constant C' independent of n, h and k. By (3:27), (3:28)) and (3:29) we obtain, for

q
U< 3550)

N /2 /n+1 o
E (/ tht> Lii=m | <n72Y E|PY5(h)1gih)=n
0 {i(h)=n} ; [k {i(h)=n} (3.30)

< ORI uO=D+a/2p () = ).

We can now sum over n > 2, observing that P(i(h) = n) < —’\Z}fnl

h q/2
> E [< / tht> Lii(h)=n}
0

n>2

_ -2
< ORI 3 puir—y a2 A
- |
n>2 " (3.31)

-2
< O'pT-Datut?,

a+y—1
y—1

Since ﬁ +2> (recall that ¢ > 2(ac + v — 1)), we have that

h qa/
([
0
is negligible with respect to (3.15).
This completes the proof for the case v > 2.
Part 2: 1 <y <2

2
E

1{i<h>zz}]

Case i(h) = 0. Formula (3.5) still hold, but now v — 2 < 0. So (3.6) becomes

h q/2
(/0 tht> l{i(h):O}] =

A\ 9/2 _
<2_7> (y—1)Ch) = E

E

Vi %E% Vi %E% "2
_0 |0 41 o
(v —1)Ch (v—=1Ch '

v—1
(3.32)
To estimate this last expression we need, letting a := %, the following modifications of
(3.7, valid for z > 0:
az+ D)0 <20~ 2+ 1)< (z+ 1)1 for0<a<1 (3.33)

(z4+1) <2z~ (24 1) <a(z+1)"127% fora>1.

-1 q
Vb h VQ—V .
14+ V) th°

Using these inequalities as in (3.6) we obtain, for some C' > 1
Vo1, \? h q/2
e ( / tht> Liw=oy | < CE
1+Vy" 'h 0

15
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—E

<E
C =




We now observe that

2 2
e i)Y
14V -, 10 =BT vy =1, 0 Lty

2
W s 4 ) (3.35)
1+vy '’ e

2 q/2 1(2—)
~ hi’E [Vo 1{v0”*1h§1}} +E [Voz 1{v0“”1h>1}] :
In order to estimate the two summand of the left hand side of (3.35) we use the following
fact, whose simple proof follows from simple point wise bounds, and it is omitted. Let u be
a probability on [0, +00) such that p((u,+00)) is regularly varying with exponent —¢& < 0.
Then

/ uPp(du) ~ xP~5  for p > €& (3.36)
0

+oo
/ wPp(du) ~ 2P~ for p < &. (3.37)

Let p be the law of Vp, so that, by Theorem [0} £ = o+ — 1. Since ¢ > 2(a +v — 1), by
1 (g

(3.36) we have E [Voqml{vquhq}] ~ b7 1E7 D and therefore

HPE {Voq/Ql{vovflhgl}} ~ RIS (3.38)
Moreover, by (3:37), also
£ [%%(2_7)1{\/0%%»}] ~ R (3.39)
for 2(2 —v) < a+~v —1, while
E {V-O%(z—“r)l{voﬂbl}} = +00 (3.40)

for 22 —7) >a+~y—-1.
Summing up, we have shown that

20a+~v—-1)
2—7

h q/2
2 -1
</ tht> 1{i(h):0}] = +00 for ¢ > (042“‘777) (3.41)
0 _

h q/2 Y—2 +a+'yfl
E </ tht> 1{i(h):0} ~ h2G-DTTHT for 2(a+~v—-1)<qg<
0

E

Case i(h) = 1. This case is dealt with as for v > 2, and, using the same argument leading
to (3.34), one sees that the crucial term to estimate is

_ /2
Vit h=1) L, !
V2T 1amen | - 3.42
<1+Vj—jl—1(h_T1) T {i(h)=1) (3.42)

16



Since Vi, > Lpy, (3:42) can be bounded from below by

_ /2

Ly (=1 o\

1+ L h—Ty) " b=t}
Ty 1

_\9/2
which takes the value infinity as soon as E [( [,2T1 ’Y)q 1 {i(h):l}] = +4-00. Recalling that L,
independent of {i(h) = 1} and it has law v, this hold as ¢ > 22_—0‘,Y This implies that

2

h q/
E [</ tht> Lrim=1
0

Comparing with (3:4I), note that 22_—0‘7 < 2(0‘%1/_1) Thus, assume 2(a +v—1) < ¢ < 22__057
(note that, being by assumption « + v > 2, indeed 2(a +v — 1) < %) An upper bound

for ([B:42)) is given by

—_ 2
Vit h-1) o\
E - vy Lim=1y

2c
= fi — A4
+oo  for g > 5 (3.43)

<E

< (Vo + LTl)V‘lh
14+ (Vo+ Lp)"h

q/2
(Vo + LT1)2_7> l{i(h):l}]

< (Vo + L1,)""1h
1+ (Vo+Lp)~th

q/2
(Vo + LT1)2_”> ] P(i(h) =1), (3.44)

where we used the facts that Vjy and Lp, are independent of {i(h) = 1}. Now, (3:44) is
estimated exactly as (3.35), but with Vg + Ly, in place of Vp. Since the tails of Vg + Ly, are
the same of those of L7, i.e. regularly varying with exponent a, while P(i(h) = 1) ~ h, we
get

at+y—1

(Vo + LT1)2_”> ] ~ RIS P(i(R) = 1) ~ B2 DT

E < (VO + LTl)’y_lh

1+ (VO + LT1)A/_1h

Summing up:

h i 200
E Vidt Lom=o0r| = fi > . 3.45
[</0 t > { (h)_o}] +00 org>g 5 ( )

h q/2 y—2 +a+'yfl 2a
E </ tht> 1{i(h):1} ~ h2-DITT51 for 2(a+~v—-1)<¢< 3
0

Case i(h) > 2. This case goes along the same line as for v > 2, using the upper bound
obtained for i(h) = 1. The details are omitted. The proof for 1 < v < 2 is thus completed.
Part 3: v =2

17



In this case we have, in the case of no jumps (i(h) = 0),

Vi= (Vi)

and therefore

[log(Vy™ + Ch) —log(Vy )] =

h
/ Vidt =
0

5
Un upper bound for E [( tht> 1{i(h):0}:| is obtained using (3:40) and the inequality,
valid for y,r > 0,

[log(l + ChVp)]. (3.46)

Q |

—_

log(1+y) < ;y’",

h q/2
< / tht> Li(n)=0y
0

Since E (qu/2) < +oo for G < a +1, letting 5 T o+ 1 we obtain

h q/2
( /0 Vidt> Lin=01

for some C' > 0 and every r such that & < o+ 1. A corresponding lower bound is obtained
using the inequality

which gives

B Cra/2pral2g <V07’q/2> _

Cq/

E < Chr/?, (3.47)

1
log(l + y) = 51(1,—1—00) (y)7

which gives

h q/2 1 )
E Vidt 1y ChVy > 1) ~ R, 3.48
(/0 f ) {i(h)= 0}] 20 P(ChVy > 1) (3.48)

where we have used Theorem [0 for the last inequality. By (8:47) and (3:48) we have

([ vy

The cases with i(h) > 1 are similar to what seen in Parts 1 and 2, and are omitted.
O

2
a+1
1{i(h):0}] ~ ht

Proof of Theorem[Z0l We now complete the proof of Theorem[10l We need to extend Proposi-
tion[12]in two directions: a) generalize from f(v) = Cv” to any f satisfying Assumption A4;
b) extend to Levy subordinator satisfying Assumptions A2 and A3, thus with a possibly
infinite characteristic measure v.
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Step 1. We keep all assumption of Proposition [I2] except that we require f(v) = Cv? only
for v > ¢, for some € > 0, and f satisfies Assumption A4. In other words we do not prescribe
the asymptotics of f near v = 0. Let V, V' be solutions, respectively, of the equations

dVy = —f(V,)dt + dL,
AV} = —CV}" + dL,.
Assume Vj = Vj = v > 0. We claim that
Vi = V/| < 2¢ (3.49)
a.s., for every t > 0. This follows from the following fact: there is a constant § > 0 such that
as soon as |V; — V/| > 2e,
d
— |V, = V| < =6. 3.50
- v < (3.50)
To see (3:50), suppose first V; — V}/ > 2¢. In particular V; > ¢, so
d
ViVl = —c (7 W) < ~con,

where we have used the fact that, for ¢ > 0, the map (x + ¢)7 — 27 is increasing for = > 0.
Suppose now V/ — V; > 2¢. If V; > € then,

d
SV -Vl = —C (V) = 17) < =026
If V; < e, since f is increasing, then
d

Vi = Vil = =CV[T + f(V)) < =C(26)" + C€" <0,

Thus (3:50), and so (3:49) is proved. In particular, the law of V; is stochastically smaller
than that of V/ + 2¢, which means that for every ¢ increasing and bounded, E[g(V})] <
Elg(V/ + 2¢)]. By the ergodicity results proved in |16], this inequality can be taken to the
limit as t — +o00, so to a stochastic inequality between the stationary distributions of V' and
V'. This implies that we can realize, on a suitable probability space, two random variables
Vb and Vjj, independent of the Levy process L, distributed according to the stationary laws
of the corresponding processes, and such that Vy < Vj + 2e. By repeating the argument
above, we see that the inequality V; < V/ + 2¢ is a.s. preserved for all ¢ > 0 also for the
stationary processes. It follows that

h q/2 h q/2 h q/2
E [(/ tht> <E (/ [W+2e]dt> ] < 21/%71 {E [(/ Vt/dt> +<2eh>q/2}.
0 0 0
(3.51)
Since B
logE[<f0hV}dt>q }
A(g) = limsu , 3.52
(q) nsup o (3.52)
and B
logE[( thWdt)q ] ,
/
A'(q) = lim Toe h <5 (3.53)
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by (3:51) we get
A(q) = A'(q).

By exchanging the role of V and V' we get A(q) = A’(¢q). Moreover, the existence of the limit
(3.53), which follows from Proposition [12] implies that also (3.52) is a limit. Since A’(q) is
given by Proposition [12] the first extension is obtained.

Step 2. In this step we allow the Levy process L to have infinite characteristic measure v
and positive drift m > 0, though satisfying Assumptions A2 and A3. On the other hand we
make a specific choice for f: f(v) = CvY for v > ¢, while f is linear in [0,¢€), with f(0) =0
and f(e) = Ce7. Moreover we let v, := V1 +o0), Which is a finite measure. Denote by L©
the compound Poisson process with characteristic measure ¢, and by V(€ the solution of

av'9 = — (v Ndt + dr® (3.54)

The original Levy process L can be decomposed in the form L; = L(©) + L(<9) where L(<¢)
is independent of L(9), it has characteristic measure v, := vl and drift m > 0. Writing

AV, = —f(Vy)dt + dLy, (3.55)

we obtain

d(V, = VY = —[f(Vi) — F(V)]dt + dL<). (3.56)

This implies, for instance that whenever VO(E) < Vy, then Vt(e) < V; for all ¢ > 0. Thus, using

as above the ergodicity of V and V(). V; dominates stochastically V;(E)

also in equilibrium.
Thus, as before, we can start the processes from VO(E) and Vj, each having the corresponding

stationary distribution, and such that VOG) < Vp. Thus Vt(g) < V; for all ¢ > 0. Note that

with this construction we have that the two processes in (3.54) and (3.55) are separately
stationary, by not necessarily the Markov process (V;(E), Vi), whose law will be demoted by
,ugz), is stationary. To fix this we observe that, since the family of distribution (,ugz))tzo is
tight, by a standard argument its Cesaro means % fg ug)ds admit at least a limit point, which
is a stationary distribution for (Vt(e), V;). This limiting operation preserves the stochastic
order between the laws of the two components. Thus, we can assume to realize VO(E) and Vj

in such a way their joint distribution is stationary for and (3.55), and Vo(e) < V.
Now we use the fact that f is super linearly increasing, to conclude that

FOR) = FVD) > ey = 119
for some ¢ > 0. It follows that
d(V; = V) < —elVy = V] + dL=?,

which implies that

t
0<V— V9 <eevy - v+ / e UmIdL{=). (3.57)
0

Since the law of V; — V;(E) does not depend on t, it must be stochastically dominated by
the limit of the law of the r.h.s. of (3.57), which is just the stationary distribution of the
Ornstein-Uhlenbeck process

A7, = —cZydt + dL{™.
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As observed e.g. in , this stationary law is infinitely divisible with characteristic pair
(m,v), with
Aotoo) = [ ulwldw).
[,400)
Since v, and therefore 7, has bounded support, the stationary law of Z; has moments of all

order (see e.g. @]) So, also V; — V;(E) has moments of all order. Thus, using the inequality
(x4 y)9 < 297z + 9] for 2,y > 0, we have

h q/2 h q/2
()=o)
0 0
h /2 h qa/2
< 2‘1/2—1 {E [</ ‘/;(E)dt> (/ [V}/ _ V;(E)]dt> ] }
0 0
h a/2 2
< 24/21 {E (/ Vt(ﬁ)dt> +h1’E [(Vo - V(f))q/ ] } :
0

e /2
Since, by Proposition [12] and steps 1, E [(foh Vt( )dt>q } ~ hA@ for every ¢ > 0 and

A(q) < q/2, it follows that
h a/
(v
0

thus completing the proof of this step.
Step 3. The extension of Proposition [12]to any f which satisfy (A4) is now easy, and it will
only be sketched. In a first stage, repeating the argument in step 1, one extends from the
special f’s used for step 2, to the larger class of f in step 1.

The further extension to a general f which satisfy (A4) proceeds as follows: for every
§ > 0 we can find f; and fo such that f; < f < fo, and f1(v) = C1v77%, fo(v) = Cov?? for
v > €. By using coupling arguments similar to those in step 1, one shows that the scaling
function A(q) of the process with drift f is bounded above and below by the scaling functions
of the processes with drift f; and fo. The continuity of A(g) w.r.t. 7, and the fact that ¢ is
arbitrary, implies that A(q) is given by Proposition [12]

E

+E

2

E ~ hAD)

O
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