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ABSTRACT. In the last decades, models inspired by statistical mechanics have been vastly used in
the context of social sciences to model the behavior of interacting economic actors. In particular,
parallel updating models such as Probabilistic Cellular Automata have been proved to be very useful
to represent rational agents aiming at maximize their utility in the presence of social externalities.
What PCA do not account for is strategic interaction, i.e., the fact that, when deciding, agents
forecast the action of other agents. In this contribution, we compare models that differ in the
presence of strategic interaction and memory of past actions. We will show that the emergent
equilibria can be very different: fixed points, cycles of period 2 and chaotic behavior may appear
and, possibly, coexist for some values of the parameters of the model.
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1. INTRODUCTION

The idea that principles of statistical physics could be applied to systems comprised by a large
number of intelligent and rational individuals has fascinated physicists and mathematicians for
several decades, besides having stimulated the imagination of science fiction writers. The number of
individuals in a reasonably large community, although quite far from the Avogadro number, is large
enough to separate microscopic from macroscopic scale; in more technical terms, a reasonably simple
collective behavior should result from the combination of all individual behaviors through a law of
large numbers, in analogy to the way thermodynamic quantities such as pressure and temperature
result from the combination of the irregular motion of single particles in a gas. Moreover, some
stylized features of the interaction between individuals (e.g. imitation) show similarities with
interactions between the elements of some physical systems (e.g. spin interactions in ferromagnets).

Together with the analogies mentioned above, many differences naturally emerge. In physical
systems, the prime principles on which the microscopic dynamics are based, are usually well estab-
lished, as they follow from fundamental laws. This is not the case in social systems: interactions
between individuals are complex and not well understood. Any stylized model is thus likely to
have limited applicability. At a more technical level, some standard assumptions in models in-
spired by Statistical Physics, such as time reversibility and short range of the interaction, are often
unreasonable in the dynamics of social systems.

Our view is that, despite of these difficulties, modeling of large scale social systems is a relevant
and stimulating challenge. Stylized models, though unrealistic, may reveal the key factors producing
certain behaviors, allowing, for instance, the design of controls to avoid the emergence of undesirable
patterns in real social systems. We remark that similar ideas have proved to be successful in other
contexts, e.g. biology with applications to medicine (see e.g. [6]).

As we mentioned already, stylized modeling for systems of interacting rational individuals has
been vastly inspired by statistical mechanics. After all, elementary particles are themselves “ratio-
nal”, in that they aim at minimizing their contribution to the total energy of the system; temper-
ature injects noise in the dynamics, causing entropic effects to be macroscopically relevant. In this
spirit, it has been remarked in several works (see e.g. [2, 1]) that many discrete time stochastic
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models for the evolution of interacting particles can be formulated as a sequence of optimizations:
at each time a particle “chooses” its next position by minimizing its contribution to the energy of
the system given the position of all other particles, and subject to some random disturbance. As
we will see later, this interpretation is particularly natural in the context of parallel updating of
Probabilistic Cellular Automata (PCA). This formulation appears suitable for applications to social
sciences, where “minimizing particle’s contribution to the total energy of the system” is replaced
by “maximizing individual utility”. Since individual utilities can be arbitrary functions of positions
of all individuals, one obtains a wide class of models, not necessarily time reversible.

The purpose of this paper is to propose a modification of this approach to modeling interacting
systems, which takes into account one basic difference between the “rationality” of physical particles
and that of human individuals. We, simply, express it as follows: in interacting with other humans,
any individual tries to forecast what the others will be doing in the (near) future. It is easy to
exhibit examples in which this forecasting plays a relevant role. An obvious example is that of
agents investing in a financial market. Each agent aims at maximizing his own profit; this profit
depends of the future prices of assets, which in turns depends of the future investment strategy of
all agents. Naturally the agent tries to forecast the strategies of other individuals, well aware that
all the others will do the same.

An example in a different context is that of a car traffic jam in an intersection with a broken traffic
light. A driver will decide to cross the intersection when he is reasonably confident that drivers
coming from other directions will not; his decision is based on what he believes the behavior of
other individuals will be. It has been observed (see e.g. [7]) that the evolution rapidly goes to a
self-organized steady state, where crossings from concurrent directions alternate in a nearly periodic
way. The problem of formulating stylized models exhibiting this behavior is, to a large extent, still
unsolved (see [9]).

In this paper, elaborating on ideas contained in [3], we propose a formulation of what we will
refer to as strategic interaction, i.e. a mechanism of interaction between individuals which includes
forecasting of other individuals’ behavior in the near future. Rather than aiming at generality, we
illustrate our basic ideas in a very simple context, inspired by PCA’s. In Section 2 we illustrate
the interpretation of PCA’s as sequential stochastic optimization problems, and we propose the
version of the same models with strategic interaction. In Section 3 we analyze a simple mean-field
model, for which the macroscopic limit is easily obtained, and illustrate the effects of the strategic
interaction on the steady state behavior.

2. STRATEGIC AND NON-STRATEGIC INTERACTION

By Probabilistic Cellular Automata (PCA) we, generally, mean a discrete time Markov chain
on a product space S*, where A is finite or countable, whose transition probabilities are product
measures; in other words, different components update simultaneously and independently. In this
paper we restrict to the case in which S = {—1,1} and A is finite. It will be clear that most ideas
apply to more general choices of S, but binary models allow some peculiar explicit computation.
We denote by ¢ = (0)iea an element of {—1,1}*. The evolution ((n)),>0 of a PCA is of the
product form

Po(n+1) = olo(n) = &) = [[Ploi(n + 1) = oilo(n) = &) =: [ pi(0ilé). (2.1)

€A €A

If we assume p;(0;|§) > 0 for every i,0,¢, then p;(0;|) can be written in the form p;(0;|§) =
explo; @i (£)]

2 cosh(®;(¢))
pretation of the model it is convenient to introduce some parameters, writing ®; in the following

for some functions ®; : {—1,1}* — R. Without any loss of generality, for the inter-
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form:
;&) = BFi(§) + &), for B, u; >0, (2.2)

which corresponds to the local transition probabilities

(ole) = xplBoi [Fi(€) + piki)
PO = S o B TR (E) + mel) 23

The function ® in (2.2) can be interpreted as follows.

e [ is an inverse temperature parameter, that allows to tune the amount of random noise in
the system. For 8 = 0 the system is fully random. As 8 — +00, the dynamics converge to
the (nearly) deterministic evolution

oi(n 4+ 1) = sign [F;(o(n)) + pioi(n)];

randomness only survives in the case Fj(o(n)) + poi(n) = 0, where the values £1 for
oi(n+ 1) are equally probable.

e The function F; describes the interaction of the i-th component with the others.

e The parameter p; models friction: for large p; it is unlikely for o; to change sign in a time
step, slowing down the dynamics (see [4], where this friction plays a key role for determining
a “desired” stationary distribution). Of course, the term ;& could be included in F;(§),
but it will be convenient to separate this self-interaction term.

2.1. An equivalent optimization problem. Suppose each i € A labels an agent that, at any
time t, faces a binary decision problem: o;(n) = +1 denotes the action of the i-th agent at time n.
At each time n the aim of the i-th agent is to maximize a random wutility function U; as function
of the action s; = 0;(n); the function U;(s;) is determined by the action of (possibly) all agents at
time n — 1, and by a random term ¢;(n) as follows:

Ui(sizo(n —1),&i(n)) == si [Fi(o(n — 1)) + pioi(n — 1) + &4(n)] (2.4)
where (£i(n));cp ,>1 are 1.i.d. real random variables, having the following distribution function:

1

n(z) :=P(gi(n) <z) = [P (2.5)

All agents perform simultaneously their optimization. Note that agent ¢ will choose o;(n) = 1 if
and only if

Fi(o(n —1)) 4+ poi(n — 1) +€i(n) > 0, (2.6)
which, given o(n — 1), happens with probability
P[Fi(o(n —1)) + poi(n — 1) + &i(n) > 0] = n(Fi(o(n — 1)) + poi(n — 1))

 ewlBlAe—1) tmaln-1]  (27)
2cosh(B[Fi(o(n — 1)) + pioi(n — 1)])°

Note that the case in which equality holds in (2.6), which would make the two actions equivalent,
can be ignored, since it occurs with probability zero.

Comparing (2.7) with (2.3), we realize the sequence of optimization problems induces a Markov
evolution with the same transition probabilities as the PCA in (2.3).
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2.2. Strategic interaction. In the sequence of optimization problems described above, agents
update their action simultaneously and independently, on the basis of the past actions. We consider
a modification of the model, suggested by the following considerations.

a) The utility of agent ¢ at time n may depend on the action of all agents at the same time n.

b) Each agent is aware of the fact that all other agents are optimizing their own utility, and
uses this fact to forecast their actions.

c) Agents know all function F; and friction parameters u;. The random term ¢;(n) can only
be observed by agent i. Agents know the distribution of €;(n).

By c¢), the action s; = 0;(n) of agent ¢ at time n may depend on €;(n), so it is convenient to define
an action s; as a measurable function s;(e;) of the random term ;.

If s = (s;)ica denotes the vector of actions at a given time n, we set s' = (57)j2i- We assume
agent ¢ aims at maximizing in s; the following utility, obtained modifying in a simple way (2.4):

Ui(si, s';o(n—1),ei(n)) = s; [E’ (F3(s)) + pioi(n — 1) + €;(n)] (2.8)

where, for a vector of actions (sj(gj(n)))jea =: s(e(n)), the expression E? (F;(s)) is obtained by
averaging Fi(s(e(n))) over (g;(n)) -

Unlike in (2.4), the utility U; depends on the action of all agents; it is, therefore, natural to give
a game-theoretic definition of an “optimal” vector of actions.

Definition 2.1. A vector of actions s = (s;(€;(n)))iea is called a Nash equilibrium if for all i € A
si(ei(n)) = argmax U;(-, 8" 0(n — 1),&:(n)). (2.9)

In other words, in a Nash equilibrium any agent is using the best action given the other agents’
actions. For comments and details on this notion of equilibrium we refer the reader to [8]. It is
immediate, but quite relevant, to observe that s is a Nash equilibrium if and only if it is a fixed
point for the so-called best response map s — ®(s) given by

®,(s) = argmax Us(-, s';o(n — 1), &;(n)). (2.10)
In general, in games there is no guarantee that either existence or uniqueness hold for Nash equi-
libria. For the models above, existence is not a problem, however.
Proposition 2.2. At least one Nash equilibrium exists.
Proof. By (2.10), ®;(s)(e;(n)) is increasing in ¢;(n). Thus we can restrict to actions s of the form
$i(€i) = L(z; 100)(€0);

with z; € R := RU {#o00}. Thus ® can be seen as a map from R™ to itself. The fact that the

distribution of the g;(n) is absolutely continuous guarantees that this map is continuous. Since R‘ |
is convex and compact, the conclusion follows from a standard fixed point argument. [ |

The uniqueness of the Nash equilibrium is, however, not guaranteed. This means that, the
map which to (o(n — 1),e(n)) associates o(n) may be not single-valued. In order to obtain well-
defined Markovian dynamics, one should have a rule for selecting one specific Nash equilibrium;
or, otherwise, one should content himself for having defined just a set of possible evolutions of the
system. This point will be discussed in more details in a specific model, in Section 3.

2.3. Trend-driven dynamics. In many applications the utility of an agent can be interpreted as
the return of an investment. This return is determined by the wvariation of the value of an asset
which, in turn, depends of the variation of demand for the asset. To model this situation it is
reasonable to assume that the utility U; of agent i depends of the variation (Zrend) of a function
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F;(o) of all actions. In the strategic case, which is the most meaningful in this interpretation, this
amounts to define the following utility:

Ui(si,s';0(n —1),i(n)) = s; [E'[Fi(s)] — Fy(o(n — 1)) + pios(n — 1) + &i(n)] (2.11)

We remark that in absence of friction (u; = 0 for all ¢ € A), the utility (2.8) does not depend on
o(n — 1), so that the resulting evolution (o(n)),>0 is a possibly multiple-valued i.i.d. sequence. In
the case of utility (2.11) this is not the case. Clearly, one could consider further generalizations in
which a trend term is added to utility (2.8).

Note that this dynamics driven by the trend can be adapted to the non-strategic context, by
letting

Ui(si;o(n—1),0(n —2),ei(n)) :=s; [Fi(oc(n — 1)) — Fi(o(n —2)) + pioi(n — 1) +€i(n)], (2.12)

Rather than aiming at generality, we study some specific simple models, for which the thermo-
dynamic limit (JA| — +o00) can be obtained explicitly, and compare the long time behaviors of such
models in the strategic and non-strategic case.

3. A LINEAR, MEAN-FIELD MODEL

In this section we consider an homogeneous, mean-field model, for which A = {1,2,..., N},
wi = p >0, and
Fi(s) = kmn(s) (3.1)
where k£ > 0 and
| N
mpy(s) := N ;SZ.

Our aim is to analyze the N — 400 limit of the random dynamics produced by the sequence of
utility optimizations. We will consider all versions (2.4), (2.8), (2.11), (2.12) of the utility. We
begin by briefly treating the case of non-strategic optimization, in order to better appreciate the
effects of the game-theoretic setting.

3.1. The non-strategic case. We consider first the utility (2.4). In this case we obtain the
stochastic dynamics

oi(n) =sign[kmy(c(n —1)) + poi(n — 1) + &;(n)]. (3.2)

Given a set A and z € AV, we introduce the empirical measure

1 N
=1

Thus, for instance,

o(n) _ 1+ mn(o(n)) 1 —mn(o(n))

PN 9 01+ 2 0_1.
while pf\,(n_l)’a(n) is the joint empirical measure of (o(n—1),e(n)). Averaging over n equation (3.2)
we obtain
mpy(o(n)) = /sign [kmy(o(n—1)) + us + €] pf\,(nfl)’s(n)(als7 de). (3.3)

For each N, we fix a deterministic initial condition ¢(0) such that the following limit exists:

Nl_i)]rJrrloo mpy(0(0)) =: m(0).

Then one can prove by induction the following law of large numbers.
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Proposition 3.1. For every h: {—1,1} x R bounded and continuous

1+m(n—1)5 1—m(n

. o(n—1),e(n - 1)
NI h(s,e)pn " (ds, de) = / h(8,6)< 2 L 2 5‘1> (ds)dn(e),

where (m(n))n>0 solves the recursion
m(n) = (1+m(n—1))n(km(n—1)+p)+(1—m(n—1))n(km(n—1)—p)—1 =: Gy (m(n—1)), (3.5)

with initial condition m(0). Moreover, for each n > 1, my(o(n)) converges in probability to m(n),
as N — 400

Equation (3.5) describes the macroscopic dynamics of the system with a large number of agents.
The long time behavior of these dynamics is obtained by studying the steady state solutions of
(3.5).

Proposition 3.2. (1) Assume Sk < w Then m = 0 is the unique fized point for (3.5).
Moreover it is a global attractor, i.e. for every m(0) € [—1,1]
lim m(n) = 0.
n—-+00
(2) For Bk > ﬁ, m = 0 is an unstable fixed point. Moreover there is m* > 0 such that
+m* are locally stable fixed points and, for every m(0) € [—1,1]\ {0}
: _ * *
ngrfwm(n) e {—m*,m*}.

Thus (3.5) has the familiar behavior of the Curie-Weiss model. In comparison with the standard
Curie-Weiss model, a slight difficulty is due to the fact that the function Gi(-) in (3.5) is non
necessarily concave in [0, 1]; one however shows that Gi(-) is actually concave for Sk < w,
and at most one change of concavity occurs otherwise. With this remark the standard proof for
the Curie-Weiss model is easily adapted. Details are omitted here.

Let us now turn to the trend-dependent utility (2.11). The above argument for the derivation of
the macroscopic dynamics can be repeated; equation (3.5) is now replaced by

m(n) = (1+m(n —1))n(k[m(n —1) —m(n —2)] + p)
+ (1 =m(n—1))nk[m(n —1) =m(n - 2)] —p) -1,

where we need to assume (mpy(0),my(1)) — (m(0),m(1)). The analysis of the steady states for
(3.6) is considerably harder. Although not yet fully proved, the following picture is supported by
strong numerical evidence (see Fig. 3.1).

Conjecture.

Case p = 0. For Sk < 1, m = 0 is a globally attracting fixed point: for every (m(0),m(1)) €
[717 1]2a

(3.6)

nEI—ir-loo m(n) = 0.

For Bk > 1 all initial conditions, except (m(0), m(1)) = (0,0), converge to a periodic trajectory of
period 6 of the form (...,z*,z*,0,—x*, —z*,0,...) for a unique z* > 0.

Case > 0. There is a constant A~ (Bu) < AT (Bu) := % such that:

e for Sk < A~ (Bu) all initial conditions are attracted to zero;

e for Bk > AT(Bu) for no initial condition, except (m(0),m(1)) = (0,0), the trajectory
converges to 0;

o for A= (Bu) < Bk < AT(Bu), we have that m(n) — 0 if and only if (m(0),m(1)) € N,
where N’ C [~1,1]? is a neighborhood of (0,0).
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Phase diagram (B=1)
6 T T

0 0.25 0.5 0.75 1 1.25 1.5

FIGURE 1. Phase diagram of steady states.

Finally, there is a constant ¢ > 0 such that A~ (8u) < A% (Bp) if and only if Bu > c.

In the case p > 0, the trajectories that do not converge to zero appear to have a much more
complex behavior. The long time behavior is sensitive to the initial condition, and there is no
evidence of locally stable periodic orbits. We observe that, for Bu > cand A~ (8u) < Bk < AT (Bu),
the locally stable fixed point coexists with the “chaotic” phase.

3.2. The strategic case: the utility (2.8). In analogy with (3.2), we begin the analysis by the
optimality condition for the utility (2.8):

oi(n) = sign [k Ei[my(o(n))] + poi(n — 1) + ei(n)] . (3.7)

Equation (3.7) does not uniquely identify the dynamics, due to the possible multiplicity of Nash
equilibria. Nevertheless the following facts hold.

Proposition 3.3. Assume that, for each n > 1, it is selected a Nash equilibrium, i.e. a solution
of (3.7). Then the resulting stochastic process (mn(c(n)))n>0 is tight, and each weak limit point
satisfies a.s. the implicit equation

m(n) = (1+m(n—1))n(km(n)+p) + 1 —m(n—1))n(km(n) —p) -1

=: Ga2(m(n),m(n —1)). (3:8)

For the proof of this result see [3].

The dynamics are now described by the implicit recursion (3.8). By a standard fixed point
argument, it is easily shown that, for every = € [—1,1], the equation y = Ga(y,z) has at least
one solution in [—1,1]. This is the macroscopic version of the existence of a Nash equilibrium
(see Proposition 2.2). On the other hand, possible multiplicity of Nash equilibria translates to
multiple solutions of the equation y = Ga(y, z), producing a large set of possible dynamics, i.e.
sequences (m(n)),>o satisfying (3.8). For the study of these dynamics, it is useful to notice that,
since G(y, ) is linear in x, the equation y = G2(y, z) determines a function x = ¢(y). Computing
the derivative ¢, one shows that for 8k < 1 the function 1 is strictly increasing on R, and thus it
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admits an inverse ¢ = 1 ~!; moreover, ¢ maps [—1,1] into [~1,1]. This simple computation leads
to the following result, whose proof is omitted.

Proposition 3.4. For Bk < 1 and for any p > 0, equation (3.8) gives rise to a single-valued
dynamics.

(1) For Sk §2 Hezﬂ, m =0 is a globally attracting fized point.
(2) For # < Pk <1, m =0 is an unstable fixed point. Moreover, there is m* > 0 such
that £m™* are locally stable fized points and, for every m(0) € [—1,1] \ {0}

nll}rfoom(n) e {—m*,m*}.

1+e—2Bn
2

Note that the high temperature regime Bk < coincides with that of the corresponding

non-strategic model seen in Proposition 3.2. Moreover, as the threshold 1+e; 21 s crossed, but

Bk < 1, the systems enters a polarized phase, again as in the non-strategic model.

But, what happens for Sk > 17 It is not hard to show that, as Sk > 1, if p is small enough,
the function 1 is not monotonic, and, therefore, it cannot be globally inverted: equation (3.8)
determines multi-valued dynamics. A partial description of these dynamics can be inferred by the
following remarks (see also Fig. 3.2).

(A) For all values of the parameters the equation y = Ga(y,x) determines a function y = ¢(x)
mapping a neighborhood of the origin onto a neighborhood of the origin. This map is
contractive, i.e. it has a Lipschitz constant L < 1 for Sk < % and for gk > %.
Thus, there is a low temperature regime in which, if m(0) is sufficiently close to 0, then
m(n) = 0 as n — +oo.

(B) For all gk > % the equation z = Ga(z, x) has exactly three solutions —m*, 0, m*, with
m* > 0. Moreover, the equation y = G2(y, z) determines a contractive function y = ¢(z)
around +m*. Thus +m™* can be seen as locally stable fixed points for the dynamics. Note
that, however, for x close to £m*, the equation y = Ga(y,z) does not have necessarily a
unique solution.

Unlike the non-strategic case, for large values of Sk other steady state solutions emerge.

(C) For Bk sufficiently large, depending on the value of Sy, the equation z = Ga(x, —x) has five
solutions —z@, —zM 0,21 2@ with 0 < () < 3. This means that the trajectories
alternating (") and —z() (or 2(® and —z®) solve (3.8), so they are possible dynamics
for the system. Around each of these points the equation y = Ga(y, z) locally determines
a function y = ¢(x); the aforementioned 2-cycle (trajectory of period two) (—z(M),z(1)
is locally stable (whenever it exists) for the dynamics determined by ¢, while the 2-cycle
(—z®), 2?) is locally stable only for Bk large.

The fact that the recursion (3.8) is multi-valued, allows many other possible dynamics. For
certain values of the parameters, the system could, for instance, shift from a neighborhood of a
fixed point to a neighborhood of a 2-cycle. The selection of one specific dynamics depends on the
selection of a particular Nash equilibrium, which corresponds, in the thermodynamic limit, to the
choice of a particular solution of y = Ga(y, x).

3.2.1. Selection of Nash equilibria. Nash equilibria are fixed points for the best response map (2.10).
In the limit of infinitely many agents, these fixed points become, given m(n — 1), fixed points for
the map y — Ga(y,m(n — 1)). One possible criterion for the selection of the fixed point, is to
assume that a Nash equilibrium is not instantaneously achieved, but it emerges as a result of a
learning mechanism, known under the name of Cournot adjustment (see e.g. [5]). Although there
are several versions of this mechanism, we only consider it in the simplest version. Assume the
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FIGURE 2. Graph of the curve y = Ga(y, x). Intersections with y = z correspond to
fixed points, intersection with y = —x correspond to 2-cycles. Here the parameters
are =1, u=0.7k=22.

dynamics (2.9), or (3.8) in the thermodynamic limit, takes place in a discrete time that we call
macro-time. Between two successive macro-times n — 1 and n the following learning mechanism
evolves on a fast micro-time: for a given choice of £(0) € {—1,1}" we set recursively

&i(k + 1) := argmax [U;(+, €' (k);o(n — 1),&:(n))] ,

where U; is given in (2.8). Fixed points for this micro-dynamics are, by definition, Nash equilibria.
In the limit of infinitely many agents, yj, := & >, & (k) converges to the solution of

Yk+1 = Ga(yg, m(n — 1)). (3.9)

Since the map y — Ga(y,m(n — 1)) is continuous and increasing, the limit limy y; exists, and
it is a fixed point. This allows to select a single solution to the equation y = Ga(y,m(n — 1)).
The selected solution may depend on the choice of yg. This virtually rules out those fixed points
y = Ga(y,m(n—1)) that are unstable for the recursion (3.9); these points cannot indeed be obtained
as limits in the above recursion, unless one chooses 79 = y. To obtain a single-valued dynamics,
one “natural” choice could be to set yg := m(n — 1).

We, now, briefly discuss the implications of this learning procedure. Consider, in particular, the
2-cycles discussed above. Suppose —2@ 2 0, 2M 2@ with 0 < 2 < 23 are the solutions
of z = Go(x, —x).

(a) Set, to begin with, m(n — 1) = —z(1). Tt can be shown that y = 2() is an unstable fixed
point for the map y — Ga(y, —37(1)): for no choice of gy the Cournot adjustment procedure
can select the 2-cycle that alternates —z() and z().

(b) Set now m(n — 1) = —z®). It can be shown that y = 2(?) is a locally stable fixed point for
the map y — Go(y, —z?). However, yo = —z(?) is not in its basin of attraction.

Summing up, the following result can be proved.
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Proposition 3.5. Assume a single-valued dynamics is selected via the Cournot adjustment proce-
dure, with yo = m(n — 1). Then, whenever Bk > % and m(0) # 0, we have

. * *
i m(n) € {-m",m"},

where m* is the unique strictly positive solution of v = Ga(z, x).

Thus, following the Cournot adjustment procedure with yo = m(n — 1), we obtain the same
behavior as the corresponding non-strategic model. Stable 2-cycles may exist, indeed coexist with
stable fixed points, but require different selection procedures.

3.3. The strategic case: the utility (2.12). Finally, we are left with the trend-driven, strategic
case, whose condition for optimality is given by

o;(n) = sign [k:El[mN(a(n))] —kmpy(o(n—1)) + poi(n — 1) +&(n)] . (3.10)
As for Proposition 3.3, we can obtain the following macroscopic description of the dynamics.

Proposition 3.6. Assume that, for each n > 1, it is selected a Nash equilibrium, i.e. a solution
of (3.7). Then the resulting stochastic process (mn(o(n)))n>0 @s tight, and each weak limit point
satisfies a.s. the implicit equation

m(n) = (1+m(n—1)nkmn) —kmn—1)+p) + (1 —m(n—1))n(km(n) —kmn—-1) —p) — 1
=: Gs(m(n),m(n —1)).
(3.11)

The analysis of the steady state solutions of (3.11) has been done in [3].

Proposition 3.7. There is a constant A(Su) < % such that:

(1) the equation y = G3(y,x) uniquely determines a function y = (x) around (x,y) = (0,0).
Moreover v = 0 14s stable for the resulting local dynamics if and only if Bk < %;

(2) for Bk > A(Bu) a 2-cycle exists, i.e. a strictly positive solution of © = Gs(x,—x). For at
least one 2-cycle the dynamics can be locally made explicit, and the 2-cycle is stable for this
local dynamics;

(3) there is a constant 0 < ¢ < £ log?2 such that, if Bu > c, then A(Bu) < %. In this case

stable fixed points coexist with a stable 2-cycle.

Unlike the model corresponding to utility (2.8), in this case the analysis of the best response
map reveals that 2-cycles survive the Cournot adjustment selection. Partial proofs and numerical
simulations strongly support the following conjecture.

Conjecture. Assume the Cournot adjustment selection with yo = m(n — 1) is used to obtain a
single-valued dynamics (m(n))p>0. There is a constant A(Su) < Lte’™ with the properties stated

1
in Proposition 3.7 such that:
(1) if Bk < A(By), then

lim m(n)=0
n—-+0o0o

for every choice of m(0);
(2) if Bk > # then the trajectory m(n) converges, as n — +o0, to a unique stable 2-cycle,
for every m(0) # 0;
(3) if A(Bp) < Bk < %, then there are 0 < £ < £@) such that
(i) the trajectory alternating —¢ M) and €M is an unstable 2-cycle;
(ii) the trajectory alternating —¢ 2 and €@ is a locally stable 2-cycle;
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(iif) if [m(0)] < €M) then m(n) converges to 0 as n — oo, while, if |m(0)| > £1); then
m(n) converges to the stable 2-cycle.
Note that, even with the Cournot adjustment selection, the steady state behavior deeply differs
from the one of the corresponding non-strategic model.

4. CONCLUSION

We have introduced a modeling framework to include forecasting in the dynamics of interacting
systems and discussed the problem of selecting a Nash equilibrium, making the resulting dynamics
single-valued. In a simple mean-field spin model driven by the trend, the introduction of such fore-
casting dramatically changes the low temperature dynamics, producing organized stable periodic
behavior.
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