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Abstract. We study N interacting random walks on the positive integers. Each particle
has drift � towards infinity, a reflection at the origin, and a drift towards particles with
lower positions. This inhomogeneous mean field system is shown to be ergodic only when
the interaction is strong enough. We focus on this latter regime, and point out the e↵ect
of piles of particles, a phenomenon absent in models of interacting di↵usion in continuous
space.

1. Introduction

We consider a particle system where the interaction, if strong enough, generates ergodicity.
More precisely, we consider a system of N particles on the non-negative integers N, which
without interaction evolve as independent random walks, with a drift towards infinity. The
interaction induces jumps towards zero, whose size depends on the specific model we consider,
and whose rate is proportional to the fraction of particles with positions smaller than the
jumping particle.

Let us start with the simplest model we consider. There is a fixed number N of particles
on N, where each particle X

N
i , for i = 1, . . . , N , makes jumps of size 1. If X

N
i > 0, then it

goes to
X

N
i + 1 with rate 1 + �,

X
N
i � 1 with rate 1 + �

1
N

PN
k=1 1(XN

k < X
N
i ).

(1.1)

If X
N
i = 0, then the only allowed jump is rightward. Here � � 0 indicates a bias rightward,

while � 1
N

PN
k=1 1(XN

k < X
N
i ) is a bias leftward. We call this model the small jump model,

and we consider a large class of models where the leftward jump induced by the interaction
term may have amplitude wider than 1. One interpretation of these models is as follows.
N individuals, each associated with an integer valued fitness, have an intrinsic tendency
to improve their fitness in time. However, each individual mimicking only the worse than
him may worsen his fitness. The question is whether a strong interaction can prevent some
individuals from improving forever, i.e. escape towards infinity. At the outset, we make two
remarks which we illustrate in the small jump model. (i) The asymmetry in the drift produces
an inhomogeneous system: the rightmost particle, when alone on its site, has a net drift of
about � � �, whereas the leftmost particle has a positive drift �. (ii) Particles piled up at
the same site do not interact, and this produces a tendency for piles to spread rightward.

When � = 0, and any N , each particle system has no stationary measure. Indeed, it
consists of random walks with a nonnegative drift � � 0 and reflection at zero. Our aim is
to estimate the critical interaction strength, say �⇤N (�) for the N particle system and �⇤1(�)
for the nonlinear process, above which the system has a stationary measure. We focus on
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the simpler model described above since it dominates all others in stochastic ordering. In
particular, ergodicity of the small jumps model implies ergodicity of all others.

Theorem 1. For N � 2, � � 0, and � > 12� + 8�2, the process X
N = (XN

1 , . . . , X
N
N )

described in (1.1) is exponentially ergodic, i.e. there exists a unique probability measure ⇡N

on NN and ⇢N < 1 such that for any initial condition x 2 NN and time t > 0

kPN
x ((XN

1 (t), . . . , XN
N (t)) 2 ·) � ⇡

NkTV  CN (x)⇢tN ,

where CN (x) is bounded, and k · kTV is the total variation norm.

Theorem 1 gives an upper bound on �⇤N (�) uniform in N . It establishes for instance that,
when � = 0 any positive � ensures ergodicity. On the other hand, it is clear that for �  �

the particle system is transient. By means of a Lyapunov function it is possible to establish
a the lower bound on �⇤N (�).

Theorem 2. For N � 2, � � 0, and

� <
�
1 + ✏N

�
2�, with ✏N :=

N
2(� + 2)

N(N � 1)(� + 2) � 2�
� 1 �! 0,

the process X
N generated by (1.1) is transient.

Since the interaction is of mean-field type, we associate to (1.1) a nonlinear Markov process
{X(t)}t�0 whose possible transitions at time t � 0 are as follows.

X(t) + 1 with rate 1 + �,

X(t) � 1 with rate 1 + �µt[0, X(t)),
(1.2)

where µt is the law of X(t) and, as in (1.1), when X(t)=0, only the rightward jump is
allowed.

We give an upper bound and a lower bound on the critical value �⇤1(�).

Theorem 3. For � � 0, and � > 4�, the nonlinear process(1.2) has at least one stationary
distribution. Moreover, for �  2� there is no stationary distribution.

In Section 5 we point out that similar models in the continuum and with di↵usive dynam-
ics, have been studied in [7, 8, 11]. In those papers the authors study systems of particles
whose drift depends on the cumulative distribution function (CDF) of the empirical measure,
that translates into a McKean-Vlasov process with a drift depending on the CDF of the law
of the process itself. Along the line of the latter papers, we obtain explicit conditions for the
ergodicity of continuous analogues of (1.1) and (1.2).

Despite the same interacting mechanism, the continuous and the discrete model display
a peculiar di↵erence. Indeed, in the discrete model the particles can form large clusters on
a single site. When particles are on the same site, according to our description, they cannot
interact and this interferes with ergodicity. On the other hand, the interaction prevents the
particles from escaping to infinity and it favors the creations of clusters. The lower bound in
Theorem 2 is strictly greater than the critical value of the continuum model, highlighting the
di↵erent role played by the occurrence of piles in our case. We believe that this di↵erence is
substantial and gives rise to a non-trivial expression for �⇤1(�), unexpected by the analysis
of the continuous model. In Section 6, we exploit a link with Jackson’s Networks. This gives
sharper estimates on the critical values. In particular we derive the exact form of �⇤2(�). For
N > 2 the applicability of this method is still an open problem; however Jackson’s Networks
suggest heuristic computation leading to conjecture the critical interaction strength for all
values of N as follows.
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Conjecture 1.1. Fix N � 3, the process X
N in (1.1) is ergodic if, and only if,

(1 + �)N <

N�1Y

k=1

(1 + �
k

N
). (1.3)

Taking the limit as N goes to infinity, a natural conjecture is the critical interaction
strength for the nonlinear process.

Conjecture 1.2. Fix � � 0, then for all � such that

(1 +
1

�
) ln (1 + �) � 1 > ln (1 + �) ,

the nonlinear process X in (1.2) has at least one stationary measure.

The rest of the paper is organized as follows. The well-posedness of the process (1.2)
and the link between (1.1) and (1.2) is addressed in Section 2, where we define a larger
class of models, and prove propagation of chaos. In Section 3, we give an upper bound on
�
⇤
N (�), uniform in N � 2. We determine su�cient conditions for the exponential ergodicity

of the processes X
N , and for the tightness of the corresponding stationary distributions. In

Section 4 we focus on the existence of stationary measures for the nonlinear process in (1.2).

2. The model and propagation of chaos

In this Section we properly define a class of interacting random walks which includes
(1.1), and describe the large-scale limit in terms of a propagation of chaos property. Since
all results in this Section are rather standard, we omit the proofs. We consider N particles
on the nonnegative integers, let X

N = (XN
1 , . . . , X

N
N ) 2 NN be the vector of the particles’

positions. Each particle has its own intrinsic dynamics, which is then perturbed by interac-
tion.

The intrinsic dynamic is given by a simple biased random walk independent of the
other particles and reflected at zero. This is described by 2 independent Poisson clocks for
each particle, one with rate 1, governing the leftward jump and the other with rate 1 + �,
� � 0, governing the rightward jump.

The interaction dynamic is tuned by a parameter � > 0. Every pair of particles
(XN

i , X
N
j ) is activated with rate �

N �(XN
i , X

N
j ), where � : N2 ! [0, 1] is a bounded sym-

metric function. If the two particles have the same fitness level, i.e. X
N
i = X

N
j , then nothing

happens. Otherwise, if for example X
N
i < X

N
j , then the most fit one (in the example X

N
j ) is

encouraged to worsen. This means that its fitness makes a leftward jump of size  (XN
j , X

N
i ),

where  : N2 ! N is a symmetric function such that 1   (x, y)  x _ y for all (x, y) 2 N2.

This class of dynamics includes (1.1), by choosing �(x, y) =  (x, y) ⌘ 1, as well other
models of interest. For instance, choosing �(x, y) = 1 and  (x, y) = |y�x|, the particle with
highest position jumps to the position of the lowest. In the framework of a population of
individuals where the position of each individual describes its fitness, this can be interpreted
as the death of a particle that gives birth to a child whose level of fitness is equal the one of
a less fit individual chosen at random.
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The above Markovian dynamics can be described in terms of the infinitesimal generator
LN , acting on bounded measurable function f : NN ! R in the following way:

LN
f(z) =

NX

i=1

[1(zi > 0)(f(z � �i) � f(z)) + (1 + �)(f(z + �i) � f(z))]

+
�

N

NX

i=1

NX

k=1

1(zk < zi)�(zi, zk) (f(z � �i (zi, zk)) � f(z)) , (2.1)

where �i(k) = 1 if k = i, and 0 otherwise. Alternatively, dynamics can be seen as the
solution of a system of SDEs: for i = 1, . . . , N

dX
N
i (t) = �1(XN

i (t�) > 0)

Z 1

0
1[0,1](u)N i

(�)(du, dt) +

Z 1

0
1[0,1+�](u)N i

(+)(du, dt)

�
Z

[0,1]

Z 1

0

XN
i (t�)�1X

k=0

 (k, X
N
i (t�))1Ik(XN

i (t�),µN
t�

)(h)1[0,�](u)N i(du, dh, dt), (2.2)

where {N i
(�),N

i
(+),N

i}i=1,...,N are independent stationary Poisson processes with charac-

teristic measures, respectively, dudt, dudt and dudhdt, the empirical measure µ
N is defined

by

µ
N
t =

1

N

NX

i=1

�XN
i (t),

and the interval Ik(x, µ) is given as follows:

Ik(x, µ) : =

( ⇣Pk�1
y=0 �(y, x)µ(y),

Pk
y=0 �(y, x)µ(y)

i
for k > 0

(0,�(0, x)µ(0)] for k = 0

Note that the solution of (2.2) can be constructed pathwise for any initial condition, so no
problem of well posedness arise here.

2.1. Mean-field limit and propagation of chaos. The heuristic limit N ! 1 in (2.2),
leads to the following nonlinear SDE:

dX(t) = �1(X(t�) > 0)

Z 1

0
1[0,1](u)N(�)(du, dt) +

Z 1

0
1[0,1+�](u)N(+)(du, dt)

�
Z

[0,1]

Z 1

0

X(t�)�1X

k=0

 (k, X(t�))1Ik(X(t�),µt� )(h)1[0,�](u)N (du, dh, dt), (2.3)

where µt = Law(X(t)), {N(�),N(+),N} are independent stationary Poisson processes with
characteristic measures, respectively, dudt, dudt and dudhdt. The intervals Ik(x, µ) are de-
fined as above. Henceforth, to ensure well-posedness of the nonlinear system, we require the
functions  and � to satisfy the following condition: there exists C < 1 such that for all
x, y 2 N and ↵,� 2 M(N) probability measure on N

�����

x_y�1X

k=0

 (k, x _ y) |Ik(x,↵)�Ik(y,↵)|

�����  C|x � y|,

where for A, B two intervals of the real line A�B : = A\B [ B\A and
������

X

(x,y,z)2A

↵(y)↵(z) � �(y)�(z)

������
 C

X

x2N
|↵(x) � �(x)|,
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where A : = {(x, y, z) 2 N3 : z > x, z > y, z �  (y, z) = x}. These Lipschitz conditions are
designed to allow the usual proof of uniqueness via Gronwall’s inequality. Notice that they
are obviously satisfies for the model in (1.1).

Theorem 4 (Propagation of chaos). For every µ0 probability measure on N, equation (2.3)
admits a pathwise unique solution whose law is denoted µ 2 M(D(R+

,N)). Moreover, let
P

N 2 M(D(R+
,N)N ) be the law of the solution of system (2.2) with i.i.d. µ0-distributed

initial conditions. Then the sequence P
N is µ-chaotic: for every k � 1, the projection of P

N

of the first k components converges weakly, as N ! 1, to the product measure µ
⌦k.

The proof of propagation of chaos follows the classical approach developed in [12] for
proving that the sequence of empirical measures is tight, that its limit points belong to the
solutions of (2.3), and that its solution is unique. This approach is more flexible than the
coupling approach presented in [13], but it does not provide any rate of convergence. Since
it is standard, we omit to reproduce the details.

3. Exponential ergodicity of the particle systems:
proof of Theorem 1

In this section we study the long time behavior of the system with N particles. We restrict
the analysis to the specific model with small jumps, defined by (1.1), whose generator is given
by

LN
(SJ)f(z) =

NX

i=1

�
1(zi > 0)r�

i f(z) + (1 + �)r+
i f(z)

�
+
�

N

NX

i=1

r�
i f(z)

NX

k=1

1(zk < zi),

where r�
i f(z) = f(z � �i) � f(z) and r+

i f(z) = f(z + �i) � f(z). It is easily seen that this
model stochastically dominates all models defined in Section 2. In other words, let Y

N (t) be
any Markov process among those defined in Section 2. It can be coupled with X

N (t) defined
in (1.1) such that Y

N (0) = X
N (0) and Y

N (t)  X
N (t) for every t � 0, with respect to the

componentwise partial order on NN . By standard results on countable Markov chains, the
ergodicity of Y

N (t) follows from that of X
N (t).

Our purpose is to prove Theorem 1 by means of a Lyapunov function. We choose a function
that is the product of two exponential functions, encoding two characteristics of the particle
system: the center of mass and the height of the highest “pile” of particles. This function
depends on two positive parameters ↵ and � that we tune in order to produce the desired
inequality. Let us define

 (x) =
1

N

NX

i=1

e
↵xi , and �(x) = e

+ �
N ⌘̄(x)

, where ⌘̄(x) : = max
v2N

NX

i=1

1(xi = v).

Then, V
N
↵,�(x) : =  (x)�(x) is our candidate Lyapunov function. Let us now describe briefly

the idea of the proof. We exploit the multiplicative form of V
N
↵,�(x) and the fact that we can

write
LN
(SJ) � =  LN

(SJ)�+ �LN
(SJ) + �N

(SJ)(�, ),

where �N
(SJ) is the operator carré du champ. Now, �N

(SJ)V
N
↵,� can be bounded by a term

proportional to (e� � 1)(e↵ � 1)V N
↵,�(x). For ↵ su�ciently small and � = C↵ for an ap-

propriatly chosen constant C > 0, we find � > 0 and a constant H � 0 for which
LN
(SJ)V

N
↵,�(x)  ��V N

↵,�(x)+H. This establishes the exponential ergodicity criterion of Meyn

and Tweedie [9].
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Proof of Theorem 1. Fix � � 0 and N � 2. It is su�cient to prove that the exponential
ergodicity criterion from Meyn and Tweedie, [9] holds for all values of � greater than �

⇤ =
�
2 + 12�. Note that this �⇤ does not depend on the size N of the particle system. We aim

now to bound the following function

LN
(SJ)V

N
↵,�(x) = �(x)LN

(SJ) (x) +  (x)LN
(SJ)�(x) + �N

(SJ)(�, )(x).

We treat separately LN
(SJ) (x), LN

(SJ)�(x) and �N
(SJ)( ,�)(x) and we divide the space NN

into two subsets, where we use two di↵erent approaches. One subset of NN is the region of
space such that where there is one single tall pile of particles (by tall pile we intend
that it contains more than half the particles), i.e. the region

⇤N : = {x 2 NN : ⌘̄(x) >
N

2
}.

The other region is its complementary ⇤c
N . Note that in ⇤N there is only one tall pile. The

bound on LN
(SJ) (x) relies on two inequalities. First,

KN :=
1

N

NX

i=1

µN [0, xi) =
1

2N2

NX

i,j=1

1(xj 6= xi) �
⌘̄(x)

N

�
1 � ⌘̄(x)

N

�
.

Thus, on ⇤N , KN �
�
1 � ⌘̄(x)

N

�
/2. Secondly, using FKG’s inequality,

1

N

NX

i=1

e
↵xiµN [0, xi) �  (x)

1

N

NX

i=1

µN [0, xi)

We start now estimating LN
(SJ) ,

LN
(SJ) (x) =

NX

i=1

(1+�)r+
i  (x)+r�

i  (x)�
NX

i=1

1(xi = 0)r�
i  (x)+�

NX

i=1

µN [0, xi)r�
i  (x)

= (e↵ + e
�↵ � 2) (x) + �(e↵ � 1) (x)

+ (1 � e
�↵)

1

N

NX

i=1

1(xi = 0) � �(1 � e
�↵)

1

N

NX

i=1

e
↵xiµN [0, xi)

 (e↵ + e
�↵ � 2) (x) + �(e↵ � 1) (x)

+ (1� e
�↵)

1

N

NX

i=1

1(xi = 0)� �(1� e
�↵) (x)KN1(⇤c

N )� �(1� e
�↵) (x)

1 � ⌘̄(x)
N

2
1(⇤N ).

The bound on LN
(SJ)�(x), instead, is performed as follows.

i) For all x 2 ⇤N there exists a unique v
⇤(x) = arg maxv2N

PN
i=1 1(xi = v), so the

function �(x) changes values under the e↵ect of LN
(SJ) only because of the particles
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in v
⇤(x) � 1, v

⇤(x) and v
⇤(x) + 1. Therefore, in this case

LN
(SJ)�(x) =

NX

i=1

(1 + �)r+
i �(x) + r�

i �(x) �
NX

i=1

1(xi = 0)r�
i �(x) + �

NX

i=1

µN [0, xi)r�
i �(x)

= � ⌘̄(x)(1 � e
��/N ) (1 + � + 1(v⇤(x) > 0) + �µN [0, v

⇤(x)))�(x)

+ (e�/N � 1)(⌘(v⇤(x) � 1)(1 + �) + ⌘(v⇤(x) + 1)(1 + �µN [0, v
⇤(x) + 1)))�(x)



� ⌘̄(x)

N
N(1 � e

��/N )(1 + �) � ⌘̄

N
N(1 � e

��/N )�µN [0, v
⇤(x))

+ (N � ⌘̄(x))�µN [0, v
⇤(x))(e�/N � 1) + (1 + �)(N � ⌘̄(x))(e�/N � 1)

+(N � ⌘̄(x))(e�/N � 1)�
⌘̄(x)

N

�
�(x).

ii) In ⇤c
N , we bound LN

(SJ)�(x) with the pessimistic assumption that every jump in-

creases �(x) by an amount (e�/N � 1)�(x), this means that

LN
(SJ)�(x) 

 
N(2 + �) + �

NX

i=1

µN [0, xi)

!
(e�/N � 1)�(x),

where the term NKN appears and it will compensate the same term coming from
LN
(SJ) (x).

The carré du champ term reads

�N
(SJ)(�, )(x) =

NX

i=1

(1 + �)r+
i  (x)r+

i �(x) + r�
i  (x)r�

i �(x)

�
NX

i=1

1(xi = 0)r�
i  (x)r�

i �(x) + �

NX

i=1

µN [0, xi)r�
i  (x)r�

i �(x).

It admits the following elementary bound:

|�N
(SJ)( ,�)(x)|  N(2 + �+ �)(e↵ � 1)(e�/N � 1)V N

↵,�(x).

Given these bounds, we want to identify those values for �, for which we can properly choose
↵, � positive such that

LN
(SJ)V

N
↵,�(x)  ��NV

N
↵,�(x) + H,

for some constants �N > 0 and H � 0. In the two complementary regions we have the
following upper bounds for LN

(SJ)V
N
↵,�(x), up to bounded terms that can be incorporated in

H:

A) for x 2 ⇤N :
"
(e↵ + e

�↵ � 2) + �(e↵ � 1) � �(1 � e
�↵)

1 � ⌘̄(x)
N

2

�
⇣
⌘̄(x)

N
e
��/N � (1 � ⌘̄(x)

N
)
⌘
�(e�/N � 1)µN [0, v

⇤(x))

� ⌘̄(x)

N
N(1 � e

��/N )(1 + �) + (1 + �)(N � ⌘̄(x))(e�/N � 1) + (N � ⌘̄(x))(e�/N � 1)�
⌘̄(x)

N

+N(2 + � + �)(e�/N � 1)(e↵ � 1)
i
V

N
↵,�(x);
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B) for x 2 ⇤c
N :

h
(e↵ + e

�↵ � 2) + �(e↵ � 1) � �(1 � e
�↵)KN + (N(2 + �) + �NKN ) (e�/N � 1)

+N(2 + � + �)(e�/N � 1)(e↵ � 1)
i
V

N
↵,�(x).

We want to make negative the two terms above within the square brackets, by choosing
properly ↵ and �; we start by letting � = C↵, for some C > 0 and take ↵ small.

Let us look at the quantity in A). The term

⌘̄(x)

N
e
��/N � (1 � ⌘̄(x)

N
)

is positive for � su�ciently small, so we can neglect it. The terms N(2+�+�)(e�/N�1)(e↵�1)
and (e↵+e

�↵�2) are of order ↵2 for ↵ # 0; they can be neglected since the remaining terms
are of order ↵. We are left to find � and C such that

�(e↵�1)��(1�e
�↵)

1 � ⇠

2
�⇠N(1�e

��/N )(1+�)+(1+�)(1�⇠)N(e�/N �1)+(1�⇠)N(e�/N �1)�⇠

is negative for all ⇠ 2 (12 , 1]. Then, for ↵ su�ciently small, this condition becomes

� � (1 � ⇠)

✓
�

2
� C(1 + �⇠ + �)

◆
� C⇠(1 + �) < 0,

for all ⇠ 2 (1/2, 1], that gives the conditions on C:

�

1 + �
 C  �� 4�

�
.

Now we look at point B). Again, we do not consider the terms N(2+�+�)(e�/N �1)(e↵�1)
and (e↵ + e

�↵ � 2). We want to find conditions under which

�(e↵ � 1) � �(1 � e
�↵)KN + (N(2 + �) + �NKN ) (e�/N � 1)

is negative for all values assumed by KN for x 2 ⇤c
N . This, for ↵ small, is

� � �KN + C(2 + � + �KN )  0,

that gives an additional conditions on C: for every k 2 [1/4, 1]

C  �k � �

2 + � + �k
.

The conditions are independent of N , and they are satisfied only if � > 12� + 8�2.
⇤

4. Invariant measures for the nonlinear process:
proof of Theorem 3

The ergodicity of each N -particle system (2.1), together with the propagation of chaos
stated in Theorem 4, do not directly imply ergodic properties on the limiting dynamics (2.3),
not even the existence of an invariant measure. A stronger (time-uniform) propagation of
chaos property would be needed for this purpose (see e.g. [2, Theorem 3.1]), but this result
is not proved yet. Thus we study separately the nonlinear system. Again, we focus on the
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model with small jumps, described in (1.2), that corresponds to the solution {X(t)}t�0 of
the following nonlinear SDE

dX(t) = �1(X(t�) > 0)

Z 1

0
1[0,1](u)N(�)(du, dt) +

Z 1

0
1[0,1+�](u)N(+)(du, dt)

�
Z

[0,1]

Z 1

0
1[0,µt� ([0,X(t�)))(h)1[0,�](u)N (du, dh, dt), (4.1)

where µt = Law(X(t)), {N(�),N(+),N} are independent stationary Poisson processes with
characteristic measures, respectively, dudt, dudt and dudhdt, and, by convention µt[0, 0) = 0.

We first prove, under the condition � > 4�, the existence of at least one stationary dis-
tribution by means of a transformation � in the space M(N), for which every stationary
distribution of (4.1) is a fixed point. This is an approach widely exploited in the study of
quasi-stationary distributions (QSD) in countable spaces, see [1, 4, 5].

We define a continuous time Markov chain on N, parametrized by a measure. Fix µ 2
M(N), then let {Xµ(t)}t�0 be the process with infinitesimal generator defined as follows.
For f 2 Cb, and x 2 N

Lµ
f(x) = (1 + �)(f(x + 1) � f(x)) + 1(x > 0)(1 + �µ[0, x))(f(x � 1) � f(x)).

Assuming � > �, for every measure µ, the birth and death process {Xµ(t)}t�0 is ergodic,
and ⇡µ denotes its unique stationary distribution. Define the map

� : M(N) ! M(N)
µ 7! ⇡

µ
,

By definition, µ
⇤ is a stationary distribution for (4.1) if and only if it is a fixed point of �.

Proof of Theorem 3: upper bound. The proof of the upper bound consists of three steps.
First we define an auxiliary map that stochastically dominates the map �, then we prove
that this map preserves a certain subset of M(N), finally we prove that � admits at least
one fixed point in that subset.

Step 1. Given µ 2 M(N), consider the birth and death process with infinitesimal generator

Lmf(x) = (1 + �)(f(x + 1) � f(x)) + (1(x > 0) +
�

2
1(x > m))(f(x � 1) � f(x)),

Since we are assuming � > 4� (here � > 2� would su�ce), this process is ergodic, and
we denote by ⇡m its stationary distribution. We claim that for all µ 2 M(N), we have
⇡
µ � ⇡med(µ), where med(µ) denotes the median of µ and � is the usual stochastic ordering

on M(N). This is proved by using the so-called basic coupling between Lµ and Lmed(µ), i.e.
the Markov process (Xt, Yt) on N2 that, at every time t � 0, jumps in the following positions:

(Xt + 1, Yt + 1) with rate 1 + �,

(Xt � 1, Yt � 1) ” 1(Xt > 0)1(Yt > 0) + �

⇣
µ[0, Xt) ^ 1(Yt>med(µ))

2

⌘
,

(Xt � 1, Yt) ” 1(Xt > 0)1(Yt = 0) + �

⇣
µ[0, Xt) � 1(Yt>med(µ))

2

⌘

+
,

(Xt, Yt � 1) ” 1(Xt = 0)1(Yt > 0) + �

⇣
1(Yt>med(µ))

2 � µ[0, Xt)
⌘

+
.

Note that this dynamics preserves the order Xt  Yt. Since X evolves according to Lµ and
Y to Lmed(µ), which are both ergodic, the order is preserved in equilibrium, i.e. ⇡µ � ⇡med(µ)

as desired. We also observe that, by a similar (simpler) coupling argument, ⇡m � ⇡m0 for
m  m

0.
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Step 2. We now show that if m
⇤ is large enough and µ � ⇡m⇤ , then ⇡

µ � ⇡m⇤ . By
Step 1, this follows if we show that ⇡med(µ) � ⇡m⇤ , which amounts to med(µ)  m

⇤; since
µ � ⇡m⇤ .Thus, it is enough to show that for some m

⇤, med(⇡m⇤)  m
⇤. To see this, we use

the explicit formula for the stationary measure of a birth and death process, obtained by
the detailed balance equation: for Z

⇤ normalizing constant,
(
⇡m⇤(x) = 1

Z⇤ (1 + �)x for x  m
⇤;

⇡m⇤(x) = 1
Z⇤ (1 + �)m

⇤
⇣

1+�
1+�/2

⌘x�m⇤

for x > m
⇤
.

The desired inequality med(⇡m⇤)  m
⇤ follows if we show that

⇡m⇤ [0, m
⇤] > ⇡m⇤(m⇤

,1).

Indeed, this is equivalent to

(1 + �)bm
⇤c+1 � 1

�
> (1 + �)bm

⇤c 1 + �

�/2 � �

and, by simplifying,
�/2 � 2�

�/2 � �
>

1

(1 + �)bm⇤c+1
,

which holds for m
⇤ su�ciently large.

Step 3. Define the set

Mm⇤(N) : = {µ 2 M(N) : µ � ⇡m⇤} ,

where m
⇤ has been determined in step 2. We have seen that the function � maps Mm⇤

into itself. Moreover, Mm⇤ is clearly convex, and it is compact for the weak topology, being
closed and tight. The existence of a fixed point follows from Schauder-Tychonov fixed point
theorem if we show that � is continuous. Let µn ! µ in Mm⇤ . By the formula for the
stationary distribution of a birth and death process we have

⇡
µn(x) =

1

Z⇤
n

(1 + �)k
Qk�1

h=0(1 + �µn[0, h))
,

with

Z
⇤
n : =

1X

k=0

(1 + �)k
Qk�1

h=0(1 + �µn[0, h))
.

Since
(1 + �)k

Qk�1
h=0(1 + �µn[0, h))

 (1 + �)k
Qk�1

h=0(1 + �⇡m⇤ [0, h))
,

by the Dominated Convergence Theorem

Z
⇤
n ! Z

⇤ :=
1X

k=0

(1 + �)k
Qk�1

h=0(1 + �µ[0, h))
,

and ⇡µn ! ⇡
µ, which establishes continuity. ⇤

Let us underline the importance of this approach with the fixed point argument. It gives
an upper bound for the critical value �⇤1(�) which is linear in �. Indeed, based on numerical
computation, we see that the condition on � is not quadratic in �, as the one emerging from
Theorem 1. Clearly the one found in Theorem 3 is not optimal and in the following sections
we propose conjectures for the critical value for the system (SJ) in both the particle system
and the nonlinear limit equation.
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Proof of Theorem 3: lower bound. We show that, for �  2�, the nonlinear system has no
stationary distribution. Let us remark, to begin with, that for �  � the conclusion is
essentially obvious: indeed, the nonlinear Markov process can be coupled, monotonically from
below, with a reflected random walk with forward rate 1+ � and backward rate 1+�, whose
distribution at time t tends to concentrate in +1 as t " +1, for any initial distribution.
So assume � > �, and suppose there exists a stationary distribution µ. The Markov process
generated by Lµ has a strictly negative drift for su�ciently large positions; this implies that
its stationary distribution, that is µ by assumption, has tails not larger than exponentials. In
particular, denoting by (Xt)t�0 the associated stationary process, E(Xt) < +1. Moreover,
denoting by id the identity map on N,

0 =
d

dt
E(Xt) = E [Lµid(Xt)] = � � �

X

x�1

µ[0, x � 1]µ(x). (4.2)

But
X

x�1

µ[0, x � 1]µ(x) =
X

x�1

µ[0, x � 1] (µ[0, x] � µ[0, x � 1])

=
X

x�1

�
µ
2[0, x] � µ

2[0, x � 1]
�
�
X

x�1

µ[0, x] (µ[0, x] � µ[0, x � 1])

= 1 �
X

x�1

µ[0, x � 1] (µ[0, x] � µ[0, x � 1]) �
X

x�0

µ
2(x)

which implies
X

x�1

µ[0, x � 1]µ(x) <
1

2
.

Inserting this in (4.2), we get � > 2�, which completes the proof. ⇤

5. Lower bounds on the critical value �⇤N (�) for (SJ):
proof of Theorem 2

5.1. The continuous analogue. Before giving the proof of Theorem 2, we briefly illustrate
what is known for a similar model in the continuum (see [7] for further detail). We consider,
more specifically, the Markov process (Xt)t�0 in DN : = {x 2 RN : xi � 0 8 i = 1, . . . , N}
with infinitesimal generator

LN
c f(x) =

NX

i=1

1

2

@
2

@x
2
i

f(x) �
 
� � �

N

NX

k=1

1(xk  xi)

!
@

@xi
f(x), (5.1)

and reflection on the boundary of DN . Optimal ergodicity conditions for this system follow
from known results on reflecting Brownian motions in polyhedra, see [14, 10]. The sta-
tionary distribution is explicit, and it is better described in terms of the reordered process
(XN

(1)(t), . . . , X
N
(N)(t)) obtained by ordering increasingly (XN

1 (t), . . . , XN
N (t)), and that takes

values in the wedge WN := {y 2 RN : 0  y1  y2  · · ·  yN}.

Proposition 5. The process given in (5.1) has a unique stationary distribution ⇡
N if and

only if

� > 2�
N

N � 1
=: �cN (�).
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Moreover, this stationary distribution is such that the gaps (XN
(1), X

N
(2)�X

N
(1), X

N
(3)�X

N
(2), . . . )

are independent exponential random variables of parameters 2ai, where

ai =
�

2N


(N + 1 � i)

✓
i � �(2 � N) + 2�N

�

◆�
.

Let us stress that, in the case of di↵usion processes reflected in a polyhedra, there is a.s.
no triple collision, see [10]. This means that the non-smooth parts of the boundary of the
wedge WN are of no importance in the dynamics of the reordered process, and that it is
su�cient to consider reflection conditions on the hyperplanes of dimension N � 1. This is
the main di↵erence between the continuous case and our model. In the discrete case, indeed,
the “piles” of particles (that correspond to the whole boundary of DN ) matter. In fact, the
lower bound give in Theorem 2 is strictly larger than �cN (�).

5.2. Proof of Theorem 2. Let WN := {y 2 NN : 0  y1  y2  · · ·  yN} be the state
space of the reordered process (XN

(1)(t), . . . , X
N
(N)(t)), and denote by LN

ord its infinitesimal
generator. The proof of this lower bound is made by means of a Lyapunov function. We
define a linear function f : WN ! R such that for all � strictly greater than the lower bound

LN
ordf(x) > 0,

for all x 2 WN . This implies transience of the Markov chain, see [3, Theorem 2.2.7].
We fix N � 2 and � � 0, then we consider the N dimensional vector v✏ = (1+✏, 1, 1, . . . , 1)

and the function f✏(x) = hv✏, xi :=
P

i vixi, defined on WN . For x in the interior of WN , i.e.
when particles are in distinct positions, a simple computation leads to

LN
ordf✏(x) = N� + ✏� � �

N � 1

2
.

We decompose the boundary @WN as follows:

@WN =
N[

k=1

W(N,k),

where

W(N,k) : = {x 2 @WN : x1 = · · · = xk < xk+1},
meaning that the lowest particle belongs to a pile of height k. For x 2 W(N,1) we have

LN
ordf✏(x) � N� + ✏� � �

N � 1

2
.

Indeed, the only di↵erence with respect to the interior of WN is that some particle of position
xi, with i � 2, has a rate of backward jump lower than 1 + �

i�1
N , due to the fact that other

particles have the same position. For x 2 W(N,k), with k � 2, the situation is di↵erent
since the position x1 may only decrease with a single jump and the rate of this move is
proportional to the height of the first pile. This leads to the estimate

LN
ordf✏(x) � N� � k✏� �

N � 1

2
+ �

k(k � 1)

2N
. (5.2)

It is easy to check that if 0  ✏  3�
4N then the minimum over k in (5.2) is attained at k = 2.

So, under the condition 0  ✏  3�
4N , the inequality LN

ordf✏(x) > 0 follows for every x 2 WN
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from

N� + ✏� � �
N � 1

2
> 0

N� + ✏� � �
N � 1

2
+
�

N
� 2✏ > 0.

(5.3)

In the case N�� �
N�1
2 > 0 (which is exactly the condition of non-ergodicity in Proposition

5) we can chose ✏ = 0. Otherwise, after having noticed that the second inequality in (5.3)
implies ✏  �

2N , the existence of a nonnegative ✏ for which (5.3) holds is equivalent to

�(N � 1) � 2N�

�
< N� � �

N � 1

2
+
�

N
,

which yields

� <
2N

2(� + 2)�

N(N � 1)(� + 2) � 2�
,

which is the desired estimate.

6. Conjectures on the exact critical values and stationary measure for (SJ)

6.1. The gap process. With a simple linear transformation of the process (XN
(1), . . . , X

N
(N)),

we define the gap process G
N = (GN

1 , . . . , G
N
N ), where G

N
1 : = X

N
(1) and G

N
i : = X

N
(i) �

X
N
(i�1) for i = 2, . . . , N , that is a reflected random walk in NN . In the continuous analogue,

this process is a di↵usion reflected in R
N
+ and we see from Proposition 5 that is possible to

identify its stationary measure for each fixed N . In the stationary regime the gaps are inde-
pendent and exponentially distributed with di↵erent parameters, such that the admissibility
of these parameters determines the critical value of �. We do not expect independence of
the gaps for all N � 2 in the discrete setting, because of the importance of triple (or more)
collisions of particles. In the following we give a complete treatment in the case N = 2 and
we conjecture the critical value �⇤N (�) for N > 2, based on the theory of Jackson networks.

6.2. Exact study of gap process for N = 2. Let us focus on the case N = 2. The gap
process G

2 = {(G2
1(t), G

2
2(t))}t�0 is a reflected random walk in the positive quadrant. It

jumps from g = (g1, g2) according to the following rules.

If g1 > 0, g2 > 0, g ! g + (1,�1) with rate 1 + �

g + (0,�1) ” 1 + �
2

g + (�1, 1) ” 1
g + (0, 1) ” 1 + �

If g1 = 0, g2 > 0, g ! g + (1,�1) ” 1 + �

g + (0,�1) ” 1 + �
2

g + (0, 1) ” 1 + �

If g1 > 0, g2 = 0, g ! g + (�1, 1) ” 2
g + (0, 1) ” 2 + 2�

(0, 0) ! (0, 1) ” 2 + 2�.



14 LUISA ANDREIS, AMINE ASSELAH, AND PAOLO DAI PRA

Theorem 6. The process G
2 is exponentially ergodic if and only if � > 2�2 +4�. Moreover,

when it exists, the unique stationary measure ⇡2 has the following explicit form:

⇡2(0, 0) = C
2

⇡2(0, y) = C

✓
1+�
1+�

2

◆y

y � 1,

⇡2(x, 0) = C
2

✓
(1+�)2

1+�
2

◆x

x � 1,

⇡2(x, y) = C

✓
(1+�)2

1+�
2

◆x✓
1+�
1+�

2

◆y

x � 1, y � 1,

for C : =
2(�2��)(�2�2���2)

(�2+�2)(�2+1)
.

The proof of exponential ergodicity is based on the link between the gap process G
2

and a Jackson network, for which exponential ergodicity is proven by Fayolle, Malyshev
and Menshikov, [3]. Jackson networks are queueing models, first introduced by Jackson [6],
that proved the product form of their stationary distribution. An open Jackson network
with two nodes Z

2(t) : = (Z2
1 (t), Z

2
2 (t)) represents at time t � 0 the length of two queues,

where the inputs are Poissonian with parameters �i at node i, for i = 1, 2. The two servers
have exponential service times with parameters µi and a customer, after being served has
a probability pi,0 of exiting the system and pi,j of being transferred to node j, for j = 1, 2.
Therefore, for a jump of amplitude j = (j1, j2) we have the following rates:

rate(j) : =

8
<

:

�i for j = ei,
µipi,0 for j = �ei,
µipi,j for j = �ei + ej .

The rates do not depend on the current value of the process Z
2, with the only exception that,

if the i-th component is equal to zero, jumps that decrease that component are suppressed.

Because of the nature of the jumps of the gap process G
2, where the increase by one unit

of a component causes the decrease by one unit of another, except that for the “last gap”,
we associate to the gap process G

2 a particular two dimensional Jackson network. Let Z
2

be such that its parameters take the following values:

�1 = 0, µ1 = 1, p1,0 = 0, p1,2 = 1,

�2 = 1 + �, µ2 = 2 + �
2 + �, p2,0 =

+�
2

µ2
, p2,1 = 1+�

µ2
.

The process Z
2 defined in this way has the same jumps and the same rates of G

2 in the
internal region N⇤ ⇥ N⇤, while has a slight di↵erence in the rates on the boundaries, see
Figure 1 and 2.

The two processes have embedded Markov chains with the same transition matrix. This
implies that conditions for ergodicity are the same for both processes, with the same sta-
tionary measure.

Proof of Theorem 6. Consider the Jackson network Z
2 with same rates of G

2 in the internal
region. Let (⌫1, ⌫2) be the solution of the so-called Jackson’s system:

⇢
⌫1 = �1 + ⌫2p2,1,

⌫2 = �2 + ⌫1p1,2.
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2 + 2�

(0, 0)

2 2 + 2�

1 + �
2

1 + �

1 + �

1

1 + �1 + �
2

1 + �

Figure 1. Jump rates of
the gap process G

2.

1 + �

(0, 0)

1 1 + �

1 + �
2

1 + �

1 + �

1

1 + �1 + �
2

1 + �

Figure 2. Jump rates of
the Jackson network Z

2.

Classical results on Jackson networks, see [3, Theorem 3.5.1], say that Z
2 is ergodic if and

only if ⌫i < µi, for i=1,2. In our case this condition becomes
8
<

:

(1+�)2

(1+�
2 )

< 1,

(1+�)µ2

(1+�
2 )

< µ2,

that gives � > 2�2 + 4�. In [3], by the use of a Lyapunov function, the authors prove that
this is the necessary and su�cient condition for exponential ergodicity of the process Z

2

and, consequently, for G
2. The explicit form of ⇡2 comes from the adaptation of the product

form stationary measure of a Jackson network and it is validated by verifying that ⇡2 solves
the stationary equation, i.e. for all bounded measurable functions f it holds:

X

(x,y)2N2

L2
f(x, y)⇡2(x, y) = 0,

where L2 is the infinitesimal generator of G
2. ⇤

Theorem 6 gives the exact critical value �⇤2(�) for the ergodicity of the system and we see
that it is quadratic in �. Moreover, the explicit expression of ⇡2 proves that, in the stationary
regime, the gaps G

2
1 and G

2
2 are independent. Notice that the lower bound on �⇤2(�) obtained

in Theorem 2 is optimal in this case.

6.3. Conjectures on critical values for gap process when N � 3. The link between
the gap process and a Jackson network for N = 2 suggests a correspondence between gap
processes and Jackson network for any N . Unfortunately, when N � 3 the transition matrix
of the embedded Markov chains of G

N and Z
N are not the same. However we can propose a

conjecture on the critical value �⇤N (�) based on the properties of the Jackson network. First
of all, let us define the Jackson network Z

N corresponding to the gap process G
N , for a fixed

N � 3. Z
N must be such that the transition rates in the internal region NN

⇤ correspond to



16 LUISA ANDREIS, AMINE ASSELAH, AND PAOLO DAI PRA

the ones of the gap process G
N . For all i = 1, . . . , N � 1

z ! z � ei + ei+1 with rate 1 + �
i�1
N ,

z ! z + ei � ei+1 ” 1 + �,

z ! z � eN ” 1 + �
N�1
N ,

z ! z + eN ” 1 + �,

(6.1)

where ei is the vector (0, . . . , 0, 1, 0, . . . , 0) with the i-th coordinate equal to 1.

Proposition 7. Fix N � 3, the N node Jackson network Z
N with transition rates (6.1) is

ergodic if, and only if, condition (1.3) holds.

Proof. The Jackson network Z
N is such that

�N = 1 + �,

�j = 0 for all j = 1, . . . , N � 1,

µ1 = 0,

µj = 2 + � + �
j�1
N , for all j = 2, . . . , N,

p1,2 = 1, p1,k = 0, for all k 6= 2,

pj,j+1 =
1+� j�1

N
µj

, pj,j�1 = 1+�
µj

for all j = 2, . . . , N � 1,

pj,k = 0 for all j = 2, . . . , N � 1, and all k 6= j + 1, j � 1,

pN,0 =
1+�N�1

N
µN

, pN,N�1 = 1+�
µj

pN,k = 0 for all k 6= N, 0.

Let us recall the Jackson system:

⌫j = �j +
NX

i=1

⌫ipi,j , for j = 1, . . . , N.

It is easy to verify that the solution (⌫1, . . . , ⌫N ) of this is system has the following form:

⌫j = µj

N+1�jY

k=1

(1 + �)

(1 + �
N�k
N )

, for all i = 1, . . . , N,

that by classical result on Jackson networks gives the following condition:
iY

k=1

(1 + �)

(1 + �
N�k
N )

< 1, for all i = 1, . . . , N,

that is equivalent to (1.3). ⇤
The association of each gap process G

N with the correspondent Jackson network Z
N

justifies Conjecture 1.1. Indeed, it would give an exact critical value �⇤N (�), i.e. for each
N � 3 and each � � 0 would be the solution of (1.3). In the continuous framework, the
sequence of critical values (that by abuse of notation we indicate in the same way) �⇤N (�)
converges, as N goes to 1 to the critical value �⇤1(�) for the nonlinear process. In our case
we could not understand if this can be true or not, since we do not even know if there is
a value such that there exists a unique stationary measure. However we derive from this
Conjecture 1.2 on the critical value for which there exists at least one stationary measure
based on the sequence �⇤N (�).
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