
Efficient Control-Flow Subgraph Matching
for Detecting Hardware Trojans in RTL Models

LUCA PICCOLBONI, Columbia University

ALESSANDRO MENON, University of Verona

GRAZIANO PRAVADELLI, University of Verona

Only few solutions for Hardware Trojan (HT) detection work at Register-Transfer Level (RTL), thus delaying the identification of

possible security issues at lower abstraction levels of the design process. In addition, the most of existing approaches work only for

specific kinds of HTs. To overcome these limitations, we present a verification approach that detects different types of HTs in RTL

models by exploiting an efficient control-flow subgraph matching algorithm. The prototypes of HTs that can be detected are modelled

in a library by using Control-Flow Graphs (CFGs) that can be parametrised and extended to cover several variants of Trojan patterns.

Experimental results show that our approach is effective and efficient in comparison with other state-of-the-art solutions.

CCS Concepts: • Security and privacy → Embedded systems security; • Hardware→ Functional verification;

ACM Reference format:
Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli. 2017. Efficient Control-Flow Subgraph Matching for Detecting Hardware

Trojans in RTL Models. ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (July 2017), 18 pages.

DOI: 0000001.0000001

1 INTRODUCTION

Globalization of hardware design and fabrication processes have raised serious concerns about hardware-based at-

tacks [13, 21]. Hardware has been always assumed to be the guarantee of trustworthiness in cryptographic algorithms

and security protocols. However, several backdoors have been reported in the last years, especially in military con-

texts [4, 23]. In 2008, for example, a chip installed on a Syrian radar was rumoured to have been tampered to avoid

warning in case of air assaults [4]. In 2012, Skorobogatov and Woods [23] discussed the first case of an hardware

backdoor found in a chip used in military and industrial cores. Besides that, backdoors have been reported in more

familiar contexts as well. In 2012, at the Black Hat Conference [1], it has been showed how to obtain the key of a

cryptographic algorithm to lock or unlock hotel rooms. The attacker gained access to the memory of the hotel cards by

resetting their fuse bits. To make it worse, the growing number of today smart devices makes such attacks dangerous

and plausible in any context [17].

Luca Piccolboni was within the Department of Computer Science, University of Verona, Verona, Italy. Now, he is within the Department of Computer

Science, Columbia University, New York, NY, USA (email: piccolboni@cs.columbia.edu). Alessandro Menon and Graziano Pravadelli are within the

Department of Computer Science, University of Verona, Verona, Italy (emails: alessandro.menon@studenti.univr.it and graziano.pravadelli@univr.it).

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS) 2017 and appears as

part of the ESWEEK-TECS special issue.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the owner/author(s).

© 2017 Copyright held by the owner/author(s). Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

Among several threat kinds, Hardware Trojans (HTs) are malicious alterations of integrated circuits with the aim of

disrupting their functional or extra-functional behaviours [5]. They are composed of two main parts: the trigger that

activates the malicious behaviour under certain conditions, and the payload that implements the malicious tasks. The

triggers can include (i) functional-based conditions, e.g., a specific value or a sequence of values, which activates the

payload once it has been observed on a certain register or port, (ii) physical-based conditions, e.g., reaching a value of

temperature or power, or (iii) time-based conditions, e.g., a certain number of cycles or operations that must be counted.

Payloads typically exhibit even more diversity, e.g., leakage of information, data corruptions, performance loss, etc.

HTs can be added during every phase of the fabrication process, e.g., design or synthesis, and they are designed

to remain silent during the whole verification and testing phase, thus causing the failure of the standard verifica-

tion approaches. For this reason, several ad-hoc verification techniques have been proposed for the detection of

HTs at different levels of abstraction, e.g., [10, 12, 15, 19, 20, 24, 28, 32]. However, especially at the Register-Transfer

Level (RTL), the existing solutions are not enough to guarantee the trustworthiness of the Design Under Verifica-

tion (DUV). In fact, they present different drawbacks. In some cases, they require manual effort from the designer,

e.g., [15, 19, 20] or modifications of the designs, e.g., [10]; in other cases, they address only specific types of attacks,

e.g., [19, 20]. Indeed, most of them can be applied only at gate level, thus delaying the identification of HTs late in

the design process, when removing the HTs would be too expensive. Besides that, HTs are more and more inserted

at RTL because, at this level of abstraction, attackers have high flexibility to implement any malicious function [31].

1.1 Contributions

To overcome the previous limitations, we present a verification approach that detects different kinds of HTs in RTL

models by exploiting a control-flow subgraph matching algorithm. Our approach does not require either modifications

of the DUV code or manual effort. The kinds of HTs that can be detected are represented in a library that can be

parametrised and extended to cover different variants of known HTs. In particular, we make the following contributions:

• we define a HT library containing “basic versions” of triggers and payloads of known RTL implementations

of HTs; the HT library can be easily extended by users to keep up with new types of triggers and payloads;

• we define a set of directives that allow to automatically and dynamically create more complex variants of the

basic versions of the HTs included in our HT library, such that camouflaged instances of those HTs cannot easily

escape the detection; this is essential to detect the HTs whose implementations can be recursively extended;

• we implement an approach that exploits a control-flow subgraph matching algorithm to detect the presence of

HT variants inside an RTL model; this algorithm flags as suspicious the parts of the code that have the same

topological structure (i.e., nodes and edges) of HT variants included in the library and of their variants;

• we define confidence metrics to distinguish the presence of actual HT instances from false positives.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 provides the necessary background. Section 3 presents the HT

library. Section 4 details the HT detection approach. Section 5 describes the confidence metrics to discard false positives.

Section 6 deals with the experimental results. Section 7 describes the limitations of the approach and discusses possible

ways to overcome them. Section 8 summarizes the most-closely related works. Lastly, Section 9 concludes the paper.

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 3

2 PRELIMINARIES

We provide the following definitions to formalize the main concepts and the approach presented in the paper.

Definition 1. Given a process P of a DUV at RTL, a Control-Flow Graph (CFG) for P is a tupleCFG (P) = (B,E, ρ, s, e):

• B = {b1, . . . ,bn } is the finite set of basic blocks, i.e., sequences of consecutive instructions without any branch;

• E ⊆ B × B is the finite set of edges between the blocks such that (b1,b2) ∈ E if and only if b2 can be executed

after b1 in at least one of the possible executions of the process P ;

• ρ : E → (0, 1] is the function such that ρ (b1,b2) is the probability that b2 follows b1 during an execution of P ;

• s, e ∈ B are the first and last basic blocks respectively.

The CFG for a DUV at RTL is the union of the CFGs of all processes belonging to the DUV.

Definition 2. Given the the following CFGs:

• CFG (P1) = (B1,E1, ρ1, s1, e1) (which is the pattern)

• CFG (P2) = (B2,E2, ρ2, s2, e2) (which is the tarдet)

then CFG (P1) is an α−subgraph of CFG (P2) if and only if there exists (i) h(B0) ⊆ h(B2) and E0 ⊆ E2 (which is the

match) and (ii) a mapping function ω : h(B1) → h(B0) such that ∀(b1,b2) ∈ E1 the following conditions apply:

• (b1,b2) ∈ E1 iff (ω (b1),ω (b2)) ∈ E0;

• | ρ1 (b1,b2) − ρ2 (ω (b1),ω (b2)) | ≤ α .

where h(Bi) is an abstraction function that removes all the instructions from the basic blocks in Bi .

It is worth noting that the abstraction function h allows performing the subgraph matching between two CFGs by

only considering their topological structures, while it does not consider the instructions belonging the basic blocks of the

CFG. This makes the matching independent from the actual code of the DUV with respect to the HT implementations

included in our HT library. The actual instructions in the basic blocks are used only as confidence metrics (Section 5).

2.1 Threat Model

Given the increasing complexity of RTL descriptions, there exist several possibilities to introduce malicious behaviours

that can escape traditional RTL verification approaches. In addition, HTs introduced at RTL are generally very hard to be

detected. In fact, their detection requires checking the RTL model against the specification. However, the specification

is generally incomplete and important details (for example cycle-accurate execution models) are not reported [18].

Similarly to [18–20], three scenarios of rogue insertions at RTL are primarily considered in this paper:

(1) an in-house designer intentionally hides malicious behaviours in the RTL modules before verification and

synthesis steps;

(2) third-party RTL modules, which have been intentionally manipulated to insert an HT, are integrated in the

system under development;

(3) a HT is automatically inserted by a CAD tool. For example, a high-level synthesis tool could add malicious

behaviours moving from a TLM to a RTL model; a language translator can do the same when converting from a

hierarchical SystemC model to a flattened VHDL description. This risk has been underestimated in the past, by

thinking that CAD tool vendors would be ruined if it was discovered that their tools introduce HTs. However,

attackers other than the tool vendors can affect the functionality of the tool such that it introduces HTs in the

Manuscript submitted to ACM

4 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

!"#$%&'"($%)*'$!%#$+%,-./$+0'1)01$$$

23

13 14

15

$!"$!6'2'(#$

$!"$!%7#$

$!"$!%3$8$97#$

27

$'7$

17

:6);".-2

'."1<'*$-=$

97$>$93$>$7$

97>7

93>7

$'3$

$1?$$1@$

$1A$

97$>$B$

93$>$B$

27

$'7$

17 13

23

14 15

$1A$ $1@$

$'3$

$!"$!6'2'(#$$!"$!6'2'(#$

-.%6'"2'$%$

$!"$!%$>>$C#$

6'2'($%$

.)60"<$

'."1<'$

(6);".$

!1#$*'"*$0"%&-.'$

$'3$

27

$'7$

17

$!"$!%).*-+).#$

'."1<'$

:6);".$

23

13 14

$!"$!6'2'(#$

%"2'7$

$1A$

$1?$

15

$1@$

$1D$

%"2'3$

%"2'4$

Fig. 1. Examples of the CFGs of HT triggers in the proposed HT Trojan Library. The dashed boxes represent the instructions (in
pseudo-code) inserted in the basic blocks associated to the nodes. In case of a node with two outgoing edges, the left and the right
edges correspond to the case in which the branching condition evaluated in the node is true and false, respectively.

manipulated designs without the vendor’s consent, for example, by exploiting their configuration mechanism,

which is very often based on scripting.

Given these premises, our paper is intended to present a tool for the automatic detection of HTs introduced at the RTL

design stage of the fabrication process. It can be used to address each of the three previous scenarios to detect HTs

based on known triggering mechanisms and their variants as reported in the following sections.

3 HARDWARE TROJAN LIBRARY

To make effective the verification approach presented in this paper, we defined a HT library that includes the RTL

implementations of known HT triggers and their camouflaged variants. We have currently considered the basic triggers

adopted in [22] and [33]. Moreover, we defined a set of directives that permit to automatically create, during the HT

detection phase, variants of the basic implementations. This makes our approach more general compared to existing

solutions and hard to be defeated by camouflaging the HT basic structures, as it has been done, for example, in [24, 31].

We classified the HT triggers included in the library in three categories: cheat code, dead machines and timebombs.

Trigger 1. A cheat code is a value (or sequence of values) that enables the payload when it is observed on a specific

location (e.g., a register, which at RTL corresponds to a variable in a particular state) [27]. A cheat code is hard to

be detected by using the standard verification approaches because it generally behaves as an extremely rare corner

case. Figure 1 (a) reports a simple example of CFG of a cheat code’s trigger based on two processes. The process

on the right implements a sequence of branches that checks if the required cheat code sequence (in this example,

the sequence ⟨c1, c2⟩) has been read. When the cheat code value c1 (respectively, c2) is caught in b3 (b5), then the

variable v1 (v2) is updated to 1 in b4 (b6). When both v1 and v2 are 1, the process on the left flags the activation to the

payload in b1. The cheat code sequences can be quite long: this complicates the activation of the trigger condition with

standard verification approaches, due to the very low probability of exploring the path corresponding to the sequence.

Trigger 2. A dead machine activates the HTwhen specific state-based conditions are met. It can be considered a general-

ization of cheat codes to create even more complex conditions of activation. Figure 1 (b) shows a possible implementation.

The process on the left verifies if a global condition is satisfied to activate the payload. The process on the right implements

a state machine. Each state is used to evaluate a sub-condition. When all sub-conditions are met the global condition is

satisfied. For example, the state machine in Figure 1 (b) can be used to count the number of times a set of instructions of a

processor has been executed. Basic blocks b3, b5, b7 check three different instructions, while basic blocks b4, b6, b8 update

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 5

internal variables to count their occurrences in the program executed by the processor. When all these three instructions

are executed a specific number of times, the HT’s trigger is enabled in b1. Again, standard verification approaches fail

to detect such a trigger due to the huge number of possibilities that must be verified before the trigger becomes active.

Trigger 3. A ticking timebomb enables the payload when a certain number N of clock cycles has been counted.

Standard verification approaches fail to check this trigger. In fact, if N is sufficiently high, dynamic methods require

long simulations, while formal approaches face the state explosion problem. Figure 1 (c) illustrates the CFG of a possible

implementation of this trigger based on two processes. The process on the left resets the counter whenever the DUV

is reset, to avoid being found during functional verification. The process on the right realises a counter and once it

reaches the value N the malicious task is enabled (in the block b5).

The HT library we defined includes a basic implementation and a configuration file for each of the previous triggers.

The basic implementation consists of the simplest form of the trigger’s code. The configuration file includes extension

directives and confidence directives to make the triggers parametric. In this way, our detection algorithm (Section 4.2)

can identify also more complex variants. These directives are grouped in Figure 2 depending on the purpose.

3.1 Extension Directives

The extension directives are used to automatically modify the CFG of the trigger’s basic implementations, during the

HT detection process. These directives allow creating more complex variants of the HT’s triggers at run time, such that

our detection algorithm cannot be easily defeated by changing the structure of a known HT (e.g., by increasing the

number of conditions in a cheat code making more difficult its detection, by increasing the number of processes to split

the trigger conditions, or by adding irrelevant states in a dead machine, to hide the presence of the trigger). Specifically,

these directives are optionally specified by the designers in a configuration file and used by the detection algorithm to

extend the CFG of the corresponding trigger implementation at runtime. Each variant created through such directives

will be searched in the CFG of the DUV to ensure that neither the basic version nor the variants obtained with such

directives are present in the DUV.

For example, suppose that the cheat code depicted in Figure 1 (a) is included as a basic implementation in the

HT library. The extension directives shown on the right part of Figure 3 can be defined to make it parametric and

automatically generate a set of its variants during the detection process. These directives define how many extensions

must be recursively done (line 2), and which blocks and edges must be added or removed in the CFG to make the

extension at each iteration of the recursion (lines 3-8). The two new nodes, which are added during each extension, are

identified in the directives as $1 and $2. As a result of this configuration file, at run time, our detection algorithm will

search, in the DUV, for the presence of the cheat code, initially, in the form reported in Figure 1 (a). Then, it will extend

the code as reported on the left part of Figure 3 by adding two new basic blocks (b8 and b9 outgoing from b7) to increase

the length of the cheat sequence. Then, two new blocks will be added outgoing from b9 (not showed in Figure 3) and

so on, till 10 extended versions of the trigger are created (the directive bound-number is fixed to 10), and separately

checked.

3.2 Confidence Directives

The confidence directives, instead, are used to define the structural characteristics of the trigger’s CFG, which must be

checked by the detection algorithm to calculate a confidence value, after a possible instance of a HT is found in the

Manuscript submitted to ACM

6 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

Extension	Direc-ves	

parametrizable	n	 n	=	1	if	the	trigger	is	parametrizable,	n	=	0	otherwise	

bound-number	n	 n	is	the	max	number	of	extensions	that	can	be	applied	

add-basic-blocks	n	 n	is	the	number	of	blocks	added	at	each	extension	

drop-edge	(bi	,bj)	 the	edge	that	goes	from	block	bi	to	block	bj	is	removed	

add-edge	(bi,bj)	p	=	n	 an	edge	from	block	bi	to	block	bj	is	added	with	probability	n	of	being	traversed	

source-basic-block	bi	 the	block	bi	is	used	as	star=ng	point	for	the	extension	

up-source-basic-block	bi	 bi	is	the	new	star=ng	point	of	the	CFG	aAer	the	extension	

Confidence	Direc-ves	

Variable	Direc1ves	

var-names	b1	…	bn	 b1	…	bn	contain	the	names	of	the	variables	to	be	checked	by	the	detec=on	algorithm	

var-checks	b1	…	bn	 b1	…	bn	are	checked	to	verify	the	presence	of	“relevant”	variables	(1)	

up-var-names	bi	 add	bi	to	the	blocks	containing	the	names	of	the	variables	to	be	checked	

up-var-checks	bi	 add	bi	to	the	blocks	containing	the	name	of	the	variables	to	be	reset	

Reset	Direc1ves	

reset-signal	b1	…	bn	 b1	…	bn	are	checked	to	verify	the	presence	of	the	reset	signal	(1)	

	reset-names	b1	…	bn	 b1	…	bn	contain	the	names	of	the	variables	that	should	be	reset	

reset-checks	b1	…	bn	 b1	…	bn	are	checked	to	verify	the	presence	of	variables	to	be	reset	(1)	

up-reset-names	bi	 add	bi	to	the	blocks	containing	the	names	of	the	variables	to	be	reset	

Cheat-code	Direc1ves	

cheat-names	b1	…	bn	 b1	…	bn	contain	the	names	of	the	variables	used	in	a	cheat	code	

cheat-checks	b1	…	bn	 b1	…	bn	are	used	to	verify	the	presence	of	variables	in	a	cheat	code	(1)	

Timebomb	Direc1ves	

-mebomb-names	bi	 bi	contain	the	name	of	the	variable	used	as	a	counter	in	a	=mebomb	

-mebomb-checks	b1	…	bn	 b1	…	bn	are	used	to	verify	the	presence	of	a	counter	var	in	a	=mebomb	(1)	

Payload	Direc1ve	

payload-names	b1	…	bn	 b1	…	bn	contain	the	names	of	the	variables	to	look	for	in	the	payload		

Note:	(1)	All	the	basic	blocks	men=oned	in	this	table	are	referred	to	the	CFG	of	the	trigger,	except	for	the	direc=ves	
with	“verify”,	where	blocks	refer	to	the	CFG	of	the	DUV.	These	direc=ves	check	the	presence	of	certain	variables		or	
characteris=cs	in	the	blocks	of	the	CFG	of	the	DUV	that	match	the	basic	blocks	of	the	trigger.	

Fig. 2. Directives to parametrize the CFGs of the triggers in the HT library.

DUV. This is used to rank the list of suspicious HT matches and discard false positives. Further considerations on the

confidence directives will be provided in Section 5, after the description of the detection algorithm.

In addition to the list of triggers, the HT library includes the known implementations of payloads. They are exploited

by the procedure described in Section 5 to calculate the confidence level of the matches identified by the HT detection

algorithm. The library includes an implementation for each payload similarly to the case of triggers. An example of

payload is reported in Figure 4. It increases the power consumption of the design in which it is inserted by continuously

rotating the power register (in b4). The payload is enabled when all the conditions specified in the trigger (not reported

in the figure) are met, i.e., when the triддer variable becomes true .

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 7

!"#!

!$#! !$%!

!$&!

!!"!'()")*+!

!!"!'!,+!

!!"!'!#!-!.,+!

!.,!/!,!

!.#!/!,!

!)#!

!$0!

!$1!

,!

.,!/!2!

.#!/!2!

"#$%&'()&*+(,%!-.%'/*
',+!!!!#$%$&'(%!)$*+'!,!
'#+!!!!*,-./0.-&*'%!,2!
'%+!!!!$//0*$1!20*+,231!#!
'&+!!!!$//0'/4'5'$34!5,+!0!/!0'$14!$0+!
'1+!!!!$//0'/4'!'$34!5#+!0!/!0'$14!$3+!
'0+!!!!$//0'/4'5'5,4!)#+!0!/!,!
'3+!!!!$//0'/4'!'5#4!)#+!0!/!,!
'6+!!!!/%,#0'/4'!'$34!)#+!
'7+!!!!1,-%2'0*$1!20*+,235$3!
',2+!!-#01,-%2'0*$1!20*+,2355#!

!$3!

!$7!!$6!

Fig. 3. Use of the extension directives for the parametrization of a cheat code.

!"#!

!$%! !$&!

!$'!

!!"!(!"#"$)!!"!

!*#!

#$%#&'!+(!"#"$,!%&')!

()*!+,

,,!",(-*"*.)!

,,,,,/01*-!2!#%34566768!

,,)$'),!",(.-9::*-),

,,,,,/01*-!2!;/01*-<=>,!

!!!!!!!!!/01*-<#%?@#>A8!

)+-,

!!"!($!())"!)!

!*!

!/01*-!2!;/01*-<=>,!

!!!!/01*-<#%?@#>A8!

!/01*-!2!#%3456676!

Fig. 4. Example of the RTL code and the CFG of an HT payload.

4 DETECTION OF HARDWARE TROJANS

The overview of our approach is reported in Figure 5. The user provides as input a behavioural RTL model of the DUV

(Verilog or VHDL) and the HT library presented in the previous section (optionally extended with different HT triggers

and payloads). Our approach returns a report that includes potential matches with the HTs in the library. Each match is

associated to a confidence value that helps discard the false positives. The approach is based on two main algorithms:

(i) The extraction algorithm creates the CFG for the RTL DUV accordingly to Definition 1 (Section 2) for each process

included in the DUV. The algorithm creates the CFGs of the triggers and payloads included in the HT library

as well. In this way, both the structures of the DUV and the HTs are represented with graph-based models that

highlight their execution paths and simplify the detection of HTs. This algorithm is presented in Section 4.1;

(ii) The detection algorithm identifies the HTs by exploiting a subgraph isomorphism algorithm. First, it searches for the

parts of the CFG of the DUV that match the CFGs extracted from the triggers of the HT library. Afterwards, it anal-

yses the matched instances to provide confidence values that help discard the false positives. The confidence values

take into account the structural characteristics of the CFGs and the related payloads. This is described in Section 4.2.

Manuscript submitted to ACM

8 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

!"#"$%&'(

)*+&,-#./(

!01(
!"#$%

23#,)$%&'((

)*+&,-#./(

4,-++",(

!

5)6*&)7(

!

&
'
%(
)*
+,
+-
%

84(
.$/"+0%

•  "#$%&'$!$()!*+,!-.!$()!/01!

•  "#$%&'$!$()!*+,2!-.!$()!342!

•  5)&%'(!672$&7')2!-.!$()!*+,!-.!

$()!342!67!$()!*+,!-.!$()!/01!

•  8)$9%7!&!%):-%$!-.!;)$)'$);!342!

•  84<!;)26=7!$-!

>)!&7&?@2);!

•  <6>%&%@!'-7$&6767=!$%6==)%2!

&7;!:&@?-&;2A!B(-2)!*+,2!

&%)!2)&%'();!67!$()!/01!

•  C7'?9;)!$()!672$&7')2!-.!

$%6==)%2!.-97;!67!$()!/01!

•  D226=7!&!'-7E;)7')!F&?9)!
$-!)&'(!672$&7')!-.!$%6==)%!

Fig. 5. Overview of the proposed approach.

4.1 Extraction Algorithm

The extraction algorithm that extracts the CFGs from the DUV and the HT source code starts by obtaining the

corresponding syntax trees. A syntax tree represents the design with a tree structure by abstracting the details

concerning the syntax of the programming language, but preserving unaltered its semantics. Each node of the tree

represents a construct that occurs in the source code. In the proposed approach, the syntax trees of the DUV and HTs are

created with HIFSuite [6]. This guarantees to be independent from a particular programming language and makes our

approach more general. Additionally, the use of HIFSuite ensures that hierarchical structural designs are flattened, and

this considerably simplifies the detection of HTs in hierarchical designs. The syntax tree is then recursively analysed

and the CFGs of the RTL processes are created in according with Definition 1. Specifically, the extraction algorithm

analyses sequentially the syntax tree for each process of the target code. It creates the first and the last basic block and it

maintains a reference to the current basic block. After that, it reads sequentially all the instructions of the process. The

instructions that do not create branches are added to the current block, while for the others the following rules apply:

• if-then(-else): the branch condition is inserted into the current basic block; a block is created for the then path and,

optionally, another one is created for the else path. The visit proceeds recursively on the two paths, by updating

the current block and by creating the necessary edges as depicted in Figure 6 (a) and (b)
1
. The edges are labelled

with the probability of taking the corresponding branches. In Figure 6, pt ,pe ,pnt represent, respectively, the

probability of traversing the then, else and not-then (for caseswithout else) paths. Note that with this rulewe cover

other constructs that create branching conditions, such as switch and ternary operators. We handle these cases in

the same way, to avoid camouflaging that change the syntax, but not the semantics of the corresponding code;

• for : a new block, bi , is created for the branch condition as illustrated in Figure 6 (c); the visit proceeds recursively

on the internal instructions of the loop with bj and bt that represent the first and the last basic block of the

visit; the corresponding edges are created and finally the current block is updated to bk , i.e., the first block

after the loop. Again, the edges are labelled with the probability of reaching the destination node, and this rule

covers also other possible variants of expressing loops in the code, which are not semantically different.

The probability associated to the edges is one of the four characteristics evaluated to measure the confidence level

when a possible HT match is detected in the DUV, as described in Section 5. To statically determine the probability

1
The left edge of a basic block with a branch condition refers to the then path, while the right edge is the else path.

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 9

!bi!

!bk!

!bt!

(a)!

!bi!

!bk!

!be!!bt!

(b)!

!bi!

!bk!

!bj!

(c)!

!bi!

Legend:!

basic!block!

direct!CFG!edge!
labeled!with!a!
probability!p!

path!in!the!CFG!

pt!

pnt!

pt! pe!

pt!

pnt!

!bt!

1!

Fig. 6. CFGs for (a) an if-then, (b) an if-then-else and (c) a for statements.

of taking a branch, static analysis and slicing approaches should be used. In fact, it is necessary to determine the

dependencies among all the variables involved in the conditions of each branch. However, current slicing algorithms do

not scale well with design complexity. Therefore, an approach based on a SMT constraint solver is adopted. Differently

from a SAT solver, which works only on Boolean values, an SMT solver can solve constraints according to several

theories like integers, bit vectors, etc. [8]. The solver is used to calculate the total number of models, i.e., assignments

to the variables that satisfy the conditions of the branches. By dividing the number of models by the number of all

the possible assignments, it is possible to determine the probabilities. This approach is more scalable with respect to

program slicing, even if it uses an exponential algorithm, because the expressions that can be found in the condition of

branches of the DUV are often simple and composed of up to three or four variables. Determining the dependencies

among the variables in program slicing is much more expensive because all the instructions of the DUV could be

evaluated. Indeed, to further increase the scalability, the solutions of simple conditions, e.g., x = 10, z < w , etc., are

determined by using the ranges of values of the variables involved in such conditions, instead of calling the SMT solver.

4.2 Detection Algorithm

The algorithm that detects the presence of HTs in the DUV performs two steps. First, it tries to match instances of the

abstract CFGs of the HT triggers in the abstract CFG of the DUV. The matching is performed after the h abstraction

function of Definition 2 has been applied to generate the abstract versions of the CFGs (all the instructions from the

basic blocks are removed). Second, the algorithm calculates a confidence value representing how much it is likely that

each matched instance is a HT. The first step is described hereafter, while the second step is discussed in Section 5.

The detection algorithm is showed in Figure 7. The algorithm starts by extracting the CFG of the DUV with the proce-

dure presented in Section 4.1 (line 2). In the same way, for all the triggers defined in the HT library, it extracts the corre-

sponding CFGs (lines 3-4). After that, the algorithm calls the RI subgraph isomorphism algorithm described in [7] (line 6)

to find all the subgraphs in the abstract CFGs of the DUV thatmatch the abstract CFG of the current trigger, accordingly to

Definition 2. Note that during this phase, the instructions in the basic blocks of the CFGs are not considered for the match-

ing (see functionh in Definition 2). In fact, this algorithm identifies only the parts in the DUV that are topologically similar,

i.e., they have the same structure of edges and nodes, of the HTs. The instructions are only considered later during the cal-

culation of the confidence value. If the trigger’s CFG is parametrizable, it is properly extended by modifying its CFG (line

7) as required by the extension directives included in the configuration file of the HT library. In this way, the matching

algorithm is repeated for different trigger variants up to a fixed number of times (line 5). Finally, all the returned matches

are evaluated with the procedure described in Section 5 to determine a confidence measure used to discard false positives.

Manuscript submitted to ACM

10 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

1 procedure match-triggers (duv, HTLibrary)

2 targets = extract-cfg(duv);

3 foreach trigger in HTLibrary do
4 pattern = extract-cfg(trigger); count = 0;

5 while count < pattern.getMaxBound() do
6 matches ∪= search(pattern, targets);

7 pattern.augmentSize(); count++;

8 calc-conf(duv, matches, HTLibrary);

Fig. 7. detect HTs with subgraph matching.

1 procedure calc-Conf (duv, matches, HTLibrary)

2 foreach payload in HTLibrary do
3 payloads ∪= extract-cfg(payload);

4 foreach match in matches do
5 match.conf = α1 * check-variables(match);

6 match.conf += α2 * check-resetlogic(match);

7 match.conf += α3 * check-Probabilities(match);

8 match.conf += α4 * check-Payloads(match, duv);

Fig. 8. calculate the confidence of matches.

4.2.1 Guarantees. The matching algorithm guarantees that:

(1) the basic version of a given HT trigger is identified (count = 0);

(2) the extensions of the HT trigger obtained with the extension directives (Section 3) are identified (count > 0);

(3) any attempt of obfuscating the HT by creating a hierarchical structural design is ineffective, since the CFG of

the DUV is extracted from the flattened version of the RTL model obtained by using HIFSuite.

Clearly, we fix a maximum bound for the application of the extension directives (line 5) to allow the algorithm to

terminate. Thus, this implies that only the extended versions of the HT trigger obtained with a number of extensions

lower than the bound are identified.

4.2.2 Complexity. The complexity of the matching algorithm is:

O (lHT ∗ bHT ∗C (nDUV ,nHT))

where lHT is the total number of triggers in the HT library,bHT is the maximum number of extensions of the HT triggers,

nDUV is the number of nodes in the DUV, nHT is the maximum number of nodes of the HT triggers, and the functionC

represents the complexity of the subgraph isomorphism algorithm, which is exponential in the general case. In fact, the

subgraph isomorphism problem is NP-complete, but the RI algorithm has been showed to be especially efficient with

sparse graphs2, and, indeed, CFGs are often sparse. Besides that, the size of the CFGs of HT triggers, i.e., nHT , is typically

small, since they are designed to be hidden in the code of the DUV. Thus, searching an instance of a small graph (the

HT trigger) inside a sparse graph (the DUV) guarantees the overall scalability of our approach, as shown in Section 6.

5 MATCHING CONFIDENCE

Figure 8 depicts the algorithm that returns the confidence values of the triggers found by the procedure described in

Section 4.2. For the sake of clarity, in the following, the term match refers to the trigger instances returned by the

procedure of Figure 7, while pattern refers to the trigger instances of the HT library. The algorithm in Figure 8 takes in

inputs the DUV, the matches, and the HT library. It returns for each match a confidence value in the range [0, 1], where

1 indicates the highest confidence level. The algorithm starts by extracting the CFGs of the payloads of the HT library

(lines 2-3). After that, it evaluates the following characteristics to determine the confidence value of the match:

2
A graph is sparse if the ratio between the number of edges and the number of vertexes is high.

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 11

c1: presence of variables (line 5): the algorithm verifies if the match uses some variables in the same way of the

corresponding pattern. For example, in the case of Trigger 3 it checks if there is a variable used as a counter in

the match, but not necessarily with the same name of one in the trigger. The check-variables function returns the

ratio between the number of variables found in the same basic blocks of the pattern and the number of variables

specified with the var. directives of Figure 2. In particular, the directive var-names defines where are the names

of the variables that must be considered (to not depend on the names used in the pattern) and the directive var-
checks specifies the basic blocks to be checked. The other two variable directives in Figure 2 are used to update

these blocks in case of extensions. For specific triggers other directives are used to check how the variables are

used, e.g., where the counter is increased (time directives) or the cheat code variables are updated (cheat directives).

c2: presence of the reset logic (line 6): the algorithm checks if thematch has a reset logic similar to the reset logic of the

pattern. For example, in the case of Trigger 3, it checks if a variable (counter) is reset whenever the DUV is reset.

The check-resetlogic function returns a value in the range [0, 1] depending on the number of characteristics

that are identified: i.e., presence of the reset signal and variables that are reset and used in the same blocks. The

reset directives in Figure 2 are used to specify which are the basic blocks and the variables to be considered.

c3: average distance of the probabilities of the match and the corresponding pattern (line 7): the algorithm calculates

the distance between the probabilities of traversing each edge in the match and the expected probabilities for

traversing the corresponding edges in the pattern; nearer are the probabilities, more is likely that the match

is a real instance of the pattern. Several triggers create branches with low or high probabilities, making this

characteristic useful to evaluate their confidence (for example Trigger 1). The check-probabilities function

returns a value in the range [0, 1], where 1 is used to indicate a perfect correspondence of the probabilities.

c4: degree of dependence between the match and the most affine payload (line 8): the algorithm verifies if there

are shared variables, i.e., registers, between the match and one of the payload specified in the HT library.

Specifically, the check-payloads calculates the ratio between the number of shared variables that have been

identified and the number of variables defined with the payload directives in the configuration file. This permits

to augment the confidence of the matches that have a payload in the DUV. Each trigger is checked against each

payload instance to find the most affine, i.e., the payload that has the highest ratio for that trigger.

Finally, these four characteristics are combined with a linear combination to calculate the confidence value β of each

match, i.e. β = α1c1 + α2c2 + α3c3 + α4c4 where the constants αi depend on the trigger, such that

∑
i αi = 1.

6 EXPERIMENTAL RESULTS

The effectiveness of our approach has been evaluated on a set of RTL benchmarks from Trust-HUB [3] and on the RTL

implementation of the Cryptoplatform that includes some cryptographic cores (aes, camellia, des, sha, xtea), a plasma-cpu

and amemory from OpenCores [2]. Tables 1 and 2 shows the characteristics of these benchmarks. They report the name,

the types of triggers and payloads and the number of basic blocks and edges of their CFGs. Each benchmark includes

one HT, except for Crypto-T000 that is a Trojan-free instance of the Cryptoplatform, and Crypto-T100 that hides two HTs.

Each benchmark is verified against the HT library we defined in Section 3. The characteristics of the library are

reported in Table 3. The tables show the CFG size of the different instances in terms of number of basic blocks and edges.

We included different implementations of the same triggers because they cannot be obtained from the others by applying

only the defined directives. In fact, even if the triggers are similar, their implementations are topologically different from

the others. The table reporting the payloads includes also a brief description of their effects when inserted in the DUV.

Manuscript submitted to ACM

12 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

Table 1. Main characteristics of the Trush-HUB benchmarks.

Name Trigger Payload Blocks Edges

AES-T400 Cheat code info leakage 2118 3176

AES-T500 Cheat code power waste 2109 3165

AES-T600 Cheat code info leakage 2114 3170

AES-T700 Cheat code info leakage 2112 3166

AES-T800 Cheat code info leakage 2117 3174

AES-T900 Time bomb info leakage 2114 3168

AES-T1000 Cheat code info leakage 2109 3162

AES-T1100 Cheat code info leakage 2114 3170

AES-T1200 Time bomb info leakage 2113 3168

AES-T1300 Cheat code info leakage 2141 3221

AES-T1400 Cheat code info leakage 2150 3236

AES-T1500 Time bomb info leakage 2148 3232

AES-T1600 Cheat code info leakage 2127 3191

AES-T1700 Time bomb info leakage 2114 3169

AES-T1800 Cheat code power waste 2101 3152

AES-T1900 Time bomb power waste 2106 3160

Name Trigger Payload Blocks Edges

RS232-T100 Cheat code stuck-at 0/1 134 200

RS232-T200 Time bomb reliability issue 130 193

RS232-T300 Cheat code info leakage 132 195

RS232-T400 Time bomb info leakage 130 192

RS232-T500 Cheat code stuck-at 0/1 132 195

RS232-T600 Dead machine stuck-at 0/1 157 233

RS232-T700 Dead machine stuck-at 0/1 155 230

RS232-T800 Cheat code reliability issue 124 184

RS232-T900 Dead machine reliability issue 159 236

RS232-T901 Cheat code reliability issue 159 236

BasicRSA-T100 Cheat code info leakage 81 119

BasicRSA-T200 Cheat code reliability issue 81 120

BasicRSA-T300 Time bomb info leakage 92 137

BasicRSA-T400 Time bomb info leakage 93 139

Table 2. Main characteristics of the Cryptoplatform.

Name Trigger Payload Blocks Edges

Crypto-T000 N/A N/A 4402 6503

Crypto-T100 Time bomb info leakage 4424 6537

Crypto-T100 Cheat code info leakage 4424 6537

Crypto-T200 Time bomb info leakage 4416 6525

Crypto-T300 Time bomb info leakage 4410 6519

Crypto-T400 Cheat code info leakage 4406 6516

6.1 Experimental Evaluation

To verify the effectiveness of our approach we used the following evaluation strategy. The HT library reported in Table 3

contains the same categories (but not the same code) of HTs included in the benchmarks described in Table 1. The HT

library and the HTs injected in the considered benchmarks derive both from Trust-HUB. This is necessary because

our approach can detect only the known categories of HTs that are inserted in the HT library, including their variants

obtained by applying the rules defined in Section 3 (the implications of this observation are discussed in details in

Section 7). Thus, we decoupled the triggers of Trust-HUB from the corresponding payloads, and we included the basic

versions of the triggers in our library. Note also that our algorithms do not depend on the actual implementations of

the specific HTs. The detection algorithm considers only the topological structure of the CFGs of the HTs without

taking into account the instructions in the CFGs (Section 4.2). Indeed, the algorithm that assigns the confidence does

not depend on the names and the specific instructions used in HTs. In fact, it tries to discover behaviours (Section 5).

With such a premise, we expect that our verification approach detects all the HTs included in the considered

benchmarks, as they are known by the HT library. Thus, our goal is to show that our verification approach can help

users to distinguish actual HTs from the false positives and classify them accordingly to their respective categories.

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 13

Table 3. Main characteristics of the triggers and payloads in the HT Library.

Triggers

Name Blocks Edges

cheat-T001 4 4

cheat-T002 5 6

cheat-T003 6 7

cheat-T004 16 21

cheat-T005 11 14

cheat-T006 11 14

mach-T001 10 11

mach-T002 11 13

timeb-T001 13 16

timeb-T002 14 19

timeb-T003 12 15

timeb-T004 6 7

timeb-T005 14 17

Payloads

Name Brief Description Blocks Edges

payload-T001 transmits critical information 16 21

payload-T002 increases power consumption 8 9

payload-T003 steals information (covert channel) 10 13

payload-T004 steals information (leakage current) 12 15

payload-T005 changes the memory addresses 7 7

payload-T006 manipulates the output signals 7 7

6.2 Trust-HUB benchmarks

The proposed approach has been compared with three state-of-the-art methodologies presented in [10, 19, 20]. The

results of these experiments are reported in Table 4. The first column reports the names of the benchmarks. The

following three columns report if the HTs can be detected by the three considered state-of-the-art techniques. The rest

of the columns report the results for the proposed approach. Specifically, they show if the approach is able or not to

detect the HTs (Found), the number of identified matches (Matches), the confidence level of the match corresponding

to the HT actually present in the design (βHT), the highest confidence level among the matches corresponding to false

positives (βmax), the number of matches with a confidence that is higher than the confidence of the HT actually present

in the design (FP), and lastly the time in seconds required by the proposed approach (T (s)). The techniques proposed

in [20] and [19] are specialized for specific kinds of payloads: register corruptions and information leakage respectively.

Thus, they are able to find only a limited number of HTs and they do not guarantee the trustworthiness of the designs.

Furthermore, they require (i) manual efforts for defining the properties that represent the corresponding payloads and

(ii) the use of model checking that faces some limitations with temporal-based triggers. On the other hand, the approach

proposed in [10] covers a wider range of HTs. Unfortunately, the approach in [10] (i) does not guarantee to find all the

HTs, since it adopts some heuristics during the identification of triggers, and (ii) requires modifications to the DUVs

(with up to 15.25% of area overhead for the additional circuits added to the designs). Nevertheless, as expected, with the

proposed approach we identified all the HTs. Indeed, our approach takes only few seconds, without requiring manual

efforts or design modifications. The number of false positives is limited in almost all the cases except for few cases

where the basic version of the cheat code (composed of a single value) is detected several times (AES-T1300, AES-T1400,

AES-T1500). However, in these few cases, by looking at the confidence levels reported in Table 4, we can see that the

actual HT has a confidence level (βHT) whose value is at least 30% higher than the highest confidence level (βmax) of the

false positives. In general, by looking at the whole Table 4, the confidence values of the matches corresponding to actual

HTs are between 21% and 67% higher with respect to the false-positive matches, except for few cases (BasicRSA-T100/T200,

RS232-T100/T800). In these special cases, the basic version of the cheat code reports lower confidence values due to the

low numbers of characteristics that can be evaluated on their CFGs (composed by only one branch). But, note that even

Manuscript submitted to ACM

14 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

Table 4. Results: Trust-HUB Benchmarks.

State of the art Proposed Approach

Name [20] [19] [10] Found Matches βHT βmax F P T(s)

AES-T400 no no ∼ yes 3 0.95 0.64 0 5.04

AES-T500 no no ∼ yes 7 0.93 0.68 0 4.80

AES-T600 no yes ∼ yes 5 0.93 0.41 0 5.12

AES-T700 yes yes ∼ yes 5 0.85 0.50 0 5.11

AES-T800 yes yes ∼ yes 9 0.93 0.65 0 5.04

AES-T900 no yes ∼ yes 7 0.95 0.62 0 4.78

AES-T1000 no yes ∼ yes 4 1.00 0.64 0 4.76

AES-T1100 yes yes ∼ yes 5 0.94 0.47 0 5.67

AES-T1200 no yes ∼ yes 4 0.96 0.54 0 4.69

AES-T1300 no no ∼ yes 82 1.00 0.65 0 5.62

AES-T1400 no no ∼ yes 81 0.99 0.69 0 4.85

AES-T1500 no no ∼ yes 83 0.98 0.65 0 5.80

AES-T1600 no no ∼ yes 7 0.96 0.54 0 4.86

AES-T1700 no no ∼ yes 3 0.98 0.63 0 5.38

AES-T1800 no no ∼ yes 9 1.00 0.69 0 4.86

AES-T1900 no no ∼ yes 11 0.97 0.72 0 4.82

AES-T2000 no yes ∼ yes 6 0.93 0.41 0 4.56

AES-T2100 no yes ∼ yes 5 0.95 0.75 0 4.75

RS232-T100 no no yes yes 7 0.36 0.50 2 4.12

RS232-T200 no no ∼ yes 8 0.92 0.56 0 3.13

RS232-T300 no no yes yes 6 0.92 0.31 0 2.74

RS232-T400 no no yes yes 8 0.56 0.51 0 2.32

RS232-T500 no no yes yes 6 0.93 0.31 0 2.80

RS232-T600 no no yes yes 11 0.67 0.35 0 2.39

RS232-T700 no no yes yes 11 0.67 0.53 0 2.58

RS232-T800 no no yes yes 7 0.36 0.50 2 3.23

RS232-T900 no no yes yes 11 0.67 0.52 0 2.43

RS232-T901 no no yes yes 11 0.67 0.52 0 2.48

BasicRSA-T100 no yes yes yes 4 0.25 0.25 3 1.13

BasicRSA-T200 no no yes yes 3 0.25 0.25 1 1.45

BasicRSA-T300 no yes yes yes 4 1.00 0.42 0 1.41

BasicRSA-T400 no no yes yes 5 0.96 0.52 0 1.46

∼ depends if activated in the learning phase [10]

in these cases, the number of matches that have a confidence higher than the confidence of the HT is limited to three.

The confidence value has been calculated by using the formula reported in Section 5. The different triggers use different

values for the constants αi . Specifically, in the case of cheat codes, the constant with higher values correspond to the

condition c4 and c3. For the ticking timebombs, we gave more importance to the presence of the counter in particular

nodes (i.e., time-directives) and finally, for the dead machine we used a uniform distribution of the different conditions.

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 15

Table 5. Results:Cryptoplatform.

Proposed Approach

Name Found Matches βHT βmax F P T(s)

Crypto-T000 no 23 N/A 0.35 N/A 11.80

Crypto-T100 yes 34 0.81 0.39 0 12.88

Crypto-T100 yes 34 0.72 0.39 0 12.88

Crypto-T200 yes 31 0.96 0.71 0 13.43

Crypto-T300 yes 42 0.88 0.29 0 15.03

Crypto-T400 yes 34 0.90 0.50 0 15.67

6.3 Cryptoplatform

Table 5 reports the results for the Cryptoplatform
3
. The format of the table for the results regarding our approach

is the same used in Table 4. The first benchmark confirms that the algorithm that assigns the confidence to each

match is effective because all the matches receive a very low value (0.35 or lower) because there are no HTs. The other

benchmarks show that the proposed approach returns a limited number of false positive, and their confidence level is

low compared to βHT , regardless of the number of the designs in the Cryptoplatform to be analysed. The last column

of Table 5 shows that our approach scales well in case of more complex designs than the Trust-HUB benchmarks.

As a final consideration it is worth noting that the HT included in Cripto-T300 and Cripto-T400 are particular

difficult to be detected, as they do not present a suspicious aspect that generally characterizes HT triggers, i.e. having

branches with unbalanced probabilities of being traversed. The low-probable branches are generally associated to the

HT activation conditions, thus making their identification easier. To remove this characteristic, the HT of Cripto-T300

includes a variant of the time bomb trigger that uses more than a counter to activate the trigger condition. This approach

was used in [31] to defeat UCI. The HT included in Cripto-T400, instead, derives the trigger cheat code from multiple

clock cycles, thus making again similar the branches probabilities. However, our approach can detect both of them.

7 LIMITATIONS AND EXTENSIONS

In our experimental results, we first consider the Trust-HUB benchmarks to make a fair comparison with the state-of-the-

art methodologies proposed in [10, 19, 20] (Section 6.2). In addition, we showed that our approach works well also with

different benchmarks, e.g., the Cryptoplatform (Section 6.3). It is worth to note, however, that insertions of HTs can be

unpredictable and unexpected [30]. Our approach exhibits twomain limitations in this regard. First, if a HT is not included

in the library we defined, our approach can detect neither it nor its variants. This is also the case for software programs

where antivirus can reveal only known malwares, indeed. However, note that while software malwares are often

distributed, the distribution of HTs is a less common practice today. The research community is working on developing

and classifying new threats, e.g., [5, 24, 25, 29, 31, 33], but a lot of work is to be done. Second, if a HT results to be very

similar to actual legal code, our approach can result in false positives. This is especially true in the case of HTs based on

very simple trigger conditions, e.g., a cheat code looks like an if-else construct (or a sequence of if-else constructs). We

showed that our approach already works well since the number of false positives is very limited in most cases. However,

for these types of HTs our approach is not currently able to clearly discriminate an HT from the actual legal code (see

RS232-T100/T800, BasicRSA-T100/T200 in Table 4). We believe that by augmenting the number of characteristics taken in

3
[10, 19, 20] were not available for a comparison on the Cryptoplatform.

Manuscript submitted to ACM

16 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

consideration to calculate the confidence of a match (Section 5) it is possible to significantly reduce the false positives.

Indeed, we set the weights of each confidence characteristic experimentally. In future work, we plan to use a machine

learning algorithm to find the best weights of the characteristics to discriminate the HTs from the false positives.

Despite such limitations, one main contribution of our work is that the approach we propose can be adapted for the

detection of new threats, without being dependent on a specific HT trigger or payload. Our HT library is dynamic; it cur-

rently contains implementations of known HTs, but it can be easily extended by the user, in case of new threats, without

the need of recoding the tool. On the contrary, many state-of-the-art approaches focus only on specific HTs and they are

not easily extendible. To extend the library for a new HT, the user has to provide the basic model of the HT in Verilog or

VHDL at RTL. In addition he/she can specify transformation rules (see Fig. 2) to let the tool automatically covers different

variants of the new HT. This guarantees that the users can customize the HT library depending on their own needs.

8 RELATEDWORK

Several methodologies have been proposed for detecting HTs. Trigger conditions limit the possibility of using the

standard verification techniques. For example, functional-based triggers require that dynamic techniques generate

an exponential number of values to find those that activate the HTs, and time-based triggers can lead to the state

explosion problem with formal techniques. Thus, several specific methodologies have been proposed to detect HTs

in both pre-silicon and post-silicon design stages [21]. Since inserting HTs before fabrication is more likely [32], this

paper addresses pre-silicon detection: the approaches are classified in structural-analysis and formal techniques [20].

Structural-analysis techniques perform (coverage) analysis to identify the areas of the DUV netlist that potentially

hide HTs. For instance, FANCI [28] flags as suspicious the signals of a gate-level netlist that weakly affect outputs

because triggers of HTs typically have a weak impact on output ports. FANCI calculates a control value that represents

the impact between an input and an output that depends on it, by means of truth tables. A cut-off threshold is selected to

determine the HTs. VeriTrust [32] identifies, on a gate-level netlist, circuits that potentially trigger HTs by determining

the circuits that remain dormant during functional verification. VeriTrust can produce false positives, i.e., false alarms,

in case of incomplete functional verification. It has been showed that both FANCI and VeriTrust can be defeated by

manipulating the trigger design [33]. On the other hand, our approach can be easily adapted to such manipulations,

thanks to the directives we introduced in Section 3. Haider et al. [10] proposed an alternative approach, called HaTCh,

that starts from a gate-level netlist and inserts additional circuits to prevent the HT manifestation. It detects untrusted

entities through functional testing and adds specific circuits to warn in case of activation. This approach requires that

some HTs must not be activated during the learning phase [10]. On the other hand, our approach does not have this

limitation, and it is able to detect the same types of HTs (as highlighted in Table 4). A high-level algorithm that can be

applied at structural RTL is UCI [12]. It identifies, as suspicious, the portions of a design that go unused during the

testing phase and flags at runtime their activation. However, UCI has already been demonstrated to be defeated in [24].

To guarantee the design trustworthiness formal techniques have been proposed as well [9]. These methods apply

well-known verification strategies, e.g., theorem proving, model checking or equivalence checking, to find the HTs.

For example, Love et al. [15] defined a protocol for the acquisition of Intellectual Properties (IPs). The idea is that

consumers and vendors agree on a set of “security properties”, and the IPs are delivered with a formal proof of them. In

this way, consumers can verify the trustworthiness of their IPs with a theorem prover. This technique requires the

manual definition of properties. This can be a time-consuming and error-prone task. Our approach is somewhat similar

since it can be effectively used to verify third-party IPs. However, it does require minimal manual efforts in defining the

Manuscript submitted to ACM

Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models 17

directives that characterize the HTs (the extraction and matching of CFGs are automatic), and no definition of properties

is required. Rajendran et al. proposed to use a model checker to find (i) malicious corruptions of critical registers [20]

and (ii) leakages of critical information [19]. In these cases, formal properties that represent such situations are defined

on a formal model of the design and verified by using bounded model checkers. With respect to these works, our

approach is intended to be more general (as illustrated in Table 4). Thanks to the definition of the HT library, our

approach can be extended to verify the presence of different kinds of threats. Additionally, by looking at the CFG of the

design, our approach can detect HTs that have time-based triggers that are complex to handle for model checkers.

In addition to the methodologies described above, other methods have been proposed for preventing [27] or detecting

at run-time [11, 14, 16, 26] HTs. For example, Waksman et al. [27] proposed a set of techniques to silence two common HT

triggers: cheat codes and ticking timebombs. The idea is to insert additional logics to prevent the activation conditions

of the HTs. Since an exhaustive detection of HTs before synthesis is too hard, many researchers proposed to use runtime

approaches to detect HTs after deployment. The idea is to insert additional hardware or software to detect the activation

of HTs during the execution. For example, Kim et al. [14] proposed to insert a Dynamic Function Verification (DFV)

controller that detects the idle state of untrusted IPs in a System-on-Chip (SoC) and verifies them during the idle state.

9 CONCLUDING REMARKS

This paper presented an automatic verification approach to detect HTs on RTL designs. It exploits the structural

characteristics of the CFGs of HT triggers and payloads to localize them in the source code of the DUV. To make

our approach as much generic as possible, we defined a HT library that includes basic implementations of different

categories of known HTs. This library guarantees that our approach is independent from the types of HTs, as opposed

to other state-of-the-art techniques that are able to detect only a specific subset of threats. In fact, while our approach

can be easily extended to keep up with new threats (it is sufficient to add the RTL models of the threats in the library),

most of the other state-of-the-art techniques must be extensively modified. Additionally, the HT library includes a

set of characterization directives, which allow the detection algorithm to dynamically create variants of the basic

implementations of HTs at run time. In this way, our approach cannot be easily defeated by camouflaging or obfuscation.

We evaluated the efficiency and effectiveness of our approach by first considering the Trust-HUB benchmarks. Our

approach is able to detect all the HTs, as opposed to other techniques in literature, thanks to the flexibility provided by

the HT library. Additionally, we showed that our approach can be applied to different benchmarks. The Cryptoplatform

is a more complex benchmark that contains different variations of HTs with respect to those included in the Trust-HUB

benchmarks. Lastly, our approach is able to detect the HTs in few seconds, making it an efficient alternative for the

detection of HTs, as opposed to other techniques which do not scale with the complexity of the benchmarks.

REFERENCES
[1] My Arduino can beat up your hotel room lock. http://demoseen.com/bhtalk2.pdf

[2] OpenCore. http://opencores.org/
[3] Trust-HUB. https://www.trust-hub.org/

[4] S. Adee. 2008. The Hunt for the Kill Switch. In IEEE Spectrum.

[5] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan. 2014. Hardware Trojan Attacks: Threat Analysis and Countermeasures. In Proc. of the IEEE.
[6] N. Bombieri, G. Di Guglielmo, M.Ferrari, F. Fummi, G. Pravadelli, F. Stefanni, and A. Venturelli. 2010. HIFSuite: tools for HDL code conversion and

manipulation. EURASIP Journal on Embedded Systems (2010).
[7] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. 2016. On the Variable Ordering in Subgraph Isomorphism Algorithms. ACM/IEEE

Transactions on Computational Biology and Bioinformatics (2016).

Manuscript submitted to ACM

http://demoseen.com/bhtalk2.pdf
http://opencores.org/
https://www.trust-hub.org/

18 Luca Piccolboni, Alessandro Menon, and Graziano Pravadelli

[8] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. 2013. The MathSAT5 SMT Solver. In Proc. of the ACM International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

[9] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and P. Mishra. 2015. Pre-silicon security verification and validation: A formal perspective. In Proc. of the
ACM/IEEE Annual Design Automation Conference (DAC).

[10] S. K. Haider, C. Jin, M. Ahmad, D. M. Shila, O. Khan, and M. Van Dijk. 2014. HaTCh: Hardware Trojan Catcher. In Cryptology ePrint Archive.
[11] S. R. Hasan, C. A. Kamhoua, K. A. Kwiat, and L. Njilla. 2016. Translating circuit behavior manifestations of hardware Trojans using model checkers

into run-time Trojan detection monitors. In Proc. of the IEEE Asian Hardware-Oriented Security and Trust (AsianHOST).
[12] M. Hicks, M. Finnicum, S.T. King, M.K.M. Milo, and Smith J.M. 2010. Overcoming an Untrusted Computing Base: Detecting and Removing Malicious

Hardware Automatically. In Proc. of the ACM/IEEE Symposium on Security and Privacy (SP).
[13] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy Hardware: Identifying and Classifying Hardware Trojans. Computer

(2010).

[14] L. W. Kim and J. D. Villasenor. 2015. Dynamic Function Verification for System on Chip Security Against Hardware-Based Attacks. IEEE Transactions
on Reliability (2015).

[15] E. Love, Y. Jin, and Y. Makris. 2012. Proof-Carrying Hardware Intellectual Property: A Pathway to Trusted Module Acquisition. (2012).

[16] D. McIntyre, F. Wolff, C. Papachristou, and S. Bhunia. 2010. Trustworthy Computing in a Multi-core System using Distributed Scheduling. In Proc.
of the IEEE International On-Line Testing Symposium (IOLTS).

[17] S. Mitra, H.-S. P. Wong, and S. Wong. 2015. Stopping Hardware Trojans in Their Tracks. In IEEE Spectrum.

[18] I. Polian, G.T. Becker, and F. Regazzoni. 2016. Trojans in Early Design Steps – An Emerging Threat. In Proc. of the Conference on Trustworthy
Manufacturing and Utilization of Secure Devices (TRUDEVICE).

[19] J. Rajendran, A. M. Dhandayuthapany, V. Vedula, and R. Karri. 2016. Formal Security Verification of Third Party Intellectual Property Cores for

Information Leakage. In Proc. of the ACM/IEEE International Conference on VLSI Design (VLSID).
[20] J. Rajendran, V. Vedula, and R. Karri. 2015. Detecting Malicious Modifications of Data in Third-party Intellectual Property Cores. In Proc. of the

ACM/IEEE Annual Design Automation Conference (DAC).
[21] M. Rostami, F. Koushanfar, and R. Karri. 2014. A Primer on Hardware Security: Models, Methods, and Metrics. In Proc. of the IEEE.
[22] H. Salmani, M. Tehranipoor, and R. Karri. 2013. On Design Vulnerability Analysis and Trust Benchmarks Development. In Proc. of the IEEE

International Conference on Computer Design (ICCD).
[23] S. Skorobogatov and C. Woods. 2012. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In Proc. of the ACM International

Conference on Cryptographic Hardware and Embedded Systems (CHES).
[24] C. Sturton, M. Hicks, D. Wagner, and S.K. King. 2011. Defeating UCI: Building Stealthy and Malicious Hardware. In Proc. of the ACM/IEEE Symposium

on Security and Privacy (SP).
[25] M. Tehranipoor and F. Koushanfar. 2010. A Survey of Hardware Trojan Taxonomy and Detection. IEEE Design Test of Computers (2010).
[26] A. Waksman and S. Sethumadhavan. 2010. Tamper Evident Microprocessors. In Proc. of the ACM/IEEE Symposium on Security and Privacy (SP).
[27] A. Waksman and S. Sethumadhavan. 2011. Silencing Hardware Backdoors. In Proc. of the ACM/IEEE Symposium on Security and Privacy (SP).
[28] A. Waksman, M. Suozzo, and S. Sethumadhavan. 2013. FANCI: Identification of Stealthy Malicious Logic Using Boolean Functional Analysis. In Proc.

of the ACM SIGSAC Conference on Computer and Communications Security (CCS).
[29] S. Wei, K. Li, F. Koushanfar, and M. Potkonjak. 2012. Hardware Trojan Horse Benchmark via Optimal Creation and Placement of Malicious Circuitry.

In Proc. of the ACM/IEEE Annual Design Automation Conference (DAC).
[30] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. 2016. Hardware Trojans: Lessons Learned After One Decade of Research. ACM

Transactions on Design Automation of Electronic Systems (2016).
[31] J. Zhang and Q. Xu. 2013. On Hardware Trojan Design and Implementation at Register-Transfer Level. In Proc. of the IEEE International Symposium

on Hardware-Oriented Security and Trust (HOST).
[32] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu. 2013. VeriTrust: Verification for Hardware Trust. In Proc. of the ACM/IEEE Annual Design Automation

Conference (DAC).
[33] J. Zhang, F. Yuan, and Q. Xu. 2014. DeTrust: Defeating Hardware Trust Verification with Stealthy Implicitly-Triggered Hardware Trojans. In Proc. of

ACM SIGSAC Conference on Computer and Communications Security (CCS).

Received April 2017; revised May 2017; accepted June 2017

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organisation

	2 Preliminaries
	2.1 Threat Model

	3 Hardware Trojan Library
	3.1 Extension Directives
	3.2 Confidence Directives

	4 Detection of Hardware Trojans
	4.1 Extraction Algorithm
	4.2 Detection Algorithm

	5 Matching confidence
	6 Experimental Results
	6.1 Experimental Evaluation
	6.2 Trust-HUB benchmarks
	6.3 Cryptoplatform

	7 Limitations and extensions
	8 Related Work
	9 Concluding Remarks
	References

